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Abstract: This article presents the general concepts, mod-
els, and computational techniques applied in a new dial-a-
ride vehicle routing and scheduling system. The objective
of this system is to improve the responsiveness, reliability,
and productivity of dial-a-ride paratransit services. The de-
veloped software integrates dial-a-ride routing and schedul-
ing principles and practical experience and explicitly con-
siders travel time variability in urban roadway networks.
Such extensive and complex integration has been made pos-
sible by improved data acquisition and processing capabil-
ities of computer, telecommunications, and vehicle location
technologies. Advanced computational methods applied in
the system, such as the artificial neural network technique,
which allows heuristic estimation of origin-destination travel
times in a dynamic and stochastic fashion, contribute to the
processing speed required to respond expeditiously and effi-
ciently to paratransit user requests. A real scheduling prob-
lem from the city of Edmonton, Alberta, where the system was
tested, is used to illustrate the positive computational expe-
rience and the capability of the developed software to handle
both off-line and on-line operations.
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1 INTRODUCTION

As a public service, paratransit systems have played a spe-
cial role in providing transportation to a population with re-
duced mobility, such as the elderly and handicapped who
have difficulties in accessing the regular fixed-route public
transit system. Due to the door-to-door service characteris-
tics, most paratransit systems rely heavily on subsidization.
The latest development in intelligent transportation systems
(ITS), such as automated vehicle location (AVL) and digital
communications, have the potential to make these systems
more cost-effective.3,6,14 These technologies allow an oper-
ation center to constantly track the service vehicles and to
effectively communicate with drivers and customers. In addi-
tion, continuing advances in computing power have increased
data-processing ability so that more complex models can be
applied and schedules updated in real time. The efficiency,
productivity, and reliability of paratransit service can be im-
proved significantly, provided that increased data acquisition
and processing needs can be met and the resulting information
used adequately in the management and operations processes.
The objective of this article is to present an overview of the
concepts, models, and computational technologies applied in
a new dial-a-ride vehicle routing and scheduling computer
software program that has been developed with special con-
sideration of the increased data availability.
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This article first presents an overview of various classes of
dial-a-ride problems (DARP) involved in a typical dial-a-ride
paratransit system and a conceptualization of an Automated
Dial-a-ride Paratransit Operation System (ADPOS). The ma-
jor components and features of the program developed in
this research are then introduced, focusing on a new DARP
model that explicitly considers the dynamics and stochastic
nature of the origin-destination (O-D) travel times and esti-
mation of the O-D travel time based on an artificial neural
networks (ANN) technique. Finally, the implementation is-
sues involved in the program are discussed and illustrated
using a real application problem from the Disabled Adult
Transportation System (DATS) of the city of Edmonton, Al-
berta, Canada.

2 BACKGROUND

2.1 Dial-a-ride vehicle routing and scheduling problems

In a dial-a-ride paratransit system, one of the daily opera-
tional problems facing the service operator is to determine
the optimal pickup and drop-off routes and schedules for a
fleet of vehicles to carry customers between specified origin
and destination locations. This problem belongs to the well-
known vehicle routing and scheduling problem in operations
research (OR) and is specifically referred to as thedial-a-ride
problem(DARP).1,13

There are fundamentally two DARP types involved in the
operation process of a dial-a-ride system that need to be
treated differently. The first problem is thestatic DARP,
which usually needs to be solved at the beginning of ev-
ery day when all the customer trip requests are known (e.g.,
booked one day in advance or subscribed for regular service).
The objective of the routing and scheduling procedure is to
determine the assignment of all customers (or trips) to the
available vehicles and their respective routes and schedules.
This function can be performed off-line and thus is less time
demanding.

The second problem in a dial-a-ride system is calledreal-
time DARP, as referred to in this article, in which the objective
is to determine the assignment of customers into the exist-
ing schedules of vehicles in real time (these trips are also
calleddemand trips). The new customers usually phone the
service center to request immediate service while some fleet
vehicles are already in service and have a set of given op-
eration schedules. Because of the requirement imposed by
a real-time operation process, the dispatcher usually has to
give the customers their pickup/drop-off times immediately;
therefore, the “optimal” insertion schedules must be found
in a very short time period (e.g., a few seconds). A fast on-
line routing and scheduling algorithm is therefore required to
solve this problem.

