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SUMMARY

In this paper we discuss parameter estimators for fully and partially observed discrete-time linear stochastic
systems (in state-space form) with known noise characteristics. We propose finite-dimensional parameter
estimators that are based on estimates of summed functions of the state, rather than of the states
themselves. We limit our investigation to estimation of the state transition matrix and the observation
matrix. We establish almost-sure convergence results for our proposed parameter estimators using
standard martingale convergence results, the Kronecker lemma and an ordinary differential equation
approach. We also provide simulation studies which illustrate the performance of these estimators. Copy-
right # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of identifying linear systems has received considerable attention in many
scientific communities over many years, see References [1–7] for illustrative references.
The origin of the identification problem can be traced back to the method of least squares
and the work of Gauss in 1809. Since the 1950s, various recursive identification algorithms
have become available including recursive least squares, recursive stochastic algorithms,
instrumental variable methods, recursive maximum likelihood methods and general
recursive prediction error approaches (see Reference [8] for general details about
these algorithms). These recursive algorithms have been widely applied to many
problems.
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Identification of fully observed linear systems (where the output, inputs and states are all
measured) can be readily understood in terms of the least squares problem. The linear
relationship between input and output signals ensures efficient identification and global
convergence of parameter estimates can be readily established in many problems, see References
[6,7] for two examples. However, in partially observed linear systems (particularly if the input
cannot be measured) similar convergence results are more difficult to obtain. In this situation,
recursive approaches like Ljung’s scheme lead to locally convergent algorithms, if convergence
results can be established at all [8,9].

Although not considered here, sub-space methods appear to provide attractive approaches
to identification of partially observed systems. In fact, strong convergence results have
been established for sub-space algorithms [9] including global convergence results for
the partially observed linear systems we consider here [10]. Two notable disadvantages of
sub-space methods are their robustness problems and their computational requirements, see
Reference [9].

Recently, in the related area of parameter estimation of hidden Markov models, almost-surely
convergent parameter estimators algorithms have been proposed for hidden Markov
models in discrete and continuous time [11,12]. Similarly, almost surely convergent
algorithm for linear systems in continuous time have been developed [13]. Rather than
work with a prediction error cost (in a parallel manner to Ljung’s approach) these
algorithms are based on estimates for summed functions of the state and these algorithms
can be shown to be almost-surely convergent [11–13]. These three new algorithms suggest
a new approach to the system identification problem for discrete-time linear stochastic
systems.

This paper investigates the problem of recursively estimating a partially observed discrete-
time linear stochastic system (in state-space form). We assume the input (or disturbance) is not
measured but the statistics of the input and the measurement noise of the system are known. A
typical application might be estimation of a noise model. In this paper we propose new recursive
parameter estimators which are based on estimates of summed functions of the state rather than
minimization of a cost function.

Convergence results for the algorithms are established using martingale convergence
results, the Kronecker lemma and ODE methods. Firstly, preliminary almost-sure
convergence results and convergence rates are established using martingale convergence
results and the Kronecker lemma when the state is known or conditional mean estimates
are available. Then, global convergence results are established using the ordinary
differential equation (ODE) approach, which is introduced and discussed in References
[8,14–17].

The paper is organized as follows: in Section 2, the partially observed discrete-time linear
system model (in state-space form) is introduced and new recursive parameter estimators are
proposed for the special case when the state is measured directly. Almost-sure convergence of
these parameter estimators is established via martingale convergence results. In Section 3,
parameter estimation is discussed when the state is not measured directly. We develop the
relevant conditional mean filters, propose parameter estimators and establish almost-sure
convergence results using an ODE approach. In Section 4 we present some simulation studies.
Conclusions are given in Section 5.
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2. DYNAMICS

Consider a probability space ðS;F;PÞ; suppose fx‘g; ‘ 2 Zþ is a discrete-time linear stochastic

process, taking values in RN , with dynamics given by

xkþ1 ¼ Axk þ Bwkþ1; x0 2 RN�1 ð1Þ

Here k 2 Zþ; A 2 RN�N , B 2 RN�N and fw‘g 2 RN�1; ‘ 2 Zþ, is a sequence of vectors whose
elements are independent and identically distributed Nð0; 1Þ scalar random variables (with
bounded 4th moment).

The state process fx‘g; ‘ 2 Zþ, is observed indirectly via the scalar observation process

fy‘g; ‘ 2 Zþ, given by

yk ¼ Cxk þDvk ð2Þ

Here k 2 Zþ; C 2 R1�N , D 2 R and fv‘g; ‘ 2 Zþ, is a sequence of independent and identically
distributed Nð0; 1Þ scalar random variables. We assume that x0, fv‘g and fw‘g are mutually
independent. In this paper we assume scalar observations but this can be extended to vector
observations.

Let Fk ¼ sfx0;x1; . . . ; xkg and Yk ¼ sfy0; y1; . . . ; ykg denote the filtrations generated by x

and y, respectively. Also, let Gk ¼ sfx0; . . . ;xk; y0; . . . ; ykg denote the filtration generated by x

and y.
Denote the model (1), (2) by

l ¼ lðA;B;C;D;x0Þ ð3Þ

We are interested in estimation of A and C.

2.1. Parameter estimation}full observations

In this subsection we assume that both fxkg and fykg are fully observed. The results in this
section for the full observation case are presented as a stepping stone to the more interesting and
general results of Section 3.

