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Abstract For many applications of emotion recognition,

such as virtual agents, the system must select responses

while the user is speaking. This requires reliable on-line

recognition of the user’s affect. However most emotion

recognition systems are based on turnwise processing. We

present a novel approach to on-line emotion recognition

from speech using Long Short-Term Memory Recurrent

Neural Networks. Emotion is recognised frame-wise in a

two-dimensional valence-activation continuum. In contrast

to current state-of-the-art approaches, recognition is per-

formed on low-level signal frames, similar to those used

for speech recognition. No statistical functionals are ap-

plied to low-level feature contours. Framing at a higher

level is therefore unnecessary and regression outputs can

be produced in real-time for every low-level input frame.

We also investigate the benefits of including linguistic fea-

tures on the signal frame level obtained by a keyword spot-

ter.
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1 Introduction

Emotionally sensitive virtual agents need to be able to es-

timate a user’s emotion in real-time. However most Auto-

matic Emotion Recognition (AER) systems are designed for

supra-segmental units of speech [50], such as complete sen-

tences or fragments of sentences [30, 44]. This means that

no output is generated by the system until the user pauses for

a long time, and that changes in emotion during a segment

are ignored. Furthermore the fragments—in most cases—

are pre-segmented and all results obtained have the precon-

dition of perfect segmentation. However, in a real-world,

on-line AER system, the segmentation is not known and

methods such as Voice Activity Detection (VAD) and energy

thresholding must be implemented. These, however, will not

achieve perfect segmentation on, e.g. the sentence level. All

those aspects highlight that it is extremely important to close

or at least narrow the gap between the human ability to per-

manently observe, question, update, and refine the estima-

tion of the current affect of a conversational partner, and the

simple evaluation of features at the end of a speech turn as it

is applied for many virtual agents (e.g. [40])—even though

this does not mean that human perception is continuous at

all points.

In this article, we introduce a novel approach to fully

continuous emotion recognition in a 3-D valence-activation-

time continuum. The novelty of our technique is that it ex-

plicitly models time as a third dimension—similar to auto-

matic speech recognition systems.

The motivation for time-continuous emotion recognition

is clearly given by applications where emotion must be eval-

uated incrementally in real-time, e.g. in-car driver moni-

toring for safety enhancement, or virtual agents as in our

case: in the SEMAINE system [27] customised and imme-

diate feedback based on the emotional state of the user has

mailto:eyben@tum.de
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to be produced. Taking into account current affective cues,

responses have to be prepared already before the user has

finished speaking and hypotheses have to be generated on-

the-fly. It might not make sense at first to detect emotion

from speech every few milliseconds, since emotion remains

bound to syllables or even words [31]. However, if the out-

put is smoothed over short time periods, reliable estimates

of quasi-instantaneous emotions can be given, without the

need to identify word boundaries, for example. Moreover, if

word boundaries are known, e.g. from an Automatic Speech

Recognition (ASR) unit, the emotion output can be mapped

to the word segments and averaged to transcribe the emo-

tional content of every word instantaneously.

In the context of emotion-related virtual agents Long

Short-Term Memory models have been suggested [22].

Stemming from a similar motivation, our on-line speech-

based emotion recognition approach is based on Long Short-

Term Memory Recurrent Neural Networks (LSTM-RNN).

Those networks directly operate on short time frames of

low-level audio descriptors such as Energy, Pitch, and Mel-

Frequency-Cepstral Coefficients (MFCC) and do not require

any segmentation besides the low-level framing. Addition-

ally, linguistic features are incorporated via early fusion.

Due to the regression output in an emotion space spanned

by valence and activation (as in [4, 15, 44], for example),

the approach is no more limited to detection of discrete emo-

tion classes. For every low-level audio input frame an output

value ranging from −1 to +1 for each emotional dimension

is generated.

This article is structured as follows: the next section ad-

dresses the problem of continuous emotion recognition in

more detail. In Sect. 3 we briefly outline the SEMAINE ar-

chitecture, which reveals the structure of a virtual agent sys-

tem demanding for incremental emotion recognition. Sec-

tion 4 describes the acoustic and linguistic features which

were extracted from the audio signal. Section 5 presents and

discusses the propagated LSTM-RNN architecture as well

as other Neural Network architectures, to which we com-

pare the performance of the LSTM-RNN. Section 6 intro-

duces the naturalistic emotion database used for experimen-

tal evaluations in Sect. 7. Section 8 shows results obtained

on this database. We conclude the article in Sect. 9 with an

outlook for future trends in fully continuous emotion recog-

nition.

2 The challenge of continuous emotion recognition

As opposed to speech recognition, emotion recognition from

single short-time audio frames is virtually impossible. While

single phonemes are highly correlated to a specific spectral

representation in short signal windows, speech emotion is a

phenomenon observed over a longer time window. Typical

units of analysis are complete sentences, sentence fragments

(such as syntactical chunks), or words [38]. The term ‘frag-

ment’ will be used in the ongoing referring to a general unit

of analysis. Finding the optimal unit of analysis is still an

active area of research [28, 31, 32].