The DARP can be further classified into various types

Fig. 1.Schematic illustration of O-D travel time models.

of subproblems based on how the system components and
parameters are represented or modeled. This article classi-
fies the DARP into four problems based on how the origin-
destination (O-D) travel times are modeled (Figure 1). The
first class is defined as dial-a-ride problems with constant O-
D times (DARP-C); that is, the travel time between each O-D
pair has no variation and is independent of the time of day, as
shown in Figure 1a. The second class of DARP, denoted as
DARP-S, considers the stochastic variation of the O-D travel
times by modeling them as random variables (Figure 1b). The
third class of DARP, denoted as DARP-D, assumes that the
O-D travel times are dynamic, that is, time-dependent but not
stochastic, as shown in Figure 1c. When the travel times are
modeled as both dynamic and stochastic, as shown in Fig-
ure 1d, the result is the last class of problems—DARP-DS.

The DARP can be modeled differently in terms of objec-
tive functions and constraints considered in problem formu-
lation. These objectives and constraints are related to service
providers and service clients—customers. Examples of the
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objective functions include

Objectives related to service providers:

• Minimize the number of vehicles. This objective is re-
lated to service providers’ operating cost. The operating
cost is commonly proportional to the number of vehicles
used,13 especially when some rented or contracted vehicles
are used in addition to internal vehicle fleet.
• Minimize the total vehicle travel time. The travel time is

another important factor that influences the service pro-
viders’ operating cost.

Objectives related to customers:

• Minimize customer service time deviations. Customers’
satisfaction with the service provided is usually measured
in terms of service time deviations, that is, the time dif-
ference between the actual or scheduled pickup/drop-off
times and their most desired pickup/drop-off times.
• Minimize customers’ excess ride times. In shared-ride

systems, customers normally experience some extra in-
vehicle time (excess ride time) as compared with their di-
rect ride time (without diversions for other customers).

When more than one objective function is used, a general
cost function or disutility function is commonly formed to
combine them together.

The operational constraints that must be satisfied during
the routing and scheduling process include

Constraints related to service providers:

• Limited number of vehicles. The number of vehicles
planned for service is typically a decision made at the
higher-level strategic service planning.
• Vehicle capacity. Vehicles are limited in capacity by seat-

ing types.
• Vehicle service time periods. Service vehicles are usu-

ally not available all day. Service operators need to control
the service plan through the allocation of service time pe-
riods, and drivers have to take breaks. Typically, there are
multiple service time periods associated with each vehicle.

Constraints related to customers:

• Seating requirements. Customers usually have different
seating requirements. For example, some customers can
use regular seats, whereas others have to remain in wheel
chairs. During the routing and scheduling process, it must
be guaranteed that the number of on-board customers on
each vehicle does not exceed the vehicle capacity of each
seating type at each stop along the route.
• Pickup/drop-off time windows. Customers usually spec-

ify either desired pickup or drop-off times. To avoid ex-
tremely long waiting times, local service policy usually
designates a maximum time deviation from customers’ de-
sired pickup/drop-off times. As a result, customers must

Fig. 2. The Automated Dial-a-Ride Paratransit Operation System
(ADPOS).

be scheduled to be picked up or dropped off at specific
time periods—time windows.
• Maximum ride time. In order to avoid extremely large

excess ride times for each customer in a schedule, a max-
imum ride time is commonly specified as a routing and
scheduling criterion.

2.2 Automated dial-a-ride paratransit operation systems
(ADPOS)

Dial-a-ride paratransit operation requires a set of operat-
ing functions such as trip reservation, vehicle routing and
scheduling, vehicle dispatching, and business reporting. With
various technologies such as microcomputers, AVL, and digi-
tal communication, these operation functions can be fully au-
tomated for potentially more cost-effective operations.2,10,14

This section presents a conceptualized system calledAuto-
mated Dial-a-ride Paratransit Operation System(ADPOS)
with an assumption that various state-of-the-art technologies
are available, as shown in Figure 2. The focus is on how the
system works and what type of information is available for
use in the routing and scheduling process.

In this hypothetical ADPOS shown in Figure 2, most com-
ponents can be fully automated. At the start of the service
day, routes and schedules are automatically generated by a
computer (scheduling server) and sent to each driver. Most
customers request service in advance through the Reservation
Center. During the service day, some customers call the Dis-
patching Center to request immediate service as opposed to
prearranged or scheduled service. As soon as the Dispatching
Center receives customers’ identification numbers or names,
their registration information is verified at the database server.
A request for inserting these new trips into the existing sched-
ules is then sent to the scheduling server. Within a few sec-
onds, the schedule server determines which vehicles to assign
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to the trips based on current vehicle locations (from GIS and
AVL) and traffic condition (from TIC), calculates the new
vehicle schedules, and informs the Dispatching Center when
the vehicles will provide the service to the customers. The
Dispatching Center then sends the revised schedules to the
drivers through a digital communication system such as Ra-
dio Data System (RDS). It should be noted that the diagram
shown in Figure 2 represents only the functional configura-
tion of the ADPOS and should not be interpreted as a definite
software or hardware setting. In fact, many of these compo-
nents can be combined and performed by a single computer.
The following subsections provide a more detailed discussion
of each component.