From (1), by post-multiplication by x0k and summing, we obtain

Xk
i¼1

xix
0
i�1 ¼ A

Xk
i¼1

xi�1x
0
i�1 þ B

Xk
i¼1

wix
0
i�1 ð4Þ

Here the prime 0 denotes the transpose operation. Now consider the matrices

Jk :¼
Xk
i¼1

xix
0
i�1 Ok :¼

Xk
i¼1

xi�1x
0
i�1 Mk :¼

Xk
i¼1

wix
0
i�1 ð5Þ

From (4) we see Jk ¼ AOk þ BMk. Assuming that xk is observed, a reasonable estimate for A is
therefore

#AAkjx ¼ JkO
�1
k ð6Þ

when O�1
k exists. The error in this estimate is #AAkjx � A ¼ BMkO

�1
k .
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Similarly, from (2) by post-multiplication by x0k and summing we obtain

Xk
i¼1

yi�1x
0
i�1 ¼ C

Xk
i¼1

xi�1x
0
i�1 þD

Xk
i¼1

vi�1x
0
i�1 ð7Þ

Now consider the vectors

Tk :¼
Xk
i¼1

yi�1x
0
i�1 Vk :¼

Xk
i¼1

vi�1x
0
i�1 ð8Þ

Then (7) can be written Tk ¼ COk þDVk. A reasonable estimate for C is therefore

#CCkjx ¼ TkO
�1
k ð9Þ

when O�1
k exists. The error in this estimate is #CCkjx � C ¼ DVkO

�1
k .

Remark
Although we assume in this paper that B and D are known, it is possible to estimate these
quantities at the same time as estimating A and C. Local convergence results for online
estimation of B and D are given in Reference [18]. Convergence results for off-line estimators are
given in Reference [19].

2.2. Almost-sure convergence

In this subsection we discuss convergence of these estimators. Before proceeding to our
convergence results we first state stability and ergodicity results for linear systems.

A time-invariant system with state transition matrix A is strictly stable if the following
condition holds

smaxðAÞ51 ð10Þ

where smaxðAÞ is the largest magnitude of the eigenvalue of the matrix A.

Lemma 1
When the time-invariant system is strictly stable, i.e. (10) holds, the state sequence is ergodic,
that is,

E½f ðxkÞ� ¼ lim
T!1

1

T

XT
‘¼1

f ðx‘Þ a:s: for any k ð11Þ

Proof
This follows from ergodic theory [4, p. 34] because the system is uniformly stable and the
elements of wk have zero mean, finite variance and bounded fourth moments. &

Lemma 2
The system (1), (2) is persistently excited in that

lim
k!1

1

k
Ok

� ��1

is finite and
1

k
Ok

� ��1

is bounded for all k ð12Þ

R. J. ELLIOTT, J. J. FORD AND J. B. MOORE.438

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 16:435–453



Proof

See Reference [20]. &
Now consider

Rk :¼
Xk
i¼1

rðiÞ�1=2DMi

where DMi :¼ Mi �Mi�1 ¼ wix
0
i�1 and here rðkÞ is any function for which rðkÞ; k50, is

positive, non-decreasing and such that limk!1
Pk

i¼0 rðiÞ�1 ¼ Br51. An example of rðkÞ
satisfying this requirement is rðkÞ ¼ maxð1; k lognðkÞðlognðlognðkÞÞÞ

aÞ, for any a > 1.

Lemma 3
Suppose the system (1), (2) is strictly stable such that (10) holds. Then Rk is a matrix whose

elements, Rij
k for i; j ¼ 1; . . . ;N, are square integrable martingales with respect to Fk so that

limk!1 R
ij
k ¼ xijðoÞ51 exists a.s.

Proof

R
ij
k is a martingale because E½Rij

k jFk�1� ¼ E½rðkÞ�1=2DMij
k þ R

ij
k�1jFk�1� ¼ R

ij
k�1, where DMij

k is

the ijth element of DMk. Also, the R
ij
k are bounded in L2 because

E½ðRij
kÞ

2� ¼ E
Xk
‘¼1

rð‘Þ�1ðDMij
‘ Þ

2

" #

¼E
Xk
‘¼1

rð‘Þ�1E½ðwi
‘Þ
2ðxj‘�1Þ

2jF‘�1�

" #

¼
Xk
‘¼1

rð‘Þ�1E½ðxj‘�1Þ
2�

51

We have used that w‘ and x‘�1 are uncorrelated, that E½ðwi
‘Þ
2jF‘�1� ¼ 1 and that for strictly

stable systems E½ðxjkÞ
2�5B1 for all k; j for some B151. By standard martingale results,

[21,22],

lim
k!1

R
ij
k ¼ xijðoÞ51 a:s: for i; j ¼ 1; . . . ;N &

Lemma 4
Suppose the system (1), (2) is strictly stable, i.e. (10). Then

lim
k!1

rðkÞ�1=2
Xk
i¼1

DMi ¼ 0N�N a:s:

where 0N�N is the ðN �NÞ matrix of all zeros. That is,

lim
k!1

rðkÞ�1=2Mk ¼ 0N�N a:s:
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Proof

Follows from Lemma 3 and by applying the Kronecker Lemma to each element of Rk, see also
References [22,23]. &

Theorem 1
Consider the linear system (1), (2) and suppose the xk and yk are both observed. Suppose (10)
holds. Then

lim
k!1

#AAkjx; #CCkjx;¼ A;C a:s: and

the almost sure convergence rate is at least ðk�2rðkÞÞ1=2.

