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SUMMARY

In this paper we discuss parameter estimators for fully and partially observed discrete-time linear stochastic
systems (in state-space form) with known noise characteristics. We propose finite-dimensional parameter
estimators that are based on estimates of summed functions of the state, rather than of the states
themselves. We limit our investigation to estimation of the state transition matrix and the observation
matrix. We establish almost-sure convergence results for our proposed parameter estimators using
standard martingale convergence results, the Kronecker lemma and an ordinary differential equation
approach. We also provide simulation studies which illustrate the performance of these estimators. Copy-
right © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of identifying linear systems has received considerable attention in many
scientific communities over many years, see References [1-7] for illustrative references.
The origin of the identification problem can be traced back to the method of least squares
and the work of Gauss in 1809. Since the 1950s, various recursive identification algorithms
have become available including recursive least squares, recursive stochastic algorithms,
instrumental variable methods, recursive maximum likelihood methods and general
recursive prediction error approaches (see Reference [8] for general details about
these algorithms). These recursive algorithms have been widely applied to many
problems.
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Identification of fully observed linear systems (where the output, inputs and states are all
measured) can be readily understood in terms of the least squares problem. The linear
relationship between input and output signals ensures efficient identification and global
convergence of parameter estimates can be readily established in many problems, see References
[6,7] for two examples. However, in partially observed linear systems (particularly if the input
cannot be measured) similar convergence results are more difficult to obtain. In this situation,
recursive approaches like Ljung’s scheme lead to locally convergent algorithms, if convergence
results can be established at all [8,9].

Although not considered here, sub-space methods appear to provide attractive approaches
to identification of partially observed systems. In fact, strong convergence results have
been established for sub-space algorithms [9] including global convergence results for
the partially observed linear systems we consider here [10]. Two notable disadvantages of
sub-space methods are their robustness problems and their computational requirements, see
Reference [9].

Recently, in the related area of parameter estimation of hidden Markov models, almost-surely
convergent parameter estimators algorithms have been proposed for hidden Markov
models in discrete and continuous time [11,12]. Similarly, almost surely convergent
algorithm for linear systems in continuous time have been developed [13]. Rather than
work with a prediction error cost (in a parallel manner to Ljung’s approach) these
algorithms are based on estimates for summed functions of the state and these algorithms
can be shown to be almost-surely convergent [11-13]. These three new algorithms suggest
a new approach to the system identification problem for discrete-time linear stochastic
systems.

This paper investigates the problem of recursively estimating a partially observed discrete-
time linear stochastic system (in state-space form). We assume the input (or disturbance) is not
measured but the statistics of the input and the measurement noise of the system are known. A
typical application might be estimation of a noise model. In this paper we propose new recursive
parameter estimators which are based on estimates of summed functions of the state rather than
minimization of a cost function.

Convergence results for the algorithms are established using martingale convergence
results, the Kronecker lemma and ODE methods. Firstly, preliminary almost-sure
convergence results and convergence rates are established using martingale convergence
results and the Kronecker lemma when the state is known or conditional mean estimates
are available. Then, global convergence results are established using the ordinary
differential equation (ODE) approach, which is introduced and discussed in References
[8,14-17].

The paper is organized as follows: in Section 2, the partially observed discrete-time linear
system model (in state-space form) is introduced and new recursive parameter estimators are
proposed for the special case when the state is measured directly. Almost-sure convergence of
these parameter estimators is established via martingale convergence results. In Section 3,
parameter estimation is discussed when the state is not measured directly. We develop the
relevant conditional mean filters, propose parameter estimators and establish almost-sure
convergence results using an ODE approach. In Section 4 we present some simulation studies.
Conclusions are given in Section 5.
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2. DYNAMICS

Consider a probability space (X, Z, P); suppose {X;}, £ € Z" is a discrete-time linear stochastic
process, taking values in RV, with dynamics given by

Xir1 = AXg + Bwsy,  xo e RV (1

Here ke 7, Ae RN, Be RV*N and {w,} € RV*!, e %7, is a sequence of vectors whose
elements are independent and identically distributed N(0,1) scalar random variables (with
bounded 4th moment).

The state process {x;},{ € Z ™", is observed indirectly via the scalar observation process
{ye}, e ZT, given by

Vi = Cxi + Dy (2

Here ke %, Ce RN, De Rand {v;}, L€ 7, is a sequence of independent and identically
distributed N(0, 1) scalar random variables. We assume that xq, {v,} and {w,} are mutually
independent. In this paper we assume scalar observations but this can be extended to vector
observations.

