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The differential equation

We consider a differential equation in RN :

(ODE) x ′(t) = f (x(t)), t ≥ 0, x(0) = x

where f : RN 7→ RN is possibly discontinuous (but bounded and
measurable)
Remark It is well known that for f only measurable, existence of
solution to (ODE) may fail.

We consider the stochastic differential equation (with ε small) :

(SDE) dXε(t) = f (Xε(t))dt + εdWt , t ≥ 0, x(0) = x ,

where (W (t), t ≥ 0) denotes an N-dimensional standard Brownian
motion on some complete probability space (Ω,F ,P)
Remark The SDE has always a weak solution.
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The differential inclusion

Our main aim is to compare the limits of solutions to SDE with
Filippov’s solutions to ODE which are solutions to the differential
inclusion

(DI) x ′(t) ∈ F (x(t)), t ≥ 0, x(0) = x

where F is the smallest set valued-map with closed graph and
compact convex values which contains f almost everywhere.
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Existence for differential inclusion

Recall that if FRn 7→ Rn, is a (bounded) set valued-map with closed
graph and compact convex values the differential inclusion (DI) has
always at least one solution.
Scheme of the proof

For any ε > 0 there exist a Lipschitz function fε with

Graph(fε) ⊂ Graph(F ) + εB.

One can obtain a solution to the differential inclusion by taking any
cluster point of solutions to the following differential equations

x ′(t) = fε(x(t)), t ≥ 0, x(0) = x .
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Outline

1- Filippov’s solutions to ordinary differential equations
2- Limits of stochastic differential equations
3- Examples and generalizations
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Filippov’s regularization

Definition To f : RN 7→ RN , we associate the following set-valued map

Ff (x) :=
⋂

λ(N)=0

⋂
δ>0

cof ((x + δB)\N);

the first intersection is taken over all sets N ⊂ RN , being neglectable
with respect to the Lebesgue measure.
An absolutely continuous solution t 7→ x(t) is a Filippov’s solution to
ODE iff it is a solution of the following differential inclusion

x ′(t) ∈ Ff (x(t)), t ≥ 0, x(0) = x .

Remarks
If f is continuous, F = f , and so classical solutions are Filippov’s
solutions.
Consider f (x) := 1R\{0}, then x(t) = 0 is a classical solution but not a
Filippov’s solution.
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Properties of the Filippov regularization

Let f : RN 7→ Rn be a measurable and (locally) bounded function. Then
i) There exists a set Nf neglectable such that,

∀x ∈ RN , Ff (x) =
⋂
δ>0

cof ((x + δB)\Nf );

ii) For almost all x , we have f (x) ∈ F (x).
iii) Ff is the smallest map with closed graph and closed convex
values with f (x) ∈ F (x) for almost all x
iv) The map x 7→ Ff (x) is single-valued iff ∃ a continuous function
g which coincide a. e. with f . Then Ff (x) = {g(x)} for a. e. x .
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Properties of the Filippov regularization

v) If a function f̃ coincide almost everywhere with f then
Ff (x) = Ff̃ (x) for all x ∈ Rn.

vi) ∃f̄ which is equal a. e. to f and such that

Ff (x) =
⋂
δ>0

cof̄ ((x + δB)).

vii) We have

Ff (x) :=
⋂

f̃=f a.e.

⋂
δ>0

cof̃ ((x + δB)),

the first intersection is taken over all functions f̃ being equal to f
almost everywhere.
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Proofs of properties of the Filippov map

Define Nf the complement of set of points x ∈ RN of approximate
continuity of f , namely points x such that

∀ε, lim
r→0+

λ{y ∈ (x + rB), |f (y)− f (x)| > ε}
λ(x + rB)

= 0.

Observe that

ε
λ{y ∈ (x + rB), |f (y)− f (x)| > ε}

λ(x + rB)
≤ 1
λ(x + rB)

∫
x+rB

|f (y)− f (x)|dy .

The second term tends to 0 for all the Lebesgue points of f . So Nf is
Lebesgue neglectable set.
i) Consider x ∈ Rn. Fix N a set of measure 0, we prove that⋂

δ>0

cof ((x + δB)\Nf ) =
⋂
δ>0

cof ((x + δB)\(Nf ∪ N)).
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Proofs of properties of the Filippov map

(NF ) Ff (x) =
⋂
δ>0

cof ((x + δB)\Nf )

ii) We obtain
∀x ∈ RN\Nf , f (x) ∈ Ff (x).

iii) From the expression (NF), it appears clearly that Ff is upper
semicontinuous with compact convex nonempty values and that
f (x) ∈ F (x) for almost all x .
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Proofs of properties of the Filippov map

Consider another set-valued map G upper semicontinuous with
compact convex values such that for some NG of measure 0 we have :

f (x) ∈ G(x), ∀x ∈ RN\NG.