Proof

First consider the error in estimation of A, that is #AAk � A ¼ Bðð1=kÞMkÞðð1=kÞOkÞ
�1. From

Lemma 4 we have that

lim
k!1

1

k
Mk ¼ 0N�N a:s: ð13Þ

at a rate of ðrðkÞ=k2Þ1=2. Now limk!1 ðð1=kÞOkÞ
�1 is finite, so

lim
k!1

*AAk :¼ #AAkjx � A ¼ 0N�N a:s:

Indeed *AAk ! 0N�N a.s. at a rate ðrðkÞ=k2Þ1=2. The result for C follows similarly using that x‘�1

and v‘�1 are uncorrelated and that E½v2k� ¼ 1: &

Remark
Similar convergence results for fully observed stochastic linear systems are common, see
References [6,7,9,10] for examples.

Next we propose parameter estimators for partially observed linear systems based on
the conditional mean estimates of Jk, Ok and Tk. Convergence results are also presented.

3. CONDITIONAL MEAN ESTIMATES

In this section we consider parameter estimators based on conditional mean estimates in lieu of
the states. Consider again the system (1), (2). We define a model set, L, of allowable model

estimates #llk and assume that the ‘correct’ model l 2 L. The model set considered in this paper is
L ¼ flðA;B;C;D;x0Þ : Nth order modelg. In this paper we consider estimation of A and C only
and assume that B,D and x0 are known (even if x0 is not known its influence on estimation will be

forgotten as k increases). That is, #llk ¼ lð %AAk�1;B; %CCk�1;D;x0Þ where %AAk�1 and %CCk�1 are estimates
for A and C based on measurements up until time k� 1 (we will give the estimators later).

Let us denote the associated conditional mean estimates based on the signal generating system
l as in (3), also termed the ‘correct’ model as

#JJkjk;l ¼ E½JkjYk; l�; #OOkjk;l ¼ E½OkjYk; l�; #TTkjk;l ¼ E½TkjYk; l� ð14Þ

For the purposes of the next definition we allow the system (1), (2) to be possibly time-varying.
Let lk denote the system at time k, then denote the associated conditional mean estimates based
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on a possibly time varying estimate #LLk ¼ f#ll1; . . . ; #llkg, also termed the ‘incorrect’ model, as

#JJkjk; #LLk
¼ E½JkjYk; #LLk�; #OOkjk; #LLk

¼ E½OkjYk; #LLk�; #TTkjk; #LLk
¼ E½TkjYk; #LLk� ð15Þ

where E½JkjYk; #LLk� ¼ E½JkjYk; lk ¼ #llk; lk�1 ¼ #llk�1; . . .� etc. In the rest of the paper we will
use both conditional means estimates based on one model (if the subscript has one model)
and conditional mean estimates based on model sequences (if the subscript has a model
sequence).

Recursions for (14) and (15) are given in Reference [19]. We repeat them below (for (14) set
#llk ¼ l for all k):

#JJ
ij

kjk; #LLk
¼ aðJÞijk þ bðJÞij

0

k mk þ
XN
p¼1

XN
q¼1

dðJÞijkðp; qÞRkðp; qÞ þ m0kdðJÞ
ij
kmk ð16Þ

#OO
ij

kjk; #LLk
¼ aðOÞijk þ bðOÞij

0

k mk þ
XN
p¼1

XN
q¼1

dðOÞijkðp; qÞRkðp; qÞ þ m0kdðOÞijkmk ð17Þ

#TT
i

kjk; #LLk
¼ aðTÞik þ bðTÞi

0

k mk ð18Þ

for 14i; j4N where dðJÞijkðp; qÞ and Rkðp; qÞ are the pqth elements of dðJÞijk and Rk, respectively.

Here,

aðJÞijkþ1 ¼ aðJÞijk þ bðJÞijks
�1
kþ1R

�1
k mk þ Tr½dðJÞijks

�1
kþ1�

þ m0kR
�1
k s�1

kþ1dðJÞ
ij
ks

�1
kþ1R

�1
k mk ð19Þ

bðJÞijkþ1 ¼ B�2 %AAks�1
kþ1ðbðJÞ

ij
k þ 2dðJÞijks

�1
kþ1R

�1
k mkÞ þ eie

0
js

�1
kþ1R

�1
k mk ð20Þ

dðJÞijkþ1 ¼ B�2 %AAks�1
kþ1dðJÞ

ij
ks

�1
kþ1

%AAkB
�2 þ 1

2ðeie
0
js

�1
kþ1

%AAkB
2 þ B2 %AAks�1

kþ1eje
0
iÞ ð21Þ

aðOÞijkþ1 ¼ aðOÞijk þ bðOÞijks
�1
kþ1R

�1
k mk þ Tr½dðOÞijks

�1
kþ1�

þ m0kR
�1
k s�1

kþ1dðOÞijks
�1
kþ1R

�1
k mk ð22Þ

bðOÞijkþ1 ¼ B�2 %AAks�1
kþ1ðbðOÞijk þ 2dðOÞijks

�1
kþ1R

�1
k mkÞ ð23Þ

dðOÞijkþ1 ¼ B�2 %AAks�1
kþ1dðOÞijks

�1
kþ1

%AAkB
�2 þ 1

2
ðeie0j þ eje

0
iÞ ð24Þ

aðTÞikþ1 ¼ aðTÞik þ bðTÞi
0

k s
�1
kþ1R

�1
k mk ð25Þ

bðTÞikþ1 ¼ B�2 %AAks�1
kþ1bðTÞik þ eiykþ1 ð26Þ

with að‘Þij0 ¼ 0, bð‘Þij0 ¼ 0N�1 and dð‘Þij0 ¼ 0N�N for ‘ ¼ J and ‘ ¼ O, aðTÞi0 ¼ 0 and bðTÞi0 ¼ eiy0.