Let 7 = o{x0,X1,...,Xx} and ¥, = o{yg,»1,...,x} denote the filtrations generated by x
and y, respectively. Also, let 9, = a{xo,..., Xk, Yo,...,Vi} denote the filtration generated by x
and y.

Denote the model (1), (2) by
4= MA,B,C,D,xo) 3)

We are interested in estimation of A and C.

2.1. Parameter estimation—rfull observations

In this subsection we assume that both {x;} and {y;} are fully observed. The results in this
section for the full observation case are presented as a stepping stone to the more interesting and
general results of Section 3.

From (1), by post-multiplication by x, and summing, we obtain

k k k

/ ! /
E X;X,_; = A E X;_1X;_, + B E WiX;_| 4)
i=1 i=1 i=1

Here the prime ' denotes the transpose operation. Now consider the matrices

k k k
— !/ — / — !
Jip = g XX, ; Op:= E Xi—1X;_; My = E WiX; ®)
i=1 i=1 i=1

From (4) we see J, = AO; + BM;. Assuming that x; is observed, a reasonable estimate for A is
therefore

Aklx = Jkolzl (6)

when O; ! exists. The error in this estimate is Ay, — A = BM;O; .
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Similarly, from (2) by post-multiplication by xj. and summing we obtain
k

k k
Do vixi =C Y XX +D Y v, )
i—1 i=1

i=1

Now consider the vectors

k k
Te=> yiaXi, Vi=)Y viixj, (8)
i=1

=1
Then (7) can be written Ty = CO, + DV,. A reasonable estimate for C is therefore
Cx = T,O; ' ©)

when O,;l exists. The error in this estimate is ék‘x —-C= DVkOkfl.

Remark

Although we assume in this paper that B and D are known, it is possible to estimate these
quantities at the same time as estimating A and C. Local convergence results for online
estimation of B and D are given in Reference [18]. Convergence results for off-line estimators are
given in Reference [19].

2.2. Almost-sure convergence

In this subsection we discuss convergence of these estimators. Before proceeding to our
convergence results we first state stability and ergodicity results for linear systems.

A time-invariant system with state transition matrix A is strictly stable if the following
condition holds

omax(A) <1 (10)
where omax(A) is the largest magnitude of the eigenvalue of the matrix A.
Lemma 1

When the time-invariant system is strictly stable, i.e. (10) holds, the state sequence is ergodic,
that is,

N
E[f(x0)] = Jim — ; f(x¢) as. for any k (11)
Proof
This follows from ergodic theory [4, p. 34] because the system is uniformly stable and the
elements of w; have zero mean, finite variance and bounded fourth moments. O
Lemma 2

The system (1), (2) is persistently excited in that

1\ 1L.\"!
klim <%Ok) is finite and <%Ok> is bounded for all k& (12)
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Proof
See Reference [20]. O
Now consider

k

R = p(i) '*AM;
i=1
where AM; =M, —M,_; = w;x._; and here p(k) is any function for which p(k), k=0, is
positive, non-decreasing and such that limg_,« Zf:o p() ' = B,<o00. An example of p(k)
satisfying this requirement is p(k) = max(1, k log,(k)(log,(log,(k)))*), for any « > 1.

Lemma 3
Suppose the system (1), (2) is strictly stable such that (10) holds. Then Ry is a matrix whose

elements, RZ for i,j =1,..., N, are square integrable martingales with respect to % so that
limg_, R} = E(w) <00 exists a.s.

Proof
RZ is a martingale because E[RZLﬁ”fk,l] = E[p(k)*l/zAM’Z + RZ,1|97/(71] = R}LI, where AMZ is
the jjth element of AMy. Also, the RZ are bounded in L? because

k

> o (amyy?