Most approaches to emotion recognition model the long

range dependencies between low-level signal frames on

the feature level. Various characteristics (e.g. statistical

functionals) are computed from the temporal contours of

low-level audio features. The variable length contours are

mapped to a single high-dimensional feature vector for each

input fragment. Both classification (for emotion classes) and

regression (emotion dimensions) tasks can be solved using

this approach, given suitable models, e.g. Support-Vector-

Machines for classification and Support-Vector-Regression

for regression. A major drawback of these approaches is that

prior segmentation is required and usually a complete input

fragment is required for analysis. Further, only one output

can be produced at the end of an input fragment.

Thus, for continuous output at a fixed rate in the sub-

second region, the segment length has to be very small. In

this case the amount of context considered is very limited,

which impacts recognition performance. Supra-segmental

modelling techniques, for example, perform well on the ut-

terance level, due to effects like a highly informative pitch

and energy contour throughout the utterance, which is cor-

related to the conveyed emotion. Randomly chosen sub-

second segments, however, do not contain such information,

because—without additional effort—we do not know what

part of the utterance they are from.

An alternative approach is to use Hidden Markov Mod-

els with frame-wise low-level descriptors as observation fea-

tures [29, 41]. However these approaches also require some

kind of segmentation, because they assign a class to each

segment. Principally it would be possible to do some kind

of time-continuous decoding with such an approach, i.e. as

is done for continuous automatic speech recognition. How-

ever, this technique is limited to discrete classes of emotion

or affect. Thus, these approaches are inherently unsuited for

emotion recognition in continuous dimensions.

For fully continuous emotion recognition we must aban-

don the requirement of defining a suitable unit of analy-

sis, within which the emotional state is assumed as quasi-

stationary. As features, only frame-based features must be

used, the long range dependencies must be modelled by the

classifier, and ideally an output of the current state should be

generated for every input frame. In Sect. 5 we will present a

classifier which meets all these requirements.

The next section will briefly explain the architecture of an

affect aware virtual agent created by the SEMAINE project,

where the proposed emotion recognition approach will be

used.
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Fig. 1 Architecture of the

SEMAINE system

3 The SEMAINE system architecture

The aim of the SEMAINE project1 is to build a Sensitive

Artificial Listener—a multimodal dialogue system with the

social interaction skills needed for a sustained conversation

with a human user. Figure 1 shows the system architecture

for a virtual agent as used in the SEMAINE system [27].

As mentioned before, this system demands for on-line in-

cremental emotion recognition in order to select responses

as early as possible. In Fig. 1 processing components such

as the LSTM-RNN, which will be outlined in Sect. 5, or

the feature extractor (see Sect. 4) are represented as ovals,

whereas rectangles denote data. Arrows are always between

components and data, and indicate which data is produced

by or is accessible to which component. It can be seen that

the rough organisation follows the simple tripartition of in-

put (left), central processing (middle), and output (right),

and that arrows indicate a rough pipeline for the data flow,

from input analysis via central processing to output gen-

eration. In particular for the emotion coding, EmotionML

is used [26] which already allows for continuous spatio-

temporal emotion representation.

The architecture is deliberately held very open and flexi-

ble, since the system is intended as a research platform. Thus

it allows researchers to easily integrate and test their own

components in the system.

The main aspects of the architecture in general are out-

lined in the following: feature extractors analyse low-level

audio and video signals, and provide feature vectors (see

Sect. 4 for details on audio features) periodically (10 ms) to

the analysers which process the low-level features and pro-

duce e.g. a representation of the current user state, in terms

1http://www.semaine-project.eu/

of e.g. epistemic-affective states (emotion, interest, etc.), or

a representation of the user’s facial state in terms of facial

action units. Another typical output of an analyser is the spo-

ken word chain, or keywords uttered by the user. Since, e.g.

automatic speech recognition or emotion recognition might

benefit from the dialogue context or user profiles at a higher

level, interpreter components are contained in the system

to address this issue. Such components evaluate the user

state in the context of the current state of information re-

garding the user (including input such as emotion or words

obtained from the analysers), the dialog, and the agent itself,

and update these information states. Interpreter components

include the turn-taking interpreter, for example, which uses

low-level audio/video features such as energy, pitch, pres-

ence of face, and direction of view, for example, along with

user state information to determine whether the user has a

turn or the agent should take the turn. Another interpreter

component is the utterance interpreter. It analyses the words

uttered by the user and assigns function related attributes

like agree/disagree, positive/negative, etc. to the words and

utterances.

In the future an interpreter for choosing the most likely

ASR hypothesis based on the current dialogue state could

be added, thereby creating a link between the dialogue state

and the user state.