Reservation Center. The Reservation Center provides the
connection between the Operation Center and customers.
This center takes responsibility for recording the customer
reservations, including pickup and drop-off locations, de-
sired time window, number of passengers to be delivered
(or picked up), and their special requirements; it is also re-
sponsible for updating customer information in the case of
service cancellation and change of service time. This proce-
dure is usually conducted by reservation clerks who receive
the information over the telephone and then manually enter
it into the computer. After the data are analyzed, the clerks
inform the customers whether or not the service request can
be accommodated. As an option, the reservation also can be
completed by an automated telephone system connected to a
computer through a modem. Customers can dial in to make
their own trip reservations.

Internet technology also may be applied effectively. In this
case, a WWW site is set up for customers to access using a
browser such as Netscape Navigator or Microsoft Explorer.
With a form-based registration system, the customer can reg-
ister service and reserve trips on-line without the help of
service clerks. The front forms for registration and reserva-
tion are dynamically linked to the database on the Database
Server.

Traffic Information Center(TIC). The TIC is a major com-
ponent of the ITS. Its function includes managing the traffic
data from a variety of data sources, such as loop detectors,
probe vehicles, computer simulation models, etc., and then
distributing the processed information to different applica-
tions, such as advanced traveler information systems (ATIS)
and ADPOS. The data communication between TIC and AD-
POS has several options. The first option is a periodic transfer
through portable storage media such as a zip driver and regu-
lar floppy diskettes. It is simple and inexpensive but can only
provide historical data. It is therefore suitable for transferring
a large amount of data. The second option is through a batch
file, in which data are generated in the TIC and then trans-
mitted to ADPOS for storage through a computer network. A

more complex alternative is the on-line link through intranet
or Internet, that is, the ADPOS directly accesses the data in
the TIC. This method provides an opportunity for ADPOS
to obtain and update real-time network information without
much delay. The major constraint is the limitation of transfer
speed during peak information demand times.

Geographic Information System(GIS) server. The GIS ser-
ver contains both explicit geographic references such as lat-
itude and longitude coordinates and implicit references such
as street networks, addresses, and postal codes. Geographic
relationships can be established between these two types of
references, which allow identification of the coordinates of
a location based on its address. The coordinates of locations
form the basic inputs for calculating travel times between
locations that are used in the routing and scheduling process.

Automated vehicle location(AVL). A number of alternatives
are available to locate and track vehicles. The most basic
method is two-way communication (e.g., by cellular phone),
with the driver identifying his or her location to the system
operators. The second method is based on communication
between vehicles and roadside facilities (sign posts). These
facilities provide the times when the vehicles pass known
locations. Another method is called theglobal positioning
system(GPS), which uses satellites to locate and track the
vehicles. Information from AVL can be verified or processed
by the GIS server with a real-time display of vehicle locations
on the computer screen.

Database server. All the data related to the dial-a-ride ser-
vice operation are stored and managed by a central database
management system (DBMS)—the database server. All the
information collected by the Reservation Center, TIC, and
AVL are input and stored in a central database. These data
are managed by a DBMS system such as Oracle or Microsoft
SQL server or access.

Routing and scheduling server. This server is responsible for
providing optimal routes and schedules for the available ve-
hicles. This is the core function of the system. The program
developed to perform this function is discussed in more detail
in the following sections.

Dispatching Center. The dispatchers keep monitoring the
system changes for incidents, service cancellations, and new
trip requests for immediate service. These changes may jus-
tify modification of vehicle schedules, such as

• Regroup. New system situations may result in assigning
different customers to different vehicles compared with
those from the preceding dispatching run.
• Resequence. Change the sequence to visit each customer.
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• Add a new vehicle. When new demands cannot be ac-
commodated or cannot be served efficiently, it may be
necessary to dispatch a new vehicle.
• Redirection. This operation focuses on the one-to-one

routing in a road network.

Once the new operation strategy is verified, the schedules are
sent to the drivers using a cellular phone or RDS.

The system conceptualization shown in Figure 2 focuses
on the functionality of the system as a whole and the flow
of data between system components. It should be noted that
such a system could take many configurations depending on
the technologies used for collecting and communicating data
and human interfaces. For example, the traffic network in-
formation could be real-time or historical data; the vehicle
location could be identified by AVL, estimated by communi-
cation with the driver, or estimated using vehicle routes and
schedules stored in the computer; and the system may use
micro- or main-frame computers that could be linked locally
through local-area networks (LANs) or globally (Internet).