=1

k )
> p(f)“E[(w;f(x@1>2|%1]]

=1

E[(R))] =E

=F

k .
=Y p(O) " E[(x,_,)]
=1
< 0

We have used that w, and x,_; are uncorrelated, that E[(w})zlﬁ ¢—1] =1 and that for strictly

stable systems E[(xf;)z]<BOc for all k,j for some B, <oo. By standard martingale results,
[21.,22],

klim RZ = &wy<oo as. forij=1,...,N O
—00

Lemma 4
Suppose the system (1), (2) is strictly stable, i.e. (10). Then

k
- 172 -
Jim p(k) ; AM; = Oyyy  ass.

where Oy, v is the (N x N) matrix of all zeros. That is,

lim p(k)"'/*Mi = Oyyn  as.
k—o00
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Proof

Follows from Lemma 3 and by applying the Kronecker Lemma to each element of Ry, see also
References [22,23]. U
Theorem 1

Consider the linear system (1), (2) and suppose the x; and y; are both observed. Suppose (10)
holds. Then

lim Ak|Xsék\x;: A,C as. and
k—o00

the almost sure convergence rate is at least (kfzp(k))l/ 2,

Proof

First consider the error in estimation of A, that is Ay — A = B((1/k)My)((1 /k)Ok)*l. From
Lemma 4 we have that

lim %Mk =0yxy as. (13)

k—o00
at a rate of (p(k)/kz)l/z. Now limy_,« ((1/k)0;)~" is finite, so

lim A, = Ak|x — A =0y.y a.s.

k—o00
Indeed Ay — Oy a.s. at a rate (p(k)/kz)l/z. The result for C follows similarly using that x,_;
and vy_; are uncorrelated and that E[Uﬁ] =1. O

Remark
Similar convergence results for fully observed stochastic linear systems are common, see
References [6,7,9,10] for examples.

Next we propose parameter estimators for partially observed linear systems based on
the conditional mean estimates of Ji, O, and T;. Convergence results are also presented.

3. CONDITIONAL MEAN ESTIMATES

In this section we consider parameter estimators based on conditional mean estimates in lieu of
the states. Consider again the system (1), (2). We define a model set, A, of allowable model
estimates /; and assume that the ‘correct’ model 4 € A. The model set considered in this paper is
A = {A(A,B,C, D,xq) : Nth order model}. In this paper we consider estimation of A and C only
and assume that B, D and x( are known (even if x; is not known its influence on estimation will be
forgotten as k increases). That is, ik = MAx-1,B,Ci_1, D,x¢) where A;_; and C;_; are estimates
for A and C based on measurements up until time k — 1 (we will give the estimators later).

Let us denote the associated conditional mean estimates based on the signal generating system
A as in (3), also termed the ‘correct’ model as

Jus = E[Ji|%1, 2], Owp = E[Ox|¥y, 2],  Tup, = E[Til %y, 7] (14)
For the purposes of the next definition we allow the system (1), (2) to be possibly time-varying.

Let 4, denote the system at time k, then denote the associated conditional mean estimates based
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on a possibly time varying estimate /A\k = {il, .. .,ik}, also termed the ‘incorrect’” model, as

Jih, = EDd%e Ak, Opea, = B0 A, Ty i = E[Til%i, Ad] (15)

where E[Jkl@k,f\k] = E[Ji|%k, A = ik,ik,l = ik,l,...] etc. In the rest of the paper we will
use both conditional means estimates based on one model (if the subscript has one model)
and conditional mean estimates based on model sequences (if the subscript has a model
sequence).

Recursions for (14) and (15) are given in Reference [19]. We repeat them below (for (14) set

Jix = 2 for all k):

5 B . N N ; )

Jia, = 2] +bD] e+ > > AW (. ORe(p. 9) + i d()] (16)
p=1 q=1

Oi, = a(0), +b(O)] py + Z Z d(0)](p, ORi(p, ) + 14, d(O)] 1 (17)
p=1 q=1

Tea, = (D) + BTN 1y (18)

for 1<i,j <N where d(J )Z(p, q) and Rx(p, q) are the pqth elements of d(J)Z and Ry, respectively.
Here,

a(),,, = aW)! +b)]o ] Ry e + Tr{d()] o]

+ R o d(D o Ry (19)
b)Y,y = B Axar ()] + 240 | R ) + e€io ) Ry iy (20)
d()},, = B2 Ao d())[o [ AB 2 + Yeielo | AB? + B Aoy eje)) 1)

a(0)],, = a(0)] + b(O)/ o | R 1 + Tr{d(0)/ o7 ]

