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Abstract—In this paper, sequential or “on-line” hidden Mar-

kov model (HMM) signal processing schemes are derived and

their performance illustrated in simulation studies. The on-line

algorithms are sequential expectation maximization (EM)

schemes and are derived by using stochastic approximations to

maximize the Kullback-Leibler information measure. The

whemes can be implemented either as filters or fixed-lag or

.wtooth-lag smoothers. They yield estimates of the HMM pa-

;meters including transition probabilities, Markov state lev-

cis, and noise variance. In contrast to the off-line EM algorithm

(Baum Welch scheme) which uses the fixed-interval “forward-

backward” scheme, the on-line schemes have significantly re-

duced memory requirements, improved convergence (as shown

in simulations), and can estimate HMM parameters that vary

slowly with time or undergo infrequent jump changes.

Using similar techniques we also derive on-line schemes to

extract finite-state Markov chains imbedded in a mixture of

white Gaussian noise (WGN) and deterministic signals of known

;’,lnctional form with unknown parameters, In particular, de-

:rministic periodic signals with unknown and time-varying

amplitudes and phases are considered. Simulations presented

show that these schemes satisfactorily estimate the HMM pa-

rameters and also the time-varying amplitudes and phases.

I. INTRODUCTION

I
N this paper, sequential or ‘‘on-line” hidden Markov

model (HMM) signal processing schemes are derived

‘ld used to extract finite-state homogeneous Markov

.ains imbedded in white Gaussian noise. The on-line al-
gorithms are sequential EM schemes and are derived by

using stochastic approximations to maximize the Kull-

back-Leibler (KL) information measure. For sufficiently

long data sequences, these schemes yield accurate esti-

mates of the HMM parameters including transition prob-

tibilities, Markov state levels, and noise statistics.

Our work is motivated by two main applications:

i ) Neurobiological signal processing applications: The

lsmission of channel currents in cell membranes is

,nmonly modeled as a finite-state homogeneous Mar-
Aov chain [1]. Such signals are invariably contaminated
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by background noise from electrodes, amplifiers, etc. [2].

This background noise is very often modeled as white

Gaussian noise (WGN). The Markov state levels in par-

ticular provide useful information to the neurobiologists

about the dynamics of the propagation of nerve impulses.

However, the transition probabilities and Markov levels

slowly drift with time due to fluctuations in the experi-

mental environment. Hence the necessity of on-line tech-

niques.

2) Communication systems: In the modeling of com-

munication systems, often discrete-level signals that are

assumed to be homogeneous Markov are imbedded in

noise, which for simplicity is assumed to be WGN. Often

such chains are only locally stationary, i.e., the transition

probabilities slowly vary with time. We have recently used

similar on-line techniques to that developed in this paper

in the “blind equalization” of time-varying FIR channels

with Markov inputs [3].

In this paper we also derive on-line schemes to extract

finite-state Markov chains imbedded in a mixture of WGN

and deterministic signals of known functional form with

unknown time-varying parameters. Two such examples of

deterministic disturbances are considered:

1) Periodic or almost periodic disturbances with un-

known phases and amplitudes of the components of the

periodic signal. An example of such periodic disturbances

with approximately known frequency components (fun-

damental and harmonics) is the periodic “hum” from the

electricity mains which can be too costly to eliminate from

some experimental environments.

2) Polynomial drift in the states of the Markov pro-

cess. Such polynomial drift often occurs in cell-mem-

brane channel measurements due to slow development of

liquid junction potential arising from two different solu-

tions of ionic compositions [4].

The problem of extracting finite-state Markov chains in

WGN has been studied extensively in the off-line case us-

ing the expectation maximization (EM) algorithm [5]-[9].

The E step is noncausal, involving the forward-backward

algorithm which is a “fixed-interval smoothing” scheme

since the estimates are based on the entire data batch of

observations. Repeated applications of the E step along

with the M step (Baum-Welch [6]–[8] reestimation for-

mulas) yield maximum likelihood estimates of the signal
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model parameters. We have also recently developed sim-

ilar off-line schemes based on the EM algorithm that ef-

fectively extract the Markov signals in a mixture of WGN

and deterministic interferences [ 10].

A limitation of the off-line EM methods is the “curse

of dimensionality” which arises because the required

computational effort, speed, and memory requirements are

in proportion to the square of the number of states of the

finite Markov model. Memory requirements are also pro-

portional to the length of data being processed. Hence the

incentive to explore on-line (sequential) algorithms to i)

seek improvements in terms of memory and computa-

tional speed and facilitate implementation on a small per-

sonal computer; ii) cope with time-varying HMM param-

eters such as transition probabilities and state levels. For

example, the off-line schemes for extracting Markov

chains from a mixture of WGN and deterministic inter-

ferences assume constant parameters and this is unrealis-

tic. Often the amplitude phase of the ac mains and so the

ac hum can change slowly with time. The on-line schemes

proposed here deal with amplitudes and phases that vary

slowly with time or undergo infrequent jump changes.

Sequential algorithms have been proposed in [11] for

the case where the imbedded chain is independent (rather

than Markov). Specifically, in [11] a “sequential” EM

algorithm is presented which is based on maximizing the

KL information measure. In this paper we develop on-line

schemes for the case when the imbedded signal is a Mar-

kov chain. In such a case, it is necessary to replace the

fixed-interval forward-backward variables of the EM al-

gorithm by filtered or fixed-lag variables to obtain an ef-

fective reestimation scheme.

The concept of using fixed-lag smoothed estimates in

on-line signal processing is well understood for linear sto-

chastic signal models [12]. Also, its application to finite-

state Markov models has been studied in [13]. The results

in [13] evolved from discretizing Wonham’s stochastic

differential equation [ 14] yielding fixed-point smoothing

equations leading to fixed-lag smoothing equations. The

algorithms proposed in [13], [ 14] even for filtering

(causal) case. appear subject to numerical instability

problems. Here we develop smoothing schemes based on

hidden Markov models that are numerically stable in that

none of the variables can grow unstable. Also the algo-

rithms in [ 13] assume complete knowledge of the signal

model whereas here we adaptively estimate the signal

model while achieving adaptive signal estimates.

Whereas Baum-Welch reestimation is done on a block

of data (typically a few thousand observations) and uses

fixed-interval estimates, our reestimation scheme is de-
signed to be implemented recursively, thereby achieving

on-line estimation. Thus in our on-line recursive estima-

tion formulas the signal model estimates and signal sta-

tistics are updated at each time instant so that the KL mea-

sure of the updated model is greater than that of the model

in the previous time

propnate forgetting

This results in truly

instant. To improve convergence ap-

of past estimates is also introduced.

on-line reestimation in that for Suff-

iciently long data sequences only one pass is required

through the data to learn the signal model. Simulations

show that the on-line scheme has improved convergence

compared to the off-line EM algorithm which has linear

convergence.

For efficient implementation of the on-line schemes, we

develop fixed- and “sawtooth’ ‘-lag schemes. The “saw-

tooth’’-lag scheme is a variable-lag scheme with the lag

varying in a sawtooth fashion. It is computationally more

efficient than the fixed-lag scheme with the computational

cost independent of the lag. Typically with a lag of 20 or

so, our sawtooth-lag and fixed-lag smoothed estimates ap-

proach the optimal fixed interval smoothed estimate of the

forward-backward algorithm. Simulations show that

larger lags do not yield significantly improved smoothed

estimates.

