
On-line Algorithms for Weighted Bipartite Matching

and Stable Marriages ∗

Samir Khuller †

Dept. of Computer Science and

Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742

Stephen G. Mitchell

Dept. of Electrical Engineering

Cornell University

Ithaca, NY 14853

Vijay V. Vazirani ‡

Dept. of Computer Science & Engg.

Indian Institute of Technology

New Delhi 110016, India

Abstract

We give an on-line deterministic algorithm for the weighted bipartite matching problem
that achieves a competitive ratio of (2n − 1) in any metric space (where n is the number
of vertices). This algorithm is optimal – there is no on-line deterministic algorithm that
achieves a competitive ratio better than (2n − 1) in all metric spaces.

We also study the stable marriage problem, where we are interested in the number of
unstable pairs produced. We show that the simple “first come, first served” deterministic
algorithm yields on the average O(n log n) unstable pairs, but in the worst case no determin-
istic or randomized on-line algorithm can do better than Ω(n2) unstable pairs. This appears
to be the first on-line problem for which provably one cannot do better with randomization;
for most on-line problems studied in the past, randomization has helped in improving the
performance.

Keywords: on-line algorithms, weighted matching, stable marriage problem.

1. Introduction

There has been a great deal of interest recently in studying the relative power of on-line vs.

off-line algorithms [ST, MMS, PY]. On-line algorithms attempt to model a real life situation,

∗Supported by NSF grant DCR 85-52938 and PYI matching funds from AT&T Bell Labs and Sun Microsys-

tems, Inc.
†Currently supported by NSF Research Initiation Award CCR-9307462. Part of this research was done while

this author was supported by an IBM Graduate Fellowship at Cornell University.
‡Part of this research was done while this author was at Cornell University.

1

where the entire input is not available beforehand. The input is obtained incrementally, and the

algorithm has to make (irrevocable) decisions to respond to the input. Usually, the question of

interest is: how “good” a solution can we obtain, given the fact that each part of the solution is

obtained without a priori knowledge about the entire input.

Typically, the on-line algorithm is compared to an optimal off-line algorithm that knows the

entire request sequence in advance. The competitiveness of an on-line algorithm is the ratio of

its performance to the performance of an optimal off-line algorithm.

An optimal randomized on-line algorithm for bipartite matching (without weights) was given

in [KVV]. In this paper we study two related problems — on-line weighted bipartite matching,

and on-line stable marriages.

The Weighted Bipartite Matching Problem

The weighted bipartite matching problem occupies a central place in combinatorial opti-

mization, and has a variety of applications to transshipment problems. The problem is formally

defined as follows: obtain a minimum weight perfect matching in an edge-weighted bipartite

graph. (This problem is also known as the assignment problem.) We are able to give an opti-

mal deterministic algorithm for on-line weighted bipartite matching, where the weights satisfy

triangle inequality.

On-line model: We assume that the graph is a weighted complete bipartite graph; the woman

vertices are all given in advance, and the men arrive one at a time (revealing weights on the

edges to each of the women). The men have to be matched off immediately; once a man has

been matched, we are not permitted to change his mate. The objective is to obtain a perfect

matching of “small” total weight (compared to the minimum weight perfect matching). The

competitiveness in our case is the ratio of the weight of the on-line matching to the weight of

the minimum weight perfect matching.

Without the triangle inequality imposed on the weights any (deterministic or randomized)

on-line algorithm can have a very bad competitiveness ratio, that exceeds any function of n.

Results: We give a deterministic algorithm that is (2n− 1)-competitive if the edge weights are

distances in some metric on the set of vertices. This algorithm is optimal — any deterministic

algorithm for on-line weighted bipartite matching (with triangle inequality) must perform as

badly as (2n − 1) in arbitrary metric spaces.

An interesting feature of our algorithm is that as each man arrives, it computes the best

off-line maximum matching among the women and the currently arrived men to determine the

woman vertex to match with the newly arrived man vertex. The (2n − 1) bound is established

by using the notion of augmenting paths.