3 SYSTEM FUNDAMENTALS

3.1 Motivation for the research

Since the early 1970s, a number of computer algorithms
and programs have been developed to solve the DARP and
provide assistance to the complicated scheduling and dis-
patching process of dial-a-ride paratransit systems.10,14–16

However, one of the major disadvantages of these tools is
that they are based exclusively on the assumption of con-
stant O-D travel times and therefore essentially deal with the
DARP-C class of problems described in Section 2.1. In an
urban traffic environment, however, O-D travel times may
be highly time dependent (dynamic) and uncertain (stochas-
tic) because of the inherent fluctuation in travel demands,
unpredictable occurrences of traffic incidents, and changes
in weather conditions.11 For example, a travel time study12

showed that the travel times in the city of Edmonton (with
light traffic) had a wide spread of variability, with coefficients
of variation ranging from 0.06 to 0.30.

It can be expected that in situations of high uncertainty
the service vehicles may not be able to follow the schedules
computed on the basis of the traditional models, and thus
reliable service may not be guaranteed. For example, based
on the assumption of deterministic O-D travel times, it would
be feasible to schedule a vehicle to deliver a customer at his
or her destination at his or her most desired drop-off time.
Nevertheless, the actual drop-off time will not be exactly the
desired or scheduled drop-off time because of the randomness
of vehicle travel times. The drawback associated with the use
of static O-D travel times is more straightforward in the sense
that it may result in erroneous and inefficient schedules.

Fig. 3.Structure of the FirstWin routing and scheduling system.

By using static and deterministic models, traditional rout-
ing and scheduling tools are not able to take advantage of
the large amount of data available due to new technologies.
As a result, these tools may not be used satisfactorily in ad-
vanced operation systems such as ADPOS. The software sys-
tem FirstWin developed during this research is designed to
overcome the problem. The following subsection presents a
detailed discussion on the structure, routing and scheduling
models and algorithms, and various O-D travel time estima-
tion methods incorporated into the software.

3.2 Software structure

As a decision support tool, the core function of the software is
to find the optimal pickup and drop-off routes and schedules
for a fleet of vehicles required to transport customers from
various origins to various destinations in a service area. Fig-
ure 3 schematically illustrates the operation concept of the
system.

The data needed by the program fall into two categories.
The first category includes vehicle-related data such as ca-
pacity, service time period, and depot location and customer
trip-related data such as origin and destination locations (geo-
graphic coordinates or zone number), desired pickup or drop-
off time and seating requirements, and O-D travel times.
These data are prepared externally as database tables us-
ing any DBMS that supports the Microsoft Open Database
Connection (ODBC) standard. The second category includes
scheduling-related parameters such as maximum allowable
ride time, maximum service-time deviation, and weights to
different optimization objectives, which can be entered and
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modified inside the program. The user can import the first cat-
egory of data from the external database through an ODBC
connection and set the second category of data through a user
interface. After all the required data are set, several optimiza-
tion routines can be invoked to assign customer trips to each
vehicle. The program will create screen display and text file
outputs of schedule summaries and detailed schedules that
can be viewed and printed. In addition, the program allows
the user to export schedules to a database that can be used later
either by itself or with other programs (to generate vehicle
run sheets, for example).4

3.3 DARP models

As discussed in Section 2.1, there are a variety of DARPs that
need to be solved in the typical dial-a-ride operation process.
FirstWin was developed initially specifically for solving the
static DARP and later extended to handle the real-time DARP.
A real-time DARP can be viewed as a special case of a static
DARP except that the vehicle locations need to be set as the
current locations.

While FirstWin was designed to deal with all subproblems
based on the O-D travel time models discussed in Section 2.1,
the following discussion focuses on the most general and
realistic model, that is, DARP-DS.

Due to the involvement of multiple variable objectives and
the randomness of system status (i.e., random O-D travel
time and thus random arrival time and ride time), the utility
concept is used to combine the objectives of the system op-
erator and the customers and to resolve the randomness of
the operation measures.3,9 Specifically, a disutility function,
which represents the relationship between the degree of dis-
satisfaction of the service operator or customers associated
with the routing and scheduling results, is used to represent
the objectives. Therefore, the general objective function of
the routing and scheduling procedure can be represented by
the total disutilities of the service operator and customers.

FirstWin considers all the operation constraints discussed
in Section 2.1 except that the time-related constraints are ex-
pressed as probabilistic conditions because of the randomness
of travel times.

