
The Impact of Emerging Technologies on S. G. Nash and A. Sofer (ed.)

Computer Science and Operations Research Kluwer Academic Publishers

1995

On-line Algorithms for a Single Machine
Scheduling Problem

Weizhen Mao1

Department of Computer Science, College of William and Mary, Williamsburg, VA 23187

Rex K. Kincaid2

Department of Mathematics, College of William and Mary, Williamsburg, VA 23187

Adam Rifkin

Department of Computer Science, California Institute of Technology, Pasadena, CA 91125

Abstract

An increasingly significant branch of computer science is the study

of on-line algorithms. In this paper, we apply the theory of on-line al-

gorithms to job scheduling. In particular, we study the nonpreemptive

single machine scheduling of independent jobs with arbitrary release dates

to minimize the total completion time. We design and analyze two on-line

algorithms which make scheduling decisions without knowing about jobs

that will arrive in future.

Keywords: job scheduling, on-line algorithm, c-competitiveness

1 Introduction

Given a sequence of requests, an on-line algorithm is one that responds to each
request in the order it appears in the sequence without the knowledge of any
request following it in the sequence. For instance, in the bin packing problem,
a list L = (a1, a2, . . . , an) of reals in (0, 1] needs to be packed into the minimum
number of unit-capacity bins. An on-line bin packing algorithm packs ai, where
i starts from 1, without knowing about ai+1, . . . , an.

1Supported in part by NSF grant CCR-9210372.
2Supported in part by a faculty research award from the College of William and Mary.

157

As pointed out by Karp [?], on-line algorithms are often contrasted with
off-line algorithms, which receive the entire sequence of requests in advance. In
other words, off-line algorithms know the future, while on-line algorithms do not.
Therefore, given any objective function, the quality of the solution obtained with
an on-line algorithm will be no better (and is typically worse) than the solution
obtained with an off-line algorithm.

In many situations, we wish to know the quality of a solution obtained by
an on-line algorithm (hereafter referred to as the performance of the algorithm).
A commonly used method to evaluate the performance of an on-line algorithm
is to define a stochastic model by assuming a certain probabilistic distribution
for the problem instances. The expected performance of the on-line algorithm
is then evaluated within the confines of the stochastic model. However, this
approach is inconsistent with the nature of on-line algorithms since, as pointed
out by Karp [?], the choice of a stochastic model requires data that may not
be readily available about the request sequences that have been observed in the
past, as well as faith that the future will resemble the past.

An alternative approach is to compare an on-line algorithm with the optimal
off-line algorithm for the same problem in the worst case. Karlin, Manasse,
Rudolph, and Sleator [?] defined the term c-competitive to refer to an on-line
algorithm with performance that is within a factor of c (plus a constant) to
optimum on any sequence of requests. More formally, given any instance I,
assume the problem asks for the minimization of an objective function σ(I).
Let A be an on-line algorithm for the problem. Let σA(I) and σ∗(I) be the
values of the objective function on I in the solution obtained by A and the
solution obtained by the optimal off-line algorithm, respectively. Algorithm A

is c-competitive (c is also called the competitive ratio) if there exists a constant
a such that for any instance I,

σA(I) ≤ cσ∗(I) + a.

For many optimization problems, on-line algorithms have been analyzed us-
ing this method. For example, Sleator and Tarjan [?] presented the 2-competitive
Move-to-Front algorithm for list processing. Manasse, McGeoch, and Sleator [?]
conjectured the existence of k-competitive algorithms for the k-server problem.

In the area of job scheduling, Graham [?] pioneered the on-line algorithm
study by designing an on-line algorithm for the multiprocessor scheduling prob-
lem. In the problem, a set of n independent jobs are to be scheduled nonpreemp-
tively on m parallel machines. The goal is to construct a schedule with the min-

158

imum makespan. Graham defined an on-line algorithm called List-Scheduling
(LS), in which the jobs are kept in a list, and when a machine becomes idle
the first job in the list is removed from the list and assigned to the machine.
Graham proved that for any instance I, σLS(I) ≤ (2− 1

m)σ∗(I).

