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Abstract. We initiate a study of on-line ciphers. These are ciphers that can take input
plaintexts of large and varying lengths and will output the ith block of the ciphertext
after having processed only the first i blocks of the plaintext. Such ciphers permit
length-preserving encryption of a data stream with only a single pass through the data.
We provide security definitions for this primitive and study its basic properties. We then
provide attacks on some possible candidates, including CBC with fixed IV. We then
provide two constructions, HCBC1 and HCBC2, based on a given block cipher E and
a family of computationally AXU functions. HCBC1 is proven secure against chosen-
plaintext attacks assuming that E is a PRP secure against chosen-plaintext attacks,
while HCBC2 is proven secure against chosen-ciphertext attacks assuming that E is a
PRP secure against chosen-ciphertext attacks.
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1. Introduction

We begin by saying what we mean by on-line ciphers. We then describe a notion of
security for them, and discuss constructions and analyses. Finally, we discuss usage,
applications, and related work.

1.1. On-line Ciphers

A cipher over domain D is a function F : {0,1}k × D → D such that for each key K

the map F(K, ·) is a length-preserving permutation on D, and possession of K enables
one to both compute and invert F(K, ·). The most popular examples are block ciphers,
where D = {0,1}n for some n called the block length; these are fundamental tools in
cryptographic protocol design. However, one might want to encipher data of large size,
in which case one needs a cipher whose domain D is appropriately large. (A common
choice, which we make, is to set the domain to Dd,n, the set of all strings having a
length that is at most nd for some large number d .) Matyas and Meyer refer to these as
“general” ciphers [21].

In this paper, we are interested in general ciphers that are computable in an on-line
manner. Specifically, cipher F is said to be on-line if the following is true. View the
input plaintext M = M[1] · · ·M[l] to an instance F(K, ·) of the cipher as a sequence
of n-bit blocks, and similarly for the output ciphertext F(K,M) = C[1] · · ·C[l]. Then,
given the key K , for all i, it should be possible to compute output block C[i] after having
seen input blocks M[1] · · ·M[i]. That is, C[i] does not depend on blocks i + 1, . . . , l of
the plaintext.

On-line ciphers permit real-time, length-preserving encryption of a data stream with-
out recourse to buffering, which can be attractive in some practical settings. On-line
ciphers also have other applications that we discuss later in Sects. 1.6, 1.7 and 8.

The intent of this paper is to find efficient, proven secure constructions of on-line
ciphers and to further explore the applications. Let us now present the relevant security
notions and our results.

1.2. A Notion of Security for On-line Ciphers

A commonly accepted notion of security to target for a cipher is that it be a pseudo-
random permutation (PRP), as defined by Luby and Rackoff [19]. Namely, for a cipher
F to be a PRP, it should be computationally infeasible, given an oracle g, to have non-
negligible advantage in distinguishing between the case where g is a random instance
of F and the case where g is a randomly-chosen, length-preserving permutation on the
domain of the cipher. However, if a cipher is on-line, then the ith block of the cipher-
text does not depend on blocks i + 1, i + 2, . . . of the plaintext. This is necessary, since
otherwise it would not be possible to output the ith ciphertext block having seen only
the first i plaintext blocks. Unfortunately, this condition impacts security, since a cipher
with this property certainly cannot be a PRP. An easy distinguishing test is to ask the
given oracle g the two-block queries AB and AC, getting back outputs WX and YZ, re-
spectively, and if W = Y then bet that g is an instance of the cipher. This test has a very
high advantage since the condition being tested fails with high probability for a random
length-preserving permutation.
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For an on-line cipher, then, we must give up on the requirement that it meets the
security property of being a PRP. Instead, we define and target an appropriate alterna-
tive notion of security. This is quite natural; we simply ask that the cipher behave “as
randomly as possible” subject to the constraint of being on-line. We say that a length-
preserving permutation π is on-line if for all i the ith output block of π depends only
on the first i input blocks to π , and let OPermd,n denote the set of all length-preserving
permutations π on domain Dd,n. The rest of the definition follows that of a PRP, with
members of this new set playing the role of the “ideal” objects to which cipher instances
are compared: it should be computationally infeasible, given an oracle g, to have non-
negligible advantage in distinguishing between the case where g is a random instance
of F and the case where g is a random member of OPermd,n. A cipher secure in this
sense is called an on-line-PRP.

The fact that an on-line-PRP meets a notion of security that is relatively weak com-
pared to a PRP might at first lead one to question its value. The point, however, is that it
requires two (or more) passes through the data to compute a PRP, which is prohibitive or
even impossible in some settings. An on-line-PRP offers a good security to cost trade-
off, and in fact the best possible security subject to the constraint of being on-line and
length-preserving.

1.3. Candidates for On-line Ciphers

To the best of our knowledge, the problem of designing on-line ciphers satisfying our
definition of security has not been explicitly addressed before. When one comes to con-
sider this problem, however, it is natural to test first some existing candidate ciphers or
natural constructions from the literature. We consider some of them and present attacks
that are helpful to gather intuition about the kinds of security properties we are seeking.

It is natural to begin with standard modes of operation of a block cipher, such as
CBC. However, CBC is an encryption scheme, not a cipher; each invocation uses a
new random initial vector as a starting point and makes this part of the ciphertext. In
particular, it is not length-preserving. The natural way to modify it to be a cipher is
to fix the initial vector. There are a couple of choices: make it a known public value,
or, hopefully better for security, make it a key that will be part of the secret key of the
cipher. The resulting ciphers are certainly on-line, but they do not meet the notion of
security we have defined. In other words, the CBC cipher with fixed IV, whether public
or private, can be easily distinguished from a random on-line permutation. The attack
works by creating and exploiting input-block collisions. See Sect. 4.

We then consider the Accumulated Block Chaining (ABC) mode proposed by Knud-
sen in [16], which is a generalization of the Infinite Garble Extension mode proposed
by Campbell [11]. It was designed to have “infinite error propagation,” a property that
intuitively seems necessary for a secure on-line cipher but which, as we will see, is not
sufficient. In Sect. 4, we present attacks demonstrating that this is not a secure on-line
cipher.

1.4. The HCBC1 On-line Cipher and Its Security

We provide a construction of a secure on-line cipher based on a given block cipher
E: {0,1}ek ×{0,1}n → {0,1}n and an auxiliary family H : {0,1}hk ×{0,1}n → {0,1}n.
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The key eK‖hK for an instance of the cipher HCBC1(eK‖hK, ·) consists of a key eK
for the block cipher and a key hK specifying a member H(hK, ·) of the family H . The
construction is just like CBC, except that a ciphertext block is first hashed via H(hK, ·)
before being XORed with the next plaintext block. (The initial vector is fixed to 0n.)
We stress that the hash functions map 2n bits to n bits, meaning work on inputs of the
block length, as does the given block cipher. A picture is in Fig. 5, and a full description
of the construction is in Sect. 6. It is easy to see that this cipher is on-line.

We prove that HCBC1 meets the notion of security for an on-line cipher that we
discussed above, assuming that the underlying block cipher E is a PRP and that H

is computationally AXU (Almost XOR Universal). The family H can be instantiated
either via an AXU family [17,24,26] or a block cipher, with the latter again assumed to
be a PRP. With the latter, we obtain a purely block-cipher-based instantiation of HCBC1
that uses two block-cipher operations per block and has a key consisting of two block-
cipher keys.

1.5. The HCBC2 On-line Cipher and Its Security

We provide a second, related construction which is proven to meet a stronger notion of
security, namely it is a PRP under chosen-ciphertext attack. This is the analog, for on-
line-PRPs, of the notion of a PRP secure against chosen-ciphertext attacks. (The latter
was called a strong PRP in [23] and a super-PRP in [19].) The adversary has an oracle
not just for the challenge permutation, but also for its inverse. The assumption we make
in the security result is that the underlying block cipher is a PRP under chosen-ciphertext
attack. Additionally, we need a computationally AXU family of 2n bits to n bits. Instan-
tiating the latter with a CBC MAC, we obtain a purely block-cipher-based instantiation
of HCBC2 that uses three block-cipher operations per block and has a key consisting of
two block-cipher keys. We note that this construction and result were not included in
the preliminary version of this paper appearing in the Crypto 2001 conference [4].

1.6. Usage and Application of On-line Ciphers

There are settings in which the input plaintext is being streamed to a device that has
limited memory for buffering and wants to produce output at the same rate at which it
is getting input. The on-line property becomes desirable in these settings.

The most direct usage of an on-line cipher will be in settings where, additionally,
there is a constraint requiring the length of the ciphertext to equal the length of the
plaintext. (Otherwise, one can use a standard mode of encryption like CBC, since it
has the on-line property. But it is length expanding in the sense that the length of the
ciphertext exceeds that of the plaintext, due to the changing initial vector.) This type
of constraint occurs when one is dealing with fixed packet formats, legacy code, or
disk-sector encryption.

However, an on-line cipher is more generally useful, via the “encode-then-encipher”
paradigm discussed in [8]. This paradigm was presented for ciphers that are PRPs, and
says that enciphering provides semantic security if the message space has enough en-
tropy, and provides integrity if the message space contains enough redundancy. Entropy
and redundancy might be present in the data, as often happens when enciphering struc-
tured data like packets, which have fixed formats and often contain counters. Or, entropy
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and redundancy can be explicitly added, for example by inserting a random value and a
constant string in the message. (This will of course increase the size of the plaintext, so
is only possible when data expansion is permitted.)

Claims similar to those made in [8] remain true even if the cipher is an on-line-PRP
rather than a PRP, but more restrictions on the message space are required. Specifically,
we require not just that entropy be present in a message but that the same high entropy
block be present both at the beginning and at the end of the message. While it is less
likely that data already have such a structure, one can prepend and append a random
number to the message, getting the same properties but at the cost of small data expan-
sion. In Sect. 8 we also discuss two other possibilities of message encodings for use
with on-line ciphers.

In summary, an on-line cipher is a versatile tool that, when appropriately used, is able
to provide some security under severe practical constraints, and yet provide security as
high as that provided by standard primitives when practical constraints are less severe,
motivating its isolation and study as a primitive in its own right.

1.7. Related Work

The problem addressed by our HCBC constructions is that of building a general cipher
from a block cipher. Naor and Reingold [23] consider this problem for the case where
the general cipher is to be a PRP or strong PRP, while we want the general cipher to
be an on-line-PRP or strong-on-line-PRP. The constructions of [23, Sect. 7] are not on-
line; indeed, they cannot be, since they achieve the stronger security notion of a PRP.
Our construction, however, follows that of [23] in using hash functions in combination
with block ciphers.

Similarly, the CMC [14] and EME [15] enciphering modes are PRPs and not on-line.
These constructs all incur latency that grows with the length of the message: the first
bit of the output ciphertext is not produced until the entire message has been processed.
In contrast, on-line ciphers like HCBC1 and HCBC2 have no latency: an output block is
produced as soon as the corresponding input block is processed.

A problem that has received a lot of attention is to take a PRP and produce another
having twice the input block length of the original [19,23]. We are, however, interested
in allowing inputs of varying and very large size, not merely twice the block size.

Following the appearance of the preliminary version of our work [4], there has been
further research on on-line ciphers and encryption schemes [2,3,10,12]. Our HCBC2
cipher was used by [1] to achieve efficiently searchable symmetric encryption. Our work
has been simplified and generalized by Rogaway and Zhang [25] who show how to build
on-line ciphers from tweakable block ciphers [18].

1.8. Versions of This Paper

A preliminary version of this paper appeared in Crypto 2001 [4]. The current version
includes a new construction, namely HCBC2, which did not appear in the preliminary
version. Section 8 has also been updated to include an on-line cipher-based authenti-
cated encryption scheme for variable input-length data. (The scheme in the preliminary
version was only secure for fixed-length data.) The proofs in the current version of our
paper, as opposed to the ones from (the full version of) our Crypto 2001 paper, use code-
based game playing [9]. This simplifies the proofs and also bypasses various conditional
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probability claims made in the prior analyses. (Some of these claims were pointed out
by out to be false by Nandi [22], who also provides his own proofs of security for
HCBC1 and HCBC2.)

2. Definitions

Notation A string is a member of {0,1}∗. If x is a string, then |x| denotes its length.
The empty string is denoted ε. For integer n,d ≥ 1, let Dn = {0,1}n and let Dd,n be
the set of all strings in D∗

n whose length is at most dn bits. We adopt the convention
that D0

n = {ε}. If P ∈ D∗
n , then we let ‖P ‖n be the number of blocks in P , namely

the value i such that P ∈ Di
n. If P ∈ D∗

n , then P [i] denotes its ith block, meaning
P = P [1] · · ·P [‖P ‖n] where P [i] ∈ Dn for all i = 1, . . . ,‖P ‖n. We let P [1..i] de-
note P [1] · · ·P [i] for any 0 ≤ i ≤ ‖P ‖n. If x, y ∈ D∗

n are strings, then we define the
longest common n-prefix of x, y, denoted by LCPn(x, y), as the largest integer i ≥ 0
such that there exists a string z ∈ Di

n which is a prefix of both x and y. For i ≥ 1 and
M1, . . . ,Mi ∈ D∗

n , we also define

LCP∗
n(Mi,M1, . . . ,Mi−1)

(s,p) ← (i,0)

For j = 1, . . . , i − 1 do
l ← LCPn(Mi,Mj )

If l > p then p ← l; s ← j

Return (s,p).