The next group of components is a set of action proposers

which produce agent action candidates independently from

one another. The action proposers take their input mainly

from the user, dialog, and agent state. To allow for a flexible

architecture a link from the features to the action proposers

is included in the architecture for future use. The current

set of action proposers included the following components:

an utterance producer which will propose the agent’s next

verbal utterance, given the dialog history, the user’s emotion,

http://www.semaine-project.eu/
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Fig. 2 Faces of virtual

characters used in the

SEMAINE system (left

to right): Prudence, Spike,

Obadiah, and Poppy

the topic under discussion, and the agent’s own emotion. An

automatic backchannel generator identifies suitable points

in time to emit a backchannel (head nod, or vocalisation, for

example). A mimicry component will propose to imitate, to

some extent, the user’s low-level behaviour. Finally, a non-

verbal behaviour component needs to continuously generate

some ‘background’ behaviour, especially when the agent is

listening but also when it is speaking. The actions proposed

may be contradictory, and thus must be filtered by an action

selection component. A selected action is converted from a

description in terms of its functions into a behaviour plan,

which is then realised in terms of low-level data that can be

used directly by a player.

The SEMAINE system allows the user to choose between

four different virtual agent characters to talk to. These are

shown in Fig. 2 and are detailed in [7]. Each character has a

different ‘personality’: ‘Prudence’ is matter-of-fact, ‘Spike’

is aggressive, ‘Obadiah’ is pessimistic, and ‘Poppy’ is cheer-

ful. The character selection in the current system can be

performed manually by clicking on the character’s face in

the control GUI, or far more naturally by simply telling the

character one is currently talking to, that one wishes to talk

to someone else. In certain cases where the system detects

problems in the conversation, e.g. due to a bored user or

highly aroused/annoyed user, it might by itself ask the user

if he or she wants to talk to somebody else.

4 Features

Despite the finding that multimodal systems which also in-

clude vision-based features might lead to better recognition

performance [4, 5, 33, 45], this article exclusively focuses on

audio features. Yet, in principle our approach allows for the

inclusion features from the video channel or other modali-

ties, provided that early fusion is applied. Acoustic features

from the speech signal were extracted using the openSMILE

feature extractor [8], which was also used to provide fea-

tures for the Interspeech 2009 Emotion Challenge [34]. Fur-

ther, a keyword spotter generates linguistic features that are

processed frame-wisely using early fusion.

The following two sub-sections describe the acoustic and

linguistic features which are used for emotion recognition in

detail.

Table 1 28 low-level audio features for the propagated frame-based

emotion analysis (column C) and 39 features for turn-based (supra-

segmental) reference evaluations (column T)

Feature Group Features in Group C T

Signal energy Root mean-square and log.

energy

1 2

Pitch Fundamental frequency F0, 2

measures for probability of

voicing

1 3

Voice quality Harmonics-to-noise ratio 1 1

Cepstral MFCC 12 16

Time signal Zero-crossing-rate, max. and

min. value, DC component

1 4

Spectral Energy in bands 0–250 Hz,

0–650 Hz, 250–650 Hz,

1000–4000 Hz

4 4

10%, 25%, 50%, 75%, and 90%

roll-off

5 5

Centroid, flux, and relative

position of maximum and

minimum

3 4

SUM: 28 39

4.1 Acoustic features

As opposed to previous work in the field of emotion recog-

nition (e.g. [32, 44]), the propagated approach in this work

does not rely on supra-segmental modelling based on sta-

tistical functionals applied to low-level audio descriptors.

The featured Long Short-Term Memory (LSTM) Recur-

rent Neural Networks (RNN) are capable of modelling all

necessary long-range dependencies, as will be explained in

Sect. 5. The 28 low-level descriptors (LLD) extracted from

the audio signal for fully continuous emotion recognition are

summarised in Table 1 (column ‘C’). The descriptors were

extracted every 20 ms for overlapping frames with a frame-

length of 32 ms. First order delta coefficients are appended

to the 28 LLD, resulting in a 28 · 2 = 56 dimensional feature

vector for each frame.

On an AMD Phenom 64 bit CPU at 2.2 GHz, the open-

SMILE feature extraction module [8], which is used in our

frame-based recognition system, runs on-line with a real-

time factor (RTF) of 0.01.