In this paper, we study a single machine scheduling problem, in which jobs
are not all available at the beginning, but instead are given release dates. We
define two on-line algorithms and study their c-competitiveness. It should be
pointed out that since release dates are involved, we naturally define on-line
scheduling algorithms to be ones that have no knowledge about the jobs that
have not arrived yet and make scheduling decisions based on all the jobs available
at any given time. This is clearly different from many on-line algorithms studied
by the computer science community, in which the notion of time is not involved.
It should also be pointed out that using competitive ratios to study heuristics is
not new in the area of scheduling theory. However, scheduling theory has focused
on off-line models, which assume that the entire sequence of jobs arriving at a
service facility is known in advance. For example, Potts [?] and Hall and Shmoys
[?] gave analysis of two off-line heuristics for a single machine scheduling problem
that seeks to minimize the maximum lateness over all jobs.

We organize the paper as follows. In Section 2, we define the single machine
scheduling problem and present two well known, but perhaps not well studied
on-line algorithms, First-Come-First-Served (FCFS) and Shortest-Available-
Job-First (SAJF). In Section 3, we prove that FCFS and SAJF are both n-
competitive, where n is the number of jobs to be scheduled. In Section 4, we show
that there is no on-line algorithm A for the problem such that A is c-competitive
for any fixed constant c. In Section 5, we present some computational results.
In Section 6, we give the conclusions.

2 A single machine scheduling problem

Given a set J of n independent jobs J1, J2, . . . , Jn. Job Jj has processing time
pj and becomes available at release date rj . A scheduling problem is defined
to execute the jobs in J on a machine such that the total completion time∑
Cj , where Cj is the completion time of Jj in the schedule, is minimized. This

problem can be denoted by 1|rj |
∑
Cj according to the α|β|γ classification used

by Lawler, Lenstra, Rinnooy Kan, and Shmoys [?], and was proved to be strongly
NP-hard by Lenstra, Rinnooy Kan, and Brucker [?] even if all parameters that
define the problem instance are given in advance. The problem is solvable in

159

polynomial time however if rj = 0 for all j according to Smith [?].

The problem arises from process scheduling in operating system design. In
the multi-user system, we have situations in which more than one process is
waiting for CPU time, and the operating system must decide which one to run
first. One of the goals that the operating system seeks to achieve is to minimize
the average response time, i.e., 1

n

∑
(sj − rj), where sj is the starting time of

the execution of a process (job Jj). Since sj = Cj − pj , the average response
time is in fact 1

n (
∑
Cj −

∑
(pj + rj)). Since 1

n

∑
(pj + rj) can be considered as a

constant for a given instance, the problem is therefore converted to 1|rj |
∑
Cj .

Many algorithms have been designed and analyzed for the problem. Dessouky
and Deogun [?] proposed a branch-and-bound algorithm. Deogun [?] presented
a partitioning scheme. Chand, Traub, and Uzsoy [?] used a decomposition ap-
proach to improve branch-and-bound algorithms. Gazmuri [?] gave a proba-
bilistic analysis. Posner [?] studied a greedy method and proved that it yields
an optimal solution under certain conditions. Chu [?] defined a few algorithms
which use a local optimal condition to make scheduling decisions.

All of the algorithms in the literature mentioned above are off-line in the
sense that the algorithms know all the information about jobs even before they
arrive in the system. This assumption becomes unrealistic in practice since jobs
may arrive at any time and an algorithm is unable to know their pj and rj until
their arrival. Furthermore, an algorithm may not even know n, the total number
of jobs, until all of them arrive. We call this type of algorithm on-line. In other
words, an on-line algorithm makes scheduling decisions without any knowledge
about the future.

We present two well known on-line algorithms: First-Come-First-Served
(FCFS) and Shortest-Available-Job-First (SAJF). In both algorithms, a queue
is maintained to contain all the jobs that have arrived but have not been ex-
ecuted. In FCFS, jobs in the queue are listed according to nondecreasing rj
(jobs with the same rj are ordered by nondecreasing pj), while in SAJF , jobs in
the queue are listed according to nondecreasing pj . When the machine becomes
idle after completing the execution of a job, the first job in the queue is assigned
to the machine for execution. When a new job arrives, it is inserted into the
correct position in the queue. Both FCFS and SAJF are on-line since they
make scheduling decisions only based on the information in the available queue.
Both FCFS and SAJF are also conservative, meaning that the machine is never
left idle when there are jobs in the available queue. We notice that even though
these two algorithms are commonly used, few analytic results are available.