+ 1R o dO) ol Ry (22)

b(0)],, = B2 Ao, (b(O)] + 2d(0)]oi ! R 1) (23)
d(0)],, = B Ao [ d(0)]or [, AB > + Yeie) + eje)) (24)
(D), = a(T) +b(D) o R 'y (25)

b(T)i.) = B 2Axoi ! b(T); + €iyis (26)

with a(6)] = 0, b(0)] = Oy and d(€)] = Oyx for £ = J and £ = O, a(T)} = 0 and b(T); = e;yy.
Here Tr(.) denotes the trace of a matrix, B2 is shorthand for (Bz)_l, e; is a vector of zeros
except the ith element which is 1, g = A B2A | + R,:l, and y, and Ry are the mean and
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variance given by standard Kalman filter equations, that is,

e = ReB2A; 107 'R gy + Rké;ﬁll)*z)’k 27

R = [(Ar_Ri_1A,_, +B) '+ C_ D 2Cii]"" (28)

Remark
Although the system we are estimating is time-invariant, our filters for Jj etc. are based on a
possibly time-varying system (i.e. on time-varying estimates A, and Cy).

The following lemma holds.

Lemma 5
Consider the linear system (1), (2) and a sequence of model estimates A, Ci. Assume that

[Ax, B] is completely stabilisable and [Ay, C] is completely detectable (see References [24,25] for
more details). Then AJy;, AO; and AT, are derived from exponentially stable systems, or
equivalently are exponentially forgetting of initial conditions, where

Adj = ke = T tk-14, > AOy = 0k|k,f\k - Okfl\kfl,f\,(,l’ and

AT =Tz, — Tipo1a,

Proof
We first establish the result for AJy. Firstly, note that it is shown in Reference [24] and elsewhere
that under the lemma conditions the Kalman filter for a time-varying system is exponentially

stable and that R,;l is bounded. Hence, we need only examine the stability of the recursions
(19)—(21).

To show exponential stability for AJ; we exploit the fact that the Kalman filter is
exponentially stable. We rewrite (27) and left multiply by R;' giving a recursion for R;l Uy
which is exponentially stable under the lemma conditions (because the Kalman filter is
exponentially stable)

— Iy _ _ ~/ _
R =B A0 'R gy + Gy D72 (29)

We first consider the d(J)Z recursion (21) because it is uncoupled from the a(J)Z and b(J)Z

recursions. The transition term in (29) appears twice in (21) and hence the recursion for d(J)Z is
exponentially stable.

Likewise, for the b(J )Z recursion (20) we note that y;, R;l and d(J )Z are exponentially stable

and hence we need only consider the term involving b(J)Z. This term has the same transition
term as the (29) recursion and hence (20) is exponentially stable.
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Now, from (16) we write
AJ] = aW)] + DD e+ > AP DR, 9) + tdeT) e

p=1 q=1
N N

d(J)Z_l (p’ Q)Rk(Pa q)

- [a(J);‘{!_l + bW+
P 1

=1 ¢

+ 1 (J )i//ik}

Substitution of the recursion for a(J)Z in this equation shows that AJZ depends only on terms in
b(J)Z, d(J)Z, Ry and ., which are all exponentially stable. Hence, AJ; is exponentially stable.
The results for AO; and ATy, follow in the same way. O

Remark
To ensure that [A, B] is completely stabilisable and [Aj, Cx] is completely detectable
a projection into a stability domain for the filters may be required, see Reference [26] for
details.

3.1. Estimation using conditional mean estimates

Initially, we consider the (somewhat artificial) special case when it is assumed that the
conditional mean estimates based on the correct model are available. We consider the following
parameter estimates:

A A —1

A ,\ A —1 A
Ay = I Op s Crikr = Tk Oz (30)

Following this we will consider estimation using conditional mean estimates based on adaptive
model estimates. We assume that B and D are known. We consider the following parameter
estimates:

. A Al . o Al

A, = Projidiea, Ouia s Cupea, = ProdiTy s, O, s (31)
or in recursive form (but not algebraically equivalent form)

A ] 1 A 1. -

Ar = Proj< Aj_1 + %(AJklf\k - AkflAOk‘[\k) %Oklk,f\/{ (32)

R o 1 R 14 !

Ci = Projd €t + (AT, 5, — €180,5, ) (104, (33)
where A, etc. denote the recursive form of the estimates and define AJ KA, = J KkA,
kal\kfl,f\,‘,l etc.

The model estimate is adaptively updated as follows:
kst = MAeB,Ci, D,x0) and Agr = {41, Ak} (34)
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Here Proj{.} is a projection operation described as follows. Let P. denote a compact
set of strictly stable models, that are completely stabilisable and completely detectable,
in canonical form. The set of strictly stable models is not a compact set and hence we
limited the projection to an appropriate compact set of strictly stable models, for
example bandlimited models in canonical form. The projection operation is projection onto
the set P..