Here Trð:Þ denotes the trace of a matrix, B�2 is shorthand for ðB2Þ�1, ei is a vector of zeros

except the ith element which is 1, sk ¼ %AAk�1B
�2 %AAk�1 þ R�1

k�1, and mk and Rk are the mean and
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variance given by standard Kalman filter equations, that is,

mk ¼ RkB
�2 %AAk�1s�1

k R�1
k�1mk�1 þ Rk

%CC
0
k�1D

�2yk ð27Þ

Rk ¼ ½ð %AAk�1Rk�1
%AA
0
k�1 þ B2Þ�1 þ %CC

0
k�1D

�2 %CCk�1��1 ð28Þ

Remark

Although the system we are estimating is time-invariant, our filters for Jk etc. are based on a

possibly time-varying system (i.e. on time-varying estimates %AAk and %CCk).

The following lemma holds.

Lemma 5

Consider the linear system ð1Þ, ð2Þ and a sequence of model estimates %AAk, %CCk. Assume that

½ %AAk;B� is completely stabilisable and ½ %AAk; %CCk� is completely detectable (see References [24,25] for
more details). Then DJk, DOk and DTk are derived from exponentially stable systems, or
equivalently are exponentially forgetting of initial conditions, where

DJk :¼ #JJkjk; #LLk
� #JJk�1jk�1; #LLk�1

; DOk :¼ #OOkjk; #LLk
� #OOk�1jk�1; #LLk�1

; and

DTk :¼ #TTkjk; #LLk
� #TTk�1jk�1; #LLk�1

Proof
We first establish the result for DJk. Firstly, note that it is shown in Reference [24] and elsewhere
that under the lemma conditions the Kalman filter for a time-varying system is exponentially

stable and that R�1
k is bounded. Hence, we need only examine the stability of the recursions

(19)–(21).
To show exponential stability for DJk we exploit the fact that the Kalman filter is

exponentially stable. We rewrite (27) and left multiply by R�1
k giving a recursion for R�1

k mk
which is exponentially stable under the lemma conditions (because the Kalman filter is
exponentially stable)

R�1
k mk ¼ B�2 %AAk�1s�1

k R�1
k�1mk�1 þ %CC

0
k�1D

�2yk ð29Þ

We first consider the dðJÞijk recursion (21) because it is uncoupled from the aðJÞijk and bðJÞijk
recursions. The transition term in (29) appears twice in (21) and hence the recursion for dðJÞijk is

exponentially stable.

Likewise, for the bðJÞijk recursion (20) we note that mk, R
�1
k and dðJÞijk are exponentially stable

and hence we need only consider the term involving bðJÞijk . This term has the same transition

term as the (29) recursion and hence (20) is exponentially stable.
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Now, from (16) we write

DJijk ¼ aðJÞijk þ bðJÞij
0

k mk þ
XN
p¼1

XN
q¼1

dðJÞijkðp; qÞRkðp; qÞ þ m0kdkðJÞ
ijmk

�
�
aðJÞijk�1 þ bðJÞij

0

k�1mk þ
XN
p¼1

XN
q¼1

dðJÞijk�1ðp; qÞRkðp; qÞ

þ m0kdk�1ðJÞ
ijmk

�

Substitution of the recursion for aðJÞijk in this equation shows that DJijk depends only on terms in

bðJÞijk , dðJÞ
ij
k , Rk and mk, which are all exponentially stable. Hence, DJk is exponentially stable.

The results for DOk and DTk follow in the same way. &

Remark

To ensure that ½ %AAk;B� is completely stabilisable and ½ %AAk; %CCk� is completely detectable
a projection into a stability domain for the filters may be required, see Reference [26] for
details.

3.1. Estimation using conditional mean estimates

Initially, we consider the (somewhat artificial) special case when it is assumed that the
conditional mean estimates based on the correct model are available. We consider the following
parameter estimates:

#AAkjk;l ¼ #JJkjk;l #OO
�1

kjk;l;
#CCkjk;l ¼ #TTkjk;l

#OO
�1

kjk;l ð30Þ

Following this we will consider estimation using conditional mean estimates based on adaptive
model estimates. We assume that B and D are known. We consider the following parameter
estimates:

#AAkjk; #LLk
¼ Projf #JJkjk; #LLk

#OO
�1

kjk; #LLk
g; #CCkjk; #LLk

¼ Projf #TTkjk; #LLk

#OO
�1

kjk; #LLk
g ð31Þ

or in recursive form (but not algebraically equivalent form)

#AAk ¼ Proj #AAk�1 þ
1

k
ðDJkj #LLk

� #AAk�1DOkj #LLk
Þ

1

k
#OOkjk; #LLk

� ��1
( )

ð32Þ

#CCk ¼ Proj #CCk�1 þ
1

k
DTkj #LLk

� #CCk�1DOkj #LLk

� � 1

k
#OOkjk; #LLk

� ��1
( )

ð33Þ

where #AAk etc. denote the recursive form of the estimates and define DJkj #LLk
:¼ #JJkjk; #LLk

�
#JJk�1jk�1; #LLk�1

etc.