The Stable Marriage Problem

The other related problem that we study is the stable marriage problem. The stable marriage

problem has been studied extensively for its rich structure [GI], and is useful in several situations,

e.g., assigning interns to hospitals, students to colleges, etc. The stable marriage problem is

defined as follows: There are n men and n women. Each person provides a preference list that

ranks the members of the opposite sex. Given a pairing of men and women, we say that a man

and a woman form an unstable pair if they are not married, but prefer each other to their current

partners. A matching is unstable if there is at least one unstable pair, and stable otherwise.

2

On-line model: We study a natural on-line model in which we assume that all the women’s

preference lists are known in advance, and the men’s preference lists are revealed one at a time.

Each man has to be married off as soon as his preference list is revealed. This models the

situation in which the hospitals rate the interns in advance, and the interns arrive one at a time

with their ratings of the hospitals.

How can one measure how “good” the obtained solution is? One way (that we consider) is

to actually count the number of unstable pairs in any given marriage. A marriage is considered

particularly “bad”, in case many men prefer many women who also prefer them to their current

partners. These are all unstable pairs. Clearly, in a stable marriage the number of unstable

pairs is zero, so we cannot measure the ratio of the on-line solution to the off-line solution. Our

goal is to obtain an on-line algorithm with a “small” number of unstable pairs.

We would like to note that there are many possible ways of measuring how “good” an

obtained on-line solution is. For example, we could measure the number of divorces that need to

be done to make the marriage a stable marriage. This measure would make sense in a situation

where we actually had the opportunity to modify a solution obtained by an on-line algorithm.

For our purposes, we have chosen to simply count the actual number of unstable pairs as a

measure of the “quality” of the on-line solution.

Results: Our results for the stable marriage problem are of a more pessimistic nature. We

show that the simple “first come, first served” deterministic algorithm yields on the average

O(n log n) unstable pairs, but in the worst case no deterministic algorithm can do better than

Ω(n2) unstable pairs. (An unstable pair is a man-woman pair that are not married to each

other, but prefer each other to their current partners.) We also show that no randomized on-

line algorithm can do better than Ω(n2) unstable pairs. The proof for the randomized lower

bound (see Theorem 3.6 in Section 3.2) makes use of Yao’s lemma [Y]. This is the first on-line

problem we know of where provably one cannot do better with randomization.

Related work

A (2n−1) competitive algorithm for the weighted matching problem was independently obtained

by [KP] as well.

2. On-line Weighted Bipartite Matching

We describe an on-line algorithm for minimum weight perfect matchings in bipartite graphs,

where the edge weights obey the triangle inequality. We give an algorithm that produces a

perfect matching with a weight at most 2n− 1 times the weight of the minimum weight perfect

matching. We show that this is optimal for graphs obeying the triangle inequality1.

Let G = (R,B,E) be a complete bipartite graph, where R is a set of n red vertices and B is

a set of n blue vertices. Suppose there is a metric d on R×B (satisfying the triangle inequality);

for each red vertex ri and each blue vertex bj let the weight of edge (ri, bj) be wij = d(ri, bj) > 0.

Initially, the blue vertices are known; as each red vertex ri arrives (with its edge weights), the

algorithm matches ri to one of the available blue vertices. Once matched, a pair cannot later

be separated. The algorithm tries to produce the smallest weight perfect matching possible.

1By this we mean that the weight of any edge in the graph is at most the weight of any path between the two

endpoints.

3

If the weights do not obey the triangle inequality, no performance bound (for a deterministic

algorithm) depending only on n is possible (see Fig. 1). To see this, consider the following small

example. There are two blue vertices, b1 and b2. The first red vertex r1 has edges to b1 and b2,

each of weight 1. Let us assume that r1 matches with b2. Now r2 comes with edges to b1 and

b2 of weights W and 1, respectively. The only choice is to match r2 with b1. The weight of the

matching produced is W +1, whereas the optimal matching is of weight 2 (matching bi with ri).