Now suppose the persistently excitation condition associated with the signal generating

system / and its estimate Ak holds, so that:

1. -1 i -1
klim‘ (%Oklk,f\k> = O%(w) is finite a.s. and <%Okk’;\k) is bounded in L, a.s. (35)

Remark

When (12) holds, this additional persistently excitation condition (35) is essentially a condition
on the sequence of model estimates, see Reference [20] for details on persistence of excitation
conditions.

3.2. Preliminary convergence result

In this subsection, we established convergence results for the artificial case when the conditional
mean estimates based on the true model are available. In most realistic applications these
quantities will not be available but the results in this section are needed to establish the more
general convergence result that follows.

Theorem 2

Consider the linear system (1), (2) denoted by A. Suppose (10) holds. Also assume that
conditional mean estimates based on the ‘correct model’ are available. Assume the true model
Ae P.eA. Then

lim Ay, Crps = A, C  ass. (36)
k—00

the almost sure convergence rate is at least (kfzp(k))l/ 2,

Proof
We first proceed with the lemma result for Ak‘k’,{. Simple manipulations of (4), (14) and (30) give
the error term, as:

Ay = Aps — A = E[k"BMg %y, A(E[k 'O, 2]) (37)

From Lemma 4 write that ¢, = p(k)_l/sz = ,o(k)_l/2 Zé‘:] AM;, so that limy_ ¢ = Oyxn
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a.s. Now, elements of ¢, are bounded in L, since
k k

E[(¢D =E|D> > p(k)—‘/zwzﬂx’gx’;wiﬂp(z)—‘/z}
=1 =1

=F

k .
> p(f)1E[(w;H)ﬂ%]E[(xf[)ZL%]]
=1

k

=" p(O " E[(x})]
(=1

<X

Here we have used that for stable systems E [(x’,;)z] < By forall k,j. Also that E[wew|Z mine,n] =
0 for ¢ /=t and E[(w},,)*|Z«] = L.

The elements of ¢, bounded in L; is a uniform integrability condition, which together with
the property limy_,~, d)Z =0a.s.foralli,j=1,..., N ensures convergence in conditional mean:

E[¢!1%,7] - 0 as. forall iyj=1,...,N or E[¢|%, 7] = Oyxn as.

(Also E[¢,] = Onxy.) Hence, E[k~'My|%, /] — Oyxy a.s. at a rate (k*2p(k))1/2. This gives the
convergence (and rate) result (36) for Ak\k,z under the excitation condition (35) (with ik = ) for
all k).

Similarly, the lemma convergence result holds for ék‘k, e O

Remark
Optimal finite-dimensional filters for Oy, J; and T, were given earlier and require O(N°)

calculations per time instant [19]. Approximate filters can be implemented for Oy, J; and Ty

. A sub n n
from Kalman filter state estimates. For example, Oy ; = Zlg:l X,_;%,_1. Convergence results

when these approximate estimates are used are neither included nor excluded by convergence
results of this paper.

We proceed in the next section to consider the more realistic case when conditional mean
estimates based on an adaptive model estimate are used.

3.3. Global convergence result

Let (A°, B¢, C¢, D) denote the companion canonical form of the linear system (1), (2).

Theorem 3
Consider the linear system (1), (2) denoted by 4. Suppose (10). Assume A € P. € A. Consider a

sequence of estimated models Ax adaptively updated by previous parameter estimates (given by
(32) and (33)) so that Ac1 = A(Ay, B, Cr, D, xo) and Agsy = {41, ..., Aer1}. We suppose that i is
persistently exciting, along with 4 in that (35) holds. Then

lim Ag, Cr = AS,C¢ as. (38)

k—o00
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or to a boundary point of P..

Proof
See Appendix A. The proof is based on the results of Kushner [27].

Remark
Here we have considered only adaptive estimation of A and C.

Summary of algorithm.

We provide here a summary of the on-line estimation algorithm.
1. Choose initial guess, }:1 = (AO,B, CO,D, Xo) and set Al = {il}. Set k=1.
2. Calculate jk‘k’;\k, Ok\k,Ak and ’i’k‘k’[\k using (16)—(18) and Av.
3. Estimate A, and Cy using jklki\ﬂ ()k|k,f\k and ’i’klk’;\,\ by (32) and (33).