That is, LCP∗
n(Mi,M1, . . . ,Mi−1) returns (s,p) such that the following is true. If

LCPn(Mi,Mj ) = 0 for all 1 ≤ j ≤ i − 1 then s = i and p = 0. Else p = LCPn(Mi,Ms)

and p > LCPn(Mi,Mj ) for all 1 ≤ j < s. A map f : D → R is a permutation if D = R

and f is a bijection (i.e. one-to-one and onto). A map f : D → R is length-preserving
if |f (x)| = |x| for all x ∈ D. We will typically consider functions whose inputs and
outputs are in Dd,n, so that both are viewed as sequences of blocks where each block is
n bits long. We let f (i) denote the function which on input M returns the ith block of
f (M), or ε if |f (M)| < ni. If i, j are integers, then we let [i..j ] denote {i, . . . , j}. For
any i, j ≥ 1, we let

L(i, j) = {
(i′, j ′) : 1 ≤ i′ ≤ i and 1 ≤ j ′ and (i′ < i or j ′ < j)

}
.

This set contains all pairs (i′, j ′) that come before (i, j) in the lexicographic order.

Function Families and Ciphers A family of functions is a map F : Keys(F ) ×
Dom(F ) → Rng(F ) where Keys(F ) is the key space of F ; Dom(F ) is the domain
of F ; and Rng(F ) is the range of F . If Keys(F ) = {0,1}k , then we refer to k as the key-
length. The two-input function F takes a key K ∈ Keys(F ) and an input x ∈ Dom(F )

to return a point F(K,x) ∈ Rng(F ). For each key K ∈ Keys(F ), we define the map
FK : Dom(F ) → Rng(F ) by FK(·) = F(K, ·) for all x ∈ Dom(F ). Thus, F specifies
a collection of maps from Dom(F ) to Rng(F ), each map being associated with a
key. (That is why F is called a family of functions.) We refer to F(K, ·) as an in-
stance of F . The operation of choosing a key at random from the key space is denoted



646 M. Bellare et al.

K
$← Keys(F ). We write f

$← F for the operation K
$← Keys(F ); f ← F(K, ·). That

is, f
$← F denotes the operation of selecting at random a function from the family F .

When f is so selected it is called a random instance of F . Let Randn be the family of all

functions mapping Dn to Dn so that f
$← Randn denotes the operation of selecting at

random a function from Dn to Dn. Similarly, let Permn be the family of all permutations

mapping Dn to Dn so that π
$← Permn denotes the operation of selecting at random a

permutation on Dn. We say that F is a cipher if Dom(F ) = Rng(F ) and each instance
F(K, ·) of F is a length-preserving permutation. A block cipher is a cipher whose do-
main and range equal Dn for some integer n called the block size. (For example, the
AES has block size 128.) If F is a cipher, then F−1 is the inverse cipher, defined by
F−1(K,x) = FK(·)−1(x) for all K ∈ Keys(F ) and x ∈ Dom(F ).

Pseudorandomness of Ciphers A “secure” cipher is one that approximates a family of
random permutations; the “better” the approximation, the more secure the cipher. This
is formalized following [13,19]. Let F : Keys(F ) × Dn → Dn be a family of functions
with domain and range Dn. Let A1 be an adversary (algorithm) that has access to one
oracle and outputs a bit. Let

Advprp-cpa
F (A1) = Pr

[
g

$← F : A
g

1 = 1
] − Pr

[
g

$← Permn : A
g

1 = 1
]
.

Let A2 be an adversary that has access to two oracles and outputs a bit. If F : Keys(F )×
Dn → Dn is a cipher, then we also let

Advprp-cca
F (A2) = Pr

[
g

$← F : A
g,g−1

2 = 1
] − Pr

[
g

$← Permn : A
g,g−1

2 = 1
]
.

These capture the advantage of the adversary in question in the task of distinguishing a
random instance of F from a random permutation on D. In the first case, the adversary
gets to query the challenge instance. In the second, it also gets to query the inverse of
the challenge instance. We note that in measuring time complexity of an adversary, the
time to reply to oracle calls by computation of F(K, ·) and F(K, ·)−1 is included.

Games Our proofs will use code-based game playing [9]. We recall some background
here. A game—look at Fig. 6 for an example—has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. A game G is executed
with an adversary A as follows. First, Initialize executes and its outputs are the inputs
to A. Then, the latter executes, its oracle queries being answered by the corresponding
procedures of G. When A terminates, its output becomes the input to the Finalize pro-
cedure. The output of the latter, denoted GA, is called the output of the game, and we
let “GA ⇒ y” denote the event that this game output takes value y. The boolean flag
bad is assumed initialized to false. Games Gi ,Gj are identical until bad if their code
differs only in statements that follow the setting of bad to true. For example, games
G1,G2 of Fig. 7 are identical until bad. The following is the Fundamental Lemma of
game playing of [9].

Lemma 2.1 [9]. Let Gi ,Gj be identical until bad games, and A an adversary. Then

Pr
[

GA
i ⇒ 1

] − Pr
[

GA
j ⇒ 1

] ≤ Pr
[

Gj sets bad
]
.
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Lemma 2.1 can also be derived as a corollary of [20, Theorem 1]. We will also use
the following:

Lemma 2.2 [9]. If Gi ,Gj are identical until bad then for any A

Pr
[

GA
i sets bad

] = Pr
[

GA
j sets bad

]
.

We often have a figure describe multiple games by indicating next to each procedure
the games to which the procedure belongs. See for example Fig. 2. This compacts the
representation of a game sequence where successive games tend to have a lot of code in
common.

3. On-line Ciphers and Their Basic Properties

We say that a function f : Dd,n → Dd,n is n-on-line if the ith block of the output is de-
termined completely by the first i blocks of the input. A more formal definition follows.
We remind the reader that f (i)(M) returns the ith block of f (M), or ε if |f (M)| < ni.

Definition 3.1. Let n,d ≥ 1 be integers, and let f : Dd,n → Dd,n be a length-
preserving function. We say that f is n-on-line if there exists a function X: Dd,n → Dn

such that for every M ∈ Dd,n and every i ∈ {1, . . . ,‖M‖n} it is the case that

f (i)(M) = X
(
M[1] · · ·M[i]). (1)

A cipher F having domain and range a subset of Dd,n is said to be n-on-line if for every
K ∈ Keys(F ) the function F(K, ·) is n-on-line.

Definition 3.2. Let f be an n-on-line function. Let i ≥ 1. Fix M[1], . . . ,M[i − 1] ∈
Dn. Define the function Π

f

M[1]···M[i−1]:Dn → Dn by

Π
f

M[1]···M[i−1](x) = f (i)
(
M[1] · · ·M[i − 1]x)

for all x ∈ Dn.

Proposition 3.3. If f is an n-on-line permutation, i ≥ 1 and M[1], . . . ,M[i − 1] ∈
Dn, then the map Π

f

M[1]···M[i−1] is a permutation on Dn.

Proof of Proposition 3.3. Let M ′ = M[1] · · ·M[i − 1], and let x, y be distinct n-bit
strings. We claim that

Π
f

M ′(x) �= Π
f

M ′(y). (2)

Since Π
f

M ′ maps Dn to Dn, this implies that it is a permutation. We now proceed to
establish (2).
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Since f is n-on-line, we may fix a function X: Dd,n → Dn meeting the conditions of
Definition 3.1. Let Mx = M ′‖x and My = M ′‖y. Applying f to Mx , we get

f (Mx) = f (1)(Mx)
∥∥f (2)(Mx)

∥∥ · · · ‖f (i−1)(Mx)
∥∥f (i)(Mx)

= X
(
M[1])∥∥X

(
M[1]M[2])∥∥ · · ·∥∥X

(
M[1] · · ·M[i − 1])∥∥X(Mx).

Similarly,

f (My) = X
(
M[1])∥∥X

(
M[1]M[2])∥∥ · · ·∥∥X

(
M[1] · · ·M[i − 1])∥∥X(My).

By assumption x �= y, which implies Mx �= My . But f is a permutation, so it must be
that f (Mx) �= f (My). However, from the above we see that, for every j = 1, . . . , i − 1,
the j th output block of f (Mx) and the j th output block of f (My) are equal. So it must
be that the ith blocks of the outputs are unequal, meaning X(Mx) �= X(My). Finally,
we observe that

X(Mx) = f (i)(M ′x) = Π
f

M ′(x),

X(My) = f (i)(M ′y) = Π
f

M ′(y),

so (2) is established. �

Pseudorandomness of On-line Ciphers Let OPermd,n denote the family of all n-on-
line, length-preserving permutations on Dd,n. A “secure” on-line cipher (namely, an
on-line-PRP or OPRP) is one that closely approximates OPermd,n; the “better” the
approximation, the more “secure” the on-line cipher. This formalization is analogous
to the previously presented formalization of the pseudorandomness of ciphers. Let
F : Keys(F ) × Dd,n → Dd,n be a family of functions with domain and range Dd,n. Let
A1 be an adversary with one oracle and A2 an adversary with two oracles. Let

Advoprp-cpa
F (A1) = Pr

[
g

$← F : A
g

1 = 1
] − Pr

[
g

$← OPermd,n : A
g

1 = 1
]
.

If F is a cipher, then we also let

Advoprp-cca
F (A2) = Pr

[
g

$← F : A
g,g−1

2 = 1
] − Pr

[
g

$← OPermd,n : A
g,g−1

2 = 1
]
.

These capture the advantage of the adversary in question in the task of distinguishing a
random instance of F from a random, length-preserving, n-on-line permutation on Dd,n.
In the first case, the adversary gets to query the challenge instance. In the second, it also
gets to query the inverse of the challenge instance.

Tree-Based Characterization We present a tree-based characterization of n-on-line ci-
phers that is useful to gain intuition and to analyze constructs. A 2n-ary tree of functions
is a 2n-ary tree T each node of which is labeled by a function mapping Dn to Dn. We
label each edge in the tree in a natural way via a string in Dn. Then, each node in the
tree is described by a sequence of edge labels defining the path from the root to the node
in question. The function labeling node x in the tree, where x is a string of length ni
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for some 0 ≤ i ≤ d , is then denoted Tx . A tree defines a function T from Dd,n to Dd,n
as described below. If the nodes in the tree are labeled with permutations, then the tree
also defines an inverse function T −1.

T (M[1] · · ·M[l])
x ← ε

For i = 1, . . . , l do
C[i] ← Tx(M[i])
x ← x‖C[i]

Return C[1] · · ·C[l]

T −1(C[1] · · ·C[l])
x ← ε

For i = 1, . . . , l do
M[i] ← T −1

x (C[i])
x ← x‖C[i]

Return M[1] · · ·M[l].
Here, 1 ≤ l ≤ d . Let G : Keys(G) × Dn → Dn be a function family. (We are most
interested in the case where G is Permn or Randn.) We let Tree(n,G,d) denote the set
of all 2n-ary trees of functions in which each function is an instance of G and the depth
of the tree is d . This set is viewed as equipped with a distribution under which each
node of the tree is assigned a random instance of G, and the assignments to the different
nodes are independent. We claim that a tree-based construction defined above is a valid
characterization of on-line ciphers, as stated in the following proposition.

Proposition 3.4. There is a bijection between Tree(n,Permn, d) and OPermd,n.

Proof of Proposition 3.4. We specify a map Z: OPermn,d → Tree(n,Permn, d) and
then argue that it is a bijection. Given f ∈ OPermn,d , the map Z returns the tree
Tf = Z(f ) ∈ Tree(n,Permn, d) defined as follows: for any l = 0, . . . , d − 1 and any
M[1] · · ·M[l] ∈ Dd,n,C = f (M), node C[1] · · ·C[l] of tree Tf is labeled by the per-

mutation Π
f

M[1]···M[l]. Equivalently, Tf can be defined as the function which, for any
l = 1, . . . , d and any input M[1] · · ·M[l] ∈ Dd,n, works as follows:

Tf (M[1] · · ·M[l])
For i = 1, . . . , l do

C[i] ← Π
f

M[1]···M[i−1](M[i])
Return C[1] · · ·C[l].

Proposition 3.3 implies that the functions labeling the nodes of the tree are indeed in
Permn, therefore Tf ∈ Tree(n,Permn, d). Now we want to show that Z is a bijection.
We need to show that it is injective (i.e. one-to-one) and surjective (i.e. onto). We prove
these in turn.

To show that Z is injective, let f and g be n-on-line permutations such that Z(f ) =
Z(g). We show that f = g. As per the above and the assumption that Tf = Tg , the func-

tion labeling a node C[1] · · ·C[l] in Tf is Π
f

M[1]···M[l] in Tf and Π
g

M[1]···M[l] in Tg . The

assumption Tf = Tg also implies that Π
f

M[1]···M[l] = Π
g

M[1]...M[l] for all l = 0, . . . , d − 1
and all M[1] · · ·M[l] ∈ Dd,n. By Definition 3.2 we have

f (l+1)
(
M[1] · · ·M[l]x) = g(l+1)

(
M[1] · · ·M[l]x)

for all l = 0, . . . , d − 1 and all M[1] · · ·M[l] ∈ Dd,n. Therefore, f = g.
Next we show that Z is surjective. Let T ∈ Tree(n,Permn, d). We need to show that

there exists an f ∈ OPermn,d such that Tf = T . We let f be the function defined by T .
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From the definition, it is clear that it is n-on-line, and since the inverse function T −1 is
also defined, is a permutation. �

Inversion It turns out that the inverse of an on-line permutation is itself on-line:

Proposition 3.5. Let f : Dd,n → Dd,n be an n-on-line permutation, and let g = f −1.
Then g is an n-on-line permutation.

Proof of Proposition 3.5. Since f is by assumption a length-preserving permutation,
so is g. So as per Definition 3.1, it suffices to show that there exists a function Y so that,
for every C ∈ Dd,n and for every i ≤ ‖C‖n, we have

g(i)(C) = Y
(
C[1] · · ·C[i]). (3)

We define Y : Dd,n → Dn as follows for any i = 1, . . . , d and any input C[1] · · ·C[i] ∈
Dd,n:

Y(C[1] · · ·C[i])
M[0] ← ε

For j = 1, . . . , i do
M[j ] ← (Π

f

M[0]···M[j−1])−1(C[j ])
Return M[i].