In order to compare results of time-continuous emo-

tion recognition to the turn-based emotion recognition task

from [44], a traditional, large, and open set of features is
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Table 2 36 statistical functionals applied to the low-level descriptor

contours for turn-based emotion analysis

Functionals #

Maximum/minimum value and relative position 4

Range (max.-min.) 1

Mean and mean of absolute values 2

Max.-mean, min.-mean 2

Quartiles and inter-quartile ranges 6

95%, and 98% percentile 2

Std. deviation, variance, kurtosis, skewness 4

Centroid of contour 1

Linear regression coefficients and approximation error 4

Quadratic regression coefficients and approximation error 5

Zero-crossing rate 1

25% down-level time, 75% up-level time, rise-time, fall-time 4

generated by applying statistical functionals to low-level-

descriptor contours. An extended set of 39 low-level de-

scriptors (detailed in Table 1, column ‘T’) is extracted, first

and second order delta coefficients are appended, and 36

functionals are applied to each of the resulting 117 low-

level descriptor contours. This results in a total of 4 212 turn-

based features. The 36 functionals are described in Table 2.

The 4 212 features for turn-based emotion recognition are

reduced to relevant features for activation and valence inde-

pendently by a Correlation based Feature Subset selection

(CFS) [43]. 60 features for activation and 64 features for

valence are thereby automatically selected. Please note that

in contrast, continuous (frame-based) emotion recognition

with LSTM-RNN uses the full set of 28 · 2 = 56 features

(28 acoustic low-level descriptors with 28 delta coefficients

appended) without further reduction by feature selection.

All features (turn-based functionals and low-level fea-

tures) are standardised to have zero mean and unit standard

deviation. Both, means and variances are computed from the

training data only and are applied for normalising training

and test data. Therefore the standardisation can also be per-

formed in an on-line recognition application.

4.2 Linguistic features

Knowledge about the spoken content is incorporated at the

frame level via early fusion. The 56 dimensional low-level

acoustic feature vector (28 LLD with delta coefficients ap-

pended, see Sect. 4.1) is extended by appending Nl binary

linguistic features. Thereby each binary feature corresponds

to the occurrence of one of 56 keywords that were shown

to be correlated to either valence, activation, or both. The

keywords were selected out of a lexicon of size 1 915 by

applying CFS on the training set. Thereby 21 out of 56

keywords were found to be correlated to activation, while

40 were found to be correlated to valence. Thus, Nl = 21

binary linguistic features are append to the acoustic fea-

tures for activation classification tasks and Nl = 40 for va-

lence classification. Keywords like again, angry, assertive,

very etc. were selected for activation, and typical keywords

correlated to valence where e.g. good, great, lovely, or

totally. The 56 keywords consisted of nouns (14%), ad-

verbs/adjectives (30%), verbs (18%), and others such as pro-

nouns or prepositions (38%).

Note that using a single linguistic feature containing the

current word identity in form of a word index would not

be feasible with LSTM networks since they assume that the

absolute value of a feature is always correlated or propor-

tional to the ‘intensity’ of the corresponding feature. This,

however, would not be true for a ‘word index feature’. Our

technique is related to Bag of Words modelling [18]. How-

ever, since our approach bases on incremental processing,

only one keyword can occur at a given time frame.

For combined acoustic-linguistic analysis, a short buffer

(1–4 seconds, depending on keyword length and desired ac-

curacy) has to be included in order to allow the keyword

spotter to provide the binary features after the keyword has

been decoded. Yet, this causes only a short delay and does

not contradict our principle of on-line recognition because

linguistic features can be delivered (although slightly de-

layed) while the user is speaking.

The keyword spotter was trained on the TIMIT database

and re-trained on the training split of the Sensitive Artificial

Listener database (see Sect. 6) to allow a better modelling of

emotionally coloured and spontaneous speech (see [48] for

a detailed description of the keyword spotter model archi-

tecture and parameterisation).

A true positive rate of 58.5% at a false positive rate of

5.5% is achieved on the SAL test set by the recogniser used

within the presented system. This shows the difficulty of de-

tecting (partly very short) keywords in emotionally coloured

spontaneous speech (for comparison: [48] reports 97.5%

true positive rate on TIMIT at a false positive rate of under

1.4% using the same approach).

5 LSTM-RNN

As a well suited technique for on-line regression of emotion

dimensions we applied a specialised neural network archi-

tecture called Long Short-Term Memory RNN [17]. Tradi-

tional feed-forward neural networks such as the multi-layer

perceptron are not suitable for classification of connected

time series, as they are static classifiers which classify data

frame by frame without considering neighbouring frames.

In order to use neural networks for classification of con-

nected time series, recurrent networks can be used. There,

one or more of the hidden network layers is connected to
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Fig. 3 LSTM memory block

consisting of one memory cell:

the input, output, and forget

gates collect activations from

inside and outside the block

which control the cell through

multiplicative units (depicted as

small circles); input, output, and

forget gate scale input, output,

and internal state respectively;

g and h denote activation

functions; the recurrent

connection of fixed weight 1.0

maintains the internal state

itself. Thus, the network can learn to model past events by

adjusting the weights of the feed-back connection(s).