Fix y ∈ RN . From the upper semicontinuity of G, there exists a
sequence δn ↓ 0+ with

G(y + δnB) ⊂ G(y) +
1
n

B, ∀n ≥ 1.

Clearly,

f ((y + δnB)\(Nf ∪ NG)) ⊂ G(y + δnB) ⊂ G(y) +
1
n

B, ,

and consequently, because G(y) is a compact convex set of Rn,⋂
n≥1

cof ((y + δnB)\(Nf ∪ NG)) ⊂ G(y).

From ii) Ff (y) ⊂ G(y). The proof of iii) is achieved.
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Proofs of properties of the Filippov map

iv) Assume that Ff (x) = {g(x)} for all x ∈ RN . Because x 7→ {g(x)} is
upper semicontinuous as a set-valued map, this yields that the function
g is continuous. Furthermore, from iii) , g(x) = f (x) for almost every x .
Conversely, suppose that there exists some g continuous which
coincide with f on the complement of some neglectable set N. We
have for any x ,

Ff (x) = ∩δ>0cof ((x + δB)\(Nf ∪ N))

=
⋂
δ>0

cog((x + δB)\(Nf ∪ N)).

The last term reduces to {g(x} thanks to the continuity of g.
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Filippov set-valued map

v) Suppose that f̃ (x) = f (x) for any x ∈ RN\Ñ, where Ñ is a
neglectable set. Then for any set N of measure 0 we have for any x⋂

δ>0

cof ((x + δB)\(Ñ ∪ N)) =
⋂
δ>0

cof̃ ((x + δB)\(Ñ ∪ N)).

By taking the intersection over all sets N of null measure, we obtain
Ff (x) = Ff̃ (x), which proves our claim.
vi) Let us define f̄ by setting

f̄ (x) = f (x) if x /∈ Nf

if x ∈ Nf we choose for f̄ (x) any element of Ff (x).

Clearly f̄ coincides with f on RN\Nf . We can prove that f̄ is suitable for
our proof.
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Filippov set-valued map
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Limit of solutions to SDES

THEOREM Suppose that f is bounded ( by M) and Lebesgue
measurable.
For any ε, let Xε be a solution to (SDE).
Then, along a subsequence, Xε converges in law, as ε→ 0, to some X
which belongs almost surely to the set of Filippov’s solutions to ODE.
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Proof of Main Theorem

Consider a weak solution (Xε,Wε) to

Xε(t) = x +

∫ t

0
f (Xε(s))ds + εWε(t), t ∈ [0,T ].

Note that (Xε,Wε) is still solution to the same equation with f replaced
by f̄ . So we assume that

∀x ∈ RN , Ff (x) =
⋂
δ>0

cof (x + δB).

The laws {Pε(Xε,Wε)
−1, ε > 0 } are tight. Hence ∃εn → 0+ with

Pεn (Xεn ,Wεn )−1 → P(X ,W )−1 in D, as n→ +∞.
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Proof of Main Theorem

Set Yε(t) := Xε(t)− εWε(t) which satisfies

Y ′ε(t) = f (Xε(t)), t ≥ 0, Yε(0) = x .

Using Skohorod’s Theorem we can find a new probability space
(Ω̃, F̃ , P̃) and stochastic processes X̃εn , W̃εn , X̃ , W̃ defined over
(Ω̃, F̃ , P̃), such that

P̃(X̃εn , W̃εn )−1 = P(Xεn ,Wεn )−1, n ≥ 1, and
P̃(X̃ , W̃ )−1 = P(X ,W )−1,
in the topology of the uniform convergence on compacts,
X̃εn → X̃ , W̃εn → W̃ , P̃-a.s.

M. Quincampoix (Univ. Brest) Filippov & SDE’s 17 / 26



Proof of Main Theorem

Set Yε(t) := Xε(t)− εWε(t) which satisfies

Y ′ε(t) = f (Xε(t)), t ≥ 0, Yε(0) = x .