The performance ratio can be made arbitrarily bad by taking W arbitrarily large.

.............................

.............................

s

s..

..........

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
......

W

1

1

1

r2

r1

b2

b1

Figure 1: Example to show that no ratio possible without triangle inequality

Remark: The same holds when one is trying to design a randomized on-line algorithm. Using

a theorem of Yao (Theorem 3.5, below), it is easy to construct a similar example showing that

without the triangle inequality one cannot hope to get reasonable performance bounds for a

randomized on-line algorithm.

The algorithm for graphs obeying the triangle inequality is quite simple, but not immediately

intuitive. The more intuitive greedy method (which matches a new red vertex to the closest

available blue vertex) does extremely badly in the worst case. To see this, consider the following

example in the real line R1 (see Fig. 2). The blue points (vertices) are placed as follows: bi is

placed at location 2i−1, for 1 ≤ i ≤ n − 1; we place bn at −0.1. We now locate r1 at 0.5. Since

the closest available blue vertex is b1 (at 1), we match r1 to b1. Now, for 2 ≤ i ≤ n locate ri at

bi−1. Since bi is the closest available blue vertex, ri is matched to bi. Finally, we must match

rn to bn. The weight of the optimal off-line matching is obtained by matching r1 with bn, and

matching all the other red points ri to bi−1, at no cost. The weight of the optimal matching is

.............................

..............................
..

.............................

.............................
sssss.............................

s

......................................
.............

...
.

.
.
.............................
.........

.
. . .

.........................
......
......
.

.
..................

.
.................

.....................

.
.............
.........................

. . . .
.............
.........................

8

red vertices

-.1 16421

Figure 2: Example to show that greedy does poorly

constant, whereas the weight of the matching produced by the greedy method is at least 2n−1,

so the performance ratio of the greedy method is exponential in n.

4

2.1. The on-line algorithm

Let Mk be the on-line matching computed by the algorithm after the arrival of rk. (Initially M0

and N0 are empty.)

Step 1. At the arrival of rk, compute the off-line minimum weight maximum matching Nk

matching r1, . . . , rk to the blue vertices. Without loss of generality, we can assume that Nk⊕Nk−1

consists of a single odd length augmenting path from rk to a blue vertex bk. (We will explain

why momentarily.)

Step 2. The vertex bk will be free in Mk−1; match rk to bk to obtain Mk.

Lemma 2.1: Without loss of generality, we can assume that Nk ⊕Nk−1 consists of a single odd

length augmenting path from rk to a blue vertex bk.

Proof: The symmetric difference Nk⊕Nk−1 is the disjoint union of paths and even length cycles.

If such a cycle exists, it cannot contain rk (since rk is unmatched in Nk−1). Therefore the total

weight of the “even” edges in the cycle must equal the weight of the “odd” edges. (Otherwise

we could improve either Nk or Nk−1.) So we can modify Nk so that Nk ⊕ Nk−1 contains no

cycles.

An even length path cannot begin and end with red vertices, because there is only one red

vertex (rk) which is matched in Nk, but not in Nk−1. An even length path which begins and

ends with blue vertices cannot contain rk. As above, the total weight of the “even” edges in

the path must equal the weight of the “odd” edges, and we can modify Nk so that Nk ⊕ Nk−1

contains no even length paths.

Finally, an odd length path in Nk ⊕ Nk−1 must begin with rk, and end with a blue vertex,

bk. 2

Remark: Although the above guarantees that any off-line algorithm for minimum weight perfect

matchings would suffice to compute Nk, we note that it is efficient to generate Nk from Nk−1 by

running a single phase of the primal-dual algorithm [PS], which works by finding the augmenting

path from rk to bk (in the “equality subgraph”). In this case, Nk ⊕Nk−1 is already just a single

path.

We show that bk is unmatched in Mk−1 by showing that the set of matched blue vertices in

Mk−1 is the same as in Nk−1. (By definition bk is free in Nk−1).

