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On limiting values of Cauchy type integral in
a harmonic algebra with two-dimensional radical

Abstract. We consider a certain analog of Cauchy type integral taking val-
ues in a three-dimensional harmonic algebra with two-dimensional radical.
We establish sufficient conditions for an existence of limiting values of this
integral on the curve of integration.

1. Introduction. Let Γ be a closed Jordan rectifiable curve in the complex
plane C. By D+ and D− we denote, respectively, the interior and the
exterior domains bounded by the curve Γ.

N. Davydov [1] established sufficient conditions for an existence of limiting
values of the Cauchy type integral

(1)
1

2πi

∫
Γ

g(t)

t− ξ
dt, ξ ∈ C \ Γ,

on Γ from the domains D+ and D−. This result stimulated a development
of the theory of Cauchy type integral on curves which are not piecewise-
smooth.

In particular, using the mentioned result of the paper [1], the following
result was proved: if the curve Γ satisfies the condition (see [2])

(2) θ(ε) := sup
ξ∈Γ

θξ(ε) = O(ε), ε→ 0
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(here θξ(ε) := mes {t ∈ Γ : |t − ξ| ≤ ε}, where mes denotes the linear
Lebesgue measure on Γ), and the modulus of continuity

ωg(ε) := sup
t1,t2∈Γ,|t1−t2|≤ε

|g(t1)− g(t2)|

of a function g : Γ→ C satisfies the Dini condition

(3)

1∫
0

ωg(η)

η
dη <∞,

then the integral (1) has limiting values in every point of Γ from the domains
D+ and D− (see [3]). The condition (2) means that the measure of a part of
the curve Γ in every disk centered at a point of the curve is commensurable
with the radius of the disk.

In this paper we consider a certain analogue of Cauchy type integral
taking values in a three-dimensional harmonic algebra with two-dimensional
radical and study the question about an existence of its limiting values on
the curve of integration.

2. A three-dimensional harmonic algebra with a two-dimensional
radical. Let A3 be a three-dimensional commutative associative Banach
algebra with unit 1 over the field of complex numbers C. Let {1, ρ1, ρ2} be
a basis of algebra A3 with the multiplication table: ρ1ρ2 = ρ2

2 = 0, ρ2
1 = ρ2.

A3 is a harmonic algebra, i.e. there exists a harmonic basis {e1, e2, e3} ⊂
A3 satisfying the following conditions (see [5], [6], [7], [8], [9]):

(4) e2
1 + e2

2 + e2
3 = 0, e2

j 6= 0 for j = 1, 2, 3.

P. Ketchum [5] discovered that every function Φ(ζ) analytic with respect
to the variable ζ := xe1 + ye2 + ze3 with real x, y, z satisfies the equalities

(5)
(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
Φ(ζ) = Φ′′(ζ) (e2

1 + e2
2 + e2

3) = 0

owing to the equality (4). I. Mel’nichenko [7] noticed that doubly differen-
tiable in the sense of Gateaux functions form the largest class of functions
Φ satisfying the equalities (5).

All harmonic bases in A3 are constructed by I. Mel’nichenko in [9].
Consider a harmonic basis

e1 = 1, e2 = i+
1

2
iρ2, e3 = −ρ1 −

√
3

2
iρ2

in A3 and the linear envelope E3 := {ζ = x+ye2 +ze3 : x, y, z ∈ R} over the
field of real numbers R, that is generated by the vectors 1, e2, e3. Associate
with a domain Ω ⊂ R3 the domain Ωζ := {ζ = x+ ye2 + ze3 : (x, y, z) ∈ Ω}
in E3.
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The algebra A3 have the unique maximal ideal {λ1ρ1 +λ2ρ2 : λ1, λ2 ∈ C}
which is also the radical of A3. Thus, it is obvious that the straight line
{ze3 : z ∈ R} is contained in the radical of algebra A3.