The model estimate is adaptively updated as follows:

#llkþ1 ¼ lð #AAk;B; #CCk;D; x0Þ and #LLkþ1 ¼ f#ll1; . . . ; #llkþ1g ð34Þ
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Here Projf:g is a projection operation described as follows. Let Pc denote a compact
set of strictly stable models, that are completely stabilisable and completely detectable,
in canonical form. The set of strictly stable models is not a compact set and hence we
limited the projection to an appropriate compact set of strictly stable models, for
example bandlimited models in canonical form. The projection operation is projection onto
the set Pc.

Now suppose the persistently excitation condition associated with the signal generating

system l and its estimate #LLk holds, so that:

lim
k!1

1

k
#OOkjk; #LLk

� ��1

¼ OLðoÞ is finite a:s: and
1

k
#OOkjk; #LLk

� ��1

is bounded in L2 a:s: ð35Þ

Remark
When (12) holds, this additional persistently excitation condition (35) is essentially a condition
on the sequence of model estimates, see Reference [20] for details on persistence of excitation
conditions.

3.2. Preliminary convergence result

In this subsection, we established convergence results for the artificial case when the conditional
mean estimates based on the true model are available. In most realistic applications these
quantities will not be available but the results in this section are needed to establish the more
general convergence result that follows.

Theorem 2
Consider the linear system (1), (2) denoted by l. Suppose (10) holds. Also assume that
conditional mean estimates based on the ‘correct model’ are available. Assume the true model
l 2 Pc 2 L. Then

lim
k!1

#AAkjk;l; #CCkjk;l ¼ A;C a:s: ð36Þ

the almost sure convergence rate is at least ðk�2rðkÞÞ1=2.

Proof

We first proceed with the lemma result for #AAkjk;l. Simple manipulations of ð4Þ, ð14Þ and ð30Þ give
the error term, as:

*AAkjk;l ¼ #AAkjk;l � A ¼ E½k�1BMkjYk; l�ðE½k�1OkjYk; l�Þ
�1 ð37Þ

From Lemma 4 write that fk :¼ rðkÞ�1=2Mk ¼ rðkÞ�1=2Pk
i¼1 DMi, so that limk!1 fk ¼ 0N�N
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a.s. Now, elements of fk are bounded in L2 since

E½ðfij
kÞ

2� ¼ E
Xk
‘¼1

Xk
t¼1

rðkÞ�1=2wi
‘þ1x

j
‘x

j
tw

i
tþ1rðtÞ

�1=2

" #

¼E
Xk
‘¼1

rð‘Þ�1E½ðwi
‘þ1Þ

2jF‘�E½ðx
j
‘Þ
2jF‘�

" #

¼
Xk
‘¼1

rð‘Þ�1E½ðxj‘Þ
2�

51

Here we have used that for stable systems E½ðxjkÞ
2�5B1 for all k; j. Also that E½w‘wtjFminð‘;tÞ� ¼

0 for ‘ 6 ¼ t and E½ðwi
kþ1Þ

2jFk� ¼ 1.

The elements of fk bounded in L2 is a uniform integrability condition, which together with

the property limk!1 fij
k ¼ 0 a.s. for all i; j ¼ 1; . . . ;N ensures convergence in conditional mean:

E½fij
k jYk; l� ! 0 a:s: for all i; j ¼ 1; . . . ;N or E½fkjYk; l� ! 0N�N a:s:

(Also E½fk� ! 0N�N .) Hence, E½k�1MkjYk; l� ! 0N�N a.s. at a rate ðk�2rðkÞÞ1=2. This gives the
convergence (and rate) result (36) for #AAkjk;l under the excitation condition (35) (with #llk ¼ l for

all k).

Similarly, the lemma convergence result holds for #CCkjk;l. &

Remark

Optimal finite-dimensional filters for Ok, Jk and Tk were given earlier and require OðN5Þ
calculations per time instant [19]. Approximate filters can be implemented for Ok, Jk and Tk

from Kalman filter state estimates. For example, #OO
sub

kjk;l ¼
Pk

‘¼1 #xx0‘�1 #xx‘�1. Convergence results

when these approximate estimates are used are neither included nor excluded by convergence
results of this paper.

We proceed in the next section to consider the more realistic case when conditional mean
estimates based on an adaptive model estimate are used.

3.3. Global convergence result

Let (Ac;Bc;Cc;Dc) denote the companion canonical form of the linear system (1), (2).

Theorem 3
Consider the linear system (1), (2) denoted by l. Suppose (10). Assume l 2 Pc 2 L. Consider a
sequence of estimated models #LLk adaptively updated by previous parameter estimates (given by

ð32Þ and ð33ÞÞ so that #llkþ1 ¼ lð #AAk;B; #CCk;D; x0Þ and #LLkþ1 ¼ f#ll1; . . . ; #llkþ1g. We suppose that #llk is
persistently exciting, along with l in that (35) holds. Then

lim
k!1

#AAk; #CCk ¼ Ac;Cc a:s: ð38Þ
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or to a boundary point of Pc.

Proof
See Appendix A. The proof is based on the results of Kushner [27].

Remark
Here we have considered only adaptive estimation of A and C.

Summary of algorithm.
We provide here a summary of the on-line estimation algorithm.

1. Choose initial guess, #ll1 ¼ ð #AA0;B; #CC0;D;x0Þ and set #LL1 ¼ f#ll1g. Set k ¼ 1.

2. Calculate #JJkjk; #LLk
, #OOkjk; #LLk

and #TTkjk; #LLk
using (16)–(18) and #LLk.

3. Estimate #AAk and #CCk using #JJkjk; #LLk
, #OOkjk; #LLk

and #TTkjk; #LLk
by (32) and (33).