However, analysis of the error flow in traditional recur-

rent neural nets resulted in the finding that long time lags

are inaccessible to existing RNN since the backpropagated

error either blows up or decays over time (vanishing gradient

problem). This lead to various attempts to address the prob-

lem of vanishing gradients for RNN, including non-gradient

based training [2], time-delay networks [19, 20, 24], and hi-

erarchical sequence compression [25]. One of the most ef-

fective techniques is the Long Short-Term Memory archi-

tecture [17], which is able to store information in linear

memory cells over a longer period of time. LSTM archi-

tectures have shown good performance in many tasks for

which context modelling is essential, e.g. phoneme recog-

nition [12], keyword spotting [9, 46], handwriting recogni-

tion [14, 21], noise modelling [49], and emotion recogni-

tion from speech [44, 47]. An LSTM layer is composed of

recurrently connected memory blocks, each of which con-

tains one or more recurrently connected memory cells (cf.

Fig. 3), along with three multiplicative ‘gate’ units: the in-

put, output, and forget gates. The cell input is multiplied by

the activation of the input gate, the cell output by that of the

output gate, and the previous cell values by the forget gate.

Their effect is to allow the network to store and retrieve in-

formation over long periods of time, thereby giving access

to long-range context information, which in turn is essential

when trying to recognise emotion on a frame level. A more

detailed explanation of the LSTM principle can be found

in [11].

In LSTM networks, standard feed-forward layers, stan-

dard recurrent layers, and LSTM layers can be combined.

Thus, a typical network using LSTM memory cells con-

sists of a standard feed-forward input layer with Ni units,

where Ni is equal to the number of input features, one or

more LSTM (and optionally standard recurrent) hidden lay-

ers consisting of 50–200 memory blocks containing 1–8

LSTM cells each, and one feed-forward output layer with

No units, where No is equal to the number of desired output

dimensions or classes.

A further extension of LSTM-RNN is the use of bidi-

rectional networks (see Fig. 4), resulting in Bidirectional

Long Short-Term Memory Recurrent Neural Networks

(BLSTM-RNN) [36]. This method is applied especially for

speech recognition tasks [10, 12], to model anticipatory co-

articulation effects. Thereby each hidden layer is duplicated,

while one layer processes the inputs forwards and the other

backwards.

The two hidden layers are connected to the same output

layer, which is a standard feed-forward layer and serves the

purpose of combining the activations from the forward and

the backward hidden layer(s).

One major drawback of this architecture is that the entire

input sequence must be available beforehand, which makes

this architecture unsuitable for on-line classification. There-

fore, we will not put our primary focus on this architecture,
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Fig. 4 Bidirectional Recurrent

Neural Network

even though we will show by a few exemplary results, that

this bidirectional network architecture yields better results

than the unidirectional architecture (Sect. 8).

LSTM-RNN and BLSTM-RNN can both be trained via

standard backpropagation through time (BPTT) [42]. A vari-

ant of the standard backpropagation algorithm is Resilient

Propagation (rProp) [23], where only the sign of the error

gradient is considered for network weight updates, not the

absolute value multiplied by a learn rate parameter. Resilient

propagation produces more stable results and thus has out-

performed standard backpropagation on many tasks espe-

cially with respect to the number of training iterations re-

quired. Thus, resilient propagation is used in our evalua-

tions. More details on the configurations of the specific net-

works used for evaluations within this work can be found in

Sect. 7.

In contrast to the BLSTM-RNN which requires future

speech frames, and is therefore more suited for off-line

processing, the LSTM-RNN can operate in real-time at a

real-time factor of 0.085 on an AMD Phenom 64 bit CPU at

2.2 GHz.

6 Database

Many small to mid-size emotional speech databases exist,

where emotion is labelled as discrete classes and often only

emotional prototypes are contained, e.g. [3] or [39]. Further,

there are databases in which emotion is labelled turn-wise

on a continuous valence-activation scale such as the Vera

am Mittag (VAM) corpus [16]. For continuous recognition

of emotion in time as well as in a 2-D space spanned by ac-

tivation and valence, new databases and different annotation

techniques are required. Such an annotation tool is FEEL-

trace, which was introduced in [6]. The first, and so far only,

naturalistic database annotated using the FEELtrace system,

which is made available to researchers is the Belfast natural-

istic sub-set of the HUMAINE database [7]. This sub-set is

also known as the Belfast Sensitive Artificial Listener (SAL)

data and will be used for all experiments in this article.

The database contains 25 audio-visual recordings in total

from four speakers (two male, two female) with an average

recording length of 20 minutes per recording session and

2 recording sessions per speaker. The recordings were ob-

tained during natural human-computer conversations, which

were recorded using a Wizard-of-Oz SAL interface designed

to let users work through a range of emotional states. The

database and the recording procedure is described in more

detail in [7]. Data was labelled with respect to the emotional

dimensions valence and activation by four annotators con-

tinuously in real-time while listening to the recordings using

the FEELtrace system. The adjusted values for valence and

activation were sampled every 10 ms to obtain a temporal

quasi-continuum. Note that a certain delay is incorporated

into the annotations since the labellers require a finite time

to react to a change of emotion.