The paper is organized as follows: In Section H we for-

mulate our signal model as a hidden Markov model, de-

fine our estimation objectives, and review standard HMM

techniques. We derive our on-line HMM estimation

scheme in Section 111.In Section IV, fixed and sawtooth-

Iag smoothing schemes are presented. In Section V, we

consider the case when in addition to WGN, deterministic

interferences are also present. Simulation studies are pre-

sented in Section VI and some conclusions are drawn in

Section VII.

H. HIDDEN MARKOV MODEL SIGNAL PROCESSING

In this section we describe the signal model, define our

on-line estimation objectives, and briefly review the off-

line EM algorithm.

A. Signal Model

Let Sk be a finite-state, discrete-time, homogeneous,

first-order Markov process. Consequently, the state Skat

time k is one of a finite number N of states q = ql, qz,
. . . , qN. The transition probability matrix is A = (au)

where ati = P(sk +, =
1+

9j ISk = (/i). Of course ati 2 0,
-, =I a,, = 1. for each i. Let n denote the initial state

probability vector: n = (mi), r, = P(s{ = qi).

Now assume that the Markov process Sk is hidden, that

is, indirectly observed by measurements y~ where

y~ = Sk + w~, w~ - N[o. 0;]. (2.1)

Here }tk is zero-mean white Gaussian noise (WGN). De-

note the sequence {s, , s?, . . - , Sk} as .$L and the sequence

{y,,. v~, “ “ “ , Y~}by y~. AISO let Y$ = {y,, y,~l, . “ - ,
yk). Define the vector of parameterized probability dens-

ities which we shall loosely call symbol probabilities’ as

b(”) = (hi(”)) where

. (JXOI,)-’exp ( ‘(~k – q;)z/(20~~))

‘In some HMM applications. the observations belong to a finite alphabet

set. Then b,( yA) are probability mass functions. Hencethe term symbol

probabilities in the standard HMM literature,

1
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are assumed invariant of k, with an independence property

f(Yklu = qi~sk-l = qji y~-1) ‘f(yklsk = q;).

The HMM is denoted A = (A, q, a;, n).

For the rest of this paper, we shall use ~(” ) to denote

probability densities (discrete as well as continuous).

In this paper we are concerned with recursively reesti-

Iating the HMM at each time instant. Denote the model

-stirnate at time k > 1 as & = (A (k), q(k), u;(k)). Our

initial guess of the model is denoted as ~. Let A0 denote

the true model. Also given ~k, let

b; (k, yk) = ~( ykISk = qi (k))

= (& Uw(k))-’ exp (-(y~ - qi(k))2/

(2a;(k))).

Remark: We shall not consider the estimation of n in

his paper. A reasonable estimate is: 7ri = y] /1 +A,k~(i)

where yl /1 +~,AO(i) is defined in (2.2). ■
Our Markov model is assumed to be first order for sim-

plicity. Extending the theory to mth order Markov pro-

cesses and semi-Markov processes is straightforward [20],

although the associated computations are more formid-

able. Aggregation (reduced state) estimation techniques

can be used as in [18] to simplify the computations.

B. Estimation Objectives

Given an ergodic sequence of observations, in this pa-

per we provide on-line solutions to the following two

problems. For comparison we also give the analogous ob-

jectives associated with standard off-line HMM process-

ing which uses the EM algorithm.

1) MAP State Estimation:

On-1ine: Let Ak-, = (k,, ~2, “ 0- , h~_,) denote the

equence of estimated models till time k – 1. At time k,

r’ora fixed-lag A > 0, estimate the a posterior probabil-

ity densities

~klk+A.Ah-l = (yk\k+A..i L-l(i));

~klk+&,,,_,(i) ~f(sk = qi[ y~+~, Ak_,). (2.2)

So for A = O, ~~1~+~,,iL_, is the filtered Markov state

>\timate and for A > 0 it is the fixed-lag smoothed esti-

“ate. From y~lk+~,.4,_, (i), maximum a posleriori (MAP)

late estimates can be generated as

*MAP
sk = qj

wherej = arg max ~kl~+&&_l(i).
l~;~~

(2.3)

We show how to compute ~k,k+~,.i, _, in Section IV.

Off-line: Given the sequence Yr and signal model A,
estimate ~kI~(i) ~ ~(~k = qi I Y~, h). Again MAP state

.timates can be generated similarly to (2.3).

~kl T is computed from the forward-backward algorithm
[5] which has computational complexity O (ZV27’) per pass

and requires a memory of NT because all the “forward”

variables need to be stored.

2) Model Estimation:

On-line: Derive a sequential estimator yielding esti-

mates & of the true model A0 so as to maximize the KL

information measure. That is we derive an on-line scheme

by using the stochastic approximation algorithm on an off-

line scheme that improves the KL measure with each it-

eration. For a model h, the KL measure is defined as

(2.4)

In (2.4), Y( ykI~) denotes the marginal probability density

of yk and E { - IX0} denotes the statistical expectation with

respect to the tme model A0. It is easily shown [19] using

Jensen’s inequality that J(A) has a unique maximum at A

= A“, as long as the following identifiability assumption

holds: ~( Yk/A) = ~( YklAO) a.e. Yk implies A = AO.

Therefore by estimating Aksuch that J(Ak) increases with

k, for sufficiently large k our scheme yields & + A“. The

on-line scheme derived here is analogous to the sequential

EM algorithm developed in [15].

Or-line: Given Y~and model estimate X, reestimated the

model as ~ such that ~( YrI~) z j( Y~IA) with equality

holding when A is the ML estimate.

Off-line schemes for solving the two problems above

using the EM algorithm are presented in [5]. In Sections

III and IV, on-line solutions are presented.

3) Review of EM Algorithm (Baum - Welch Formu-

laes): The estimation of the HMM in the off-line case in-

volves the EM algorithm. It is an iterative algorithm; each

iteration consists of an expectation step (E step) and a

maximization step (M step).

E step: This involves computing Q.(h, ~) which is the

expectation of the log of the likelihood function of the

fully categorized data (see [11, pp. 84-91 ] for details),

i.e.,

M step: This involves finding ~ to_maximize Q(A, ~).

By doing so it follows that ~( Y~lA) z f( YT] A) with

equality holding when A is the ML model. The M step

yields the standard Baum-Welch equations for reestimat-

ing ~ = (~, ij, ~~., ~), see [5], [6] for details.

III. SEQUENTIAL HMM ESTIMATION SCHEME

We first present an off-line algorithm for maximizing

J(A). From this we straightforwardly derive a sequential

algorithm. Some implementation aspects of the equations

are then discussed.

Motivation: A direct recursive algorithm for estimat-

ing a HMM is obtained by using stochastic approxima-

tions to maximize the likelihood function. This yields:

Ak+, = A~ + g-}(Ak)d/~Aklog~(Yk*,lA~) (3.1)

where 5 (Ak) = il’ log ~( Yk+ 1I~k)/~~~ is the Fisher in-

formation matrix (FIM) of the “incomplete” data. How-

ever, this algorithm cannot be easily implemented since

it is not possible to express log f ( yk ]~k) or its derivatives

analytically; even in the simpler hidden independent chain
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case computing 5 is very difficult (see [ 1I, p. 207]). So

we shall derive a sequential scheme based on computing

FIM’s and score vectors of the ‘‘complete” data which

can be easily expressed analytically. Also, due to the

block diagonal structure of the complete data FIM, our

scheme requires only O(NZ) computations at each time

instant. Our algorithms are obtained by using stochastic

approximations to maximize the KL information measure

and are motivated by considerations leading to the EM

algorithm.