4. Update model estimate #llkþ1 ¼ ð #AAk;B; #CCk;D;x0Þ and Lkþ1 according to (34).
5. k ¼ kþ 1. Return to Step 2 (continue until some convergence criteria met).

Remark
In Step 3 above, it is often useful to use Polyak averaging [28] the forms of the estimators (32)
and (33), to accelerate convergence.

4. SIMULATIONS

In this section, simulation studies are presented. The companion form used in these simulations

is the companion canonical form used in MatlabTM.

Example 1. Adaptive estimation
A 10 000 point, 2-state linear system (1), (2) is generated with parameter values

A ¼
0 �0:8
1 �0:1

� �
; B ¼ ½1; 0�0; C ¼ ½1; 0:2�0; D ¼ 0:01. This system is in Matlab’s companion

canonical form and has eigenvalues of �0:0500� 0:8930i. In this simulation we assumed that B
and D are known and A and C are to be estimated using (16)–(18), (32) and (33). Our initial

guess for the model is, #AA0 ¼
0:0579 0:8132
0:3529 0:0099

� �
which has eigenvalues of 0:5701 and �0:5023

and #CC0 ¼ ½0:8; 0�0. Note that this initial guess is not in companion canonical form but will be
projected into companion form by the algorithm. Figure 1 shows the evolution of C estimates.

The final estimated system was #AA10000 ¼
0:0000 �0:7897
1:0000 �0:0621

� �
(which has eigenvalues of

�0:0311� 0:8881i) and #CC10000 ¼ ½0:9638; 0:1824�0. This estimated system compares well with
the generating system. Note that the parameter estimators are not turned on until after 1000
points to allow Jk, Ok and Tk filters to forget initial conditions.

Example 2. More noise
The same process is generated except that D ¼ 1 (more measurement noise) and T ¼ 60 000.
Again we assumed that B and D are known and A and C are to be estimated by (16)–(18), (32)
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and (33). We use the same initial guess. The estimated values after 60 000 points are #AA60000 ¼

0:0000 �0:8079
1:0000 �0:0755

� �
and #CC60000 ¼ ½1:0094; 0:1712�0. Convergence is slower in this example

because of the increased measurement noise level.

Example 3. Real data
To examine the performance of the algorithm with more realistic data we used torque
measurement (input) to arm acceleration (output) data for a mechanical robot system. The data
is provided by the DAISY project [29]. The input signal is roughly zero mean Gaussian.
We first estimated the system using both input and output measurements and Matlab’s n4sid
(n4sid requires that both the input and output signals are measured). To illustrate the
performance of our algorithm we assume that only the output measurements are available and
ignore the input signal. We assume that the n4sid algorithm has estimated the true system and
now see if our algorithm can estimate the same system using only the output signal.

For simplicity, we consider only estimation of A. We assume that we have the true B, C and D
(actually we use the B, C and D estimated by n4sid). Our algorithm was able to estimate the
An4sid from a variety of initializations without knowledge of the input signal (for our purposes
here it is considered a unknown white noise input). We tried this for a variety of model orders
and estimation was possible in each case. For example, when the model order is 2, n4sid

estimated An4sid ¼
0 �0:9788

1:0000 1:4007

� �
and Cn4sid ¼ ½�0:1821;�0:2484�0, our estimate of A is

Figure 1. Estimation of C in low noise.
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#AA ¼
0 �0:9852

1:0000 1:4162

� �
. This data set was relatively short (1024 data points) and several

passes through the data are required.

5. CONCLUSIONS

Global convergence results have been developed for new finite dimensional adaptive schemes for
estimation of the parameters of a partially observed discrete-time linear stochastic system. The
convergence results are developed using standard martingale properties and convergence results,
the Kronecker lemma and an ordinary differential equation approach. We emphasize that, for
stable linear systems driven by white noise, there is consistent estimation and, with the model
estimate used in adaptive state estimation, this is asymptotically optimal.
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APPENDIX A: PROOF OF THEOREM 3

Proof
This proof follows the results of Kushner [27]. The proof can also be established using the
results of Ljung [8,14]. Related results can be found in References [15–17].

First consider estimation of Ac only. As given earlier the estimator of A is

#AAk ¼ Proj #AAk�1 þ
1

k
ðDJkj #LLk

� #AAk�1DOkj #LLk
Þ

1

k
#OOkjk; #LLk

� ��1
( )

ðA1Þ

where we defined DJkj #LLk
:¼ #JJkjk; #LLk

� #JJk�1jk�1; #LLk�1
(for a sequence of models) and DJkj %AA :¼

#JJkjk; %AA � #JJk�1jk�1; %AA (for a single model). Define DOkj #LLk
and DOkj %AA similarly.

Convergence of recursion (A1) can be shown by considering an associated ordinary
differential equation(ODE). We introduce the following ODE and then show how it is
associated with (A1),

d %AA
cv
ðtÞ

dt
¼ R�1

A ð %AAðtÞÞfAð %AAðtÞÞ þ zAð %AAðtÞÞ ðA2Þ

where zAð %AAðtÞÞ is the projection required to keep %AAðtÞ in Pc, and %AA
cv
ðtÞ :¼ col vecð %AAðtÞÞ. For an

arbitrary matrix A we define col vecðAÞ :¼ ½A11; . . . ;AN1;A12; . . . ;AN2; . . . ;ANN�0.
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Let us abbreviate %AAðtÞ as %AA and we define fAð %AAÞ and RAð %AAÞ as follows (the superscript and
subscript here denote that these functions related to recursion (A2)):

fAð %AAÞ :¼ col vecðE½D #JJ‘j %AA � %AAD #OO‘j %AAj %AA�Þ and

RAð %AAÞ :¼ E
1

‘
#OO‘j‘; %AA

� �
� IN j %AA

� �
for any ‘ ðA3Þ

where IN is the identity matrix of size N �N and � is the Kronecker product.
To show how (A2) is related to (A1) we appeal to the Theorem 2:3 in Chapter 5 of Reference

[27]. Let

DA
k :¼ col vec ðDJkj #LLk

� #AAk�1DOkj #LLk
Þ

1

k
#OOkjk; #LLk

� ��1
 !