4. Update model estimate ik+1 = (Ak,B, ék,D, Xo) and Ay according to (34).
5. k =k + 1. Return to Step 2 (continue until some convergence criteria met).

Remark
In Step 3 above, it is often useful to use Polyak averaging [28] the forms of the estimators (32)
and (33), to accelerate convergence.

4. SIMULATIONS

In this section, simulation studies are presented. The companion form used in these simulations
is the companion canonical form used in Matlab™.

Example 1. Adaptive estimation
A 10000 point, 2-state linear system (1), (2) is generated with parameter values
A= {(1) :8?}, B=[1,0], C=[1,0.2], D=0.01. This system is in Matlab’s companion
canonical form and has eigenvalues of —0.0500 + 0.8930i. In this simulation we assumed that B
and D are known and A and C are to be estimated using (16)—(18), (32) and (33). Our initial
0.0579 0.8132
0.3529  0.0099

and €y = [0.8,0]. Note that this initial guess is not in companion canonical form but will be
projected into companion form by the algorithm. Figure 1 shows the evolution of C estimates.
0.0000 —0.7897
1.0000 —0.0621

—0.0311 + 0.8881/) and Cio000 = [0.9638,0.1824]". This estimated system compares well with
the generating system. Note that the parameter estimators are not turned on until after 1000
points to allow Ji, Oy and Ty filters to forget initial conditions.

guess for the model is, A = { } which has eigenvalues of 0.5701 and —0.5023

The final estimated system was AlOOOO: [ ] (which has eigenvalues of

Example 2. More noise
The same process is generated except that D = 1 (more measurement noise) and 7" = 60 000.
Again we assumed that B and D are known and A and C are to be estimated by (16)—(18), (32)

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 16:435-453
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Figure 1. Estimation of C in low noise.

and (33). We use the same initial guess. The estimated values after 60 000 points are Aeoooo =

0.0000 —0.8079
1.0000 —0.0755

because of the increased measurement noise level.

and 660000 =[1.0094,0.1712]. Convergence is slower in this example

Example 3. Real data
To examine the performance of the algorithm with more realistic data we used torque
measurement (input) to arm acceleration (output) data for a mechanical robot system. The data
is provided by the DAISY project [29]. The input signal is roughly zero mean Gaussian.

We first estimated the system using both input and output measurements and Matlab’s n4sid
(ndsid requires that both the input and output signals are measured). To illustrate the
performance of our algorithm we assume that only the output measurements are available and
ignore the input signal. We assume that the n4sid algorithm has estimated the true system and
now see if our algorithm can estimate the same system using only the output signal.

For simplicity, we consider only estimation of A. We assume that we have the true B, C and D
(actually we use the B, C and D estimated by ndsid). Our algorithm was able to estimate the
Anusiq from a variety of initializations without knowledge of the input signal (for our purposes
here it is considered a unknown white noise input). We tried this for a variety of model orders
and estimation was possible in each case. For example, when the model order is 2, n4sid

0 —0.9788

10000 1.4007 and Cpsq = [—0.1821, —0.2484]', our estimate of A is

estimated Ap4q =
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Ao 0 09852
= [1.0000 1.4162

passes through the data are required.

. This data set was relatively short (1024 data points) and several

5. CONCLUSIONS

Global convergence results have been developed for new finite dimensional adaptive schemes for
estimation of the parameters of a partially observed discrete-time linear stochastic system. The
convergence results are developed using standard martingale properties and convergence results,
the Kronecker lemma and an ordinary differential equation approach. We emphasize that, for
stable linear systems driven by white noise, there is consistent estimation and, with the model
estimate used in adaptive state estimation, this is asymptotically optimal.
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APPENDIX A: PROOF OF THEOREM 3

Proof
This proof follows the results of Kushner [27]. The proof can also be established using the
results of Ljung [8,14]. Related results can be found in References [15-17].