Lemma 2.2: For each k, the set of blue vertices matched in Nk is the same as the set of blue

vertices matched in Mk (the on-line matching).

Proof: Suppose by induction that Mk−1 and Nk−1 have the same set of matched blue vertices.

Then Nk takes on only the additional blue vertex bk, as does Mk. 2

We now prove an upper bound on the weight of the matching produced by the algorithm.

Theorem 2.3: The weight of Mn is w(Mn) ≤ (2n − 1)w(Nn).

5

Proof: Notice that w(N0) ≤ w(N1) ≤ . . . ≤ w(Nn). Consider the edge ek added at stage k. By

the triangle inequality

w(ek) ≤ w(augmenting path from rk to bk)

≤ w(Nk) + w(Nk−1)

≤ 2w(Nn)

Finally, w(Mn) =
∑

w(ek) ≤ (2n − 1)w(Nn). (Since w(e1) ≤ w(Nn).) 2

Remark: Although this analysis may seem overly pessimistic, there is an example in R1 to

show that the algorithm’s performance ratio is no better than n. The blue points b1, b2, . . . , bn

are placed at −1, 2,−3, 4,−5, . . . ,±n, and the red points r1, r2, . . . , rn are placed, in order of

appearance, at 0,−1, 2,−3, . . . ,∓(n − 1). If n is odd, the optimal matching pairs r2i with b2i+1

and r2i+1 with b2i (and r1 with b1). If n is even, the optimal matching pairs r2i with b2i−1 and

r2i−1 with b2i. In each case the optimal matching has cost n. For each k, rk is matched in Mk

with bk, at a cost of 2k − 1, so that w(Mn) =
∑

(2k − 1) = n2, or a factor of n over the optimal

w(Nn) = n.

2.2. The lower bound

Theorem 2.4: There is no deterministic on-line algorithm that achieves a performance ratio

better than (2n − 1) for all metric spaces.

Proof: Consider a “star” graph with n leaf vertices, and one center. The n blue vertices are

placed at the leaf vertices of the star. The first red point is placed at the center; the on-line

algorithm matches it to some leaf b1. From then on, rk is placed at bk−1. The weight of the

on-line matching is 2n − 1, and the weight of the off-line matching is 1. (The weight of each

edge on the star is 1.) 2

Observation: Let us suppose that the points are chosen from some finite dimensional metric

space (say Rd). Suppose the n blue vertices are placed at the grid points of a grid in Rd of side

1 unit, centered at the origin. The first red point is placed at the origin; the on-line algorithm

matches it to some vertex b1 of the cube. From then on, rk is placed at bk−1. The weight of

the matching produced by any on-line algorithm is Ω(n), whereas the minimum weight perfect

matching has weight n
1

d . (The matching is obtained by matching r1 to bn, and ri to bi−1 for

2 ≤ i ≤ n.) Hence the performance ratio of any on-line algorithm is Ω(n1− 1

d).

Remark: In R2 we obtain a lower bound of only Ω(
√

n). The algorithm’s performance ratio

however is O(n), and this gap is very large. For the special cases of graphs in R1 and R2 is it

possible to close this gap? If we go to d = log n dimensions (hypercube), then we can obtain a

lower bound of Ω(n√
dlog ne

).

3. On-line Stable Marriages

In this section we describe the stable marriage problem and its on-line version. An instance

of the stable marriage problem consists of two disjoint sets of size n, the men and the women;

6

associated with each person is an ordered preference list that ranks all the members of the

opposite sex. The object is to obtain a one-to-one correspondence (i.e., a perfect matching, or

marriage) between the men and the women.

We say that a man and a woman form an unstable pair for a marriage M if the man and

woman are not married to each other, and each prefers the other to his/her spouse. A marriage

is unstable if there is at least one unstable pair, and stable otherwise.

A stable marriage can always be found off-line; see [GI] for a simple algorithm and an

excellent survey of research done on the stable marriage problem.