¼
1

k
#OOkjk; #LLk

� ��1

�IN

 !
col vecðDJkj #LLk

� #AAk�1DOkj #LLk
Þ

and gAðAÞ :¼ R�1
A ðAÞfAðAÞ.

The following conditions are satisfied:

1. ðA2:1Þ Under (35), (ð1=kÞ #OOkjk; #LLk
Þ�1 is L2 bounded and hence so is it’s expectation. It then

follows that E½jDA
k j

2�51.

2. ðA2:3Þ From definition, gAð:Þ is a continuous function of A.

3. ðA2:4Þ The gain sequence, e‘ ¼ 1=‘, satisfies
P

‘ e
2
‘51.

4. ðA2:8Þ Define bAk :¼ E½DA
k j #AA0;D

A
i ; i5k� � gAð #AAk�1Þ. Here gAðAÞ is continuous in k. Also, see

Lemma 6 to show bAk ! 0 with probability 1.

Theorem 2:3 in Chapter 5 of Reference [27] now applies and hence the recursion (A1)
converges to any locally asymptotically stable points (in the sense of Lyapunov) of (A2) or to a
boundary point of Pc.

To examine the Lyapunov stability of (A2) consider the following candidate Lyapunov
function:

WAð %AAÞ ¼
1

2
E E

Xn
‘¼1

jjx‘ � %AAx‘�1jj2
����� %AA;Yn

" #"
� E

Xn�1

‘¼1

jjx‘ � %AAx‘�1jj2
����� %AA;Yn�1

#" ����� %AA
#

¼
1

2
E½jjxn � %AAxn�1jj

2j %AA�50 for any n ðA4Þ

The last line follows from classical expectation results, including that E½E½X jA2�jA1� ¼ E½X jA1�
when A1 � A2. Under asymptotic ergodicity and certain smoothness conditions the

differentiation w.r.t. %AA and the expectation operations can be interchanged. Hence,

dWAð %AAÞÞ

d %AA
cv ¼ �E½ð #JJ‘j‘; %AA � %AA #OO‘j‘; %AAÞ � ð #JJ‘�1j‘�1; %AA � %AA #OO‘�1j‘�1; %AAÞj %AA� ¼ �fAð %AAÞ0 ðA5Þ
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for any ‘ and it then follows that

dWAð %AAÞ
dt

¼
dWAð %AAÞ

d %AA
cv

d %AA
cv

dt
¼ �fAð %AAÞ0RAð %AAÞ

�1fAð %AAÞ ðA6Þ

Under ergodicity and (35), RAð %AAÞ
�1 is positive definite and hence dWAð %AAÞ=dt50. It then

follows from Lyapunov’s direct method, Ljung [8] and Equation (A5) that %AAðtÞ converges to the

set f %AAjlimt!1 fð %AAÞ ¼ 0g 2 Pc or to a boundary point of Pc a.s.

Convergence occurs to solutions of the N2 simultaneous equations dWAð %AAÞ=d %AAij ¼
E½xj‘�1ðx

i
‘ �

PN
n¼1

%AAinx
n
‘�1Þj %AA� ¼ E½xj‘�1x

i
‘j %AA� �

PN
n¼1

%AAinE½x
j
‘�1x

n
‘�1j %AA� ¼ 0 for i; j ¼ 1; . . . ;N

(actually only N distinct linear equations). In companion canonical form A has only N free
variables and hence there will be only one solution to this homogeneous system of linear
equations (if there is one). The persistence of excitation conditions imply that there is a solution

(see Theorem 2), hence %AA converges uniquely to Ac (or to a boundary point of Pc). It then
follows from Theorem 2:3 in Chapter 5 of Reference [27] that (A1) converges a.s. to Ac as
required (or to a boundary point of Pc).

We proceed to prove convergence when simultaneously estimating A and C.
As given earlier the estimator of C is

#CCk ¼ Proj #CCk�1 þ
1

k
DTkj #LLk

� #CCk�1DOkj #LLk

� � 1

k
#OOkjk; #LLk

� ��1
( )

ðA7Þ

where DTkj #LLk
:¼ #TTkjk; #LLk

� #TTk�1jk�1; #LLk�1
. Let #yyk :¼

col vecð #AAkÞ
col vecð #CCkÞ

" #
. Now consider the ODE

associate with the A and C recursions

d%yyðtÞ
dt

¼ R�1ð%yyðtÞÞfð%yyðtÞÞ þ zð%yyðtÞÞ ðA8Þ

where %yyðtÞ :¼
col vecð %AAðtÞÞ
col vecð %CCðtÞÞ

" #
and zð%yyðtÞÞ is the projection required to keep %yyðtÞ in Pc.