160

We define the following notations. Let A be an algorithm for the scheduling
problem. Let I be any problem instance. Then we use σA(I) and σ∗(I) to
denote the total completion times of I in the schedule constructed by A and the
optimal schedule, respectively. We note that the optimal schedule is off-line and
yields the minimum total completion time.

3 Analysis of FCFS and SAJF

Phipps [?] showed that if the jobs arrive according to a Poisson process then
SAJF beats FCFS for a variety of performance measures. Schrage [?] proved
that with SAJF the number of jobs in the queue at any point in time is less than
or equal to the number of jobs in the queue for any other heuristic simultaneously
acting on the same instance. We were unable to find extensions of these results
for arbitrary arrival process and with total completion time as the performance
measure. Consequently, we provide a proof that SAJF always beats FCFS
with respect to total completion time, i.e., for all I, σSAJF (I) ≤ σFCFS(I).
First, we need the following lemma.

LEMMA 1 Let µSAJF (I) and µFCFS(I) be the maximum completion times (also
called makespans) of any instance I in SAJF and FCFS, respectively. Then
µSAJF (I) = µFCFS(I).

Proof Consider any conservative scheduling heuristic A. For any instance I,
the makespan µA(I) of the schedule obtained with A must be the sum of the
total processing time

∑
pj and the total idle time

∑
φi. That is,

µA(I) =
∑

pj +
∑

φi.

Since in A the machine is left idle only when there are no jobs in the available
queue, A obviously minimizes the total idle time, hence the makespan of the
schedule. Because SAJF and FCFS are conservative, they both construct the
schedules with the minimum makespan. So µSAJF (I) = µFCFS(I). 2

We then have the following theorem.

THEOREM 1 σSAJF (I) ≤ σFCFS(I) for any instance I.

Proof We prove by induction on n, the number of jobs in J . When n = 1,
we denote the instance by I1. SAJF and FCFS behave exactly the same.

161

So σSAJF (I1) = σFCFS(I1). Assume for any instance In−1 with n − 1 jobs,
σSAJF (In−1) ≤ σFCFS(In−1).

Now consider any instance In with n jobs. Let J∗, with processing time p∗

and release date r∗, be the job that is executed last in the FCFS schedule for
In. J∗ must be the longest job among all jobs with the largest release date. Let
φ ≥ 0 be the idle time just before J∗ in the FCFS schedule for In. Clearly,
φ = max{0, r∗ − µFCFS(In−1)}. Let In−1 be the same instance as In with J∗

removed. We have

σFCFS(In) = σFCFS(In−1) + (µFCFS(In−1) + φ+ p∗). (1)

Now consider the SAJF schedule for In. Without loss of generality, we
assume that if there are other jobs which have the same processing time and
release date as J∗ then J∗ is executed last among them in the SAJF schedule
for In. Let ψ ≥ 0 be the idle time just before J∗ in the SAJF schedule for In.
Assume that there are k ≥ 0 jobs following J∗ in the SAJF schedule for In, all
no shorter than J∗ and arriving earlier than J∗. If ψ > 0, J∗ must be the last
job in SAJF and so k = 0, and if ψ = 0, J∗ may be followed by some longer
jobs in SAJF . Therefore,

kψ = 0. (2)

Furthermore, when ψ > 0, all jobs except J∗ are scheduled earlier than J∗ in the
SAJF schedule for In. So ψ = max{0, r∗−µSAJF (In−1)}. Since µSAJF (In−1) =
µFCFS(In−1) by Lemma 1, then

ψ = φ. (3)

Let Cl be the completion time of the job Jl that is scheduled right before J∗ in
the SAJF schedule for In. Note that Jl and J∗ may be separated by ψ. Then,

Cl + kp∗ ≤ µSAJF (In−1). (4)

Therefore, we have

σSAJF (In) = σSAJF (In−1) + (Cl + ψ + p∗) + k(ψ + p∗)

≤ σSAJF (In−1) + µSAJF (In−1) + ψ + p∗ (By (2) and (4))

≤ σFCFS(In−1) + µSAJF (In−1) + ψ + p∗

(By inductive hypothesis)

= σFCFS(In−1) + µFCFS(In−1) + φ+ p∗

(By Lemma 1 and (3))

= σFCFS(In) (By (1)). 2

162

Let us next consider the c-competitiveness of FCFS and SAJF .