In the on-line version of the stable marriage problem, the women’s preference lists are spec-

ified in advance (call this the women’s matrix), and the men arrive in an arbitrary order. As

each man arrives he provides his preference list and he is immediately assigned a mate from the

pool of available women. It is not permitted to reassign any previously married woman.

An on-line algorithm may produce unstable marriages. We are interested in on-line algo-

rithms that produce a small number of unstable pairs.

3.1. An On-Line Algorithm

The obvious deterministic on-line algorithm produces a marriage with only O(n log n) unstable

pairs in the average case.

Algorithm: Assign each man his favorite available woman.

Label the men 1, 2, . . . , n according to their order of arrival, and label the women arbitrarily.

In the average case, each man’s preference list is a uniformly chosen random permutation. The

above algorithm is independent of the women’s matrix. We give a specific women’s matrix which

yields the worst case behavior, and show that the average number of instabilities produced is

O(n log n).

Lemma 3.1: The algorithm behaves the worst when all the women prefer the men in order

opposite to their arrival.

Proof: The first man will not participate in any unstable pairs, since he marries his favorite

woman. In general, the kth man will form an unstable pair only with those of the k−1 previously

married women whom he prefers over his wife, and who prefer him over their husbands. The

expected number of instabilities involving man k is therefore maximized when the k−1 previously

married women all prefer him over their husbands. 2

Remark: Using this approach it is easy to see that every deterministic on-line algorithm will

produce Ω(n2) unstable pairs.

Theorem 3.2: The natural “first come, first served” on-line marriage algorithm produces on

average O(n log n) unstable pairs.

Proof: Assume that the women’s matrix is arranged as in the lemma. Let Gk be the set of

women available to man k; |Gk| = n − k + 1. Suppose that man k marries his j th choice; then

7

man k is involved in j − 1 instabilities. Since Gk is uniformly distributed in man k’s preference

list, we can show by a simple “balls and walls” symmetry argument (with Gk as the walls) that

E(j − 1) =
k − 1

n − k + 2
.

To do so, imagine man k’s preference list arranged in a line, with each of the k−1 unavailable

women represented as a “ball”, and each of the n−k+1 available women represented as a “wall”.

Then, with the walls uniformly distributed among the balls, we’re interested in the expected

position of the first wall, j, and the number j−1 of balls in the first “bin”. If we imagine instead

that the walls are placed first, and that the balls are added uniformly thereafter, intuition tells

us that any ball is equally likely to fall into any of the n− k +2 bins. If intuition is not enough,

reason that we have conditioned on the relative order of the walls, and condition further that a

given ball lands in either the first or the second bin. So far we have conditioned that our ball

and the first wall both appear before all the other walls. This is not enough to affect the relative

order of our ball and the first wall (in a uniform distribution). Since it is equally likely that the

ball lands in the first or second bin, these bins have equal expected sizes. In fact, all the bins

have the same expected size, as asserted.

Having the expected number of instabilities involving man k, we calculate that the expected

total number of instabilities is

n
∑

k=1

k − 1

(n − k) + 2
=

n−1
∑

i=1

i

n − i + 1
≤

n−1
∑

i=1

n

n − i + 1
= O(n log n).

2

Remark: It is clear that for the above women’s matrix, the “first come, first served” algorithm

is average-case optimal. If we allow the women’s matrix to be random as well, the expected

number of unstable pairs produced by our algorithm goes down only by half. However, for a

random women’s matrix our algorithm may not be average-case optimal.

A stable man or woman is one who is not involved in any unstable pairs. As might be

expected, this algorithm produces lots of stable men, but very few stable women.

Theorem 3.3: In the stable marriage produced by the on-line algorithm, the expected number

of stable men is at least n+1
2 .