With %yyðtÞ abbreviated as %yy we define fð%yyÞ and Rð%yyÞ as follows

fð%yyÞ :¼
col vecðE½D #JJ‘j%yy � %AAD #OO‘j%yyj

%yy�Þ

col vecðE½D #TT‘j%yy � %CCD #OO‘j%yyj
%yy�Þ

" #
and

Rð%yyÞ :¼ E
1

‘
#OO‘j‘;%yy

� �
� INþ1j%yy

� �
ðA9Þ

To show how (A8) is related to recursions (A1), (A7) we again appeal to the Theorem 2:3 in
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Reference [27]. Let

Dk :¼

col vec ðDJkj #LLk
� #AAk�1DOkj #LLk

Þ
1

k
#OOkjk; #LLk

� ��1
 !

col vec ðDTkj #LLk
� #CCk�1DOkj #LLk

Þ
1

k
#OOkjk; #LLk

� ��1
 !

2
666664

3
777775 and

gðyÞ :¼ R�1ðyÞfðyÞ

The following conditions are satisfied:

1. ðA2:1Þ Under ð3:22Þ, ð1
k
#OOkjk; #LLk

Þ�1 is L2 bounded and hence so is it’s expectation. E½jDkj2�51.

2. ðA2:3Þ From definition, gð:Þ is a continuous function of y.
3. ðA2:4Þ The gain sequence, e‘ ¼ 1=‘, satisfies

P
‘ e2‘51.

4. ðA2:2Þ, ðA2:5Þ Define bk :¼ E½Dkj#yy0;Di; i5k� � gð#yyk�1Þ. Here gðhÞ is continuous in k.
Also, using the same techniques as used in Lemma 6 it can be shown that bk ! 0 with
probability 1.

Theorem 2:3 of Reference [27] now applies and hence the recursions (A1), (A7) converge to
any locally asymptotically stable points (in the sense of Lyapunov) of (A8) or to a boundary
point of Pc.

To examine the Lyapunov stability of (A8) consider the following candidate Lyapunov
function:

%WWð%yyÞ ¼
1

2
E E

Xn
‘¼1

jjx‘ � %AAx‘�1jj2
�����%yy;Yn

" #
� E

Xn�1

‘¼1

jjx‘ � %AAx‘�1jj2
�����%yy;Yn�1

" #"

þ E
Xn
‘¼1

jjy‘ � %CCx‘jj
2

�����%yy;Yn

" #
� E

Xn�1

‘¼1

jjy‘ � %CCx‘jj
2

�����%yy;Yn�1

" #�����%yy
#

ðA10Þ

for any n.

This is a Lyapunov function because %WWð%yyÞ50 and in a similar manner to the above case for

estimation of A it can be shown that d %WWð%yyÞ=d%yy ¼ �fð%yyÞ0 and hence d %WWð%yyÞ=dt50. It follows

from Lyapunov’s direct method that A and C estimates converge to the set f %AA; %CCjlimt!1 d %WW

ð%yyðtÞÞ=dt ¼ 0g (or a boundary point of Pc).

Convergence occurs to solutions of the N2 þN simultaneous equations dWAð%yyÞ=dhi ¼ 0 for

i ¼ 1; . . . ; ðN2 þNÞ. Which are the N2 equations E½xj‘�1ðx
i
‘ �

PN
n¼1

%AAinx
n
‘�1Þj%yy� ¼ 0 for i; j ¼

1; . . . ;N (actually only N distinct linear equations) and the N distinct linear equations E½xi‘ �
ðy‘ �

PN
n¼1

%CCnx
n
‘ Þj%yy� ¼ 0 for i ¼ 1; . . . ;N.

The companion canonical form has only 2N free variables and hence there will be only one
solution to this homogeneous system of linear equations (if there is one). The persistence of

excitation conditions imply that there is a solution (see Theorem 2), hence %AA; %CC converge
uniquely to Ac; Cc (or to a boundary point of Pc). It then follows from Theorem 2:3 of
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Reference [27] that (A1) (A7) converge a.s. to Ac; Cc as required (or to a boundary point of
Pc). &

Lemma 6

Define bAk :¼ E½DA
k j #AA0;D

A
i ; i5k� � gAð #AAk�1Þ then bA‘ ! 0 w.p. 1.

Proof

This can be established by expressing bAk as follows:

bAk ¼ E½DA
k j #AA0; #AAi; i5k� � E½DA

k j #AAk� ðA11Þ

which follows from the definition of DA
k and #AAk.

First note that Lemma 5 established that the terms DJkj #LLk
and DOkj #LLk

are exponentially

forgetting (because elements of Pc are completely stabilisable and detectable). Also, it follows

from (35) that ðð1=kÞ #OOkjk; #LLk
Þ�1 is asymptotically stable to OL. Now, the product of two

asymptotically stable terms is also asymptotically stable (or asymptotically approaching

exponential stability in this case), hence DA
k and E½DA

k j #AA0; #AAi; i5k� both asymptotically forget #AAl

as k� l grows.

Then from (A1) and (35) we have that j #AAk � #AAk�1j5ð1=kÞBA a.s. for large k and some non-
negative random variable BA.

Hence, asymptotically stability (approaching exponential stability for large k) of E½DA
k j #AA0; #AAi; i

5k� with respect to #AAl together with j #AAk � #AAk�1j5ð1=kÞBA gives that bAk ! 0 as k grows. That is,

with increasing k, changes in #AAk become smaller, and influence of these decreasing changes is

asymptotically forgotten over time so that E½DA
k j #AA0; #AAi; i5k� approaches E½DA

k j #AAk� as k grows. &
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