The following subsection uses the ride time as an example
to illustrate how the objectives and constraints are modeled
when the travel time and arrival time are random. A full de-
scription of this modeling practice can be found in Fu.3

3.3.1 Objectives and constraints related to customers’ ride
time. A chance constraint is introduced to represent the max-
imum ride time condition under stochastic travel time. The
constraint involves the following probability function:

Prob(t̃i ≤ L) ≥ β (1)

wheret̃i is a random variable representing the scheduled ride
time for customeri , L is a systemwide parameter represent-

Fig. 4.Customer’s ride time condition.

ing the maximum allowable on-board time, andβ is an exter-
nally set criterion representing the minimum allowable prob-
ability. For example, it may be decided that the constraint
must be satisfied with a probability of 95%. This constraint is
schematically illustrated in Figure 4. The curve represents the
probability density function (PDF) of customer’s ride time.
The shaded area under the curve is the same probability as
shown in Equation (1). Equation (1) can be rewritten as

∫ L

0
ft̃i (x)dx ≥ β (2)

where ft̃i (x) = PDF of customeri ’s ride time.
The validation of Equation (2) requires that the PDF or

cumulative distribution function of the ride time (t̃i ) for each
trip be known in advance. To simplify the problem, it was as-
sumed that the O-D travel time for each O-D pair is normally
distributed with mean and standard deviation as known func-
tions of departure time at the origin location. This implies that
t̃i also would be normally distributed with its mean and stan-
dard deviation obtainable based on O-D travel time data and
departure time of the route. Because the cumulative distribu-
tion function of a normal variable can be effectively approxi-
mated by a simple function, the computing time required for
checking Equation (1) can be significantly reduced.3 It should
be noted that the models and algorithms in the program are
not limited to the normal distribution assumption.

The maximum ride time criterion provides an upper bound
of the service requirement. A scheduling process also aims to
minimize customers’ ride time. Therefore, a disutility com-
ponent representing this scheduling objective needs to be
included in the general disutility function.1,8 This disutility
component, noted asDUr

i , is defined as a quadratic function
of the relative deviation of the mean ride time:

DUr
i = a3y2

i (3)
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wherea3 = an externally set constant representing the
weight allocated to the ride diversion in the gen-
eral objective function

yi = the relative deviation of the mean ride time for
customeri , defined as

yi = E[ t̃i ] − E[ t̄i ]

E[ t̄i ]
(4)

wheret̄i = the direct ride time, with expected direct ride
time noted asE[ t̄i ]

E[ t̃i ] = the expected scheduled ride time for customeri
The reason for using the relative ride time diversion func-

tion shown in Equation (4) is that a customer’s toleration of
the ride time deviation is also related to the direct ride time
of his or her trip. Commonly, the longer the direct ride time
of customers’ trips, the longer is the ride time deviation that
he or she can tolerate.

3.4 Algorithm

The preceding subsection discussed how the objectives can be
modeled using a utility concept and chance constraints. The
DARP can then be formulated to minimize the total disu-
tility of service providers and customers subject to a series
of constraints such as that shown in Equation (1). A mathe-
matical formulation can be found in Fu.3 Due to its inherent
intractability, only heuristic algorithms are currently feasible
to solve practical DARPs. One of the widely used heuristic
routing and scheduling procedures is called aninsertion algo-
rithm, which processes customer trips sequentially, attempt-
ing to insert one customer trip at a time into the work schedule
of some vehicle while considering all insertion opportunities
provided by the available vehicles.8 This algorithm has been
extended to solve the dial-a-ride problem with the new objec-
tive functions and constraints discussed earlier. The insertion
algorithm has the following iterative solution steps:

Step1. Determine the time windows for each customer.
Step2. Select a customeri from the customer list.
Step3. For each vehiclek from the fleet:

(a) Find all feasible ways in which customer
i can be inserted into the partial schedule
of vehiclek. If it is not feasible to insert
customeri into vehiclek, examine the next
vehiclek+ 1 and restart step 3.

(b) Find the insertion of customeri into vehi-
cle k that results in a minimum insertion
cost.

Step4. If it is not feasible to assign customeri to any ve-
hicle, then either hire a new vehicle to serve this
customer or “reject” this customer. Otherwise, as-
sign customeri to vehiclek∗ for which the inser-
tion cost is minimal among all the vehicles, and
update vehicle schedules.

Three processes are central to the insertion algorithm: travel
time updating, a feasibility test to insert a customer trip into
an existing schedule, and an optimization process to find the
best feasible insertion and best schedule.

Travel time updating. During the insertion process, the
vehicle schedules are subject to changes because of insertion
of new trips, which will in turn change the departure time
at some stops. When the O-D travel times are modeled as
dynamic, the travel time between stops and the arrival time
at each stop must be updated during the insertion process.

Feasibility test. The feasibility test is to ensure that the ser-
vice quality constraints for both the newly inserted customer
and all other customers already on that vehicle are not vio-
lated. The following tests must be passed for the feasibility
check:

Test1. Test the vehicle’s load (on-board passengers) at
each stop. The vehicle’s load always must be less
than or equal to the vehicle’s capacity.