A3 is a Banach algebra with the Euclidean norm

‖a‖ :=
√
|ξ1|2 + |ξ2|2 + |ξ3|2 ,

where a = ξ1 + ξ2e2 + ξ3e3 and ξ1, ξ2, ξ3 ∈ C.
We say that a continuous function Φ : Ωζ → A3 is monogenic in a domain

Ωζ ⊂ E3 if Φ is differentiable in the sense of Gateaux in every point of Ωζ ,
i. e. if for every ζ ∈ Ωζ there exists Φ′(ζ) ∈ A3 such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.

For monogenic functions Φ : Ωζ → A3 we established basic properties
analogous to properties of analytic functions of the complex variable: the
Cauchy integral theorem, the Cauchy integral formula, the Morera theorem,
the Taylor expansion (see [11]).

3. On existence of limiting values of a hypercomplex analogue of
the Cauchy type integral. In what follows, t1, t2, x, y, z ∈ R and the
variables x, y, z with subscripts are real. For example, x0 and x1 are real,
etc.

Let Γζ := {τ = t1+t2e2 : t1+it2 ∈ Γ} be the curve congruent to the curve
Γ ⊂ C. Consider the domain Π±ζ := {ζ = x+ye2 +ze3 : x+ iy ∈ D±, z ∈ R}
in E3. By Σζ we denote the common boundary of domains Π+

ζ and Π−ζ .
Consider the integral

(6) Φ(ζ) =
1

2πi

∫
Γζ

ϕ(τ)(τ − ζ)−1dτ

with a continuous density ϕ : Γζ → R. The function (6) is monogenic in the
domains Π+

ζ and Π−ζ , but the integral (6) is not defined for ζ ∈ Σζ .
For the function ϕ : Γζ → R consider the modulus of continuity

ωϕ(ε) := sup
τ1,τ2∈Γζ ,‖τ1−τ2‖≤ε

|ϕ(τ1)− ϕ(τ2)|,

and a singular integral∫
Γζ

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)−1dτ := lim

ε→0

∫
Γζ\Γεζ(ζ0)

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)−1dτ,

where ζ0 ∈ Γζ and Γεζ(ζ0) := {τ ∈ Γζ : ‖τ − ζ0‖ ≤ ε}.
Below, in Theorem 1 in the case where the curve Γ satisfies the condition

(2) and the modulus of continuity of the function ϕ satisfies a condition
of the type (3), we establish the existence of certain limiting values of the
integral (6) in points ζ0 ∈ Γζ when ζ tends to ζ0 from Π+

ζ or Π−ζ along



60 S. A. Plaksa and V. S. Shpakivskyi

a curve that is not tangential to the surface Σζ outside of the plane of
curve Γζ .

For the Euclidean norm in A3 the following inequalities are fulfilled:

(7) ‖ab‖ ≤ 2
√

14‖a‖‖b‖ ∀a, b ∈ A3,

(8)

∥∥∥∥∥
∫
Γ′
ζ

ψ(τ)dτ

∥∥∥∥∥ ≤ 9M

∫
Γ′
ζ

‖ψ(τ)‖‖dτ‖

with the constant M := max{1, ‖e2
2‖, ‖e2e3‖, ‖e2

3‖} for any measurable set
Γ′ζ ⊂ Γζ and all continuous functions ψ : Γ′ζ → A3.

Lemma 1. Let Γ be a closed Jordan rectifiable curve satisfying the condition
(2) and the modulus of continuity of a function ϕ : Γζ → R satisfies the
condition of the type (3). If a point ζ tends to ζ0 ∈ Γζ along a curve γζ for
which there exists a constant m < 1 such that the inequality

(9) |z| ≤ m‖ζ − ζ0‖

is fulfilled for all ζ = x+ ye2 + ze3 ∈ γζ , then

lim
ζ→ζ0,ζ∈γζ

∫
Γζ

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ)−1dτ =

∫
Γζ

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)−1dτ.