Here we used Proposition 3.3 and the assumption that f is n-on-line to guarantee that
the inverse of Π

f

M[0]···M[j−1] is well-defined. Now, suppose C ∈ Dd,n and 1 ≤ i ≤ ‖C‖n.
We prove that (3) holds. Letting M = g(C) we have

Y(C) = Y
(
f

(
g(C)

))

= Y
(
f (M)

)

= Y
(
f (1)(M)

∥∥f (2)(M)
∥∥ · · ·∥∥f (i)(M)

∥∥)

= Y
(
Πf

ε

(
M[1])∥∥Π

f

M[1]
(
M[2])∥∥ · · ·∥∥Π

f

M[1]···M[i−1]
(
M[i])∥∥)

= M[i]
= g(i)(C),

as desired. The first line above is true because g = f −1. The second line is true because
M = g(C). The third line is by definition of f (j) for j = 1, . . . , i. The fourth line is by
Proposition 3.3. The fifth line follows by applying the definition of Y . The sixth line is
because M = g(C). �

We note that the proof does not tell us anything about the computational complexity
of function f −1, meaning it could be the case that f is efficiently computable, but the
f −1 given by Proposition 3.5 is not. However, whenever we design a cipher F , we will
make sure that both F(K, ·) and F−1(K, ·) are efficiently computable given K , and will
explicitly specify F−1 in order to make this clear.
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proc Initialize
i ← 0

proc Encipher(M)
i ← i + 1; Mi ← M; li ← ‖Mi‖n

(s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

For j = 1, . . . , p do Ci[j ] ← Cs[j ]
For j = p + 1, . . . , li do

ΠMi [1..j−1](Mi[j ]) $← Rng(ΠMi [1...j−1])
Ci[j ] ← ΠMi [1...j−1](Mi[j ])

Return Ci ← Ci[1..li]
proc Decipher(C)
i ← i + 1; Ci ← C; li ← ‖Ci‖n

(s,p) ← LCP∗
n(Ci,C1, . . . ,Ci−1)

For j = 1, . . . , p do Mi[j ] ← Ms[j ]
For j = p + 1, . . . , li do

Π−1
Mi [1...j−1](Ci[j ]) $← Dom(ΠMi [1...j−1])

Mi[j ] ← Π−1
Mi [1...j−1](Ci[j ])

Return Mi ← Mi[1 . . . li]
proc Finalize(d)
Return d

proc Initialize

K
$← Keys(F )

proc Encipher(M)
Return FK(M)

proc Decipher(C)

Return F−1
K (C)

proc Finalize(d)
Return d

Fig. 1. Games for defining security of on-line ciphers. On the left are the procedures defining games
OPRPCPAPerm and OPRPCCAPerm , where the Decipher procedure is included only in the latter. On the
right are the procedures defining games OPRPCPAF and OPRPCCAF , where the Decipher procedure is
included only in the latter.

Game-Based Formulations For our proofs, it is helpful to re-cast the advantages via
the games shown in Fig. 1. Games OPRPCPAPerm and OPRPCPAF provide the ad-
versary with an Encipher oracle while games OPRPCCAPerm and OPRPCCAF addi-
tionally give it a Decipher oracle, the latter in the case where F is a cipher. Games
OPRPCPAPerm and OPRPCCAPerm lazily pick a permutation ΠM[1..j ] for the tree node
with label M[1..j ]. We have

Advoprp-cpa
F (A) = Pr

[
OPRPCPAA

F ⇒ 1
] − Pr

[
OPRPCPAA

Perm ⇒ 1
]
,

Advoprp-cca
F (A) = Pr

[
OPRPCCAA

F ⇒ 1
] − Pr

[
OPRPCCAA

Perm ⇒ 1
]
.

In the games, the domain Dom(ΠM[1..j ]) and range Rng(ΠM[1..j ]) of ΠM[1..j ] start out
empty, and an assignment ΠM[1..j ](x) ← y adds x to the first set and y to the second.
We are denoting Dn \ Dom(ΠM[1..j ]) by Dom(ΠM[1..j ]) and Dn \ Rng(ΠM[1..j ]) by
Rng(ΠM[1..j ]).
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Switching Lemma It will be useful in our proofs to consider games which reply to
queries with random block values unless constrained otherwise by the prefix condition.
That is, consider games OPRFCPAPerm and OPRFCCAPerm of Fig. 1. In analogy with
the PRP/PRF Switching Lemma of [9], we have the following lemma.

Lemma 3.6 (OPRP/OPRF Switching Lemma). Let A be an adversary making oracle
queries totalling at most μ blocks. Then,

∣∣Pr
[

OPRPCPAA
Perm ⇒ 1

] − Pr
[

OPRFCPAA
Rand ⇒ 1

]∣∣ ≤ μ(μ − 1)

2n+1
and (4)

∣∣Pr
[

OPRPCCAA
Perm ⇒ 1

] − Pr
[

OPRFCCAA
Rand ⇒ 1

]∣∣ ≤ μ(μ − 1)

2n+1
. (5)

Note in the second case we mean the total number of blocks across queries to both
oracles together is at most μ.

Proof of Lemma 3.6. We have
∣∣Pr

[
OPRPCPAA

Perm ⇒ 1
] − Pr

[
OPRFCPAA

Rand ⇒ 1
]∣∣

= ∣∣Pr
[

GA
cpa ⇒ 1

] − Pr
[

OPRFCPAA
Rand ⇒ 1

]∣∣

≤ Pr
[

OPRFCPAA
Rand sets bad

]
,

the last line by Lemmas 2.1 and 2.2. However, the last probability is certainly at most
μ(μ − 1)/2n+1. The analysis for the CCA case is similar and is omitted. �

We conjecture that the bounds in (4) and (5) can be improved to q(q −1)/2n+1 where
q is an upper bound on the number of oracle queries made by A. (In the CCA case,
we mean the total number of queries across both oracles.) That is, the bound does not
depend on the number of blocks but only on the number of queries. We do not attempt
to prove this since it does not (much) affect our results. We leave settling this as an open
question.

4. Analysis of Some Candidate Ciphers

We consider several candidates for on-line ciphers. First, we consider one based on the
basic CBC mode. Then, we consider the Accumulated Block Chaining (ABC) proposed
by Knudsen in [16], which is a generalization of the Infinite Garble Extension mode
proposed by Campbell [11]. In this section, we let E: {0,1}ek × Dn → Dn be a given
block cipher with key size ek and block size n.

4.1. CBC as an On-line Cipher

In CBC encryption based on E, one usually uses a new, random IV for every message.
This does not yield a cipher, let alone an on-line one. To get an on-line cipher, we fix the
IV. We can, however, make it secret; this can only increase security. In more detail, the
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proc Initialize Games OPRFCPARand,OPRFCCARand , Gcpa , Gcca

i ← 0

proc Encipher(M) Games OPRFCPARand,OPRFCCARand, Gcpa , Gcca

i ← i + 1; Mi ← M; li ← ‖Mi‖n

(s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

For j = 1, . . . , p do Ci[j ] ← Cs[j ]
For j = p + 1, . . . , li do

y
$← Dn

If y ∈ Rng(ΠMi [1..j−1]) then bad ← true ; y
$← Rng(ΠMi [1..j−1])

ΠMi [1..j−1](Mi[j ]) ← y; Ci[j ] ← ΠMi [1..j−1](Mi[j ])
Return Ci ← Ci[1..li]

proc Decipher(C) Games OPRFCCARand, Gcca

i ← i + 1; Ci ← C; li ← ‖Ci‖n

(s,p) ← LCP∗
n(Ci,C1, . . . ,Ci−1)

For j = 1, . . . , p do Mi[j ] ← Ms[j ]
For j = p + 1, . . . , li do

x
$← Dn

If x ∈ Dom(ΠMi [1..j−1]) then bad ← true ; x
$← Dom(ΠMi [1..j−1])

Π−1
Mi [1..j−1](Ci[j ]) ← x; Mi[j ] ← Π−1

Mi [1..j−1](Ci[j ])
Return Mi ← Mi[1..li]

proc Finalize(d) Games OPRFCPARand,OPRFCCARand , Gcpa , Gcca

Return d

Fig. 2. Games for proof of Lemma 3.6. Games Gcpa and Gcca include the boxed statements while the other
games do not.

CBC cipher associated to E, denoted OCBC, has key space {0,1}ek+n. For M,C ∈ Dd,n,
eK ∈ {0,1}ek and C[0] ∈ Dn, we define

OCBC(eK‖C[0],M)

For i = 1, . . . , l do
C[i] ← E(eK,M[i]⊕C[i − 1])

Return C[1..l]

OCBC−1(eK‖C[0],C)

For i = 1, . . . , l do
M[i] ← E−1(eK,C[i])⊕C[i − 1]

Return M[1..l].
Here, C[0] is the IV. The key is the pair eK‖C[0], consisting of a key eK for the block
cipher, and the IV. It is easy to check that the above cipher is on-line. For clarity, we
have also shown the inverse cipher. We now present the attack. The adversary A shown
in Fig. 3 gets an oracle g where g is either an instance of OCBC or an instance of
OPermd,n. The idea of the attack is to gather some input-output pairs for the cipher.
Then we use these values to construct a new sequence of input blocks so that one of the
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Adversary Ag

Let M[2] be any n-bit string
Let M1 = 0nM[2] and let M2 = 1nM[2]
Let C1[1]C1[2] ← g(M1) and let C2[1]C2[2] ← g(M2)

Let M3[2] = M[2]⊕C1[1]⊕C2[1] and let M3 = 1nM3[2]
Let C3[1]C3[2] ← g(M3)

If C3[2] = C1[2] then return 1 else return 0

Fig. 3. Attack on the CBC-based on-line cipher.

input blocks to E collides with one of the previous input blocks to E. This enables us to
predict an output block of the cipher. If our prediction is correct, then we know that the
oracle is an instance of OCBC with overwhelming probability. Specifically, we claim
that

Advoprp-cpa
OCBC (A) ≥ 1 − 2−n. (6)

We now justify (6). We claim that

Pr
[
g

$← OCBC : Ag = 1
] = 1 and Pr

[
g

$← OPermn,d : Ag = 1
] ≤ 2 · 2−n,

from which (6) from Sect. 4 follows. We justify these two claims as follows. First,
suppose g is an instance of OCBC. Since the first block of M3 is M2[1], we have

C3[2] = E
(
eK, C2[1] ⊕ M3[2])

= E
(
eK, C2[1] ⊕ M[2] ⊕ C1[1] ⊕ C2[1])

= E
(
eK, M[2] ⊕ C1[1])

= C1[2].
This means that adversary A will always return 1 when g is an instance of OCBC,
and the first equation is true. Now, consider the case where g is a random instance
of OPermn,d . Here, there are two possible ways in which C3[2] = C1[2] holds. First,
M3[2] can happen to be the same as M[2]. This happens with the probability at most
2−n when g is a random instance of OPermn,d . Second, if M3[2] �= M[2], then it can
happen that C3[2] = C1[2] with the probability at most 2−n when g is a random instance
of OPermn,d . Therefore, the adversary Ag outputs 1 with the probability at most 2 ·2−n,
and this justifies the second equation.

Since A made only three oracle queries, this shows that the CBC mode with a fixed
IV is not a secure on-line cipher.

4.2. ABC as an On-line Cipher

Knudsen in [16] proposes the Accumulated Block Chaining (ABC) mode of operation
for block ciphers. This is an on-line cipher that is a natural starting point in the problem
of finding a secure on-line cipher because it has the property of “infinite error propaga-
tion.” We formalize and analyze ABC with regard to meeting our security requirements.
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Description The mode is parameterized by initial values P [0],C[0] ∈ Dn and also
by a public function h: Dn → Dn. (Instantiations for h suggested in [16] include the
identity function, the constant function always returning 0n, and the function which
rotates its input by one bit.) We are interested in the security of the mode across various
settings and choices of these parameters. (In particular, we want to consider the case
where the initial values are public and also the case where they are secret, and see how
the choice of h impacts security in either case.) Accordingly, it is convenient to first
introduce auxiliary functions EABC and DABC. For M,C ∈ Dd,n and eK ∈ {0,1}k , we
define

EABC(eK,P [0],C[0],M)

For i = 1, . . . , l do
P [i] ← M[i]⊕h(P [i − 1])
C[i] ← E(eK,P [i]⊕C[i − 1])

⊕P [i − 1]
Return C[1..l]

DABC(eK,P [0],C[0],C)

For i = 1, . . . , l do
P [i] ← E−1(eK,C[i]⊕P [i − 1])

⊕C[i − 1]
M[i] ← P [i]⊕h(P [i − 1])

Return M[1..l].
We now define two versions of the ABC cipher. The first uses public initial values,
while the second uses secret initial values. The ABC cipher with public initial values
associated to E, denoted PABC, has key space {0,1}k and domain and range Dd,n. We
fix values P [0],C[0] ∈ Dn which are known to all parties including the adversary. We
then define the cipher and the inverse cipher by

PABC(eK,M)

Return EABC(eK,P [0],C[0],M)

PABC−1(eK,C)

Return DABC(eK,P [0],C[0],C).

The ABC cipher with secret initial values associated to E, denoted SABC, has key space
{0,1}k+2n and domain and range Dd,n. The key is eK‖P [0]‖C[0]. We then define the
cipher and the inverse cipher by

SABC(eK‖P [0]‖C[0],M)

Return EABC(eK,P [0],C[0],M)

SABC−1(eK‖P [0]‖C[0],C)

Return DABC(eK,P [0],C[0],C).