As ground truth the mean of all four annotators was com-

puted. The average Mean Squared Error (MSE) of the four

human annotators with respect to the mean value is 0.08 for

activation and 0.07 for valence, corresponding to a standard

deviation of 0.17 and 0.14, respectively.

For the speaker dependent experiments reported on in

this article the same training- and test-set splits as intro-

duced in [44] are used, in order to be able to compare re-

sults. Thereby, the 25 sequences are split into 16 training se-

quences and 9 test sequences. The test split has a total length

of 53.3 minutes whereas the training set has a length of 99.2

minutes.

Since only four speakers are contained in this data-set,

the training- and test-splits, which we focus on, are not



14 J Multimodal User Interfaces (2010) 3: 7–19

speaker disjunctive. Speaker dependent emotion recognition

is of significant practical importance, especially for the par-

adigm of virtual agents and sensitive listeners, since the lis-

tener can adapt it’s models to the current speaker and learn

speaker profiles. However, in order to provide informative

results for speaker independent performance, we addition-

ally use a speaker independent set (data from two speakers

is used for training and data from the other two speakers is

used for testing).

To obtain a baseline result by evaluating the LSTM-

RNN and the audio features on the same turn-based emotion

recognition task as in [44], the 25 recording sequences have

been split into turns using an energy based Voice Activity

Detection, where a ‘turn’ corresponds to the audio from the

end of one silence segment to the beginning of the next si-

lence segment. A total of 1 692 turns with an average length

of 3.5 seconds is accordingly contained in the database. The

average number of words per turn is 10.4. Training- and test

splits contain 1 102 and 590 turns, respectively. Labels for

each turn are computed by averaging the FEELtrace labels

for valence and activation over a complete turn.

Apart from the necessity to deal with continuous values

for time and emotion, the great challenge of emotion recog-

nition on the naturalistic SAL database is the fact that the

system must deal with all data—as observed and recorded—

and not only manually pre-selected ‘emotional prototypes’

as in many other databases. Note that there is usually a high

difference in accuracy between the tasks of prototypical and

non-prototypical emotion recognition [34, 35, 37]. E.g. on

the FAU AIBO corpus [1], which contains real-life non-

prototypical emotions, an unweighted average recall rate

of approximately 38% is achieved in [34] for a five class

problem. For a database of acted prototypical emotions with

seven classes [3], an unweighted average recall of approxi-

mately 85% is achieved in [35].

7 Evaluation

Four substantially different evaluations are performed:

– Turn-based emotion recognition with acoustic features as

a reference evaluation (turn.(A))

– Frame-based (time-continuous) emotion recognition with

acoustic features (cont.(A))

– Frame-based (time-continuous) emotion recognition with

linguistic features and acoustic and linguistic features

combined (cont.(L), cont.(A+L)).

Table 3 summarises the settings for the four evaluations.

Note that the BLSTM-RNN have two hidden layers, (one for

the forward direction and one for the backward direction),

each consisting of 50 memory blocks with one LSTM cell

per memory block.

Table 3 Evaluations performed and according configuration. Classi-

fiers: standard Recurrent Neural Networks (RNN), (bidirectional) Long

Short-Term Memory RNN ((B)LSTM), and Support Vector Regres-

sion (SVR). Nh is the size (number of LSTM memory blocks with one

LSTM memory cell each) of the single hidden layer of the LSTM-RNN

or each of the two hidden layers of the BLSTM-RNN

Eval. Classifier Features Nh

Turn.(A) (B)LSTM, RNN, SVR Acoustic 50

Cont.(A) (B)LSTM, RNN Acoustic 50

Cont.(L) (B)LSTM, RNN Linguistic 50

Cont.(A+L) (B)LSTM, RNN Ac. & ling. 70

As a common continuous recognition technique, regres-

sion by Support-Vector-Regression (SVR) is performed for

comparison [15, 43, 44]. The Support-Vector-Regression

used a polynomial kernel function of degree 1, complexity

C = 1.0, and Sequential Minimal Optimisation (SMO). In

order to show the true benefit of LSTM context modelling, a

standard recurrent network with one hidden layer having 50

neurons was furthermore evaluated.

Due to the increased size of the combined acoustic-

linguistic feature vector the LSTM network size is increased

from 50 memory blocks to 70 memory blocks (cont.(A+L)).

For all LSTM and BLSTM evaluations, experiments where

static noise with a standard deviation of σn = 0.3 is added

to the features of the training data are conducted in addi-

tion to those experiments where no static noise was added

to the features. This technique is claimed to improve gener-

alisation of the networks and thus can increase performance

on unknown data [13]. During training and evaluation all

turns were presented to the network in the correct temporal

order so that—in case of turn-based recognition—the clas-

sifier can make use of (bidirectional) context between turns.