Proof. Let ε := ‖ζ − ζ0‖. Consider the difference∫
Γζ

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ)−1dτ −

∫
Γζ

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)−1dτ

=

∫
Γ2ε
ζ (ζ0)

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ)−1dτ −

∫
Γ2ε
ζ (ζ0)

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)−1dτ

+ (ζ − ζ0)

∫
Γζ\Γ2ε

ζ (ζ0)

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ)−1(τ − ζ0)−1dτ =: I1 − I2 + I3.

To estimate I1 we choose a point ζ1 = x1 + y1e2 on Γζ such that ‖ζ − ζ1‖ =
min
τ∈Γζ
‖τ − ζ‖. Using the inequalities (7) and (8), we obtain

‖I1‖ =

∥∥∥∥∥
∫

Γ2ε
ζ (ζ0)

(
ϕ(τ)− ϕ(ζ1)

)
(τ − ζ)−1dτ +

(
ϕ(ζ1)− ϕ(ζ0)

)∫
Γ2ε
ζ (ζ0)

(τ − ζ)−1dτ

∥∥∥∥∥
≤ 18

√
14M

∫
Γ2ε
ζ (ζ0)

|ϕ(τ)− ϕ(ζ1)| ‖(τ − ζ)−1‖ ‖dτ‖
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+|ϕ(ζ1)− ϕ(ζ0)|

∥∥∥∥∥
∫

Γ2ε
ζ (ζ0)

(τ − ζ)−1dτ

∥∥∥∥∥ =: I ′1 + I ′′1 .

It follows from Lemma 1.1 [9] that

(10) (τ − ζ)−1 =
1

t− ξ
− z

(t− ξ)2
ρ1 +

(
i

2

y − t2 −
√

3z

(t− ξ)2
+

z2

(t− ξ)3

)
ρ2

for all ζ = x + ye2 + ze3 ∈ Π±ζ and τ = t1 + t2e2 ∈ Γζ , where ξ := x + iy

and t := t1 + it2. The following inequality follows from the relations (9) and
(10):

(11) ‖(τ − ζ)−1‖ ≤ c(m)
1

|t− ξ|
,

where the constant c(m) depends only on m.
Using the inequality |t − ξ| ≥ |t − ξ1|/2 with ξ1 := x1 + iy1 and the

inequality (11), we obtain:

‖I ′1‖ ≤ 18
√

14Mc(m)

∫
Γ2ε
ζ (ζ0)

|ϕ(τ)− ϕ(ζ1)|
|t− ξ|

‖dτ‖

≤ 36
√

14Mc(m)

∫
Γ2ε
ζ (ζ0)

|ϕ(τ)− ϕ(ζ1)|
|t− ξ1|

‖dτ‖

≤ 36
√

14Mc(m)

∫
[0,4ε]

ωϕ(η)

η
dθξ1(η),

where the last integral is understood as a Lebesgue–Stieltjes integral.
To estimate the last integral we use Proposition 1 [10] (see also the proof

of Theorem 1 [4]) and the condition (2). So, we have∫
[0,4ε]

ωϕ(η)

η
dθξ1(η) ≤

8ε∫
0

θξ1(η)ωϕ(η)

η2
dη ≤ c

8ε∫
0

ωϕ(η)

η
dη → 0, ε→ 0,

where the constant c does not depend on ε.
To estimate I ′′1 we introduce the domain D2ε

ζ (ζ0) := {τ = t1 + t2e2 :

t1 + it2 ∈ D+, ‖τ − ζ0‖ ≤ 2ε} and its boundary ∂D2ε
ζ (ζ0). Using the

inequalities (8) and (11), we obtain:
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‖I ′′1 ‖ ≤ ωϕ
(
‖ζ1 − ζ0‖

)∥∥∥∥∥
∫

Γ2ε
ζ (ζ0)

(τ − ζ)−1dτ

∥∥∥∥∥
= ωϕ

(
‖ζ1 − ζ0‖

)∥∥∥∥∥
∫

∂D2ε
ζ (ζ0)

(τ − ζ)−1dτ −
∫

∂D2ε
ζ (ζ0)\Γ2ε

ζ (ζ0)

(τ − ζ)−1dτ

∥∥∥∥∥
≤ ωϕ

(
‖ζ1 − ζ0‖

)(
2π + 9Mc(m)

∫
∂D2ε

ζ (ζ0)\Γ2ε
ζ (ζ0)

‖dτ‖
|t− ξ|

)

≤ ωϕ(2ε)

(
2π + 9Mc(m)

1

ε
2π2ε

)
→ 0, ε→ 0.