It is easy to check that both the above ciphers are n-on-line.

Security of PABC We show that the ABC cipher with public initial values is not a se-
cure OPRP for all choices of the function h. The attack is shown in Fig. 4. The adversary
A gets an oracle g where g is either an instance of PABC or an instance of OPermd,n.
The adversary can mount this attack because the function h as well as the value P [0]
are public. We claim that

Advoprp-cpa
PABC (A) ≥ 1 − 2 · 2−n. (7)

Since A made only three oracle queries, this means that PABC is not a secure on-line
cipher.

We now analyze the attack against PABC, meaning we justify (7). We claim that

Pr
[
g

$← PABC : Ag = 1
] = 1 and Pr

[
g

$← OPermn,d : Ag = 1
] ≤ 3 · 2−n,
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Adversary Ag

Let M[2] be any n-bit string
Let M1 = 0nM[2] and let M2 = 1nM[2]
Let C1[1] · · ·C1[l] ← g(M1) and let C2[1]C2[2] ← g(M2)

Let M3[2] = M[2] ⊕ C1[1] ⊕ C2[1] ⊕ h(0n⊕h(P [0])) ⊕ h(1n⊕h(P [0]))
Let M3 = 1nM3[2]
Let C3[1]C3[2] ← g(M3)

If C3[2] = C1[2]⊕1n, then return 1 else return 0

Fig. 4. Attack on the ABC-based on-line cipher.

from which (7) follows. We justify these two claims below. First, suppose g is an in-
stance of PABC, namely g(·) = PABC(eK, ·). Since the first block of M3 is 1n, we have

C3[2] = E
(
eK, P3[2] ⊕ C3[1]) ⊕ P3[1]

= E
(
eK, M3[2] ⊕ h

(
P3[1]) ⊕ C3[1]) ⊕ P3[1]

= E
(
eK, M3[2] ⊕ h

(
P2[1]) ⊕ C2[1]) ⊕ P2[1]

= E
(
eK, M3[2] ⊕ h

(
1n⊕h

(
P [0])) ⊕ C2[1]) ⊕ P2[1]

= E
(
eK, M[2] ⊕ C1[1] ⊕ h

(
0n⊕h

(
P [0]))) ⊕ P2[1]

= E
(
eK, M[2] ⊕ C1[1] ⊕ h

(
P1[1])) ⊕ P2[1]

= E
(
eK, P1[2] ⊕ C1[1]) ⊕ P2[1]

= (
C1[2]⊕P1[1]) ⊕ P2[1]

= C1[2] ⊕ (
0n⊕h

(
P [0])) ⊕ (

1n⊕h
(
P [0]))

= C1[2] ⊕ 1n.

This means that adversary A will always return 1 when g is an instance of PABC. Now,
consider the case where g is an instance of OPermn,d . We claim that this event has low
probability, namely 2 · 2−n. The reason is similar to that in Sect. 4.1. In particular, there
are two possible ways in which C3[2] = C1[2] ⊕ 1n holds. First, it may be the case
that M3[2] = M[2]. This means that the attack is invalid since M3 = M2. Second, if
M3[2] �= M[2], then it may be the case that C3[2] = C1[2] ⊕ 1n. Each of these events
happens with probability at most 2−n when g is a random instance of OPermn,d . Upper-
bounding the aggregate probability, we obtain 2 · 2−n and (7) follows.

Security of SABC We show that the ABC cipher with secret initial values is not a
secure OPRP for a class of functions h that includes the ones suggested in [16]. Specif-
ically, let us say that a function h: Dn → Dn is linear if h(x⊕y) = h(x)⊕h(y) for all
x, y ∈ Dn. (Notice that the identity function, the constant function always returning 0n,
and the function which rotates its input by one bit are all linear.) For any linear hash
function h, we simply note that the above attack applies. This is because the fourth line
of the adversary’s code can be replaced by

Let M3[2] = M[2] ⊕ C1[1] ⊕ C2[1] ⊕ h
(
0n

) ⊕ h
(
1n

)
.
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The adversary can compute M3[2] because h is public. The fact that h is linear means
that the value M3[2] is the same as before, so the attack has the same success probability.

Avoiding the Attacks There are several ways one might try to avoid such attacks while
keeping intact the basic structure of the ABC mode. One could use secret initial values
and a more complex public function h that in particular is non-linear. Another sug-
gestion is to allow the function h to depend on a secret key. A concrete suggestion
in this regard is to choose some family of functions H : {0,1}2n × Dn → Dn that is
pairwise independent. Then, the key for the ABC cipher is eK‖hK where eK ∈ {0,1}k
and hK ∈ {0,1}2n, and the construction replaces h(·) by H(hK, ·). We do not attempt
to analyze these, since we propose a somewhat simpler construct that we prove to be
secure.

5. (Computational) AXU Families

Our constructions utilize a block cipher and an auxiliary family H that meets a compu-
tational relaxation of the notion of AXU (Almost XOR Universal) of Krawczyk [17].
To detail this, let us begin by recalling the measure of [17]:

Definition 5.1. Let m,n,hk ≥ 1 be integers, and let H : {0,1}hk × {0,1}m → Dn be a
family of functions. Let

Advaxu
H = max

x1,x2,y

{
Pr[K $← {0,1}hk : H(K,x1) ⊕ H(K,x2) = y]}

where the maximum is over all distinct x1, x2 ∈ {0,1}m and all y ∈ Dn.

The “advantage function”-based notation we are introducing is novel: previous works
used instead the term “ε-AXU” family to refer to a family H that, in our notation, has
Advaxu

H ≤ ε. We find the advantage function-based notation more convenient, and more
consistent with the rest of our security definitions. We now define an adversary-based
measure that will underly a computational relaxation of the above:

Definition 5.2. Let m,n,hk ≥ 1 be integers, and let H : {0,1}hk × {0,1}m → Dn be
a family of functions. Let X be an adversary that takes no inputs and outputs a set
S ⊆ {0,1}m × Dn. Consider the experiment in which we first run X to get S and then
pick K at random from {0,1}hk. Let Advaxu

H (X) denote the probability that there exists
(x1, y1), (x2, y2) ∈ S such that H(K,x1)⊕y1 = H(K,x2)⊕y2 and x1 �= x2, where the
probability is over the coins of X and the choice of K .

We (informally) say that H is cAXU if Advaxu
H (X) is “small” for all X of “practical”

resources. (Resources means running time and size of the output set S.) The following
shows that any AXU family is cAXU:

Proposition 5.3. Let m,n,hk ≥ 1 be integers, and let H : {0,1}hk × {0,1}m → Dn

be a family of functions. Let X be an adversary that takes no inputs and returns a set
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S ⊆ {0,1}m × Dn of size at most s. Then,

Advaxu
H (X) ≤ s(s − 1)

2
· Advaxu

H .

Proof of Proposition 5.3. Fix a sequence of coins that maximize the success proba-
bility of X, and let S be the set it outputs with these coins. For each (x1, y1), (x2, y2) ∈ S

with x1 �= x2, we have

Pr
[
K

$← {0,1}hk : H(K,x1)⊕y1 = H(K,x2)⊕y2
] ≤ Advaxu

H .

The lemma follows from the union bound. �

However, there are cAXU families that are not necessarily AXU. For example, any
PRF is cAXU. To detail this, we let

Advprf
H (B) = Pr

[
g

$← H : Bg = 1
] − Pr

[
g

$← Randm,n : Bg = 1
]

where Randm,n is the family of all functions mapping {0,1}m to Dn.

Proposition 5.4. Let m,n,hk ≥ 1 be integers, and let H : {0,1}hk × {0,1}m → Dn be
a family of functions. Let X be an adversary of running time at most t that takes no
inputs and outputs a set of size at most s. Then, there is an adversary B such that

Advaxu
H (X) ≤ Advprf

H (B) + s(s − 1)

2n+1
.

Furthermore, B makes at most s oracle queries and has running time at most t +
O((m + n)s log s).

The proof is trivial and is omitted. Now, from the above we have multiple ways to
obtain cAXU families suitable for our constructs. First, by Proposition 5.3, any AXU
family suffices. Refer to [17,24,26] for constructions and performance comparisons for
such families. These constructs are all unconditionally secure. On the other hand, by
Proposition 5.4, any PRF suffices. In particular, if m = n, a block cipher suffices, and if
m = 2n, a 2-fold CBC MAC suffices [6]. These constructs are conditionally secure, the
condition being that the block cipher is a PRP.

6. The HCBC1 Cipher

In this section, we provide a construction of an on-line cipher that we call HCBC1. We
prove it is secure against chosen-plaintext attacks. This construction is similar to the
CBC mode of encryption. The difference is that each output block passes through a
keyed hash function before getting exclusive-or-ed with the next input block and there
is no IV. The key of the hash function is kept secret.
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Fig. 5. The HCBC1 cipher.

Construction 6.1. Let n,d ≥ 1 be integers, and let E: {0,1}ek ×Dn → Dn be a block
cipher. Let H : {0,1}hk ×Dn → Dn be a family of hash functions. We associate to them
a cipher HCBC1: {0,1}ek+hk × Dd,n → Dd,n. A key for it is a pair eK‖hK where eK is
a key for E and hK is a key for H . The cipher and its inverse are defined as follows for
M,C ∈ Dd,n. Figure 5 illustrates the cipher.

HCBC1(eK‖hK,M)

C[0] ← 0n; l ← ‖M‖n

For j = 1, . . . , l do
P [j ] ← H(hK,C[j − 1]) ⊕ M[j ]
C[j ] ← E(eK,P [j ])

Return C[1..l]

HCBC1−1(eK‖hK,C)

C[0] ← 0n; l ← ‖C‖n

For j = 1, . . . , l do
P [j ] ← E−1(eK,C[j ])
M[j ] ← H(hK,C[j − 1]) ⊕ P [j ]

Return M[1..l].

The following theorem implies that if E is a PRP secure against chosen-plaintext
attacks and H is a cAXU family of hash functions, then HCBC1 is an OPRP secure
against chosen-plaintext attacks.

Theorem 6.2. Let E: {0,1}ek × Dn → Dn be a block cipher, and let H : {0,1}hk ×
Dn → Dn be a family of hash functions. Let HCBC1 be the n-on-line cipher associated
to them as per Construction 6.1. Then, for any adversary A against HCBC1 running in
time t and making oracle queries totalling at most μ blocks, there is an adversary B

against E and an adversary X against H such that

Advoprp-cpa
HCBC1 (A) ≤ Advprp-cpa

E (B) + 3μ(μ − 1)

2n+1
+ Advaxu

H (X).

Furthermore, B runs in time t +O(nμ+hk) and makes at most μ oracle queries, while
X runs in time t + O(nμ) and outputs a set of size at most μ.

By Proposition 5.4, we can simply let H = E to obtain a purely block-cipher-based
instantiation of HCBC1 that has cost two block-cipher computations per block and uses
two block-cipher keys. Proposition 5.3 says that other (possibly more efficient) instan-
tiations are possible by setting H to an AXU family.
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proc Initialize Game G0

000 i ← 0; hK
$← {0,1}hk

001 eK
$← {0,1}ek; π ← E(eK, ·)

proc Initialize Game G1

100 i ← 0; hK
$← {0,1}hk

101 π
$← Permn

proc Encipher(M) Games G0,G1

010 i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci[0] ← 0n

011 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

012 For j = 1, . . . , p do Ci[j ] ← Cs[j ]
013 For j = p + 1, . . . , li do
014 Pi[j ] ← H(hK,Ci[j − 1])⊕Mi[j ]
015 Ci[j ] ← π(Pi[j ])
016 Return Ci ← Ci[1..li]
proc Finalize(d) Games G0,G1

020 Return d

Fig. 6. Games G0,G1 for proof of Theorem 6.2. The variable i counts the number of queries. Game G0
is to imitate OPRPCPAHCBC1 (hence the keys are chosen as shown on lines 000 and 001, and Encipher is
as prescribed by Construction 6.1). In contrast, Game G1 uses a random permutation (hence line 101). Line
011 finds the sth query that has the longest common prefix with the current query. The length of the common
prefix thus found is named p. The outputs for all input blocks up to and including p are the same as previous
corresponding outputs for the sth query (hence line 012). The outputs for the rest of the blocks are computed
anew (hence lines 013–015).

Proof of Theorem 6.2. The proof is based on the sequence G0–G6 of games in Figs. 6,
7, and 8. Let us begin with some intuition.

Say A has queried M1, . . . ,Mi−1 (i ≥ 1) and received back C1, . . . ,Ci−1. Say it now
queries Mi . Let (s,p) = LCP∗

n(Mi,M1, . . . ,Mi−1). Then, blocks 1, . . . , p of Ci are
determined via Ci[1..p] = Cs[1..p]. What about Ci[j ] for j ≥ p +1? We have Ci[j ] =
E(eK,Pi[j ]) where Pi[j ] = H(hK,Ci[j − 1])⊕Mi[j ]. Intuitively, the cxu property
tells us that Pi[j ] �= Pi′ [j ′] for all (i′, j ′) ∈ L(i, j)—refer to Sect. 2 for the definition of
the latter—where Pi′ [j ′] = H(hK,Ci′ [j ′ − 1])⊕Mi′ [j ′]. Since E is a PRP, this means
that E(eK,Pi[j ]) looks random.