A. Off-line Algorithm for Maximizing KL Measure

Let X~denote the “complete” data, i.e. , X~ = (Si, Y~).

Then (using a reasoning similar to that in [19]) we have

f(x, ]A) = f(x, I l“,>A)f( Y, / A)

Iogf(yk[ A) =f(xkl x) – f(xkl Yk, A). (3.2)

Taking conditional expectations with respect to the ob-

servations at a parameter value A’ yields

log f(Yk\x) = E{logf(xklx)l Y~,x’}

– E{logf(x~] Y~,X)1 Y~,A’}. (3.3)

Denote

Q,(A’, A) =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE{logf(x,]x)]Y,,A’};

P~(A’,h)= E{logf(xk] Y~,X)l Y~,A’}. (3.4)

Remark: Q~(A’, A) is the conditional expectation of the

log likelihood of the complete data until time k. Recall

that in the EM algorithm described in Section II-B above,

Cl(h, ~) defined in (2.5) is simply Q,r(A~, ~) above. E
So by its definition in (2.4),

Y(A) = E{ Q~(A’, A)[A”} - E{ P,(A’, X)lx”}

= Q(A’, A) - P(A’. h) (say). (3.5’

Then from Jensen’s inequality. it follows (see [ 19. p

1652])

Q(A’, A) > ~(~’. h’) implies that J(A) > J(A’).

(3.6)

W.ii.,(j) =

fl,,k.A, ,(0 =

7flL.i,-l(o =

(,lk,i,-,(i, j) =

~ a,-[l,i,., (i)a,,(k -
,=!

N

Based on (3.6), we have the following off-line algorithm

for maximizing the KL measure:

Estimate h’4 1 as max a(~’, X) (3.7)
A

where X’, X” 1are the models at the Ah and 1 + 1th pass,

respectively.

B. Sequen[iul Algorithms

Because ~(h’, X) = E{ Q~(A’, h) IA“}, the algorithm

(3.7) gives the following sequential algorithm:

Let ~ be the initial model estimate.

Let A~= (Al,.”., Ak) denote the sequence of esti-

mated HMMs till time k based on the observations Y~.

Then given y~+ , at time k + 1

Estimate & + , as = max Qk + , (AL, A) (3.8)
A

Finally, for a T-point observation sequence, estimate

X“ as AT.

In (3.8)

Q~+l(A~> ~) ~ ~{log~( Y~+,, S~+,l X)l Y~+l, A~}.

(3.9)

Remark 1: Given appropriate regularity, it can be

shown (using results similar to those in [ 15]) that the al-

gorithm (3.8) converges a.s and in m.s. to the true param-

eter value. Also the limit distribution can be evaluated.

Remark 2: In the hidden independent chain case, al-

gorithm (3.8) specializes to the “recursive” EM algo-

rithm proposed in [1 i, p. 21 1]. ■

Sequential Variables: In order to implement algorithm

(3. 8), we define the following variables from which we

evaluate Q~ + I (A~, X):

~~1.i,.,(i) =f(y~,SL= q,[L,);

~ll~,h,l(i)‘f(y!+il.$l= q{.h-l) (3.10)

~,lk,l, ,(i) =f(s, = qil Y~, Ak_l);

talk. i, ,(i..~) =~~s{ = q{+SI+I = q,l YA,AA-I). (3.11)

The following two lemmas ore proved in the Appendix.

LeItIma 3.1: The sequential variables defined above are

computed as follows:

I)b,(k– I,yL), b (o,y,)~lm,,(. /) = ~] J (3.12)

~ a,,(t – l)b, (t - l..v, +,)6,*II,,.,, ,(j). 6LIL,~, ,(i) = 1 (3.13)
,=1

a,..i{ ,(i)p,l~,k,. !(i)
(3.14)

& ,..~,., (j)~rl~. k,.l(j),=1

a,,,,,.,(i)ati(t – l) fJ,+llt. h,-l(~)bj(t –– 1, Y,+I)

ZZCY f.A,_,(i)aij(~– l)~r+l[k,A,.!(~)~j(t – 1, yf+l)”
ij

(3.15)

1
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Lemma 3.2: Q~+, (A~, h) defined in (3.9) is evaluated

as
k+]

Qk+[(ffk> h) = ,;, &lk+l (&-1> ~)

N

+ ;?, ?l\k+l, A,-j (i) log ~i (3. 16)

where

NN

&lk+I(A, -l, ~) = i~,j~l ~r[k+\A,., (i, j) 1%%

N
1

+ i~l ~rlk+l. A,-l
‘i) ‘og Jzuw

(

_(Yf – qi)2
. exp

)2~: “
(3.17)

Stochastic Approximation Algorithm: We now present

a stochastic approximation algorithm to implement the se-

quential algorithm (3.8).

Let zk., (h~) be the Fisher information matrix of the

COII@t3tt3(fully CEiteorized) data, i.e., I&+I (~~) =
f

–d2Qk+l(Ak, ~)/8~ lk=~k.
Also let S (Xk, y~+, ) be the score vector of the incom-

plete data defined as

s(~k,yk+l) = ~S~+ll~+](A~, ~)/d~l~s~i.

Now consider the following theorem.

Z%eorem .?.3: Approximately given appropriate regu-

larity, recursion (3. 8) can be written as

~k+] = & + (~k+, ()@)-lS(&, yk+[). (3.18)

Remark 1: In [11, p. 207], where the hidden indepen-

~ent chain version of the theorem is considered, (3. 18) is

expressed in terms of the Fisher information matrix per k

sample points. So the right-hand side of [11, p. 207, eq.

6.4.7] is multiplied by k.

Remark 2: Instead of l;; ,, in general any sequence of

positive numbers K~ can be used in the stochastic approx-

imation as long as [19]

lim Kk=O, ~~,K~=co, k#l K;< M<m.
k-m

(3.19)

Recently, other noveI ways of choosing K~ have been pro-

posed in [21].

Remark 3: The regularity conditions for convergence

of (3. 18) are presented in [1 1]. Verification of these con-

ditions is not straightfonvard, see [11], [16] for details.

Remark 4: Effect of Initial Estimates: A theoretical

nalysis of the effect of initial estimates is beyond the
..$ope of this paper. We have carried out extensive simu-

lations with known variance UWup to 3.0 (with unit spac-

ing of the true states) and N = 4 with initial estimates of

f?im far away as b. away from the true values and have
not found initial conditions for which convergence to the

true model does not occur. We discuss the effect of initial

estimates in Section IV-A. ■

Proof By Taylor’s series expansion

Qk+ i (Ak, ~) = Qk+ I (Ak, ~k) + (~ – ~k)T

. (?Qk+ ,(Ak, ~)

a~ A=AA

~82Qk+1(Ak,K)
+;(A–hk)

ah 2 A=AA

“ (x – )@.