THEOREM 2 σFCFS(I) ≤ nσ∗(I) for any instance I of n jobs.

Proof The FCFS schedule for any instance I with n jobs has a block structure:
B1, B2, . . ., Bl, where in each block there is no idle time, and between two
consecutive blocks there is an idle period. Let s(Bi) be the starting time of
block Bi. Obviously, rj ≥ s(Bi) for any Jj ∈ Bi.

Define another instance I ′ so that it contains J ′1, . . . , J
′
n, where the processing

time of J ′j is the same as Jj , and the release date of J ′j is s(Bi) if Jj ∈ Bi in
the FCFS schedule for I. The optimal schedule for I ′ has the same block
structure as the FCFS schedule for I. Each block has the same jobs as in the
corresponding block in the FCFS schedule for I. Furthermore, based on Smith
[?], the jobs in each block in the optimal schedule of I ′ are executed according
to the shortest-job-first rule.

We have σ∗(I) ≥ σ∗(I ′) because I and I ′ have the same processing time for
each job and the release dates in I ′ are all at least as early as those in I. Assume
Bi has jobs Ji1, . . . , Jiki

with pi1 ≤ · · · ≤ piki
. Let σ∗(I ′, Bi) and σFCFS(I,Bi)

be the total completion times of jobs in Bi in the optimal schedule for I ′ and in
the FCFS schedule for I, respectively. Then

σ∗(I ′, Bi) = kis(Bi) + kipi1 + (ki − 1)pi2 + · · ·+ piki

and

σFCFS(I,Bi) ≤ kis(Bi) + pi1 + 2pi2 + · · ·+ kipiki

≤ kiσ
∗(I ′, Bi).

Therefore,

σFCFS(I) = σFCFS(I,B1) + · · ·+ σFCFS(I,Bl)

≤ k1σ
∗(I ′, B1) + · · ·+ klσ

∗(I ′, Bl)

≤ n(σ∗(I ′, B1) + · · ·+ σ∗(I ′, Bl))

= nσ∗(I ′)

≤ nσ∗(I). 2

THEOREM 3 σSAJF (I) ≤ nσ∗(I) for any instance I of n jobs.

163

Proof Straightforward using Theorems 1 and 2. 2

We can show that the competitive ratio n in Theorems 2 and 3 is tight in
the sense that it is achievable by some instance. Consider the following instance
I with n jobs. Let p1 = M and r1 = 0, where M is an arbitrarily large positive
number. Let pj = 1 and rj = ε for j = 2, . . . , n, where ε is an arbitrarily small
positive number.

In the optimal schedule, the machine waits intentionally for ε time units until
jobs J2, . . . , Jn are released, then executes J2, . . . , Jn sequentially, and finally
executes the long job J1. Therefore, σ∗(I) = (1 + ε) + (2 + ε) + · · · + (n − 1 +
ε) + (M + n− 1 + ε) = M + 1

2n(n+ 1)− 1 + nε.

In the schedules constructed by FCFS and SAJF , the machine executes J1

and then J2, . . . , Jn. Therefore, σFCFS(I) = σSAJF (I) = M + (M + 1) + · · ·+
(M + n− 1) = nM + 1

2n(n− 1).

So σF CF S(I)
σ∗(I) = σSAJF (I)

σ∗(I) = nM+ 1
2 n(n−1)

M+ 1
2 n(n+1)−1+nε

→ n for M →∞ and ε→ 0.

Now let us compare FCFS and SAJF with other algorithms. As a matter of
fact, very few algorithms for the problem have been analyzed using the competi-
tive ratio. Among those that have been analyzed, there are Earliest-Completion-
Time (ECT), Earliest-Start-Time(EST), and Priority-Rule-for-Total-Flow-time
(PRTF). In his recently published paper, Chu [?] proved that the tight com-
petitive ratio for ECT and EST is n, and the competitive ratio for PRTF is
between 1

3 (n + 1) and 1
2 (n + 1). ECT , EST and PRTF are all off-line. The

study of FCFS and SAJF tells us that an algorithm does not have to be off-line
to achieve the same competitive ratio of some off-line algorithms. Just knowing
the available jobs is adequate.