There are a couple of difficulties. One is that the cxu property as per Definition 5.2
refers to a setting where adversary X chooses its set S before hK is chosen. Yet, above,
A is getting information about hK via responses to its queries. We address this by mov-
ing to a game in which blocks in replies to queries are random unless prefix-constrained,
and in particular independent of hK. The second difficulty is that the cxu property is
only violated by the collision H(hK,Ci[j − 1])⊕Mi[j ] = H(hK,Ci′ [j ′ − 1])⊕Mi′ [j ′]
if Ci[j − 1] �= Ci′ [j ′ − 1]. We will use the randomness of the blocks to show that the
last condition is usually true.

Let us now provide the full proof. The Initialize procedure of Game G0 picks a key
hK for the hash function and a key eK to define the instance π of the block cipher E.
The Encipher procedure implements the HCBC1 function of Construction 6.1. Game
G1 is identical to G0 except that π is a random permutation.
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proc Initialize Game G2 , G3

200 i ← 0; hK
$← {0,1}hk

proc Encipher(M) Game G2 , G3

210 i ← i + 1; Mi ← M

211 li ← ‖Mi‖n; Ci [0] ← 0n

212 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

213 For j = 1, . . . , p do Ci [j ] ← Cs [j ]
214 For j = p + 1, . . . , li do
215 Pi [j ] ← H(hK,Ci [j − 1])⊕Mi [j ]
216 If Pi [j ] �∈ Dom(π) then

217 y
$← Dn

218 If y ∈ Rng(π) then

219 bad ← true; y
$← Rng(π)

220 π(Pi [j ]) ← y

221 Ci [j ] ← π(Pi [j ])
222 Return Ci ← Ci [1..li ]

proc Finalize(d) Game G2 , G3

230 Return d

proc Initialize Games G4 , G5

400 i ← 0; hK
$← {0,1}hk

proc Encipher(M) Games G4 , G5

410 i ← i + 1; Mi ← M

411 li ← ‖Mi‖n; Ci [0] ← 0n

412 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

413 For j = 1, . . . , p do Ci [j ] ← Cs [j ]
414 For j = p + 1, . . . , li do
415 Pi [j ] ← H(hK,Ci [j − 1])⊕Mi [j ]
416 Ci [j ] $← Dn

417 B(i, j) ← { (i′, j ′) ∈ L(i, j) : Pi [j ] = Pi′ [j ′] }
418 If B(i, j) �= ∅ then
419 bad ← true

420 (i′, j ′) $← B(i, j); Ci [j ] ← Ci′ [j ′]
421 Return Ci ← Ci [1..li ]

proc Finalize(d) Games G4 , G5

430 Return d

Fig. 7. Games G2,G3,G4, and G5 for proof of Theorem 6.2. Game G2 and G4 include the boxed code
while G3 and G5 do not. Game G2 is like G1 except that it samples π lazily in lines 216–220. Game G3 is
like G2 except that in the former π is a random function rather than a permutation (hence the omission of
the boxed code). Game G4 is a rewrite of G3 so that the outputs of π that need to be computed anew are
optimistically picked at random in line 416 then corrected later in line 420 if necessary. Line 417 identifies
the points that need correction. Game G5 omits the corrections.

We note that

Pr
[

OPRPCPAA
HCBC1 ⇒ 1

] = Pr
[

GA
0 ⇒ 1

]

= Pr
[

GA
1 ⇒ 1

] + (
Pr

[
GA

0 ⇒ 1
] − Pr

[
GA

1 ⇒ 1
])

. (8)

It is easy to define an adversary B so that

Pr
[

GA
0 ⇒ 1

] − Pr
[

GA
1 ⇒ 1

] ≤ Advprp-cpa
E (B). (9)

Namely, Bπ initializes i to 0 and picks hK at random from {0,1}hk. It then runs A,
answering its oracle queries with the code of the Encipher procedure of G0 but with
the role of π played by its own oracle. B returns what A returns. The running time of
B is that of A plus the time to compute LCP∗

n for each oracle invocation and the time to
pick hK at random. Implementing LCP∗

n with a tree data structure, rather than directly as
described in Sect. 2, allows B to answer the ith Encipher query in time O(nli). Thus,
B’s total running time is that of A plus O(nμ + hk).

Game G2 is the same as G1 except that it samples π lazily. The convention is that
Rng(π) and Dom(π) are initially empty. Rng(π) always denotes Dn \ Rng(π), and
an assignment π(x) ← y adds y to Rng(π) and x to Dom(π). Game G3 is identical
to G2 except that in the former π is a (lazily sampled) random function rather than
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proc Initialize Game G6

600 i ← 0; C0[0] ← 0n

proc Encipher(M) Game G6

610 i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci[0] ← 0n; a(i,0) ← 0
611 (s,p) ← LCP∗

n(Mi,M1, . . . ,Mi−1)

612 For j = 1, . . . , p do Ci[j ] ← Cs[j ]; a(i, j) ← a(s, j)

613 For j = p + 1, . . . , li do Ci[j ] $← Dn; a(i, j) ← i

614 Return Ci ← Ci[1..li]
proc Finalize(d) Game G6

620 hK
$← {0,1}hk

621 For i = 1, . . . , q do
622 (s,p) ← LCP∗

n(Mi,M1, . . . ,Mi−1)

623 For j = p + 1, . . . , li do
624 Pi[j ] ← H(hK,Ci[j − 1])⊕Mi[j ]
625 B(i, j) ← { (i′, j ′) ∈ L(i, j) : Pi[j ] = Pi′ [j ′] }
626 If B(i, j) �= ∅ then

627 (i′, j ′) $← B(i, j)

628 If Ci[j − 1] �= Ci′ [j ′ − 1] then bad ← true
629 If Ci[j − 1] = Ci′ [j ′ − 1] then bad ← true
630 Return d

Fig. 8. Game G6 for proof of Theorem 6.2. Here, q denotes the number of oracle queries made by A, with
the wlog assumption that it always makes exactly q queries. An ancestor function a is defined in lines 610,
612, and 613 for later case analysis. Everything that can be delayed to Finalize is (hence lines 620–629).
Finally, lines 627–629 together are equivalent to line 419 in Fig. 7.

permutation. Now, we have

Pr
[

GA
1 ⇒ 1

] = Pr
[

GA
2 ⇒ 1

]

= Pr
[

GA
3 ⇒ 1

] + (
Pr

[
GA

2 ⇒ 1
] − Pr

[
GA

3 ⇒ 1
])

≤ Pr
[

GA
3 ⇒ 1

] + Pr
[

GA
3 sets bad

]
, (10)

the last by Lemma 2.1. However,

Pr
[

GA
3 sets bad

] ≤ μ(μ − 1)

2n+1
. (11)

Game G4 writes the Encipher procedure of G3 in a different but equivalent way: it
optimistically picks Ci[j ] at random and then, if π(Pi[j ]) was defined, appropriately
corrects at line 420. Note that π is implicit, not appearing in the code, and choosing
(i′, j ′) at random from B(i, j) is only for notational convenience; any member of this
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set would do. Now,

Pr
[

GA
3 ⇒ 1

] = Pr
[

GA
4 ⇒ 1

]

= Pr
[

GA
5 ⇒ 1

] + (
Pr

[
GA

4 ⇒ 1
] − Pr

[
GA

5 ⇒ 1
])

≤ Pr
[

GA
5 ⇒ 1

] + Pr
[

GA
5 sets bad

]
, (12)

the last by Lemma 2.1. Next, we see that

Pr
[

GA
5 ⇒ 1

]

= Pr
[

OPRFCPAA
Rand ⇒ 1

]

= Pr
[

OPRPCPAA
Perm ⇒ 1

]

+ (
Pr

[
OPRFCPAA

Rand ⇒ 1
] − Pr

[
OPRPCPAA

Perm ⇒ 1
])

≤ Pr
[

OPRPCPAA
Perm ⇒ 1

] + μ(μ − 1)

2n+1

where the last line holds due to Lemma 3.6. Putting (8), (9), (10), (11), and (12) together,
we have

Advoprp-cpa
HCBC1 (A) = Pr

[
OPRPCPAA

HCBC1 ⇒ 1
] − Pr

[
OPRPCPAA

Perm ⇒ 1
]

≤ Advprp-cpa
E (B) + μ(μ − 1)

2n
+ Pr

[
GA

5 sets bad
]
. (13)

It remains to upper bound the probability that the execution of G5 with A sets bad.
The Encipher procedure of G5 sets bad but does not use it, so G6 delays its setting to
Finalize, also breaking line 419 into the equivalent lines 628 and 629. It additionally
introduces the ancestor function a, defining it at lines 610, 612, and 613, but this does
not affect the setting of bad, so

Pr
[

GA
5 sets bad

] = Pr
[

GA
6 sets bad

]
. (14)

Consider the cxu-adversary X of Fig. 9. Then,

Pr[G6 sets bad at line 628] ≤ Advaxu
H (X), (15)

and X runs in time that of A plus O(nμ) and outputs a set of size at most μ. We now
claim that

Pr[G6 sets bad at line 629] ≤ μ(μ − 1)

2n+1
. (16)

To justify these important claims, we consider the following cases.
Case 1: j ≥ p + 2. In this case, j − 1 ≥ p + 1, so Ci[j − 1] was chosen at random

at 613 after Ci′ [j ′ − 1] was determined. So the probability of their being equal is at
most 2−n.

Case 2: j = p +1 and j ′ = p +1 and LCPn(Mi,Mi′) ≥ p. In this case, we claim that
the condition Pi[j ] = Pi′ [j ′] implies that Ci[j − 1] �= Ci′ [j ′ − 1], meaning bad cannot
be set at line 629. We now justify this. Since (i′, j ′) ∈ L(i, j) and j = j ′, it must be
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Adversary X

i ← 0; S ← ∅
Run A

On query Encipher(M)

i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci[0] ← 0n

(s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

For j = 1, . . . , p do Ci[j ] ← Cs[j ]
For j = p + 1, . . . , li do S ← S ∪ {(Ci[j − 1],Mi[j ])}; Ci[j ] $← Dn

Return Ci ← Ci[1..li] to A

Until A halts
Return S

Fig. 9. Adversary X for the proof of Theorem 6.2. It outputs the collision(s) identified in the case that bad
is set in line 628 of Fig. 8 to break the cAXU property.

that i′ < i. But (s,p) = LCP∗
n(Mi,M1, . . . ,Mi−1), so LCPn(Mi,Mi′) ≥ p implies that

in fact LCPn(Mi,Mi′) = p. So Mi[p + 1] �= Mi′ [p + 1]. Now note that

Pi[j ] = Pi[p + 1] = H
(
hK,Ci[p])⊕Mi[p + 1],

Pi′ [j ′] = Pi′ [p + 1] = H
(
hK,Ci′ [p])⊕Mi′ [p + 1].

So Ci[p] = Ci′ [p] would imply Pi[j ] �= Pi′ [j ′].
A proof by induction can be used to verify that the ancestor function a has the follow-

ing properties. First, Ck[m] = Ca(k,m)[m], for any k ∈ [1..q] and m ∈ [0..lk]. Second,
Ca(k,m)[m] was chosen at random by Game G6 (at line 613), for any k ∈ [1..q] and
m ∈ [1..lk]. Third, if a(k,m) < k then LCPn(Mk,Ma(k,m)) ≥ m, for any k ∈ [1..q] and
m ∈ [1..lk]. We are now ready to tackle the last case.

Case 3: j = p + 1 and (j ′ �= p + 1 or LCPn(Mi,Mi′) ≤ p − 1). By the first prop-
erty of the ancestor function a noted above, we have Ci[j − 1] = Ca(i,j−1)[j − 1]
and Ci′ [j ′ − 1] = Ca(i′,j ′−1)[j ′ − 1]. So we want to upper bound the probability that
Ca(i,j−1)[j − 1] = Ca(i′,j ′−1)[j ′ − 1]. By the second property of a noted above, if j �= 1
then Ca(i,j−1)[j − 1] was chosen at random, and if j ′ �= 1, then Ca(i′,j ′−1)[j ′ − 1] was
chosen at random. So as long as (j, j ′) �= (1,1) and (a(i, j −1), j) �= (a(i′, j ′ −1), j ′),
the probability that Ca(i,j−1)[j − 1] = Ca(i′,j ′−1)[j ′ − 1] is 2−n. Let us now check that
the conditions above are met. We know that j = p + 1, so if p ≥ 1 then j �= 1, so
(j, j ′) �= (1,1). If p = 0 then the condition LCPn(Mi,Mi′) ≤ p − 1 is not met (because
LCPn(Mi,Mi′) is always non-negative) so it must be that j ′ �= p + 1 = 1, meaning we
again have (j, j ′) �= (1,1). Now consider whether (a(i, j − 1), j) = (a(i′, j ′ − 1), j ′).
If j ′ �= p + 1 = j , then certainly this condition is not true. So suppose j ′ = p + 1 = j .
In that case, we are given that LCPn(Mi,Mi′) ≤ p − 1. Suppose toward a contradiction
that a(i, j − 1) = a(i′, j ′ − 1) and call this common value α. Since (i′, j ′) ∈ L(i, j)

and j = j ′, it must be that i′ < i. So 1 ≤ α ≤ i′ < i. Then, by the third property of the
ancestor function a noted above, it must be that LCPn(Mi,Mα) ≥ p. If α = i′, this con-
tradicts LCPn(Mi,Mi′) ≤ p − 1, so assume α < i′. But then, again by the third prop-
erty, we have LCPn(Mi′ ,Mα) ≥ p, which, together with LCPn(Mi,Mα) ≥ p, implies
LCPn(Mi,Mi′) ≥ p, contradicting LCPn(Mi,Mi′) ≤ p − 1.
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Adversary Ag,g−1

Let C1 = 1n and let C2 = 0n1n

Let M1[1] ← g−1(C1) and let M2[1]M2[2] ← g−1(C2)

If M1[1] = M2[2], then return 1 else return 0

Fig. 10. Chosen-ciphertext attack on HCBC1.