Test2. Test the satisfaction of the inserted customer and
the customers already on the vehicle. This test in-
cludes the customers’ time windows and the cus-
tomers’ ride times.

Optimization. The objective of the optimization step is to
minimize the total additional disutility due to inserting a cus-
tomer into a vehicle’s schedule. The additional disutility is
the difference between the total disutility before and after in-
serting a customer. The disutility function is primarily related
to the total travel time for each vehicle, the arrival time at each
stop, and each customer’s ride time. Once a vehicle’s pickup
and drop-off sequence is determined (e.g., after a customer
is inserted into an existing partial route), an optimal starting
time for this vehicle can be obtained by minimizing the to-
tal disutility of the schedule based on the O-D travel time
information. Subsequently, the total travel time, the arrival
time at each location, and each customer’s ride time can be
determined to arrive at the total disutility.

The preceding algorithm also was modified to schedule
other types of trips, including trips that are preassigned to
specific vehicles by schedulers and group trips that are ar-
ranged in advance to be serviced by the same vehicle.

3.5 O-D travel time estimation methods

FirstWin allows the O-D travel time to be modeled as con-
stant, dynamic, and/or stochastic, as discussed in Section 2.1.
Corresponding to each model, there must be a method avail-
able to provide the estimation of the related O-D travel time
information. In FirstWin, the following three types of O-D
travel time estimation methods are included:

• Zone-based O-D travel time estimation method
• Distance-based O-D travel time estimation method
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• Artificial neural network–based O-D travel time estimation
method

Each of these individual methods is described below.

3.5.1 Zone-based O-D travel time estimation. The service
area is first divided into individual zones, and the travel time
between each pair of zones is determined in advance and
stored in a database table. The travel time between two lo-
cations is assumed to be equal to the travel time from the
zone where the origin is located to the zone where the des-
tination is located. For convenience, the traffic analysis zone
(TAZ) system used in transportation forecasting models may
be adopted (as, for instance, in Edmonton, where 515 zones
are used).

When the O-D travel time is modeled as a dynamic and
stochastic variable represented by its mean and standard de-
viation as functions of time of day, a number of O-D time
matrices for different time periods are required. For compu-
tational efficiency, the whole O-D travel time matrix is read in
from the database and kept in random access memory (RAM)
before FirstWin executes the scheduling algorithms. A large
amount of RAM is required for the program to run efficiently.
If a system ofN zones is used, the required RAM to keep
a single O-D matrix is 2N2 bytes. For the Edmonton case,
about 0.5 MB (2∗ 5152 bytes) is required to store a single
O-D time matrix.

3.5.2 Distance-based O-D travel time estimation. In this
method, O-D travel times are approximated by rectangular
distance (d1) and Euclidean distance (d2) from the origin lo-
cation to the destination location. These two distances are
determined from the coordinates of the locations as follows:

d1 = |xo − xd| + |yo − yd| (5)

d2 =
√
(xo − xd)2+ (yo − yd)2 (6)

where(xo, yo) and(xd, yd) are, respectively, the coordinates
of the origin location and destination location.

The relationship between the O-D travel time and these two
distances can be established through a regression function:

tod = ad1+ bd2 (7)

wheretod = the O-D travel time from origin (o) to destination
(d), in seconds

d1,d2 = the rectangular distance and the Euclidean dis-
tance, in kilometers

a,b = regression parameters
This regression can be obtained easily using spreadsheet

software, such as Microsoft Excel of Lotus 1-2-3, if sample
O-D travel time data and their related location coordinates
are available. If dynamic and stochastic O-D travel times are
used, such regressions have to be established for both mean
and standard deviation for each time-of-day period.

Fig. 5.ANN-based O-D travel time estimation.

3.5.3 Artificial neural network(ANN)–based O-D travel time
estimation. FirstWin has included a unique method called
artificial neural network(ANN)–based O-D travel time esti-
mation method. This subsection provides a general overview
on the ANN model and describes how it is integrated into the
program.3,5

The ANN used in FirstWin is known as a backpropagation
neural network that can be trained to provide a desired map-
ping between the O-D travel time (mean and standard devia-
tion) and various input factors such as the coordinates of the
origin and destination locations and the departure time at the
origin, as shown in Figure 5. Because the ANN model is used
as a subcomponent in the routing and scheduling process, a
direct code-level integration is necessary for computational
efficiency. For this reason, a Windows application program
called NeuralBase was developed as a coupled program with
FirstWin. NeuralBase provides an interface for training and
testing O-D travel time estimation models, whereas FirstWin
can use the trained models to estimate O-D travel time during
the routing and scheduling process.