Maximizing this with respect to A and calling the maxi-

mum point & +,, we have

i3Qk+ , (&, ~)
~k+, = & + z;;,(~k) ax (3.20)

A=h

which corresponds to one step of the Newton Raphson

algorithm, initialized at ~k.

In order to proceed with the proof, recursive relation-

ships for Qk + I and its derivatives are required.

Recall from (3. 16) in Lemma (3.2) that

Q~+i(Ak> ~) = Q&(A&-l, ~) + ~~+llk+,(Ak, ~).

(3.21)

so,

8Qk+ I(Ak, h) = 8Qk(Ak_,, )$

a~ A=kk ah A=h

+ as~+llk+l(ffk, ~)

a~ A=AA

(3.22)

Now we assume that & minimizes Qk (Ak. ,, A), so that

dQk(A& I, A)/8x IX=hi = O. So (3.22) yields

8Qk+ ,(A~, ~) =6’.&+,lk+l(Ak,~)

ah A=AA a~ A=Ak

= s(~k, Yk+,) by definition.

(3.23)

Substituting this into (3.20) yields (3. 18). ❑

Remark: The above derivation is also analogous to that

of the well-known recursive prediction error (RPE) equa-

tions for model estimation [22, pp. 328-334]. Of course

in RPE the cost function is the prediction error while here

it is the KL measure. This insight arises from our current

work in developing RPE schemes for adaptive estimation

of HMM’s [23]. ■

7%eorem 3.4: For known A, recursion (3,8) can ex-

actly be implemented as (3. 18).

Proofi The proof is the same as [15, p. 265, theorem

3]. ❑

Remark: As proved in [15], Theorem 3.4 holds as long

as the distribution of ~k belongs to the exponential family

of distributions (which includes Gaussian distributions).
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case computing 9 is very difficult (see [ 11. p. 207]). So

we shall derive a sequential scheme based on computing

FIM’s and score vectors of the “complete” data which

can be easily expressed analytically. Also, due to the

block diagonal structure of the complete data FIM, our

scheme requires only O(NZ) computations at each time

instant. Our algorithms are obtained by using stochastic

approximations to maximize the KL information measure

and are motivated by considerations leading to the EM

algorithm.

A. Of-1ine Algorithm for Maximizing KL Measure

Let X~denote the “complete” data, i.e., X~ = (Sk, Y~).

Then (using a reasoning similar to that in [ 19]) we have

f(xk [x) =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(xk[l“,,Nf(y,[A)

Iogf(Yk/x)=“f(xklA)– f(xk[Yi,A). (3.2)

Taking conditional expectations with respect to the ob-

servations at a parameter value A’ yields

log f(Yk\A) = E{logf(xklx)l Y~,A’}

– E{logf(xk[ Y~, A)[ Y~, A’}. (3.3)

Denote

Q,(A’, x) = E{iogf(x,lx)[ Y,, A’};

P~(x’, A) = E{logf(xLl 1“~,X)1 Y~, A’}. (3.4)

Remark: Q~ (A’, A) is the conditional expectation of the

log likelihood of the complete data until time k. Recall

that in the EM algorithm described in Section II-B above,

Q.(A, ~) defined in (2.5) is simply Q~(Xr, ~) above. ■

So by its definition in (2.4),

J(h) = E{ Qk(h’, A)lh”} – E{ P,(x’, A) IAO}

= Q(A’. A) – F(h’, h) (say). (3.5)

Then from Jensen’s inequality. it follows (see [ 19, p.

1652])

~(~’, N > ~(~’, ~’) implies that Y(X) > -J(A’).

(3.6)

Oql.i,.l (j) =

D,IL.A, ,(0 =

-fflA,.\,-l(i~ =

~, lkd-, (i, j) =

lK.-. !>,\L\L 11<)1 ..> {JN >l(,,Y,\L. I>K()( P.>>l.% L,. Vt)l-. +1. (N{) 0, ,AUUU>l IYY.I

Based on (3.6), we have the following off-line algorithm

for maximizing the KL measure:

Estimate A’” ) as max Q(A’, h) (3.7)
A

where A’, h’ + 1are the models at the fth and f + lth pass,

respectively.

B. Sequential Algorithms

Because Q(A’, A) = .E{Q~(A’, X) IA“}, the algorithm

(3.7) gives the following sequential algorithm:

Let k. be the initial model estimate.

Let A~= (Al,.””, Ak) denote the sequence of esti-

mated HMMs till time k based on the observations YA.

Then given -yk+ , at time k + 1

Estimate XL+, as = max Q,l + , (A~, X) (3.8)
A

Finally, for a T-point observation sequence, estimate

X“as AT.

In (3.8)

%+l(A~> N ~ E{logf( Y~+l, SL+jl~)l Y~+l, AL}.

(3.9)

Remark 1: Given appropriate regularity, it can be

shown (using results similar to those in [15]) that the al-

gorithm (3.8) converges a.s and in m.s. to the true param-

eter value. Also the limit distribution can be evaluated.

Remark 2: In the hidden independent chain case, al-

gorithm (3.8) specializes to the “recursive” EM algo-

rithm proposed in [11, p. 21 1]. ■

Sequential Variables: In order to implement algorithm

(3.8), we define the following variables from which we

evaluate Q~ + , (AL, A):

a~l,,, ,(i) = f( YL, Sk = q,\ Ai_l);

611k,hL ,(i) G.f(y$+IlsI = 9i, LI) (3.10)

y,, ~,,, ,(i) =f(s, = q,l Y~. A-,):

~,IL..\, ,(i. j) =f(st = q,. ~1-1 = q,l Yk) AA-I)- (3.11)

The following two lemmas are proved in the Appendix.

Lemma 3.1: The sequential variables defined ubove arc

computed as follows:

l)b, (k – l,y~), ~ll.l,, (j) = T, b,(o. yl) (3.12)

~ U{,(I – l)bj(f – I, Y,+,)6,*II L..,, ,(j). PLIL.L ,(~) = 1 (3.13)
,=1

u,..i, , (i)O,l~.~r , (i)
(3.14)

:Cl ,..\, .,(j) P,l~.i,.l(.j),=1

~,. .,,., (i) uij(t - l)P,+ll~.~,.j(~)bj(j – l, Y,+I)

x z cY,i,,_,

(3.15)
(i)au(t – l)~,+ll~.h,.,(~)bj(~ – 1, Y,+ I)”

ij

- —— ..—.,s.,.
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C. On-Line Reestimation Equations

We now explicitly obtain the HMM sequential reesti-

mation equations by obtaining expressions for 1~+, (&)

and S(Ak, y~+,) in (3.18), Theorem 3.3.

Evaluation of Fisher Information Matrix 1~,,: Be-

cause each term in (3. 17) depends on only one of the

model parameters,

where 1{+, (h~), 2?+ I(A~), and l;+ I(h~) are matrices ob-

tained by taking derivatives with respect to the transition

probabilities, state levels, and noise variance, respec-

tively.