Equations (14), (15), and (16) imply that

Pr
[

GA
5 sets bad

] ≤ Advaxu
H (X) + μ(μ − 1)

2n+1
. (17)

Combining (13) and (17) completes the proof. �

A Chosen-Ciphertext Attack Against HCBC1 We just showed that HCBC1 is secure
against chosen-plaintext attack. It is, however, not secure against chosen-ciphertext at-
tacks, as we now observe. Figure 10 shows the attack. The adversary A is given oracle
access to g and g−1 where g is either an instance of HCBC1 or an instance of OPermn,d .
We claim that

Advoprp-cca
HCBC1 (A) ≥ 1 − 2−n. (18)

Since A made only 2 oracle queries, this shows that, as an on-line cipher, HCBC1 is not
secure against chosen-ciphertext attack. We claim that

Pr
[
g

$← HCBC1 : Ag = 1
] = 1 and Pr

[
g

$← OPermn,d : Ag = 1
] ≤ 2−n,

from which (18) follows. We justify these two equations as follows. First, suppose g is
an instance of HCBC1. Since the first block of C1 is 1n, we have

M2[2] = E−1(eK, 1n
) ⊕ H

(
hK,0n

) = M1[1].
This means that adversary A will always return 1 when g is an instance of OCBC,
and the first equation is true. Now, consider the case where g is a random instance of
OPermn,d . Here, M1[1] = M2[2] holds with probability at most 2−n. Therefore, the
adversary Ag outputs 1 with the probability at most 2−n, and this justifies the second
equation.

7. The HCBC2 Cipher

We construct an on-line cipher that is secure against chosen-ciphertext attacks.

Construction 7.1. Let E: {0,1}ek × Dn → Dn be a block cipher. Let H : {0,1}hk ×
D2

n → Dn be a family of functions. We associate to them a cipher HCBC2: {0,1}ek+hk ×
Dd,n → Dd,n. A key for it is a pair eK‖hK where eK is a key for E and hK is a key for H .
The cipher and its inverse are defined as follows for M,C ∈ Dd,n. Fig. 11 illustrates the
cipher.
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0n

HhK

0n

M[1]

⊕

EeK

⊕

C[1]

HhK

M[2]

⊕

EeK

⊕

C[2]

HhK

· · ·

· · ·

M[n]

⊕

EeK

⊕

C[n]

Fig. 11. The HCBC2 cipher.

HCBC2(eK‖hK,M)

C[0] ← 0n ; M[0] ← 0n; l ← ‖M‖n

For j = 1, . . . , l do
h[j ] ← H(hK,M[j − 1]‖C[j − 1])
P [j ] ← h[j ] ⊕ M[j ]
Q[j ] ← E(eK,P [j ])
C[j ] ← h[j ] ⊕ Q[j ]

Return C[1..l]

HCBC2−1(eK‖hK,C)

C[0] ← 0n ; M[0] ← 0n; l ← ‖C‖n

For j = 1, . . . , l do
h[j ] ← H(hK,M[j − 1]‖C[j − 1])
Q[j ] ← h[j ] ⊕ C[j ]
P [j ] ← E−1(eK,Q[j ])
M[j ] ← h[j ] ⊕ P [j ]

Return M[1..l].
HCBC2 is slightly less efficient than HCBC1 because in the former the hash function

takes a longer input. The following theorem implies that if E is a PRP secure against
chosen-ciphertext attacks and H is an cAXU family of hash functions, then HCBC2 is
an OPRP secure against chosen-ciphertext attacks.

Theorem 7.2. Let E: {0,1}ek × Dn → Dn be a block cipher, and let H : {0,1}hk ×
D2n → Dn be a family of hash functions. Let HCBC2 be the n-on-line cipher associated
to them as per Construction 7.1. Then, for any adversary A against HCBC2 running in
time t and making forward queries totalling at most μe blocks and backward queries
totalling at most μd blocks, there is an adversary B against E and an adversary X

against H such that

Advoprp-cca
HCBC2 (A) ≤ Advprp-cca

E (B) + 3μ(μ − 1)

2n+1
+ Advaxu

H (X),

where μ = μe + μd . Furthermore, B runs in time t + O(nμ + hk) and makes at most
μe forward queries and at most μd backward queries, while X runs in time t + O(nμ)

and outputs a set of size at most 2μ.

By Proposition 5.4, we can simply let H = E to obtain a purely block-cipher-based
instantiation of HCBC2 that has cost three block-cipher computations per block and
uses two block-cipher keys. Proposition 5.3 says that other (possibly more efficient)
instantiations are possible by setting H to an AXU family.
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proc Initialize Game G0

000 i ← 0; hK
$← {0,1}hk

001 eK
$← {0,1}ek; π ← E(eK, ·)

proc Initialize Game G1

100 i ← 0; hK
$← {0,1}hk

101 π
$← Permn

proc Encipher(M) Games G0,G1

010 i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci [0] ← 0n; Mi [0] ← 0n

011 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

012 For j = 1, . . . , p do Ci [j ] ← Cs [j ]
013 For j = p + 1, . . . , li do
014 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1])
015 Pi [j ] ← hi [j ]⊕Mi [j ]; Qi [j ] ← π(Pi [j ]); Ci [j ] ← hi [j ]⊕Qi [j ]
016 Return Ci ← Ci [1..li ]

proc Decipher(C) Games G0,G1

020 i ← i + 1; Ci ← C; li ← ‖Ci‖n; Ci [0] ← 0n; Mi [0] ← 0n

021 (s,p) ← LCP∗
n(Ci ,C1, . . . ,Ci−1)

022 For j = 1, . . . , p do Mi [j ] ← Ms [j ]
023 For j = p + 1, . . . , li do
024 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1])
025 Qi [j ] ← hi [j ]⊕Ci [j ]; Pi [j ] ← π−1(Qi [j ]); Mi [j ] ← hi [j ]⊕Pi [j ]
026 Return Mi ← Mi [1..li ]

proc Finalize(d) Games G0,G1

020 Return d

Fig. 12. Games G0,G1 for proof of Theorem 7.2. The variable i counts the number of queries. Game G0
is to imitate OPRPCCAHCBC2 (hence the keys are chosen as shown on lines 000 and 001, and Encipher and
Decipher are as prescribed by Construction 7.1). In contrast, Game G1 uses a random permutation (hence
line 101). The values s and p are computed in the same way as in the proof of Theorem 6.2. The outputs for
all inputs blocks up to and including p are the same as previous outputs for the sth query (hence lines 012
and 022). The outputs for the rest of the blocks are computed anew (hence lines 013–015 and 023–025).

Proof of Theorem 7.2. The proof is based on the sequence G0–G7 of games in
Figs. 12, 13, 14, and 15. The games first move us to a point where blocks in replies
to (both forward and backward) oracle queries are random unless prefix-constrained,
and in particular independent of hK. This is at the cost of the probability of setting bad.
The latter is bounded using the axu property and the randomness of the blocks.

Let us now provide the full proof. It is similar to the proof of Theorem 6.2 so we will
omit some explanations and details.

We note that

Pr
[

OPRPCCAA
HCBC2 ⇒ 1

] = Pr
[

GA
0 ⇒ 1

]

= Pr
[

GA
1 ⇒ 1

] + (
Pr

[
GA

0 ⇒ 1
] − Pr

[
GA

1 ⇒ 1
])

. (19)

It is easy to define an adversary B so that

Pr
[

GA
0 ⇒ 1

] − Pr
[

GA
1 ⇒ 1

] ≤ Advprp-cca
E (B). (20)

Namely, Bπ,π−1
initializes i to 0 and picks hK at random from {0,1}hk. It then runs A,

answering its forward and backward oracle queries with the code of the Encipher and
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proc Initialize Game G2 , G3

200 i ← 0; hK
$← {0,1}hk

proc Encipher(M) Game G2 , G3

210 i ← i + 1; Mi ← M

211 li ← ‖Mi‖n; Ci [0] ← 0n; Mi [0] ← 0n

212 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

213 For j = 1, . . . , p do Ci [j ] ← Cs [j ]
214 For j = p + 1, . . . , li do
215 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1])
216 Pi [j ] ← hi [j ]⊕Mi [j ]
217 If Pi [j ] �∈ Dom(π) then

218 y
$← Dn

229 If y ∈ Rng(π) then

220 bad ← true; y
$← Rng(π)

221 π(Pi [j ]) ← y

222 Qi [j ] ← π(Pi [j ])
223 Ci [j ] ← hi [j ]⊕Qi [j ]
224 Return Ci ← Ci [1..li ]

proc Decipher(C) Games G2 , G3

230 i ← i + 1; Ci ← C

231 li ← ‖Ci‖n; Ci [0] ← 0n; Mi [0] ← 0n

232 (s,p) ← LCP∗
n(Ci ,C1, . . . ,Ci−1)

233 For j = 1, . . . , p do Mi [j ] ← Ms [j ]
234 For j = p + 1, . . . , li do
235 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1])
236 Qi [j ] ← hi [j ]⊕Ci [j ]
237 If Qi [j ] �∈ Rng(π) then

238 x
$← Dn

239 If x ∈ Dom(π) then

240 bad ← true; x
$← Dom(π)

241 π−1(Qi [j ]) ← x

242 Pi [j ] ← π−1(Qi [j ])
243 Mi [j ] ← hi [j ]⊕Pi [j ]
244 Return Mi ← Mi [1..li ]

proc Finalize(d) Game G2 , G3

250 Return d

proc Initialize Games G4 , G5

400 i ← 0; hK
$← {0,1}hk

proc Encipher(M) Games G4 , G5

410 i ← i + 1; Mi ← M

411 li ← ‖Mi‖n; Ci [0] ← 0n; Mi [0] ← 0n

412 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

413 For j = 1, . . . , p do Ci [j ] ← Cs [j ]
414 For j = p + 1, . . . , li do
415 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1])
416 Pi [j ] ← hi [j ]⊕Mi [j ]
417 Qi [j ] $← Dn

418 B(i, j) ← {(i′, j ′) ∈ L(i, j)Pi [j ] = Pi′ [j ′]}
419 If B(i, j) �= ∅ then
420 bad ← true

421 (i′, j ′) $← B(i, j); Qi [j ] ← Qi′ [j ′]
422 Ci [j ] ← hi [j ]⊕Qi [j ]
423 Return Ci ← Ci [1..li ]

proc Decipher(C) Games G4 , G5

430 i ← i + 1; Ci ← C

431 li ← ‖Ci‖n; Ci [0] ← 0n; Mi [0] ← 0n

432 (s,p) ← LCP∗
n(Ci ,C1, . . . ,Ci−1)

433 For j = 1, . . . , p do Mi [j ] ← Ms [j ]
434 For j = p + 1, . . . , li do
435 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1])
436 Qi [j ] ← hi [j ]⊕Ci [j ]
437 Pi [j ] $← Dn

438 B(i, j) ← {(i′, j ′) ∈ L(i, j)Qi [j ] = Qi′ [j ′]}
439 If B(i, j) �= ∅ then
440 bad ← true

441 (i′, j ′) $← B(i, j); Pi [j ] ← Pi′ [j ′]
442 Mi [j ] ← hi [j ]⊕Pi [j ]
443 Return Mi ← Mi [1..li ]

proc Finalize(d) Games G4 , G5

450 Return d

Fig. 13. Games G2–G5 for proof of Theorem 7.2. Games G2 and G4 include the boxed code while G3 and
G5 do not. Game G2 is like G1 except that it samples π lazily in lines 217–221. Game G3 is like G2 except
that in the former π is a random function rather than a permutation. Game G4 is a rewrite of G3 so that, for
Encipher (resp. Decipher), the outputs (resp. inputs) of π that need to be computed anew are optimistically
picked at random in line 417 (resp. 437) then corrected in line 421 (resp. 441) if necessary. Game G5 omits
the corrections.
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proc Initialize Game G6

600 i ← 0; hK
$← {0,1}hk

proc Encipher(M) Game G6

610 i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci[0] ← 0n; Mi[0] ← 0n

611 (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

612 For j = 1, . . . , p do Ci[j ] ← Cs[j ]
613 For j = p + 1, . . . , li do
614 hi[j ] ← H(hK,Mi[j − 1]‖Ci[j − 1])
615 Pi[j ] ← hi[j ]⊕Mi[j ]; Ci[j ] $← Dn; Qi[j ] ← hi[j ]⊕Ci[j ]
616 B(i, j) ← {(i′, j ′) ∈ L(i, j)Pi[j ] = Pi′ [j ′]}
617 If B(i, j) �= ∅ then bad ← true
618 Return Ci ← Ci[1..li]
proc Decipher(C) Game G6

630 i ← i + 1; Ci ← C; li ← ‖Ci‖n; Ci[0] ← 0n; Mi[0] ← 0n

631 (s,p) ← LCP∗
n(Ci,C1, . . . ,Ci−1)

632 For j = 1, . . . , p do Mi[j ] ← Ms[j ]
633 For j = p + 1, . . . , li do
634 hi[j ] ← H(hK,Mi[j − 1]‖Ci[j − 1])
635 Qi[j ] ← hi[j ]⊕Ci[j ]; Mi[j ] $← Dn; Pi[j ] ← hi[j ]⊕Mi[j ]
636 B(i, j) ← {(i′, j ′) ∈ L(i, j)Qi[j ] = Qi′ [j ′]}
637 If B(i, j) �= ∅ then bad ← true
638 Return Mi ← Mi[1..li]
proc Finalize(d) Game G6

640 Return d

Fig. 14. Game G6 for proof of Theorem 7.2 is similar to G5 except that, for Encipher (resp. Decipher), the
C-values (resp. the M-values) are chosen at random in line 615 (resp. 635) rather than the Q-values (resp. the
P -values).