Proof: The probability that man k is stable is at least n−k+1
n

. Let Xk be a random variable that

is 1 if and only if man k is stable (and 0 otherwise). Then the expected number of stable men is

E(stable men) =
n

∑

k=1

E(Xk)

≥
n

∑

k=1

n − k + 1

n

=
n + 1

2
.

2

8

Theorem 3.4: In the stable marriage produced by the on-line algorithm, if the women’s matrix

is fixed, the expected number of stable women lies between Ω(log n) and n. If the women’s matrix

is chosen randomly (i.e., each woman’s preference list is a random permutation of b1, . . . , bn),

the expected number of stable women is only Θ(
√

n).

Proof: If the women’s matrix is fixed so that each woman prefers the men in their order of arrival

(i.e., they like b1 the best and bn the least), then the algorithm produces a stable marriage, with

n stable women.

We now show that the most unstable women arise if the women prefer the men opposite to

the men’s order of arrival, in which case Θ(log n) stable women are expected. Let b1, b2, . . . , bn

denote the men in order of arrival, and let gπ(1), gπ(2), . . . , gπ(n) denote their matches. Then, for

any k, gπ(k) is not unstable with b1, . . . , bk−1 (since none of these men chose gπ(k)), and for i > k

gπ(k) is unstable with bi if and only if gπ(k) appears before gπ(i) in bi’s preference list and gπ(k)

prefers bi to bk. Clearly, then, gπ(k) is most likely to be unstable if she prefers bk+1, . . . , bn over

bk, and the highest expected number of unstable women occurs when all the women prefer the

men in the order bn, . . . , b1.

Suppose that the women’s matrix is so arranged; we will calculate the expected number of

stable women produced by the algorithm. Let

Xk =

{

1, if gπ(k) is stable

0, otherwise.

Then we are trying to calculate

E(
n

∑

k=1

Xk) =
n

∑

k=1

Pr[gπ(k) is stable]

=
n

∑

k=1

n
∏

i=k+1

Pr[gπ(k) is stable with bi].

We know from the proof of Theorem 3.2 (“balls and walls”) that, for i > k, bi will prefer gπ(k)

to gπ(i) with probability 1
n−(i−1)+1 . Since we assume that gπ(k) prefers bi to bk,

Pr[gπ(k) is stable with bi] = 1 − 1

n − i + 2
.

It turns out that in this case the product above telescopes, and that the sum reduces to

n
∑

k=1

1

n − k + 1
= Θ(log n).

If we take the women’s matrix to be random, then

Pr[gπ(k) prefers bi to bk] =
1

2
,

so

Pr[gπ(k) is stable with bi] =
1

2
· 1 +

1

2
·
(

1 − 1

n − i + 2

)

.

9

In this case, the kth term in the above sum is

2(n − k) + 1

2(n − k) + 2
· · · 7

8
· 5

6
· 3

4
.

Using the fact that (2n − 1)(2n − 3) · · · 7 · 5 · 3 = (2n)!/2nn! and Stirling’s approximation

n! ≈
(

n

e

)n √
2πn[1 + O(

1

n
)],

we approximate this term as 2/
√

π(n − k + 1), and the entire sum as Θ(
√

n). 2

3.2. A Worst Case Lower Bound

Our lower bound is based on the following theorem due to Yao [Y]:

Theorem 3.5: Given a cost minimization problem, a randomized algorithm R, and an input

distribution d, there is a deterministic algorithm A whose d-average case performance is better

than R’s worst case expected performance.

The theorem says that a lower bound on the worst case performance of randomized algorithms

may be found by giving an input distribution d for which every deterministic algorithm does

badly in the d-average case.

Theorem 3.6: No on-line randomized (or deterministic) algorithm can achieve better than

Ω(n2) unstable pairs in the worst case.

Proof: By Theorem 3.5 it suffices to exhibit a probability distribution on the preference lists

for which no deterministic algorithm can achieve less than Ω(n2) instabilities. As before, we

stipulate that the women all prefer the men in order opposite to their arrival. We proceed to

describe the distribution on the men’s matrix.