The training algorithm for the LSTM and BLSTM net-

works converged after 100–200 epochs.

The obtained (B)LSTM-RNN predictions x[n] at time n

(frame/turn index) are smoothed via first order low-pass fil-

tering using the following equation (xs[n] denotes the fil-

tered predictions):

xs[n] = αxs[n − 1] + (1 − α) · x[n] (1)

An α of 0.99 was used for frame-based emotion recogni-

tion and an α of 0.7 was used for turn-based recognition.

8 Results and discussion

This section presents and discusses the results obtained for

the evaluations described in Sect. 7. All results are given as

cross correlation coefficient (CC), measuring the similarity

between the annotations and the classifier outputs. Thereby
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Table 4 Correlation coefficients (CC) for activation (upper half of the

table) and valence (lower half) obtained with Long Short-Term Mem-

ory (LSTM), bidirectional LSTM (BLSTM), Support Vector Regres-

sion (SVR), and standard Recurrent Neural Networks (RNN); speaker

dependent tests; turn-based recognition (turn.) and time-continuous,

frame-wise recognition (cont.); static Gaussian noise with standard de-

viation σn = 0.3 added to training data, and unmodified training data

(σn = 0); A: acoustic features, L: linguistic features, A+L: acoustic

and linguistic features

Model σn Turn.

(A)

Cont.

(A) (L) (A+L)

CC for activation (speaker dependent)

BLSTM 0 0.51 0.46 0.18 0.37

BLSTM 0.3 0.57 0.46 0.15 0.51

LSTM 0 0.56 0.47 0.24 0.46

LSTM 0.3 0.53 0.42 0.32 0.13

RNN 0.0 0.40 0.03 0.18 0.02

SVR 0.0 0.30 – – –

CC for valence (speaker dependent)

BLSTM 0 0.37 0.54 0.42 0.55

BLSTM 0.3 0.31 0.51 0.16 0.34

LSTM 0 0.26 0.48 0.42 0.42

LSTM 0.3 0.37 0.37 0.32 0.53

RNN 0.0 0.28 0.37 0.14 0.38

SVR 0.0 0.28 – – –

a correlation coefficient of 1.0 corresponds to perfect pre-

diction whereas a CC of 0.0 indicates chance level. Note

that the linear or quadratic error measures are not the best

measure for emotion recognition performance. Rather, the

correlation coefficient should be preferred since it measures

the ability of the network to follow the labels in general.

Offsets and ‘noise’ in the result do not influence the CC as

much as they influence the mean squared error, for example.

The upper part of Table 4 shows the correlation coeffi-

cients for the prediction of activation. Best results can be ob-

tained when using a turn-based approach, however, a time-

continuous predictor using acoustic features achieves com-

parable results (a CC of 0.46 and 0.47 for the BLSTM and

the LSTM, respectively). In most cases, the BLSTM slightly

outperforms the unidirectional LSTM. Turn-based acoustic

analysis was also carried out applying SVR which gave sig-

nificantly poorer results (CC of 0.30). Further evidence that

classifiers using long range contextual information prevail

over conventional predictors was collected when evaluating

standard RNNs: the turn-based prediction of activation using

an RNN as described in Sect. 7 with acoustic features leads

to a CC of only 0.40. In case of continuous classification the

CC of RNN prediction is as low as 0.03 which is close to the

chance level of 0. Thus, the RNN is not able to model the

long range context necessary for the frame-based activation

recognition, while in contrast it is comparably well suited

for turn-wise recognition. The short-term context captured

by the RNN seems to be beneficial here (RNN outperform

SVR), as adjacent turns seem to have similar emotion labels.

In contrast to the prediction of activation, the recognition

of valence profits from frame-based models as can be seen

in the lower part of Table 4. A possible explanation might

be that valence is conveyed more by spectral and linguistic

cues, while activation is conveyed more by prosody. Thus,

prosody for activation is captured well by supra-segmental

modelling. However for valence, longer terms might smear

spectral and linguistic information and thus supra-segmental

modelling on a high level is not suited well. Smaller segment

sizes, e.g. words as investigated in [28] might improve the

result for supra-segmental modelling. This finding is under-

mined by the fact that standard RNNs perform much better

for valence (acoustic features) than for activation (CC 0.37

and 0.03, respectively), which shows that valence informa-

tion is conveyed more locally, while activation information

is conveyed over a longer period of time.

Please note further, that valence is generally harder to de-

termine from the acoustic signal than activation [44]. When

exclusively using acoustic features, the continuous approach

outperforms the corresponding turn-based RNNs. A further

performance gain can be achieved when adding linguistic

features, resulting in a CC of 0.53 and 0.55 for the LSTM

and the BLSTM, respectively. Again, SVR can not compete

with context sensitive LSTM networks (CC of 0.28 using

only acoustic features).