Evaluation of 1~+, (AJ: Notice that because Zj ati = 1,

only N – 1 elements of each row of A need to be esti-

mated. For each row let 1;be such that ail, is the element

not estimated, i.e., it is not obtained as

N

aili = I–X ati, j * 1;.
j=f

So If+,(k) is of the form

l;+, (X) = blockdiag (F’l, o 0 . , l’~),

Pi = f@ + @ @)T

M(i) = diag (V})), 15j SN, j#li

with

/k+l \

and C = (ci) is a constant N – 1 element column vector

with elements

=F’r’’kx-’(i))i2)’2‘325)
To find lfj~ we use the matrix inversion lemma and get

p,-1 = ~(i)-’ ( )
‘1-’— $+-xx F’(’)F(’)’ (3.26)

c J*18/.lj

where F(i) is a N – 1 element column vector with ele-

ments(p~))-’, j = 1, “ “ “ ,N, j # li.

Evaluation of l:+, (A): 1~+, (A) is a diagonal matrix

with elements –~2 Q + , (A~, A)/i3q~. Evaluating this

yields

/k+l

(,;,~rlk+l,A,-, (l)
If+, (A) = diag

u;
,

k+l \

,~, ~,,k+l,A,-, (N)
. . .

9 (T: ). (3.27)

Evaluation of 1:+, (A): 1:+, (A) is a scalar and is eval-

uated as

I;+,(A) = (k + 1)/(2(7:).

Evaluation of Score Vector S: We evaluate

as

a$k+l[k+dAk, ~)/a~[A=Au

Evaluating a.42~+,, k+, (A~, X)/a~ yields:

(3.28)

the score

S(L Yk+ i) = [s~(h Yk+ I)>sQ(~, Yk+ i),%(L Yk+ I)]’

where SA(” ) is a vector with elements d&+ I1k+ I/daU, j

# /i, SQ(” ) iS a Vt3CtOr with elements ~~k + 11k+ 1/dq’, and

s~(”)iS the SCalar Ofd~k+l\k+l/auw

sA(~, Yk+,) = (S~(l), S~(2), 000 , S~(N))~

SA(i) = (sA(i, 1), . . s , sA(i, Ii – 1),

s“(i, Ii + 1), “ “ o , SA(i, N)) (3.29)

where

sA(i, j) = g}i) –
d)! j#ll

sQ(~> Yk+l) = (~k+llk +1, A,(l) (yk+i – %)/d>

(3.30)

. . .
~7k+llk+I,A,(N)(Yk+l – f?d/ai)

(3.31)

s~(~,yk+,) = ~~Tk+llk+l,A,(i)(yk+l – qi)2
w

1
_—

2U:”
(3.32)

Summary of On-line Reestimation Equations: Substi -

tutingforzk+ l(”)-’ from (3.26), (3.27), and (3.28) and

for S(. ) from (3.29), (3.31), and (3.32) into the algorithm

(3. 18) yields the on-line reestimation formulas which we

now summarize:

Let ~k = (A(k), q(k), u:(k)) be the model estimate at

time k. Then ~k+, is calculated as

au(k+l)=ag’i)-i’
i=l, ”””, N,j= l,”” “,N;

(3.33)

qi(~ + 1) = qi(k) + 7k+11~~l~Ai(1)(yk+l – qi(k))

~ ~tlk+l.A,_, (i)
,=]

(3 .34)

-.—
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.: ~k+i[k+ l. A,(~) ((yk+l – 9; (/t)) 2 – U~(~))

U:, (k + 1) = u:(k) + ‘=’ . . (3.35)
k+l

where g$) is defined in (3.30) and pf)is defined in (3.24).

Remark 1: Notice that the above reestimation formula

)r the transition probabilities (3.33) ensures that Ej au (k)

– 1 for all k. This is so since the incremental term in the—

recursion (3.33) when summed overj, equals zero. So if

the initial transition probability matrix at time k = 1 has

its rows adding up to one, the estimate for any k will also

satisfy this constraint.

Remark 2: On-line reestimation formulas for arbitrary

(not necessarily Gaussian) symbol probabilities can be de-

rived similarly: The second term in (3. 17) is then

%’+,,.4,-, (i) 1og bi(k, y~+ ,).
i

Evaluating the Fisher information matrix and score vector

and substituting in (3. 18) yields the reestimation formula

for the symbol probabilities. However, we shall not deal

with arbitra~ symbol probabilities in this paper.

Remark 3: As expected, (3.34) and (3.35) specialize

to the equations in [11, p. 210] when the imbedded chain

is independent rather than Markov. ■

Of course, because the noise is Gaussian, once the state

levels q~~)are known then the symbol probability densities

are

1

(

_ (Y~+] – qi(k))2

bi(k’ ‘k+ ‘) = &oW(k) ‘Xp )2u:(k) ‘

i=l, . . ..~. (3.36)

D. Implementation Aspects

We discuss some implementation aspects which en-

hance performance on finite length data.

1) Fixed-Lag Implementation: The implementation of

the on-line algorithm requires calculation of the tixed-in-

terval variables $,l’+l,,\,_l and y,l~+i,,!,. l, t s k + 1.

This is not computationally feasible. Instead we approx-

imate these fixed interval variables by fixed-lag variables

f+-!,i\,., andylll+~..i,.,, A > 0. We show how to eval-
,;tite these fixed-lag variables in the next section.

2) Exponential Forgetting: As we shall show in sim-

ulations, to track time-varying parameters, it is advanta-

geous to do exponential forgetting which reduces the ef-

fect of past observations relative to the new input data.

We propose the following scheme which is analogous to

that proposed in [ 19]:

Let O < p s 1 be the forgetting factor. (p = 1 means

.~at there is no forgetting, ) In the evaluation of ~~) in

3.24) use Z~l~ p’+’ “ ~11k + I. A,-, (i, J (or its fixed-lag

approximation) instead of ~,l‘ + I,&_, (i, j). Similarly, use
~:~;pk+l-t

7(I k + i,A,..,(0 (orits fixed-lag approximation)
instead of ~~11 7f[k+l. A,_! (i) in (3.34). Also use ~~1~

P k + i “t in the denominator of (3.35).

IV. FIXED AND SAWTOOTH-LAG SMOOTHING

As described above, we approximate the fixed interval

variables in the reestimation equations by -y,1,+~,A,_, and

t_lf+A. A,-,. Here we show how to evaluate these vectors

using fixed-lag and sawtooth-lag smoothing schemes. The

sawtooth-lag smoothing turns out to be computationally

more attractive.

Both fixed and sawtooth-lag schemes are based on the

standard backward recursions reviewed in [5]. Besides

being required in the on-line reestimation equations, these

smoothing schemes are of independent interest since they

significantly decrease the memory requirement of storing

T vectors to compute y in the standard forward-backward

scheme. For sufficiently large lags they can be used in-

stead of the fixed interval forward-backward algorithm in

standard HMM processing.

A. Fixed-Lag Estimation

The fixed-lag variable ~kl~+A,~i_, is calculated as fol-

lows :

~klk+A, W, =A(k – l)B(k – l,k + 1)

“.” A(k– l)B(k– l,k+A)l (4.1)

where B(k – 1, k + 1) is the diagonal matrix diag (b, (k

‘l, yk+,), ”””, bN(k – 1, yk+ ,)) and 1 is the N vector

with elements 1.

The fixed-lag a posteriori probabilities associated

Problem 2 can be computed similarly to (3. 14) as

with

ak..\i_, (i)~k[k+A, Ai_, (i)

~klk+A, A-,(i) = IV ,

i=l,2, ”.. ,N. (4.2)

Then using (2.3) the fixed-lag MAP state sequence esti-

mates are obtained.