The integration between NeuralBase and FirstWin is il-
lustrated schematically in Figure 6. The basic procedure is
as follows: A set of neural networks is trained and tested in
NeuralBase with data from various sources, such as daily op-
erational records and survey and GIS systems. The trained
neural network objects (defined by network parameters) are
saved into a disk file and then read in by FirstWin (this pro-
cess is calledserialization in computer programming lan-
guage). Based on the parameter values, FirstWin reconstructs
the trained neural network objects for use in estimating the
O-D travel time. In the routing and scheduling process, the
neural network acts similar to a look-up table that gives the
O-D travel time based on input data including location coor-
dinates and departure time at the origin.

The performance of the ANN model as compared with the
other estimation methods was tested by Fu and Rilett.5 It was
found that the ANN-based method significantly outperforms
the distance-based method and is computationally efficient
enough to be used in the routing and scheduling process for
solving large-sized problems (over 1000 trips).
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Fig. 6. Integration of FirstWin and NeuralBase.

4 SYSTEM IMPLEMENTATION

4.1 Hardware and software environment

FirstWin is written in Visual C++ using an object-oriented
programming (OOP) technique that provides the flexibility
to easily modify and extend the program as the system is con-
tinuously validated and enhanced. For example, the program
was developed initially to handle only deterministic travel
time. It was later extended to use a stochastic travel time
model simply by adding a new class (representing stochastic
travel time) derived from the old travel time class (determin-
istic travel time) without modifying the original scheduling
algorithms. With OOP diagrams, the algorithms developed
allow handling of future travel time models that have yet to
be developed.

Because the input-output of the software is built on Mi-
crosoft’s ODBC standard, a DBMS that supports ODBC is
required. FirstWin is compiled as a 32-bit program run on Mi-
crosoft Windows 95 and Windows NT platforms. The size of
the problem (e.g., number of trips and vehicles) and number
of zones used for O-D travel time estimation are not restricted
in the program but by the available computer memory.

4.2 Interface for data input, output, and editing

A graphic user interface (GUI) is used to display all system-
status data, including trips, vehicles, travel time, scheduling

parameters, schedules, and various measures of effectiveness
(MOE). FirstWin imports and exports data using the ODBC
database engine, which allows the user to work on the same
database application they are using and therefore requires
much less data-preparation effort. Although most of the data
are prepared outside the program and input from a database,
an interface is set so that the user can easily modify the data,
if necessary.

FirstWin also provides an interactive interface that allows
schedulers to manually preassign trips to certain vehicles, to
modify the schedules provided by the automated scheduling
process, and to control which vehicles are to be used and
which trips are to be scheduled.

4.3 Communication with other programs

FirstWin has been developed based on Microsoft’s Object
Linking and Embedding (OLE) technology and supports OLE
automation. This means that it can be integrated easily with
other application programs as a client-server system. The
other applications can run on either the same or different
computers, which may communicate with FirstWin through
networks such as a local-area network (LAN) or the Internet.
With this type of computing technology, FirstWin can be used
as a real-time scheduling server to provide real-time schedul-
ing functions such as reoptimizing schedules with new re-
quests or trip cancellations. In this case, an instance of First-
Win may be kept running on a server computer, updating all
the system data including working schedules, current vehicle
locations, and trip information based on real-time collected
data. The optimization routines in FirstWin can be called, for
example, by a program at the dispatching computer to insert
new trips to the existing schedules.

5 COMPUTATIONAL EXPERIENCE

This section illustrates the performance and computational
efficiency of FirstWin in solving real application problems
for both on-line and off-line operations. The data used for
this demonstration were generated from the operational data
for a typical day of the Disabled Adult Transportation System
(DATS) in the city of Edmonton, Alberta, Canada. Edmonton,
with a population of over 600,000, is also served by a con-
ventional bus system and a light rail transit line. The regional
population is almost 900,000.

The operational setting includes a total of 3024 trips and
109 vehicles with a designated service time from 6:00A.M.
to 10:00P.M. The basic input data and scheduling parameters
used are summarized in Table 1. All runs were performed on
a Pentium 90 IBM-compatible PC with RAM of 24 MB.

The O-D travel time estimation is zone based with a total of
515 zones. Three travel time models are considered: constant,
dynamic, and both dynamic and stochastic. Because only a
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Table 1
Test problem description and scheduling parameters

Test problem

Vehicles Sedans (4 passenger seats; 33
regular seat only)

Minivans (6 passenger seats; 16
regular seat only)

Large vans (over 7 passenger 60
seats; regular set and wheel
chair)

Trips Single trips (one to one) 2413

Group trips (one to many, many 632
to one and many to many)

Scheduling parameters

Maximum allowable ride time (minutes) 90

Maximum allowable deviation from the most 30
desired pickup and drop-off time (minutes)

Maximum no. of trips per vehicle (trips) 40

Initial no. of vehicles 100

Minimum allowable probability 70%

database of averageA.M. peak travel time was available, the
travel times used for this analysis were created to represent
these three travel time patterns, as described in Table 2.