In many settings, ignorance of the future is a great disadvantage, yet knowing
the future is costly and sometimes impossible. How much is it worth to know
the future? This becomes a very interesting question.

4 A general lower bound

From the discussion in the last section, we have found that in the worst case both
FCFS and SAJF behave badly since their competitive ratios are n, and n can
be arbitrarily large depending upon the size of the instance. We are interested
to know whether there is any on-line algorithm for 1|rj |

∑
Cj whose competitive

ratio is bounded by a constant instead of an instance parameter. The answer to

164

this question is in the following theorem.

THEOREM 4 For any on-line algorithm A for 1|rj |
∑
Cj, there are no constants

c and a such that σA(I) ≤ cσ∗(I) + a for any instance I.

Proof We prove by contradiction. Assume that there is an on-line algorithm A

such that σA(I) ≤ cσ∗(I) + a for some constants c, a, and for any instance I.

Using the adversary argument, we assume that the input instance is provided
by an adversary. A good adversary forces the algorithm to make bad scheduling
decisions. Suppose that job J1 is the only job that arrives at time 0, i.e., r1 = 0,
and J1 has processing time p1 > a. Since A is an on-line algorithm, it only sees
J1 in the queue and makes a scheduling decision. There are two possibilities to
consider.

Case 1. A decides to execute J1. The adversary then chooses n, the number of
jobs in the instance, to be larger than c+3, and assumes that for j = 2, 3, . . . , n,
rj = δ, where δ < p1

cn , and pj = ε, where ε < 2p1
c(n−1)(n+2) . We call this instance

I.

In the schedule constructed by A, after J1 is completed, all of the n − 1
remaining jobs are available. Therefore, σA(I) ≥ np1 + (n − 1)ε + (n − 2)ε +
· · ·+ 2ε+ ε = np1 + 1

2n(n− 1)ε.

In the optimal schedule, the machine waits until all the short jobs arrive.
Therefore, σ∗(I) = nδ+nε+(n−1)ε+ · · ·+2ε+p1 = nδ+ 1

2 (n−1)(n+2)ε+p1.

So we have

cσ∗(I) + a = cnδ +
c

2
(n− 1)(n+ 2)ε+ cp1 + a

< p1 + p1 + cp1 + p1

= (c+ 3)p1

< np1 +
1
2
n(n− 1)ε

= σA(I).

This is a contradiction to the assumption that σA(I) ≤ cσ∗(I) + a.

Case 2. A decides to wait for the next job. The adversary then chooses n,
the number of jobs, to be 1, i.e., no more jobs will arrive. This forces A to
wait forever. Therefore, σA(I) = ∞. In the optimal schedule, σ∗(I) = p1. So
σA(I) > cσ∗(I) + a. This is again a contradiction. 2

165

5 Computational results

The purpose of this section is to examine the performance of the bound given
in Theorem 1 and the c-competitiveness ratios given in Theorems 2 and 3. We
begin with a set of four, 1000 job simulation experiments that provide insight
into the quality of the bound given in Theorem 1 for total completion time, as
well as the differences between FCFS and SAJF for several other performance
measures. We have conducted many other simulation experiments, but these
four suffice to illustrate the key conclusions. We note that SAJF has already
been shown by Conway, Maxwell, and Miller [?] to be a robust queue discipline
under a variety of conditions and we make no attempt to provide an exhaustive
computational analysis here. Next, we investigate the conclusions of Theorems 2
and 3 for a 10 job, 30 job, and 50 job problem. Since this scheduling problem is
NP-hard we were unable to produce a guaranteed optimum for the 30 and 50 job
problems. A tabu search heuristic was used to generate what appear to be high
quality feasible solutions. Tabu search has enjoyed many recent successes with
a variety of scheduling problems (cf. Glover and Laguna [?]) For completeness
we give a brief description of the tabu search procedure in Section 5.2.