Notice from (4. 1) that ~’1~+~,~,_, can be computed for-
wards in time. This has the advantage that only one vector

flklk+&*L_, needs to be stored to compute Y’,’+A,,,,. ,.
Thus the computational cost of the fixed-lag backward

scheme is A CF and the memory requirement is N; in com-

parison the computational cost of the forward-backward

scheme is C~ and memory required is NT.

B. Sawtooth-Lag Estimation

In the sawtooth-lag scheme we work with a lag varying

from a fixed lag A~in to another of A~,X z 2A~in main-

taining an average lag of (Amin + A~,X)/2. Let us con-

sider k belonging to a subinterval [kl, kl + A~,X – A~in].

Now instead of using the fixed-lag variable ~’ l‘ +A,AL_,,
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we use the sawtooth-lag variable ~~1~,+A. AL,. 1. That is, we

compute 6 for a fixed model ~~1_ 1starting at k, + A~,X.

P~I~, +Am.,A,,. ,, k c [k,, k, + h. - A~inl, is computed
using a similar backward recursion to (3. 13):

N

~klki +Am.,.Akl-, f’() = j~l ati(~l – l)b~(k, – 1, y~+l)

“ &+llk, +Am,.A,l-, (.i) (4.3)

initialized by ~kl * &,,,A~,_ , ,~1+Am,,A~,_ , (i) = 1 Notice

that out of Amax values of 6 computed above, only Am~X
– A~,n values (namely, from time kl, k, + A~~X– A~in)

are used and A~in values (from time k, + A~,X – Amin,k}

+ Am,..) are discarded.

There is a tradeoff in selecting Am,, and Amin.We must

choose A~,n sufficiently large so that the initialization of

13at time k, + A~dXhas negligible effect at time kl + A~.X

– A~,n. On the other hand, Am,, should be sufficiently

small so that the estimated model at time k, + A~~Xis not

too different from that at time k,.

The sawtooth-lag scheme is efficient because the com-

putational cost for T observations is Am,XCF/ (A~,X –

Amin)and the memory required is (A~,X – A~in)N. SO there

is the possibility of trading computation time with mem-

ory, e.g., Choosing Am,, = 2 A~in, the memory require-

ments are minimal (A~inN) and the computation effort re-

quired is twice that for the forward-backward procedure.

By choosing A~,X >> A~in, the computation effort re-

quired approaches the forward-backward procedure and

the memory requirements are increased in proportion to

Amax.

V. ELIMINATION OF DETERMINISTICINTERFERENCES

We now illustrate an application of the proposed on-

line techniques. We consider the case where in addition

to white Gaussian noise (WGN), the Markov process sk is

also corrupted by a deterministic signal of known form
with unknown parameters.

Let p~ (El), parametrized by e e RR denote the deter-

ministic disturbance. We assume that the functional form

of pk is known but the parameter vector e = (61, “ “ “ ,

OR)is unknown. In addition, it is assumed that f3 is slowly

time varying or undergoes infrequent jump changes. We

consider two such examples of deterministic disturb-

ances:

1) Periodic or almost periodic

known frequency components tin)

P

disturbances (with

f%) and

. . . , @p).’

2) Drift in the states of the Markov process, pk (Cl) =

Z~=la,,kJ’ and e = (al, “ . “ , aP).

‘Expressing p~(E3)as Z. Cn sin (w,rk) + d. cos (w,,/c) does not simplify

the resulting reestimation equations in any way.

Signal Model: We assume that Sk is hidden, that is in-

directly observed by measurements y~:

yk ‘sk+pk+Wk (5.1)

where sk, wk are defined in Section II-A. The resulting

HMM is denoted A = (A, 0, q, n). For notational con-

venience we assume that o ~ is known.

On-line Reestimation: Again given the above signal

model, two interrelated problems can be posed and solved.

The first problem is identical to that in Section II-B and

its solution is identical to that in Section IV, with bi (k –

1, yk) defined as follows:

bi(k– l,yk)

‘f(yk ‘Pk(e(k - l))lsk = qi(k - 1))

= k ‘Xp

(. b’k –%(k – 1) ‘Pk(e(k – 1)))2

20: )

(5.2)

Problem 2 now involves on-line reestimation based on

maximizing the KL measure of the estimated model ~k =

(A (k), e (k), q(k)).

Derivation of On-line Reestimation Equations: We

now obtain expressions for zk+ , (~k), s(~k, yk+,) for the

periodic disturbance case then derive the reestimation

equations using (3. 18) of Theorem 4.1. The reestimation

equations in the case of polynomial drift can be derived

similarly; for brevity we omit the proofs.

Evaluation of Fisher Information Matrix: In this case

Lemma 3.2 holds with

NN

~f[k+l(Af-1, ~) = ~ ~ ~flk+l, A,.l(i, j) h%j
i=ij=l

N

+ i;, ~/~k+l,A,-l
‘i) 10g J&,,

(_(Y, –qi–P,(W. exp
20:,, )

(5.3)

Then evaluating –dz Q~ + , (Ak, ~)/c3~z yields

Zk+,(A) = diag (If+, (A), 1:+, (x), /;+, (x))

where l;+ , (A) is computed in (3.26), Is+ , (A) is com-

puted in (3.27) and 1:+ , (A) = diag (Ij!+ ,, I!+ ,),

((
!i+l

If+l = diag –
)

,~, sin’ (tilt+ q51)/cr~,,

(
k+l

. . . Z sin’ (copt+ 4p)/fJk,—
,=[

))

(5.4)

-----



KRISHNAMURTHY AND MOORE: ON-LINE ESTIMATION

1: = diag (1$(1), “ 0. , It(p)) where for m

P

(

k+l

I$+l(m)= – ai ,~, Cos2 (Umt + @m)
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= 1,”””,

(
P

+ y,–

)

g, – .~, % sin (W + On) am

)
. sin (u~r + r&)/u~ , (5.5)

Evaluation of Score Vector: The data score is simply

SOM, yk+,) = a&’k+ll&+l(Ak, A)/ah lhs~, where

&+,[k+](Ak, h) is defined in (5.3).

Evaluating S(A, y~+,) = a&+ IIk+ I (Ak, h)/a~ giVeS

$(~, yk+,) = (SA(~, yk+, ), SQ(~, yk+l), Se(X, yk+,))

notational convenience we shall drop the time dependency

of& on the right-hand side of the reestimation equations,

i.e., we shall write & = (A, q, e). Then ~k+, = (A(k +

1), q(k + 1), e(k + 1)) is calculated as Ak +, is calcu-

lated from (3.33):

q;(k + 1)

?k+l]k+ l. Ak(i)(yk+l – qi ‘Pk+ l(e))
=qi+

k+l

~ ?f{k+l,Ak(i)
,=1

(5.9)

For periodic disturbances, ek +, is reestimated as

(
P

yk + I – ~~1 an sin (0. (k + 1) + @n) – gk+,
)

sin (u. (k + 1) + o.)

a.(k+l)= a.+ ‘ k+l (5. 10)

,~, sin’ (w.t + q5J

(
yk+l - ~~, an sin (ti. (k + 1) + on) - gk+i)a. cos (un(k + 1) + ~.)

@n(k+l)=r$n+k+,

(

(5.11)

,~, a; cos (~nt + @n) + y, – .$, a. sin (u.t + @.) + g,
)

an sin (uflt + 4.)