Using Skohorod’s Theorem we can find a new probability space
(Ω̃, F̃ , P̃) and stochastic processes X̃εn , W̃εn , X̃ , W̃ defined over
(Ω̃, F̃ , P̃), such that

P̃(X̃εn , W̃εn )−1 = P(Xεn ,Wεn )−1, n ≥ 1, and
P̃(X̃ , W̃ )−1 = P(X ,W )−1,
in the topology of the uniform convergence on compacts,
X̃εn → X̃ , W̃εn → W̃ , P̃-a.s.

M. Quincampoix (Univ. Brest) Filippov & SDE’s 17 / 26



Proof of Main Theorem

Hence, for T > 0,

X̃εn → X̃ , W̃εn → W̃ in C([0,T ),Rn), P̃- a.s.,

from where we easily get that

Ỹεn := X̃εn − εnW̃εn → X̃ , in C([0,T ),Rn), P̃- a.s..

Because |Ỹ ′εn (t)| ≤ M, so outside a P̃-null set, Ỹεn converges P. a. s. to
X̃ in W 1,∞

weak ([0,T ],Rn), and hence also in W 1,∞
weak ([0,T ],L2(Ω̃,Rn)).
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Proof of Main Theorem

Fix δ > 0. Then, since

ηεn = sup
k≥n, t∈[0,T ]

|X̃εk (t)− X̃ (t)| ≥ 0 converge to 0 P̃ a.s.

Ỹ ′εn (t) = f (X̃εn (t)) ∈ f (X̃ (t) + ηεnB) ⊂ cof (X̃ (t) + δB), ∀n large enough.

Passing to the limit when n→∞,

X̃ ′(t) ∈ cof (X̃ (t) + δB),

P̃-a.s.. Hence, δ being arbitrary,

X̃ ′(t) ∈
⋂
δ>0

cof (X̃ (t) + δB) = Ff (X̃ (t)) a.e t ≥ 0.

Observe that

1 = P̃[X̃ ′(t) ∈ Ff (X̃ (t)) for a.e t ≥ 0.] = P[X ′(t) ∈ Ff (X (t)) for a.e t ≥ 0.]
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Examples in dimension 1

[Bafico Baldi] Assume that f : R 7→ R is continuous around x ∈ R an
isolated zero of f and for some r > 0,∫ x+r

x

1
f (y)

< +∞,
∫ x−r

x

1
f (y)

= +∞,

and for some δ > 0 the functions

h(x) = min
[x ,x+δ]

f , g(x) = max
[x−δ,x ]

f

satisfies ∫ r

0

1
h(y)

< +∞,
∫ −r

0

1
g(y)

= +∞,

Then any limit trajectory X of SDE is supported by the two extremal
trajectories x1 and x2 of ODE.
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Examples in dimension 1

[Gradinaru, Herrmann, Roynette] Fix 0 < γ < 1. The differential
equation

x ′(t) = sgnx(t)|x(t)|γ , x(0) = 0

has two extremal solutions

x1(t) = (t(1− γ))
1

1−γ , x2(t) = −(t(1− γ))
1

1−γ

Let pεt the density of the law of the solution X ε
t of SDE.

If |x | > x1(t) then there exists a positive function kt with

lim
ε→0+

ε2pεt (x) = −kt (|x |)

If x1(t) > |x | > x2(t) then there exists a function lt with

lim
ε→0+

ε
2(1−γ)

1+γ pεt (x) = −lt (x)
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Applications to existence of solution to some ODE

Consider f measurable bounded and suppose that there is some
C > 0 with

< f (x)− f (y), x − y >≤ C|x − y |2, ∀x , y ∈ Rn

Then the ODE has a unique Filippov solution which is the limit of
solutions to SDEs

The solutions of the SDEs converge to some process X supported
by Filippov’s solutions
The process X is deterministic.
There is at most one Filippov’s solution.
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Further generalizations

Consider σ Lipschitz and b measurable bounded

dX (t) = b(X (t))dt + σ(X (t))dWt , t ≥ 0, x(0) = x ,

(SSDE) dX (t) = b(X (t))dt + σ(X (t))dWt + εdBt , t ≥ 0, x(0) = x ,

where Bt is independent with WtResult The solutions to (SSDE)
converge weakly to a solution to

dX (t) ∈ Fb(X (t))dt + σ(X (t))dWt , t ≥ 0, x(0) = x ,
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