5.1 Simulation experiments

The simulation experiments were implemented using a SLAM II (see Pritsker
[?]) discrete event simulation model of a single server queue. Each simulation
run begins with the queue empty and the server idle. 1000 jobs are created
and processed. Table 1 characterizes each of the simulation models. Column
2 lists the distribution of the time between job arrivals. Column 3 gives the
percentage of jobs generated from two job classes (small processing times and
large processing times). The distribution from which the job processing times
are sampled is given in column 4. Column 5 is the traffic intensity. When
ρ > 0.9 we consider the system to be congested. Table 2 lists the values of
several performance measures for the FCFS and SAJF queue disciplines for
each of the four simulation models of Table 1. Column 2 lists the average job
completion time and column 3 lists the average waiting time. The average and
maximum number of jobs in the queue is given in columns 4 and 5, respectively.
Column 6 lists the value of the makespan which are identical for SAJF and
FCFS (Lemma 1).

Table 1. Simulation Model Descriptions—1000 Jobs

166

Interarrival %Sm/Lg pj Distribution ρ

1 expon(4) 95/5 triag(1,2,4)/(10,12,14) 0.69
2 expon(4) 80/20 triag(1,2,4)/(10,12,14) 0.97
3 expon(3) 100/0 triag (1,2,4) 0.78
4 unfrm(2,4) 100/0 triag (1,2,4) 0.79

Table 2. Simulation Results FCFS/SAJF—1000 Jobs

#
∑
Cj/n Wq Lq max in Q maxCj

1 2087/2085 4.9/3.6 1.2/0.9 13/9 4072.4
2 2170/2110 84.2/29.8 20/7.0 41/18 4218.3
3 1567/1566 5.3/4.2 1.7/1.4 15/12 3054.7
4 1492/1492 0.26/0.25 .087/.085 2/2 2989.6

We note that the average number in the queue, Lq, is smaller for SAJF than
for FCFS. Little’s formula (see Gross and Harris [?]), Lq = λWq, states that
the average number of jobs in the queue equals the product of the arrival rate to
the queue, λ, and the average waiting time in the queue, Wq. It can be shown
that Little’s formula applies to our single server queue with either SAJF or
FCFS queue discipline. In Section 3 we showed that σSAJF (I) ≤ σFCFS(I) for
any instance I. This result implies that Wq(SAJF) ≤Wq(FCFS) and, since λ
is a constant, we have Lq(SAFJ) ≤ Lq(FCFS).

As we expected, the uniform interarrival distribution smoothed out the ar-
rivals and decreased the size of the queue. When ρ = 0.79 (model 4) this resulted
in nearly identical performance of SAJF and FCFS. A more telling compari-
son of the performance of SAJF versus FCFS lies in the waiting times. Since
the processing times and release dates are included in the computation of the
completion time the differences between the waiting times is obscured. A final
observation is that the maximum number of jobs in the queue under SAJF was
never larger than the maximum number of jobs in the queue for FCFS. This
follows from Schrage’s [?] result for SAJF .

5.2 Tabu search

Tabu Search (TS) incorporates conditions for strategically constraining and free-
ing the search process and memory functions of varying time spans to intensify

167

and diversify the search. The search proceeds from one solution to another
via a move function and attempts to avoid entrapment in local optima by con-
structing a tabu list which records critical attributes of moves selected during a
window of recent iterations. These attributes identify elements of the solutions
that change when progressing from one solution to another, and those from the
elected window are declared tabu (forbidden). Current moves are then chosen
from a restricted set that excludes the inclusion of tabu attributes (or of a spec-
ified number or combination of these attributes), thus insuring that solutions
with these attributes (including solutions from the specified window) will not be
visited. This restriction may be modified by including aspiration criteria that al-
low an otherwise tabu move to be made if it leads to a solution that is sufficiently
attractive as measured by these criteria—as, for example, a solution better than
any previously discovered solutions. Together, these tabu restrictions and aspi-
ration criteria form the short term memory function of tabu search, which can
also be augmented by longer term memory functions to achieve goals of inten-
sification and diversification. We briefly outline the overall structure of a TS

solution approach, as a modification of an outline suggested by Skorin-Kapov
[?].

1. CONSTRUCTION PHASE: Generate a feasible solution.

2. IMPROVEMENT PHASE: Perform the short term memory TS improve-
ment phase maxit times, and then execute one of the following longer term
memory functions:

• INTENSIFY the search by choosing a previously unselected member
of a recorded set of best solutions to restart the improvement phase
(retaining memory to choose a new successor), or by choosing a mem-
ber of the best solutions uncovered but not yet visited. Repeat step
2.