For polynomial drift, e~ +, is reestimated as

(
yk+l –

)
.$, am(k + 1)” - gk+l (k + 1)

an(k+l)= an+ ‘ k+l

where S~(” ) is computed in (3.29)

sQ(~, yk+l) = (Tk+llk+ l, A,(l) (yk+l – 91 ‘pk+l (e))/

0:, ..., ~k+l\k+l. Ai(N)

“ (yk+l – qN – pk+@))/”~) (5.6)

se(~,yk+l) = (S., s,$)wheresa(~,yk+l) = (S.(1), “ “ “ ,

(P)),

o sin (ufl(k + 1) + @~)/u~, m=l, .. ..p

(5.7)

S~(~, yk+l) = (S,$(1), “ “ “ , S,$(P)) where for m = 1,
. . .

7P

(,(???)= y~+] –&+, - )~$,an sin (ank + 1 + +.) u~

“ COS(ti~k + 1 + &)/ui (5.8)

where gk+l = z!=] ~k+llk+l, Ak(i)qi.

SU?7U?UVY Of on-lint? Reestimation Equations: Let ~k =

(A (k), g(k), (3(k)) be the model estimate at time k. For

,=, ‘“

(5.12)

In the above equations, g, = z:= I ‘YIIk + 1, A, (i) qi.

(Recall that in the above equations, the right-hand side

parameters are estimates at time k; for notational conven-

ience we have dropped this time dependency. )

Implementation Details:

1) Again in the actual implementation, 7,1k+ 1..!,_, and

~,1k+ I,,i,. , are replaced by fixed or sawtooth-lag vari-

ables.

2) Applying forgetting leads to quicker convergence.

Apart from the forgetting scheme outlined in Section IV

for the Markov chain, we propose setting the denomina-

tors of (5. 10) and (5. 11) to a fraction of their value when

these terms exceed a particular threshold. We illustrate

the advantages of applying forgetting in the simulations.

3) Use a~(t – 1), an(t – 1), I$m(t – 1), and O.([ –

1) to approximate the computation of I; +,, l!+, in (5.4)

and (5.5).

Discussion:

Frequency Reestimation: On-line reestimation equa-

tions for updating the frequency components u. can also

\
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be derived similarly. The equations are

(
(k+ 1) yk+, – ~~1 % sin (“n(k + 1) + 4.) – gk+,

)

Cos (tin (k + 1) + f#J,,)

Un(k+ l)=un+ k+,

( ( )

(5.13)

,~1 f’ % COS(W + A) + y{ - ~~1 an sin (w + L) - g, sin (q,f + +.)
)

However, there is a large number of local maxima in J(A~)

[ 10], so there is no guarantee that (5. 13) will converge to

a global maxima.

We have developed off-line frequency reestimation

techniques in [10]. We believe that it may be possible to

combine the off-line scheme with (5. 13) to track time-

varying frequencies. Alternatively, it may be possible to

run a bank of on-line processors and select at each time k

the estimate which maximizes J(XJ. Further discussion

of frequency reestimation is beyond the scope of this pa-

per.

Independent Distributed (i.d.) Chain: We briefly con-

sider the case when the imbedded chain is i .d. instead of

Markov. Then the observations are characterized by the

model A = (n, q, e) where ~i = P(s~ = qi). The model

estimate at time k is Xk = (n(k), q(k), e (k)) where ~i (k)

is the estimate of Ti at time k. The online reestimation

formulas are

~i(k + 1) = ~i(k) + k-l(~~+ll~+l,A~(i) _ ~i(k)) (5.14)

9i(~+ 1) ‘qi(k) ‘~k+l[k+l, Ai(i)

. (Yk+I ‘~i(~) –~k+, (e(h))

k~i (k)

Here 7L.+11k + I.AL is computed as

?’k+llk+l. A~(i) 4wf(Sk+l = qi]yk+l)

T, (k) bi (k, Yk * !)
.

; ~~(k)bi (k, yi+,)
j=l

(5.15)

(5.16)

The above equations are derived in [1 1], [15] using a sim-

ilar approach to Section IV. The amplitude and phase

reestimation equations are given by (5. 10) and (5. 11) with

y~ defined in (5. 16). These can be derived using a similar

proof to that outlined above for the Markov case. ■

VI. SIMULATION STUDIES

We illustrate the proposed schemes for the case where

only white Gaussian noise is present and the case when
also a periodic interference is present.

A. Markov Signals Imbedded in White Gaussian Noise

1) Sawtooth-fug Signal Extraction: Here we examine

the effect of sawtooth lag on the signal estimates. We as-

sume that the transition probabilities and Markov levels

are known.

A 200000 point two state Markov chain with T, = 7r2

= 0.5, all = a22 = 0.97, and q, = O, q2 = 1 was gen-

erated. To this was added zero-mean white Gaussian noise

(WGN) sequences with standard deviations aW= 0.5, 1.0,

1.5, 2.0, respectively, to yield 4 sets of 200000 point ob-

servations.

With the initial transition probability estimates set at

0.97 and initial state level estimates set at O and 1, our

on-line scheme was run on the 4 sets of observations.

MAP signal estimates were obtained as in (2.3). Fig. 1

shows the number of errors in the MAP signal estimates

per 10000 points plotted versus sawtooth-lag A~in. A~,X
was taken as 2A~in.

Notice that for small noise variance u,,,, choosing A~in

= 4 yields satisfactory results. For larger u,., it is neces-

sary to increase the lag to obtain acceptable signal esti-

mates. In all cases increasing UWincreases the number of

errors.

2) Efect of Sawtooth-Lag on Convergence: Using the

same 4 observation sequences as above we illustrate the

effect of lag on convergence of the on-line scheme.

Initial transition probability estimates a,i (0) = 0.8 were

chosen. In Fig. 2 we plot a, I (k) versus k at 20000 point

intervals for sawtooth lags with A~in = 2 and 20 (A~~X=

2A~,n).

Notice that for the low noise case (u,. = 0.5) the con-

vergence is independent of lag. With increasing noise

larger lags result in faster convergence. As in the state

estimation case above, simulations show that there is no

appreciable improvement in convergence beyond a certain

lag. For example, for a,,. = 1, choosing A~ln > 20 does

not result significant improvements. Also convergence

slows with increasing u,,.

Simulations not presented here show that the estimates

of m, improve with lag in a similar fashion to the improve-

ment of the signal estimates with lag as described above.

This is not surprising since both the MAP estimates as

well as the estimates of m, are obtained from -ykI~. ~ and

-f! 1i +J, respectively.
3) Comparison with Baum - Welch Reestimation: We

compare the performance of the proposed on-line scheme

with the Baum-Welch (off-line) scheme.

A 100000 point two state Markov chain with al, = a22

= 0.97, T, = Tz = 0.5, and q] = O, qz = 1 was gener-

ated. To this was added zero-mean WGN with u,. = 2.0

yielding the observations.

Initial estimates were taken as a, (0) + 0.1, q2(0) =

0.6, aii (0) = 0.9. AlSO the sawto~th lag was chosen as

A~in = 20, A~,X = 40. Fig. 3 shows the performance of

the on-line algorithm on the observations. Notice that qi (k)

are close to the true values qi from k = 30000 onwards.
Ii

b
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Fig. 1. Sawtooth-lag smoother performance. Note that AmdX= 2Am,n,

The estimates al, (k), azz (k) also go towards the true val-

ues.