Decipher procedures of G0, respectively, but with the roles of π and π−1 played by its
own oracles. B returns what A returns. The running time of B is that of A plus the time
to compute LCP∗

n for each oracle invocation and the time to pick hK at random. Im-
plementing LCP∗

n with a tree data structure, rather than directly as described in Sect. 2,
allows B to answer the ith Encipher or Decipher query in time O(nli). Thus, B’s total
running time is O(nμ + hk).

Game G2 is the same as G1 except that it samples π lazily. The convention is that
Rng(π) and Dom(π) are initially empty. Rng(π) always denotes Dn \ Rng(π), and
Dom(π) always denotes Dn \Dom(π). An assignment π(x) ← y adds y to Rng(π) and
x to Dom(π). Now, we have

Pr
[

GA
1 ⇒ 1

] = Pr
[

GA
2 ⇒ 1

]

= Pr
[

GA
3 ⇒ 1

] + (
Pr

[
GA

2 ⇒ 1
] − Pr

[
GA

3 ⇒ 1
])
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proc Initialize Game G7

700 i ← 0; C0[0] ← 0n

proc Encipher(M) Game G7

710 i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci [0] ← 0n; Mi [0] ← 0n; anc(i,0) ← 0; dir(i) ← frwd
711 (s,p) ← LCP∗

n(Mi,M1, . . . ,Mi−1)

712 For j = 1, . . . , p do Ci [j ] ← Cs [j ]; anc(i, j) ← anc(s, j)

713 For j = p + 1, . . . , li do Ci [j ] $← Dn; anc(i, j) ← i

714 Return Ci ← Ci [1..li ]

proc Decipher(C) Game G7

720 i ← i + 1; Ci ← C; li ← ‖Ci‖n; Ci [0] ← 0n; Mi [0] ← 0n; anc(i,0) ← 0; dir(i) ← bkwd
721 (s,p) ← LCP∗

n(Ci ,C1, . . . ,Ci−1)

722 For j = 1, . . . , p do Mi [j ] ← Ms [j ]; anc(i, j) ← anc(s, j)

723 For j = p + 1, . . . , li do Mi [j ] $← Dn; anc(i, j) ← i

724 Return Mi ← Mi [1..li ]

proc Finalize(d) Game G7

730 hK
$← {0,1}hk

731 For i = 1, . . . , q do
732 li ← ‖Mi‖n; Ci [0] ← 0n; Mi [0] ← 0n

733 If dir(i) = frwd then (s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

734 Else (s,p) ← LCP∗
n(Ci ,C1, . . . ,Ci−1)

735 For j = p + 1, . . . , li do
736 hi [j ] ← H(hK,Mi [j − 1]‖Ci [j − 1]); Pi [j ] ← hi [j ]⊕Mi [j ]; Qi [j ] ← hi [j ]⊕Ci [j ]
737 If dir(i) = frwd then B(i, j) ← (i′, j ′) ∈ L(i, j)Pi [j ] = Pi′ [j ′]}
738 Else B(i, j) ← {(i′, j ′) ∈ L(i, j)Qi [j ] = Qi′ [j ′]}
739 If B(i, j) �= ∅ then

740 (i′, j ′) $← B(i, j)

741 If (Mi [j − 1],Ci [j − 1]) �= (Mi′ [j ′ − 1],Ci′ [j ′ − 1]) then bad ← true
742 If (Mi [j − 1],Ci [j − 1]) = (Mi′ [j ′ − 1],Ci′ [j ′ − 1]) then bad ← true
743 Return d

Fig. 15. Game G7 for proof of Theorem 7.2. Here, q denotes the number of forward and backward oracle
queries made by A, with the wlog assumption that it always makes exactly q queries. Everything that can
be delayed to Finalize is (hence lines 730–742). Finally, lines 739–742 together are equivalent to line 637 in
Fig. 14. The functions anc and dir are defined here for later case analysis.

≤ Pr
[

GA
3 ⇒ 1

] + Pr
[

GA
3 sets bad

]
, (21)

the last by Lemma 2.1. However,

Pr
[

GA
3 sets bad

] ≤ μ(μ − 1)

2n+1
. (22)

Game G4 is very similar to G3, the only difference is that the code for sampling
a random function is written differently, with tracking down when collisions between
P -values in the Encipher procedure and Q-values in the Decipher procedure happen;
without affecting any results. We note that (i′j ′) in line 421 are picked at random only
for simplicity. Game G5 is identical to G4 until they set bad, but Game G5 does not use
the collision check, i.e. sampling of random function may not be consistent for equal
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points. Now,

Pr
[

GA
3 ⇒ 1

] = Pr
[

GA
4 ⇒ 1

]

= Pr
[

GA
5 ⇒ 1

] + (
Pr

[
GA

4 ⇒ 1
] − Pr

[
GA

5 ⇒ 1
])

≤ Pr
[

GA
5 ⇒ 1

] + Pr
[

GA
5 sets bad

]
, (23)

the last by Lemma 2.1.
To compare Games G5 and G6 note that the distribution of (Pi[j ],Qi[j ],Ci[j ]) is

the same whether the quantities are chosen by lines 416, 417, and 422 or by line 615.
Similarly, the distribution of (Pi[j ],Qi[j ],Mi[j ]) is the same whether the quantities
are chosen by lines 436, 437, 442 or by line 635. So,

Pr
[

GA
5 ⇒ 1

] = Pr
[

GA
6 ⇒ 1

]
and Pr

[
GA

5 sets bad
] = Pr

[
GA

6 sets bad
]
. (24)

Lines 614–617 and 634–637 determine the setting of bad but do not influence replies
to oracle queries. Accordingly, Game G7 moves them into Finalize. This game also
defines the ancestor function anc and the function dir and splits the setting of bad into
two parts at lines 741 and 742. The value of anc(i, j) is the smallest (earliest) query
index l ≤ i such that Mi[j ] = Ml[j ]. Function dir(i) returns frwd if Mi was created by a
forward (i.e. Encipher) query and bkwd if it was created by a backward (i.e. Decipher)
query. These changes affect neither the game output nor the probability of setting bad,
hence

Pr
[

GA
6 ⇒ 1

] = Pr
[

GA
7 ⇒ 1

]
and Pr

[
GA

6 sets bad
] = Pr

[
GA

7 sets bad
]
. (25)

We comment that LCP∗
n(Mi,M1, . . . ,Mi−1) at line 733 of G7 and LCP∗

n(Ci,C1, . . . ,

Ci−1) at line 734 of G7 may not be equal, which is why we considered separately the
cases dir(i) = frwd and dir(i) = bkwd in defining (s,p) at lines 733 and 734. Next, we
observe that

Pr
[

GA
7 ⇒ 1

]

= Pr
[

OPRFCCAA
Rand ⇒ 1

]

= Pr
[

OPRPCCAA
Perm ⇒ 1

]

+ (
Pr

[
OPRFCCAA

Rand ⇒ 1
] − Pr

[
OPRPCCAA

Perm ⇒ 1
])

≤ Pr
[

OPRPCCAA
Perm ⇒ 1

] + μ(μ − 1)

2n+1
(26)

where the last line holds due to Lemma 3.6. Putting (19), (20), (21), (22), (23), (24),
(25), and (26) together, we have

Advoprp-cca
HCBC2 (A) = Pr

[
OPRPCCAA

HCBC2 ⇒ 1
] − Pr

[
OPRPCCAA

Perm ⇒ 1
]

≤ Advprp-cca
E (B) + μ(μ − 1)

2n
+ Pr

[
GA

7 sets bad
]
. (27)
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Adversary X

i ← 0; S ← ∅
Run A

On query Encipher(M)

i ← i + 1; Mi ← M; li ← ‖Mi‖n; Ci [0] ← 0n

(s,p) ← LCP∗
n(Mi,M1, . . . ,Mi−1)

For j = 1, . . . , p do Ci [j ] ← Cs [j ]
For j = p + 1, . . . , li do

Ci [j ] $← Dn; S ← S ∪ {(Mi [j − 1]‖Ci [j − 1],Mi [j ])} ∪ {(Mi [j − 1]‖Ci [j − 1],Ci [j ])}
Return Ci ← Ci [1..li ] to A

On query Decipher(C)

i ← i + 1; Ci ← C; li ← ‖Ci‖n; Ci [0] ← 0n; Mi [0] ← 0n

(s,p) ← LCP∗
n(Ci ,C1, . . . ,Ci−1)

For j = 1, . . . , p do Mi [j ] ← Ms [j ]
For j = p + 1, . . . , li do

Mi [j ] $← Dn; S ← S ∪ {(Mi [j − 1]‖Ci [j − 1],Mi [j ])} ∪ {(Mi [j − 1]‖Ci [j − 1],Ci [j ])}
Return Mi ← Mi [1..li ] to A

Until A halts
Return S

Fig. 16. Adversary X for the proof of Theorem 7.2. It outputs the collision(s) identified in the case that bad
is set in line 741 of Fig. 15 to break the cAXU property.

It remains to upper bound the probability that the execution of G7 with A sets bad.
Consider the cxu-adversary X of Fig. 16. Then,

Pr[G7 sets bad at line 741] ≤ Advaxu
H (X), (28)

and X runs in time that of A plus O(nμ) and outputs a set of size at most 2μ. We now
claim that

Pr[G7 sets bad at line 742] ≤ μ(μ − 1)

2n+1
. (29)

To justify this important claim, we consider the following cases.
Case 1: j ≥ p + 2. In this case, j − 1 ≥ p + 1. So if dir(i) = frwd then Ci[j − 1] was

chosen at random due to line 713, and if dir(i) = bkwd then Mi[j − 1] was chosen at
random due to line 723, in either case after (Mi′ [j ′ − 1],Ci′ [j ′ − 1]) was determined.
So the probability that (Mi[j − 1],Ci[j − 1]) equals (Mi′ [j ′ − 1],Ci′ [j ′ − 1]) is at
most 2−n.

Case 2: j = p + 1 and dir(i) = frwd and j ′ = p + 1 and LCPn(Mi,Mi′) ≥ p. In
this case, we claim that the condition Pi[j ] = Pi′ [j ′] implies that (Mi[j − 1],Ci[j −
1]) �= (Mi′ [j ′ − 1],Ci′ [j ′ − 1]), meaning bad cannot be set at line 742. We now
justify this. Since (i′, j ′) ∈ L(i, j) and j = j ′, it must be that i′ < i. But (s,p) =
LCP∗

n(Mi,M1, . . . ,Mi−1), so LCPn(Mi,Mi′) ≥ p implies that in fact LCPn(Mi,Mi′) =
p. So Mi[p + 1] �= Mi′ [p + 1]. Now note that

Pi[j ] = Pi[p + 1] = H
(
hK,Mi[p]‖Ci[p])⊕Mi[p + 1],

Pi′ [j ′] = Pi′ [p + 1] = H
(
hK,Mi′ [p]‖Ci′ [p])⊕Mi′ [p + 1].

So (Mi[p],Ci[p]) = (Mi′ [p],Ci′ [p]) would imply Pi[j ] �= Pi′ [j ′].
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Case 3: j = p + 1 and dir(i) = bkwd and j ′ = p + 1 and LCPn(Ci,Ci′) ≥ p. In
this case, we claim that the condition Qi[j ] = Qi′ [j ′] implies that (Mi[j − 1],Ci[j −
1]) �= (Mi′ [j ′ − 1],Ci′ [j ′ − 1]), meaning bad cannot be set at line 742. We now
justify this. Since (i′, j ′) ∈ L(i, j) and j = j ′, it must be that i′ < i. But (s,p) =
LCP∗

n(Ci,C1, . . . ,Ci−1), so LCPn(Ci,Ci′) ≥ p implies that in fact LCPn(Ci,Ci′) = p.
So Ci[p + 1] �= Ci′ [p + 1]. Now note that

Qi[j ] = Qi[p + 1] = H
(
hK,Mi[p]‖Ci[p])⊕Ci[p + 1],

Qi′ [j ′] = Qi′ [p + 1] = H
(
hK,Mi′ [p]‖Ci′ [p])⊕Ci′ [p + 1].

So (Mi[p],Ci[p]) = (Mi′ [p],Ci′ [p]) would imply Qi[j ] �= Qi′ [j ′].
A proof by induction can be used to verify that the ancestor function anc has the

following properties. First, (Mk[m],Ck[m]) = (Manc(k,m)[m],Canc(k,m)[m]), for any
k ∈ [1..q] and m ∈ [0..lk]. Second, at least one component of the pair (Manc(k,m)[m],
Canc(k,m)[m]) was chosen at random by Game G8 (at line 713 or 723), for any k ∈ [1..q]
and m ∈ [1..lk]. Third, if anc(k,m) < k for any k ∈ [1..q] and m ∈ [1..lk], then
LCPn(Mk,Manc(k,m)) ≥ m and LCPn(Ck,Canc(k,m)) ≥ m. We are now ready to tackle
the last case.