First consider estimation of A only. As given earlier the estimator of A is

A N 1 A 1, -
A, = PrOJ{Ak_] +%(A‘]k|f\/\. - Ak—lAOk/A\,{)<%0k|k,f\/{> } (A1)

where we defined AJklAk = jk|k A 7jkfl\kfl,[\k,1 (for a sequence of models) and AJk‘ 3=
jk|k,fi - jk—llk—l,fi (for a single model). Define AO, 5 and AO, ; similarly.
Convergence of recursion (Al) can be shown by considering an associated ordinary

differential equation(ODE). We introduce the following ODE and then show how it is
associated with (A1),

A O _ g 1A@)ii(A) + 24AR) (A2)

where z4(A(r)) is the projection required to keep A(z) in P., and Aw(r) = col vec(A()). For an
arbitrary matrix A we define col vec(A) = [A11,...,AN1, A2, ..., AN2, ..., ANN]
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Let us abbreviate A(t) as A and we define f4(A) and R4(A) as follows (the superscript and
subscript here denote that these functions related to recursion (A2)):

f4(A) = col vec(E[Ajf‘A - AA(A)Z‘;IA]) and

R,(A) = EK; NA) ® Iy |A} for any ¢ (A3)

where Iy is the identity matrix of size N x N and ® is the Kronecker product.
To show how (A2) is related to (A1) we appeal to the Theorem 2.3 in Chapter 5 of Reference
[27]. Let

. 14 -1
Af = col vec ((AJk;\k — Ak_lAOklAk) <%Okk,f\k) >
1A ! .
= ((kokk,f\k) ®IN> col vec(AJk‘Ak — Ak,lAOklAk)

and g1(4) == R, (ADf*(A).
The following conditions are satisfied:

1. (A2.1) Under (35), ((1 /k)(A)k‘kj\k)’l is L, bounded and hence so is it’s expectation. It then
follows that E[|A,f|2]< 00

2. (A2.3) From definition, g(.) is a continuous function of A.

3. (A2.4) The gain sequence, & = 1 /¢, satisfies -, &7 < oc0.

4. (A2.8) Define B = E[A{|A, A, i<k] — g"(Ai_1). Here g*(A) is continuous in k. Also, see
Lemma 6 to show ﬁk -0 w1th probability 1.

Theorem 2.3 in Chapter 5 of Reference [27] now applies and hence the recursion (Al)
converges to any locally asymptotically stable points (in the sense of Lyapunov) of (A2) or to a
boundary point of P..

To examine the Lyapunov stability of (A2) consider the following candidate Lyapunov
function:

] -
WA(A) = Z lIxe — Ax_1]*|A Z Ixe — Axc_1|[A, %,y
1 _ _
5E[||x,1 — Ax,_1|*|A]=0 for any n (A4)

The last line follows from classical expectation results, including that E[E[X|4,]|4,] = E[X]A1]

when A, < A,. Under asymptotic ergodicity and certain smoothness conditions the

differentiation w.r.t. A and the expectation operations can be interchanged. Hence,
dWA(A))

d;“ E[(JWA AO{\[,E) - (jf—uf—l,,a - AOA{’—II[—],ANA] = _fA(A)/ (A5)
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for any ¢ and it then follows that

dWAA)  dWAA)dA"

ARV A\—lgd A
o g = TARA A (A6)

Under ergodicity and (35), R4(A)~! is positive definite and hence dWA(A)/dr<0. It then
follows from Lyapunov’s direct method, Ljung [8] and Equation (A5) that A(t) converges to the
set {A|lim,_~ f(A) = 0} € P. or to a boundary point of P, a.s.

Convergence occurs to solutions of the N? simultaneous equations dW4(A) /dz_&,-j =
EX, (xi =N Auxt )IA] = E[x), xiA] - SN | ALE[X, X} ,|A]=0 for ij=1,...,N
(actually only N distinct linear equations). In companion canonical form 4 has only N free
variables and hence there will be only one solution to this homogeneous system of linear
equations (if there is one). The persistence of excitation conditions imply that there is a solution
(see Theorem 2), hence A converges uniquely to A® (or to a boundary point of P.). It then
follows from Theorem 2.3 in Chapter 5 of Reference [27] that (A1) converges a.s. to A as
required (or to a boundary point of P.).

We proceed to prove convergence when simultaneously estimating A and C.

As given earlier the estimator of C is

R . 1 R 1A !
C.= PrO_]{Ckl + %(ATk\f\k - Ck*IAOklAk) (%Okk’;\k) } (A7)

- col vec(Ay)

where AT, ; = T/r\k,f\k_Tk—llk—l,f\k,l' Let 6, ::[ . Now consider the ODE

col Vec(ék)
associate with the A and C recursions
do(

?f) = R I(B)E() + 2((0)) (A8)

col vec(A(r))
col vec(C(r))

With 6(t) abbreviated as 0 we define f(0) and R(0) as follows

where 0(7) = l and z(0(1)) is the projection required to keep 0(t) in Pe.