Comparing performances for acoustic and linguistic fea-

tures separately, we see that acoustic features generally are

superior to linguistic ones, however, the combination of both

slightly improves performance in some cases and decreases

performance in other settings. No clear trend is visible, ex-

cept that the overall best result for each dimension is most

often achieved with acoustic and linguistic features com-

bined. A notable exception is the performance of CC = 0.13

for activation with LSTM and combined features (upper part

of Table 4). Obviously, in this case the training algorithm

converged in a local minimum and was aborted too early.

Note that during training we used the root mean square

(RMS) error as target function while we report the corre-

lation coefficient as performance measure. Optimising with

respect to the correlation coefficient could therefore be an

interesting alternative for future investigations in order to

improve training stability.

Figures 5(a) and 5(b) visualise the prediction quality of

turn-based LSTM networks. Both, the annotation and the

LSTM prediction are plotted over time. Obviously, activa-

tion (Fig. 5(a)) is predicted more accurately.

The prediction of activation and valence using a continu-

ous LSTM is shown in Figs. 5(c) and 5(d). Still the estima-

tion of valence remains challenging, however, when com-

paring Figs. 5(d) and 5(b), the benefit of time-continuous
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Table 5 Correlation coefficients (CC) for activation (act.) and va-

lence (val.) obtained with Long Short-Term Memory (LSTM), and

bidirectional LSTM (BLSTM); speaker independent tests; for turn-

based recognition (turn.) and time-continuous, frame-wise recognition

(cont.); static Gaussian noise with standard deviation σn = 0.3 added to

training data, and unmodified training data (σn = 0); acoustic features

only

Model σn Turn. Cont.

Act. Val. Act. Val.

CC for val./act. (speaker independent)

BLSTM 0 0.44 −0.05 0.26 0.03

BLSTM 0.3 0.46 0.14 0.53 0.39

LSTM 0 0.34 0.06 0.14 0.16

LSTM 0.3 0.30 −0.26 0.25 0.32

valence prediction can be retraced for many speech seg-

ments. Note that partly a better correlation coefficient could

be obtained when scaling the BLSTM output activations by

approximately 1.3. Yet, we decided to display the raw out-

puts in order to give an impression of the intrinsic prediction

quality without any post-processing.

Finally, we provide speaker independent recognition re-

sults in Table 5 and a plot comparing speaker independent

recognition (Fig. 6(b)) with speaker dependent recognition

(Fig. 6(a)) of activation. An interesting observation can be

made here: adding static noise to the training data signifi-

cantly improves results in the speaker independent test for

both activation and valence, thus undermining the theory

that a better generalisation is achieved by this technique (see

Sect. 7).

9 Conclusion and outlook

This article presented a framework for fully time-continuous

affect recognition in an emotional space spanned by activa-

tion, valence, and time. Since our system operates in real-

time, it can be applied for virtual agents as the described SE-

MAINE system, which require an incremental prediction of

the user’s emotion at every time frame. Our approach can be

seen as a first step towards closing the gap between speech

recognition—where incremental processing is already state-

of-the-art—and emotion recognition, which so far mostly

focuses on classifying predefined speech segments only at

the end of a spoken utterance.

For the prediction of valence, which is known to be the

most challenging emotional dimension, our time-continuous

recognition architecture even outperforms a turn-based ap-

proach. A further performance gain was achieved by includ-

ing linguistic features.

Of course the inclusion of other emotional dimensions

(such as dominance or control) into our framework is also F
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possible, provided that a sufficient correlation between the

dimension of interest and the acoustic/linguistic features ex-

ists. An important post-processing step which deserves fur-

ther investigation is the quantisation of continuous values for

the emotional dimensions before passing the classifier out-

put to the dialogue management, e.g. by clustering points in

the emotional space [47].

Future works will focus on investigating the benefit of

including further feature types such as different kinds of lin-

guistic features and vision features into a time-continuous

context sensitive emotion recognition framework. Also the

LSTM architecture and parameterisation could be improved

by including more hidden layers, using different layer sizes,

and especially training on larger databases, once available.

Since we observed improved results for bidirectional

LSTM networks, which however are difficult to implement

in a causal real-time framework, the investigation of the po-

tential of BLSTM-RNN for on-line recognition is exceed-

ingly promising. A possible approach would be a Tandem

system with an LSTM-RNN that produces immediate out-

puts which are refined over time by a BLSTM as more

frames become available.

Even though the amount of social competence our emo-

tion recognition framework can incorporate into a virtual

agent remains limited and cannot fully compete with human

affect recognition quality and power of observation, three

important preconditions for future conversational agents are

met: the inclusion of contextual information, the possibility

to deliver an estimate of the user’s affect at every time frame,

and operation in real-time.
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