The scheduling results obtained by FirstWin for three dif-
ferent cases are summarized in Table 3. The MOE values
listed in Table 3 show that the use of different travel time
models may result in significantly different schedules. As
the results from case II and case III imply, a more realistic
model (case III) requires more vehicles to service the same
number of trips compared with using a less realistic model
(case II). This is expected because in case III a reliability of
70% is guaranteed for all schedules generated, as compared
with 50% in case II. The total vehicle travel time and vehicle
productivity are quite similar for these two cases, which in-
dicates that system productivity can be maintained, although
more reliable service can be provided when using a more
realistic model.

It should be noted that the extent to which a more realistic
model provides an advantage over a less realistic model would
need to be further determined by an empirical investigation.
However, it can be anticipated that using more realistic travel
times will yield schedules that are more efficient and more
easily followed by drivers.

Table 3 also shows the relatively long computational time
required to schedule all trips at once for each case (about
1 hour). However, this amount of time is acceptable when

Table 2
O-D travel time model and data

Case Description

I • Constant travel time: Travel time for each O-D pair is
a single value (mean)

• A.M. peak travel time is used.

II • Dynamic travel time: Travel times for each O-D pair
are multiple values (mean) depending on time of day.

• Three time periods:A.M. peak (7:00A.M.–9:00A.M.),
P.M. peak (4:00P.M.–6:00P.M.) and off-peak (other).

• For each O-D pair, travel time duringA.M. peak period
is assumed to be the same as theA.M. peak, and travel
time during the off-peak period is 60% of the travel
time during theA.M. peak.

III • Dynamic and stochastic travel time: Travel times for
each O-D pair are multiple values (mean and standard
deviation) depending on time of day for each O-D pair.

• Three time periods: Same as case II.

• The mean travel time for each O-D pair is determined
as in case II.

• Variance of travel time for each O-D pair is calculated
based on a constant variance to mean ratio of 0.2
minutes.

Table 3
Summary of scheduling results

MOE Case I Case II Case III

Vehicles scheduled 95 96 106

Trips scheduled All All All

Total vehicle hours 772.0 551.72 581.43

Average ride time (min) 3.94 5.52 5.24

Average deviation from 38.73 31.63 27.89
desired pickup/drop-off time
(min)

CPU time for scheduling all 2956 3365 3644
trips at once (s)

CPU time for insert of an 0.8 1.0 1.5
extra trip after all trips
are scheduled (s)

compared with the time available for off-line scheduling (e.g.,
24 hours in advance).

After all trips are scheduled, the algorithm was run with
the task of inserting a new trip to simulate an on-line oper-
ation with the assumption that the existing schedules are to
be maintained. It can be seen that the CPU time required in
all cases is less than 2 seconds. These computational perfor-
mances imply that the program is satisfactory for both off-
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line and real-time scheduling situations when a more realistic
travel time model is used.

6 CONCLUSIONS

This article presented an overview of the concepts, models,
and computational technologies used in a new vehicle rout-
ing and scheduling software called FirstWin, which has been
developed for dial-a-ride paratransit operations. The program
was conceived ultimately to be used in the Automated Dial-a-
ride Paratransit Operation Systems (ADPOS) conceptualized
in this article. Compared with existing tools, the software sys-
tem has the following advantages10,14:

• It includes a new DARP model that explicitly considers the
dynamic and stochastic nature of O-D travel times. This
model allows adequate use of the large amount of data
available due to ITS technologies to improve the efficiency
and reliability of vehicle service.
• A new O-D travel time estimation method based on ANN

technique is incorporated that can significantly improve
travel time estimation while being computationally effi-
cient enough to be used in the routing and scheduling pro-
cess for solving large-sized problems.
• A user-friendly graphic interface and a database-oriented

data input-output scheme are used so that data prepara-
tion and use of the program are much easier. OOP diagram
and OLE automation support make the program more ex-
tendible and more easily integrated with other application
programs for real-time operations.

A computational analysis using real application problems
has shown that the program is efficient enough to be used
to provide both on-line and off-line scheduling services. A
practical version has been tested extensively and will soon be
used regularly to schedule more than 3000 daily trips by the
Disabled Adult Transportation System (DATS) of the city of
Edmonton.4

Finally, it should be noted that although the program was
developed specifically for dial-a-ride paratransit system, the
methodology and algorithms can be modified and extended
for use in other applications such as school bus systems and
food and package delivery systems.
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