• DIVERSIFY the search by driving it to explore new regions. This
may be done with either a frequency based memory that favors the
inclusion of rarely incorporated attributes, or a recency based memory
that may use distance measures that favor high quality solutions with
attributes as unlike as possible from previously observed solutions.
Repeat step 2.

• STOP. Display the best solution found.

168

We implemented a plain vanilla version of TS. Instead of a construction
phase we use the FCFS schedule as an initial feasible solution. The improve-
ment phase is a simple greedy local improvement scheme. All pairwise inter-
changes of the jobs in the schedule are considered. The pair that improves
the objective function the most (or degrades it the least if all improving inter-
changes are tabu) is selected at each iteration of the improvement phase. A tabu
interchange is allowed only if it results in the best objective function (total com-
pletion time) value yet generated. This is called the aspiration criterion. For
further information on TS interested readers are referred to Glover [?], Glover
and Laguna [?] and Kincaid [?].

5.3 Experiments with c−competitiveness

The second set of experiments compares the performance of SAJF and FCFS
to the optimal schedule, with respect to total completion time, for a 10 job
example and to the best schedules found by a tabu search heuristic for a 30
job and a 50 job problem. The examples are the first 10, 30 and 50 jobs,
respectively, generated via model 2 of Table 1. In the example with 10 jobs,
σSAJF (I) = 342.0, σFCFS(I) = 342.3, and σ∗(I) = 269.0. The optimal schedule
was found by enumerating all of the 10! schedules and computing σ for each one.

It was computationally infeasible to calculate the optimal schedule for the
number of jobs greater than 10 (We used a 33Mhz 486 class micro-computer).
For the 30 and 50 job examples a tabu search heuristic was used to generate good
solutions. The tabu search we use, as described in Section 5.2, is a plain vanilla
approach. Instead of a construction phase the FCFS schedule was used as the
initial starting solution. No intensification or diversification was used. Table 3
lists the parameters selected for our tabu search (maxit and tabusize) as well as
three performance features (columns 4–6). In column 2, maxit is the maximum
number of neighborhood searches allowed. Column 4 lists the iteration when
the observed best total completion time was found. The number of times the
aspiration criterion was satisfied is given in column 5. Column 6 lists the total
number of moves that were declared tabu.

Table 4 summarizes the performance of FCFS, SAJF and TS for three job
sequences taken from the job data generated in simulation model 2 of Table
1. Column 2 gives the best solution found by TS. When n = 10 we have
verified that this is also the optimal value. The next two pairs of columns (3-4
and 5-6) list the average completion times for FCFS and SAJF and the ratios

169

FCFS/TS and SAJF/TS, respectively. These ratios show that, at least for
these examples, the worst-case analysis of Theorems 2 and 3 may be overly
pessimistic for the average case.

Table 3. Tabu Search Characteristics

n maxit tabusize itr. best # Asp. # tabu
10 50 10 19 0 221
30 150 80 68 8 4,350
50 300 80 110 12 10,401

Table 4. Comparison of Average Completion Times

n TS FCFS ratio SAJF ratio

10 26.9∗ 34.2 1.27 34.2 1.27
30 75.8 80.8 1.07 80.5 1.06
50 126.3 134.0 1.06 132.0 1.04

6 Conclusions

In this paper, we applied the theory of on-line algorithms to the scheduling prob-
lem 1|rj |

∑
Cj , and studied the c-competitiveness of two on-line algorithms—

FCFS and SAJF . Furthermore, we proved that there is no on-line algorithm
with constant competitive ratio for this problem. We also presented some com-
putational results that illustrated the dominance of SAJF and the overly pes-
simistic nature of the c-competitiveness worst-case results.

As for the direction of future research, we are currently working on algo-
rithms with look-ahead allowed. We are interested in applying the theory of
c-competitiveness to other job scheduling problems. We would also like to gen-
eralize the algorithms for 1|rj |

∑
Cj to P |rj |

∑
Cj and R|rj |

∑
Cj in the multi-

machine environment.