(i col vec(E[AJ, 5 — AAO,4/6])
= o vee(E[AT ;5 — CAO 5/0))
R(0) = E[(%OW) ® 1N+l|é} (A9)

To show how (AS8) is related to recursions (Al), (A7) we again appeal to the Theorem 2.3 in
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Reference [27]. Let

. 1A -l
col vec <(AJk|f\k — Ak_lAOkIAA) (kOkk,AA> )

Ap = | and
. 1A -
col vec ((AT,c A, — C1A04,) ( kO/ck,[\k) )

g(0) = R (O)(0)

The following conditions are satisfied:

1. (A2.1) Under (3.22), (10 4,) " is L2 bounded and hence so is it’s expectation. E[|A[*]< co.

2. (A2.3) From definition, g(.) is a continuous function of 0.

3. (A2.4) The gain sequence, & = 1/¢, satisfies >, &7 <.

4. (A2.2), (A2.5) Define p;, = E[A/c|éo,Ai,i<k] — g(ék,l). Here g(#) is continuous in k.
Also, using the same techniques as used in Lemma 6 it can be shown that f, — 0 with
probability 1.

Theorem 2.3 of Reference [27] now applies and hence the recursions (A1), (A7) converge to
any locally asymptotically stable points (in the sense of Lyapunov) of (A8) or to a boundary
point of P.

To examine the Lyapunov stability of (A8) consider the following candidate Lyapunov

function:
0_9 @n7 1]

|

This is a Lyapunov function because W (0)>0 and in a similar manner to the above case for
estimation of A4 it can be shown that dW(G)/dO = —f(9) and hence dW(G)/dr<0 It follows
from Lyapunov’s direct method that 4 and C estimates converge to the set {A, C|lim;_,~, dW
(9(1))/dr = 0} (or a boundary point of P.).

Convergence occurs to solutions of the N2 + N simultaneous equations d W4(6) /dé; = 0 for
i=1,...,(N*+ N). Which are the N’ equations E[x@fl(xﬁ, — Zn | Amx )|0] =0 for i,j =
1,...,N (actually only N distinct linear equations) and the N distinct linear equations E[x} x
e =N, Cx)Ol=0fori=1,...,N.

The companion canonical form has only 2N free variables and hence there will be only one
solution to this homogeneous system of linear equations (if there is one). The persistence of

excitation conditions imply that there is a solution (see Theorem 2), hence A, C converge
uniquely to A, C® (or to a boundary point of P.). It then follows from Theorem 2.3 of

W) =

anf Axc 1P|
E Z llye — Cxl?
=1

n—1
~E Z lIxe — Axe1]1?

Z llye — Cx ‘ Y

0,%,

(A10)

for any n.
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Reference [27] that (A1) (A7) converge a.s. to A®, C® as required (or to a boundary point of
P.). ]

Lemma 6
Define ' = E[A{|A¢, Al i<k] — g"(Ar_1) then 7 — 0 wp. 1.

Proof
This can be established by expressing ﬂﬁ as follows:

B = EIAAo, Ay i<k] — E[AIAL] (A11)

which follows from the definition of A;' and Ay.

First note that Lemma 5 established that the terms AJM 4, and AOM A, are exponentially
forgetting (because elements of P, are completely stabilisable and detectable). Also, it follows
from (35) that ((1 /k)(A)k,lk’Ak)*1 is asymptotically stable to O. Now, the product of two
asymptotically stable terms is also asymptotically stable (or asymptotically approaching
exponential stability in this case), hence A,f and E [Afb&o, A, i<k] both asymptotically forget A,
as k — [ grows.

Then from (A1) and (35) we have that |Ak — Ak,1|<(1/k)BA a.s. for large k and some non-
negative random variable By.

Hence, asymptotically stability (approaching exponential stability for large k) of E [A,f|Ao, A, i
< k] with respect to A, together with Ar — Ap_i|< (1/k)B4 gives that ﬁ,f — 0 as k grows. That is,
with increasing k, changes in A; become smaller, and influence of these decreasing changes is
asymptotically forgotten over time so that £ [A,fle, A, i < k] approaches E[A,f|Ak] as k grows. []
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