Let σ be a random permutation of the women. Then man k prefers the women in the

order σ(1), . . . , σ(k), and the rest in a fixed arbitrary order (say, increasing numerically). The

resulting men’s matrix, where row k contains man k’s preference list, is ordered by σ below the

main diagonal and is ordered numerically above the diagonal.

We show that any deterministic algorithm produces on average Ω(n2) unstable pairs on this

input distribution. First we show that if β is the number of men 1, . . . , n
2 who marry among the

women σ(1), . . . , σ(n
2), then the expected value of β is at least n

16 . This is clearly true if in fact

at least n
16 of the men 1, . . . , n

4 marry women among σ(1), . . . , σ(n
4). If this is not the case, then

at least 3n
16 of the men 1, . . . , n

4 marry women σ(n
4 + 1), . . . , σ(n). Notice that any man 1, . . . , n

4

who marries among women σ(n
4 + 1), . . . , σ(n) is equally likely to marry any of these women

(i.e., the conditional probability distribution in this case is uniform). Therefore we expect that

at least 1
3 · 3n

16 = n
16 of the men 1, . . . , n

4 will marry in the range σ(n
4 + 1), . . . , σ(n

2). In either

case we expect at least E(β) ≥ n
16 of the men 1, . . . , n

2 to marry women σ(1), . . . , σ(n
2).

Furthermore, at least β of the men n
2 + 1, . . . , n marry women σ(n

2 + 1), . . . , σ(n) (by the

process of elimination). Each of these men is unstable with at least β women, so the total

number of unstable pairs is at least

E(β2) ≥ [E(β)]2 ≥ Ω(n2).

2

10

4. Open Problems

• Obtain a competitive on-line algorithm for the general graph weighted matching problem

when the edge weights satisfy the triangle inequality. One nice model for this problem is

as follows: the vertices arrive one at a time, and distances are revealed from the newly

arrived vertex to all the vertices (even the ones that have not arrived yet). The algorithm

is required to match off each vertex as it arrives. It is easy to show that in case distances

are revealed only to the vertices that have already arrived, no on-line algorithm having a

competitive ratio only as a function of n is possible.

• For the on-line weighted matching problem, is it possible to achieve better performance

when the points are constrained to lie on the real line, or in the plane?

• Can we get better performance if we consider randomized on-line weighted matching al-

gorithms? For example, how badly do randomized greedy algorithms do?

Acknowledgments: We would like to thank Amotz Bar-Noy, Omer Berkman and Baruch

Schieber for useful discussions. We would also like to thank the referees for their comments.

Finally, we would like to note that a slightly stronger bound for Theorem 3.3 has been obtained

by Raymond Board (personal communication).

References

[GI] D. Gusfield and R. Irving, The Stable Marriage Problem: Structure and Algorithms, The

MIT Press (1989).

[KP] B. Kalayanasundaram and K. Pruhs, “On-line Weighted Matching”, Journal of Algo-

rithms, 14(3), (1993), pp 478–488.

[KVV] R. M. Karp, U. V. Vazirani and V. V. Vazirani, “An Optimal Algorithm for On-line

Bipartite Matching”, Proc. of STOC Conference, (1990), pp. 352–358.

[MMS] M. Manasse, L. A. McGeoch and D. Sleator, “Competitive Algorithms for Server Prob-

lems”, Journal of Algorithms 11(2), (1990), pp. 208–230.

[PS] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity, Prentice Hall (1982).

[PY] C. H. Papadimitriou and M. Yannakakis, “Shortest Paths Without a Map”, Theoretical

Computer Science, 84(1), (1991), pp. 127–150.

[ST] D. Sleator and R. E. Tarjan, “Amortized Efficiency of List Update and Paging Rules”,

Communications of the ACM, 28, (1985), pp. 202–208.

[Y] A. C. Yao, “Probabilistic Computations: Towards a Unified Measure of Complexity”, Proc.

of FOCS Conference, (1977), pp. 222–227.

11