Acknowledgement

We wish to thank two anonymous referees for their helpful comments.

170

References

[1] S. Chand, R. Traub, and R. Uzsoy, 1993. Single machine scheduling with
dynamic arrivals: Decomposition results and a forward algorithm. technical
Report 93-10, School of Industrial Engineering, Purdue University, West
Lafayette, IN.

[2] C. Chu, 1992. Efficient heuristics to minimize total flow time with release
dates, Oper. Res. Lett. 12, 321–330.

[3] R. W. Conway, W. L. Maxwell, and L. W. Miller, 1967. Theory of Schedul-
ing, Addison-Wesley, Reading, MA.

[4] J. S. Deogun, 1983. On scheduling with ready times to minimize mean flow
time, Comput. J. 26, 320–328.

[5] M. I. Dessouky and J. S. Deogun, 1981. Sequencing jobs with unequal ready
times to minimize mean flow time, SIAM J. Comput. 10, 192–202.

[6] P. G. Gazmuri, 1985. Probabilistic analysis of a machine scheduling prob-
lem, Math. Oper. Res. 10, 328–339.

[7] F. Glover, 1990. Tabu Search: A Tutorial, Interfaces 20, 74–94.

[8] F. Glover and M. Laguna, 1993. Tabu Search in Modern Heuristic Tech-
niques for Combinatorial Problems, C. R. Reeves, ed., Blackwell Scientific
Publishing, 70–150.

[9] R. L. Graham, 1969. Bounds on multiprocessing timing anomalies, SIAM
J. Appl. Math. 17, 416–429.

[10] D. Gross and C. M. Harris, 1974. Fundamentals of Queueing Theory, John
Wiley and Sons, New York.

[11] L. Hall and D. Shmoys, 1992. Jackson’s Rule for One-Machine Scheduling:
Making a Good Heuristic Better, Math. Oper. Res. 17, 22–35.

[12] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, 1988. Com-
petitive snoopy caching, Algorithmica 3, 79–119.

[13] R. M. Karp, 1992. On-line Algorithms Versus Off-line Algorithms: How
Much is it Worth to Know the Future?, International Computer Science
Institute Technical Report TR-92-044, Berkeley, CA.

171

[14] R. Kincaid, 1992. Good Solutions to Discrete Noxious Location Problems,
Ann. of Oper. Res. 40, 265–281.

[15] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, 1990.
Sequencing and Scheduling: Algorithms and Complexity, in Handbooks in
Operations Research and Management Science, Volume 4: Logistics of Pro-
duction and Inventory, S. C. Graves, A. H. G. Rinnooy Kan and P. Zipkin,
ed., North-Holland.

[16] J. K. Lenstra, A. H. G. Rinnooy Kan and P. Brucker, 1977. Complexity of
Machine Scheduling Problems, Ann. Discrete Math. 1, 343–362.

[17] M. S. Manasse, L. A. McGeoch and D. D. Sleator, 1990. Competitive Al-
gorithms for Server Problems, J. of Algorithms 11, 208–230.

[18] T. E. Phipps, 1956. Machine Repair as a Priority Waiting-line Problem,
Oper. Res. 4, 45–61.

[19] M. E. Posner, 1988. The Deadline Constrained Weighted Completion Time
Problem: Analysis of a Heuristic, Oper. Res. 36, 742–746.

[20] C. N. Potts, 1980. Analysis of a Heuristic for One Machine Sequencing with
Release Dates and Delivery Times, Oper. Res. 28, 1436–1441.

[21] A. A. B. Pritsker, 1986. An Introduction to Simulation and SLAM II, John
Wiley and Sons, New York.

[22] L. Schrage, 1969. A Proof of the Optimality of the Shortest Remaining
Service Time Discipline, Oper. Res. 16, 687–690.

[23] J. Skorin-Kapov, 1990. Tabu Search Applied to the Quadratic Assignment
Problem, ORSA J. on Comput. 2, 33-a-45.

[24] D. D. Sleator and R. E. Tarjan, 1985. Amortized Efficiency of List Update
and Paging Rules, Comm. ACM 28, 202–208.

[25] W. E. Smith, 1956. Various Optimizers for Single-Stage Production, Naval
Res. Logist. Quart. 3, 56–66.

172