Case 4: j = p + 1 and (j ′ �= p + 1 or LCPn(Xi,Xi′) ≤ p − 1) where (Xi,Xi′) =
(Mi,Mi′) if dir(i) = frwd and (Xi,Xi′) = (Ci,Ci′) if dir(i) = bkwd. By the first
property of the ancestor function a noted above, we have (Mi[j − 1],Ci[j − 1]) =
(Manc(i,j−1)[j − 1],Canc(i,j−1)[j − 1]) and (Mi′ [j ′ − 1],Ci′ [j ′ − 1]) =
(Manc(i′,j ′−1)[j ′ − 1],Canc(i′,j ′−1)[j ′ − 1]). So we want to upper bound the probability
that (Manc(i,j−1)[j − 1],Canc(i,j−1)[j − 1]) = (Manc(i′,j ′−1)[j ′ − 1],Canc(i′,j ′−1)[j ′ −
1]). By the second property of a noted above, if j �= 1 then at least one component of
(Manc(i,j−1)[j −1],Canc(i,j−1)[j −1]) was chosen at random, and if j ′ �= 1, then at least
one component of (Manc(i′,j ′−1)[j ′ −1],Canc(i′,j ′−1)[j ′ −1]) was chosen at random. So
as long as (j, j ′) �= (1,1) and (anc(i, j − 1), j) �= (anc(i′, j ′ − 1), j ′), the probability
that (Manc(i,j−1)[j − 1],Canc(i,j−1)[j − 1]) = (Manc(i′,j ′−1)[j ′ − 1],Canc(i′,j ′−1)[j ′ −
1]) is at most 2−n. Let us now check that the conditions above are met. We know
that j = p + 1, so if p ≥ 1 then j �= 1, so (j, j ′) �= (1,1). If p = 0 then the condi-
tion LCPn(Xi,Xi′) ≤ p − 1 is not met (because LCPn(Xi,Xi′) is always non-negative)
so it must be that j ′ �= p + 1 = 1, meaning we again have (j, j ′) �= (1,1). Now con-
sider whether (anc(i, j − 1), j) = (anc(i′, j ′ − 1), j ′). If j ′ �= p + 1 = j , then cer-
tainly this condition is not true. So suppose j ′ = p + 1 = j . In that case, we are
given that LCPn(Xi,Xi′) ≤ p − 1. Suppose toward a contradiction that anc(i, j − 1) =
anc(i′, j ′ − 1) and call this common value α. Since (i′, j ′) ∈ L(i, j) and j = j ′, it must
be that i′ < i. So 1 ≤ α ≤ i′ < i. Then, by the third property of the ancestor function
a noted above, it must be that LCPn(Xi,Xα) ≥ p where Xα = Mα if dir(i) = frwd
and Xα = Cα if dir(i) = bkwd. If α = i′, this contradicts LCPn(Xi,Xi′) ≤ p − 1, so
assume α < i′. But then, again by the third property, we have LCPn(Xi′ ,Xα) ≥ p,
which, together with LCPn(Xi,Xα) ≥ p, implies LCPn(Xi,Xi′) ≥ p, contradicting
LCPn(Xi,Xi′) ≤ p − 1.
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proc Initialize Game IND-CPAS E

K
$← K; b

$← {0,1}

proc LR(M0,M1) Game IND-CPAS E
C

$← E (K,Mb); Return C

proc Finalize(d) Game IND-CPAS E
If d = b then return 1 else return 0

proc Initialize Game INT-CTXTS E

K
$← K; S ← ∅

proc Enc(M) Game INT-CTXTS E

C
$← E (K,M); S ← S ∪ {C}; Return C

proc Finalize(C) Game INT-CTXTS E
If DK(C) = ⊥ then return 0
If C �∈ S then return 1 else return 0

Fig. 17. Games IND-CPAS E and INT-CTXTS E . Above, S E = (K, E , D).

Equations (28) and (29) imply that

Pr
[

GA
7 sets bad

] ≤ Advaxu
H (X) + μ(μ − 1)

2n+1
. (30)

Combining (27) and (30) completes the proof. �

8. Usage of On-line Ciphers

On-line ciphers can be used to encrypt and authenticate data in such a way that strong
privacy and authenticity properties result, if the plaintext space has appropriate char-
acteristics. This follows via the encode-then-encipher paradigm of [8]. It is shown in
[8] that it suffices to apply a cipher which is a pseudorandom permutation to a mes-
sage which contains some randomness and redundancy. However, we cannot apply this
paradigm in as much generality as [8] do since we deal with weaker ciphers: ones which
are pseudorandom on-line permutations. Being more specific, however, allows us to
solve the problem. We suggest and discuss the following three message-encoding pos-
sibilities.

(1) Prepend randomness and append redundancy.1

(2) Prepend randomness and message length and append redundancy.
(3) Prepend and append the same randomness.

Before we formally define and analyze the resulting schemes we recall the standard
notions of privacy and integrity for symmetric encryption.

Definitions Let S E = (K, E , D) be a symmetric encryption scheme, defined as usual
via its key-generation, encryption, and decryption algorithms [5]. We use the IND-
CPA notion of privacy, measured via the “left-or-right” model of [5]. Consider game
IND-CPAS E of Fig. 17. An oracle query of the adversary A must be a pair M0,M1 of
equal-length strings belonging to the message space MsgSp associated to the scheme.
The advantage of A is defined via

Advind-cpa
S E (A) = 2 · Pr

[
IND-CPAA

S E ⇒ 1
] − 1.

1 The preliminary version of this paper proposed only this encoding construction, which, as we discuss
below, is useful only if all messages have the same length.
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We use a simplified version of the INT-CTXT notion of integrity of [7]. Consider game
INT-CTXTS E of Fig. 17. An oracle query of the adversary B must be an element of the
message space MsgSp associated to the scheme. We define the advantage of B via

Advint-ctxt
S E (B) = Pr

[
INT-CTXTB

S E ⇒ 1
]
.

On-line-Cipher-Based Encryption Schemes We now formally define and discuss the
encryption schemes which use an on-line cipher applied to encoded messages.

Construction 8.1. Let n,d be integers with d ≥ 3, and let F : Keys(F )×Dd,n → Dd,n

be a cipher. We associate to them the following symmetric encryption scheme S E 1 =
(K, E , D):

Algorithm K
K

$← Keys(F )

Return K

Algorithm E (K,M)

r
$← Dn

x ← r‖M‖0n

C ← F(K,x)

Return C

Algorithm D(K,C)

x ← F−1(K,C)

If |x| < 3n then return ⊥
Parse x as r‖M‖τ with |r| = |τ | = n

If τ = 0n then return M

Else return ⊥.

The security depends on the message space MsgSp of S E 1. If MsgSp is Dl
n for some

fixed l ∈ [1..d − 2], meaning all messages are restricted to be of the same fixed length,
then S E 1 is IND-CPA secure if F is an n-on-line cipher secure against chosen-plaintext
attacks and INT-CTXT secure if F is an n-on-line cipher secure against chosen-
ciphertext attacks. However, this scheme is not INT-CTXT secure if variable-length (but
still in Dd,n) messages can be encrypted, meaning the message space is, say, Dd−2,n. To
see this, consider the following adversary B attacking the INT-CTXT security of S E 1.
B queries to its encryption oracle the message 0n‖0n. Let C[1]‖C[2]‖C[3]‖C[4] be the
reply. Then B outputs C[1]‖C[2]‖C[3]. It is easy to see that Advint-ctxt

S E (B) = 1 since
C[1]‖C[2]‖C[3] is a valid encryption of 0n.

In order to defend against the above attack, in addition to prepending randomness
to the message one might want to prepend message length. The following construction
formalizes this obvious fix.

Construction 8.2. Let n be an integer, and let d ∈ [4..2n − 1]. For x ∈ Dd,n, let 〈x〉n
denote the n-bit binary encoding of ‖x‖n. Let F : Keys(F ) × Dd,n → Dd,n be a cipher.
Define symmetric encryption scheme S E 2 = (K, E , D) via

Algorithm K
K

$← Keys(F )

Return K

Algorithm E (K,M)

r
$← Dn

x ← r‖〈M〉n‖M‖0n

C ← F(K,x)

Return C

Algorithm D(K,C)

x ← F−1(K,C)

If |x| < 4n then return ⊥
Parse x as r‖m‖M‖τ

with |r| = |m| = |τ | = n

If 〈M〉n = m and τ = 0n then return M

Else return ⊥.

The message space associated to S E 2 is Dd−3,n.
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While it is possible to show that S E 2 is IND-CPA secure assuming F is an n-on-line
cipher secure against chosen-plaintext attacks and INT-CTXT secure assuming F is an
n-on-line cipher secure against chosen-ciphertext attacks, encryption requires knowing
the length of the message in advance, which does not suit well the “on-line” goal, since
with the latter we may want to encrypt messages in a single pass, and we may not
know the message length in advance. The following scheme overcomes the difficulties
pertaining to the previous constructions.

Construction 8.3. Let n,d be integers with d ≥ 3, and let F : Keys(F )×Dd,n → Dd,n

be a cipher. We associate to them the following symmetric encryption scheme S E 3 =
(K, E , D):

Algorithm K
K

$← Keys(F )

Return K

Algorithm E (K,M)

r
$← Dn

x ← r‖M‖r
C ← F(K,x)

Return C

Algorithm D(K,C)

x ← F−1(K,C)

If |x| < 3n then return ⊥
Parse x as r‖M‖r ′

with |r| = |r ′| = n

If r = r ′ then return M

Else return ⊥.

The message space associated to S E 3 is Dd−2,n.

We show that S E 3 is IND-CPA secure, when F is an n-on-line cipher secure against
chosen-plaintext attacks, and INT-CTXT secure, when F is an n-on-line cipher secure
against chosen-ciphertext attacks. The following claims formalize this.

Claim 8.4. Let F : Keys(F ) × Dd,n → Dd,n be an n-on-line cipher, and let S E 3 =
(K, E , D) be the symmetric encryption scheme defined in Consteuction 8.3. Then, for
any adversary A against S E 3 running in time t and making at most q oracle queries
totalling at most μ blocks, there is an adversary D against F running in time t and
making at most q oracle queries totalling at most μ + 2q blocks such that

Advind-cpa
S E 3

(A) ≤ 2 · Advoprp-cpa
F (D) + q(q − 1)

2n
.

Above, the convention is that the length of a query M0,M1 made by A is |M0|.

Claim 8.5. Let F : Keys(F ) × Dd,n → Dd,n be an n-on-line cipher, and let S E 3 =
(K, E , D) be the symmetric encryption scheme defined in Construction 8.3. Then, for
any adversary B against S E 3 running in time t making at most qe queries totalling
at most μe blocks and outputting a string of length at most μd blocks, there exists an
adversary D against F running in time t making at most qe forward queries totalling
at most μe + 2qe blocks and making one backward query totalling at most μd blocks
such that

Advint-ctxt
S E 3

(B) ≤ Advoprp-cca
F (D) + μe

2n
.

The proofs of the above claims follow the ideas of [8].
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Proof of Claim 8.4. Adversary D has access to an oracle g which is either a random
instance of the on-line cipher F or a random instance of OPermn,d . First, D picks a
random bit b. Then, for each encryption oracle query M0,M1 made by A, the adver-

sary D chooses a random element r
$← Dn, queries r‖Mb‖r to its own oracle g and

forwards the reply to A. At some point A outputs its guess d . If b = d , then D returns 1.
Otherwise, it returns 0. We have

Pr
[
g

$← F : Dg = 1
] = Pr

[
IND-CPAA

S E 3
⇒ 1

]
,

Pr
[
g

$← OPermn,d : Dg = 1
] ≤ 1

2
+ q(q − 1)

2n+1
.

(31)

To justify (31), we observe that, if g is an ideal on-line cipher, then A cannot get any
information about the bit b unless at least two of the random elements chosen by D

happen to be the same. Subtracting the above equations, we get

Advoprp-cpa
F (D) ≥ Pr

[
IND-CPAA

S E 3
⇒ 1

] − 1

2
− q(q − 1)

2n+1

= 1

2
· Advind-cpa

S E 3
(A) − q(q − 1)

2n+1

as claimed. �

Proof of Claim 8.5. An adversary D has access to oracles g,g−1 which are either
a random instance of the on-line cipher F and its inverse or a random instance of
OPermn,d and its inverse. For each encryption oracle query M made by B , the ad-

versary D chooses a random element r
$← Dn, submits r‖M‖r to its own oracle g and

forwards the reply to B . When B finally outputs C, the adversary D checks whether
C has been previously returned to B as an answer to an encryption oracle query. If so,
D returns 0. If not, D queries C to its second oracle g−1. Let X be the reply. If |X| < 3n

then D returns 0, otherwise D parses X as r‖M‖r ′, where |r| = |r ′| = n. If r = r ′, then
D returns 1, otherwise, it returns 0. We have

Pr
[
g

$← F : Dg,g−1 = 1
] = Pr

[
INT-CTXTB

S E 3
⇒ 1

]
, (32)

Pr
[
g

$← OPermn,d : Dg,g−1 = 1
] ≤ μe

2n
. (33)

Subtracting, we have

Advoprp-cpa
F (D) ≥ Pr

[
INT-CTXTB

S E 3
⇒ 1

] − 1

2n

= Advint-ctxt
S E (B) − 1

2n

which yields the claim. We now justify the above equations. Equation (32) is clear. To
justify (33), let M1, . . . ,Mqe denote B’s queries and C1, . . . ,Cqe the responses. Let ri
be the randomness chosen in encrypting Mi , and let C denote the output of B . Let
x = g−1(C) and parse x as r‖M‖r ′. Let l = ‖C‖n and (s,p) = LCP∗

n(C,C1, . . . ,Cqe ).
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We consider two cases. If p < l, then the permutation applied to C[l] when computing
g−1(C) is at a tree node that has never been visited before, and so the result r ′ has
probability 2−n of equalling r . On the other hand, if p = l, then C[l] = Cs[l]. Now
let ls = ‖Cs‖n. If C �= Cs (otherwise D returns 0), it must be that ls ≥ l + 1 and thus
‖Ms‖n ≥ l − 1. So r ′ = Ms[l − 1]. The latter was, however, chosen by B before rs was
chosen. �

We conjecture that the μe2−n term in the bound of Claim 8.5 can be reduced to 2−n

by a better analysis of our adversary D in the proof. We leave settling this as an open
question.
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