Estimating I2, by analogy with the estimation of I ′1, we obtain:

‖I2‖ ≤ c
4ε∫

0

ωϕ(η)

η
dη → 0, ε→ 0,

where the constant c does not depend on ε.
Using the inequality |t − ξ| ≥ |t − ξ0|/2, where the point ξ0 := x0 + iy0

corresponds to the point ζ0 = x0 + y0e2, and using the relations (7), (8),
(11) and (2), by analogy with the estimation of I ′1, we obtain:

‖I3‖ ≤ 9M(2
√

14)2 ε

∫
Γζ\Γ2ε

ζ (ζ0)

|ϕ(τ)− ϕ(ζ0)| ‖(τ − ζ)−1‖ ‖(τ − ζ0)−1‖ ‖dτ‖

≤ c ε
∫

Γζ\Γ2ε
ζ (ζ0)

|ϕ(τ)− ϕ(ζ0)|
|t− ξ||t− ξ0|

‖dτ‖ ≤ c ε
∫

Γζ\Γ2ε
ζ (ζ0)

|ϕ(τ)− ϕ(ζ0)|
|t− ξ0|2

‖dτ‖

≤ c ε
∫

[2ε,d]

ωϕ(η)

η2
dθξ0(η) ≤ c ε

2d∫
2ε

θξ0(η)ωϕ(η)

η3
dη

≤ c ε
2d∫

2ε

ωϕ(η)

η2
dη → 0, ε→ 0,

where d := maxξ1,ξ2∈Γ |ξ1 − ξ2| is the diameter of Γ and c denotes different
constants which do not depend on ε. The lemma is proved. �

Let Φ̂±(ζ0) be the boundary value of function (6) when ζ tends to ζ0 ∈ Γζ
along a curve γζ for which there exists a constant m < 1 such that the
inequality (9) is fulfilled for all ζ = x+ ye2 + ze3 ∈ γζ .
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Theorem 1. Let Γ be a closed Jordan rectifiable curve satisfying the condi-
tion (2) and the modulus of continuity of a function ϕ : Γζ → R satisfies the
condition of the type (3). Then the integral (6) has boundary values Φ̂±(ζ0)
for all ζ0 ∈ Γζ that are expressed by the formulas:

Φ̂+(ζ0) =
1

2πi

∫
Γζ

(ϕ(τ)− ϕ(ζ0))(τ − ζ0)−1dτ + ϕ(ζ0)

Φ̂−(ζ0) =
1

2πi

∫
Γζ

(ϕ(τ)− ϕ(ζ0))(τ − ζ0)−1dτ.

The theorem follows from the Lemma 1 and the equalities

1

2πi

∫
Γζ

ϕ(τ)(τ−ζ)−1dτ =
1

2πi

∫
Γζ

(ϕ(τ)−ϕ(ζ0))(τ−ζ)−1dτ+ϕ(ζ0) ∀ ζ ∈ Π+
ζ ,

1

2πi

∫
Γζ

ϕ(τ)(τ − ζ)−1dτ =
1

2πi

∫
Γζ

(ϕ(τ)− ϕ(ζ0))(τ − ζ)−1dτ ∀ ζ ∈ Π−ζ .

In comparison with Theorem 1, note that additional assumptions about
the function ϕ are required for an existence of limiting values of the function
(6) from Π+

ζ or Π−ζ on the boundary Σζ . We are going to state these results
in next papers.
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