Fig. 4 shows the performance of the Baum-Welch (off-

line) reestimation scheme on the same observation se-

quence, The same initial estimates were used as in the on-

line case. Notice that the on-line estimates qi (k) for large

are close to the off-line estimates Qi in the 10th pass.

.\lso the on-line estimates a,i (k) are close to that of the

off-line estimates after 7 passes. These illustrate the sig-

nificant improvement in convergence of the on-line

scheme.

4) Illustration of Forgetting: We show how using ex-

ponential forgetting can result in much faster conver-

gence. Also only filtered variables (A = O) are used in

this example.

A three state Markov chain with aii = 0.9, au = 0.05,

.ri = 0.33, [q(l), q(2), q(3)] = [0, 1, 2] was generated.

Then WGN with IJW= I was added yielding the obser-

vations. Initial parameter estimates were aii (0) = 0.1,

9i (0) = 0.5, 0.6, 0.7.

Fig. 5(a) shows the evolution of ~i (k) versus time with-

Out forgetting (p = 1) and with exponential forgetting (p

1> f

A~n=?n I
0.95 -

0.9 -

all(k)

0.85 -

‘Jw= 0.5

2 4 6 8 10 12 14

It f

0.95 -

0.9 -

all(k)

al,(k)

0.8S t

Ii ~n=20
~-z.---- --------- -

,--

,/

/
0

1’

It
1’

%’=1.0

0.8
0 2 4 6 8 10 12 14

.,,,&--------~

v

t

0.85 “

If
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%.13

al ,(k)

---------
0.95 - A ----

ml”= m -z-O
---

--””
.z -

0.9 -
-“--

,0
0.85 . 4’

8’
% = 2.0

0 5 10 15 m 25

timek x 104

Fig.2. Effectof sawtooth lag and noise variance on convergence.

= 0.9979). Fig. 5(b) shows the evolution of aii (k). The

estimates were plotted at 1000 point intervals.

Notice that the level estimates with forgetting are very

close to the true values in less than 10000 points and are

comparable with the estimates at k = 50000 without for-

getting. Similarly, the transition probabilities are very

close to the true values after 250000 points with forget-

ting, The estimates without forgetting after 400000 points

are still not close to the true values. (Actually they ap-

.._
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Fig. 3. On-line reestimation scheme performance. True model parame-

ters: f~,, = 0.97, T, = 0,5, ql = I, q2= 1,0,,= 2.0.

preach the true value after 3 million points. ) This shows

that forgetting can significantly speed up convergence.

5) E@ct Of Initial Estimates: Extensive simulations

have been carried out to ascertain the effect of initial es-

timates on the performance of the proposed on-line

scheme. We have tested the on-line scheme over the fol-

lowing range of models. assuming qi = i:

N= 2.3,4. ~fi = 0.5 tO 0.99, u,, up to 2

and over the following range of initial conditions:

a,,(0) = O.1 to 0.99

qi(0) Up tO 30,, away from true values q,.
In all cases, over this range of models and initial condi-

tions, the on-line scheme yielded estimates that con-

verged to the true model. Of course, when u,,. is large

convergence is slow and so longer data sequences are re-

quired to check for convergence. The initial conditions

(particularly level estimates) do, however, appear to have

some effect on convergence rates as described below.

Fig. 6 shows the effect of 5 different initial estimates

on the on-line scheme for the same data as in the previous

simulation example. To speed up convergence, the same

------- . . .. ... ..—
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posses

Fig. 4. Performance of Baum-Welch reestimation (same data as used in

Fig. 3).

forgetting scheme as in the previous simulation example

was used. The initial estimates are:

Fig 6(a): aii(0) = 0.9, q(0) = (0.5, 1, 1.5, 2).

Fig 6(b): aii(0) = 0.9, q(0) = (O, 0.5, 1, 1.5).

Fig6(c):a,i (0) = 0.9, q(0) = (–2, –1.5, –1, –0.5).

Fig 6(d): aii(0) = 0.9, q(0) = (O, 0.05, 0.1, 0.15).

Figs 6(e) and (f): aii(0) = 0.1, q(0) = (–2, –1.5,

–1, -0.5).

Figs. 6(a) to (d) show the state level estimates q(k) for

the above initial conditions. The estimates are plotted

every 5 x 104 points and the time scale is in units of 5 x

10d. Notice that when the initial estimates are chosen such

that more than one initial value is close to a particular

state then the convergence can slow down since both the

estimates may track the same state level for some time

(see Fig. 6(a) and especially Fig. 6(b)). Nevertheless, the

level estimates converge to the true values. Similarly, the

transition probability estimates converge to the true val-

ues (not shown in the figures).

Fig. 6(e) shows the transition probability estimates

... -—.
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Fig. 5. (a) On-line estimation of Markov state levels. Top: Without exponential forgetting (p = 1). Bottom: With exponential

forgetting ( p = 0.9979), initial estimates: q,(0) = 0.5, q2(0) = 0.6, q, (0) = 0.7. (b) On-line estimation of transition proba-

bilities. Top: Without exponential forgetting (p = 1). Bottom: With exponential forgetting ( p = 0,9979), initial estimates:

a,,(0) = 0.1, a,,(0) = 0,45.

when the initial estimates are chosen at some distance

from the true value aii = 0.1. Again the probabilities con-
verge to the true values. Also the level estimates converge

‘Fig. 6(f)).

d. Murkov Signal tmbedded in White Noise and

Periodic Interference

We here illustrate the performance of the proposed
schemes when the Markov chain is imbedded in periodic

interference in addition to WGN.

1) Illustration of Proposed Scheme: The purpose of

this example is to show that the proposed algorithm sat-

\factonly learns the Markov state levels, transition prob-

~ilities, and also amplitude and phase components of the

periodic signal (with known frequency components) from

the sum of the Markov signal, periodic signal, and WGN

of known variance.

A 40000-point 2 state Markov chain was generated with

a;; = 0.97 and qi = O, qz = 1. TO this chain was added

zero-mean WGN with UW= 0.5. Also a periodic interfer-

ence al sin (ulk + @l) + Uz sin (utk + @z) was added

where f3 = (al, az, @l, @J = (0.8, 0.5, 7r/3, O). Initial

Markov estimates were taken as q, (0) = –O. 1, qz (0) =

0.6, and aii (0) = 0.90. Also the initial estimate (3(0) =

(0.5, 0.5, 0.3, 0.3).

Fig. 7 shows the amplitude and phase estimates plotted

versus time. Notice that after 50000 points the ampli-

tudes and phases are very close to the true values. At k =

50000, the state level estimates were q, (k) = 0.021, qz (k)

= 1.003 and the transition probability estimates were

al, (k) = 0.963, a22(k) = 0.967 which are also close to

the true values. Thus the proposed schemes satisfactorily

cope with the presence of periodic interferences.

2) Tracking Sinusoid with Jump Change in Phase and ,1

Amplitude: Here we consider a Markov chain imbedded

in sinusoidal interference with jump changes in amplitude
1

and phase in addition to white noise. We illustrate the

I
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Fig. 6. Effect of initial estimates,

performance of the proposed on-line schemes tracking the

amplitudes and phases.

To the Markov chain of the previous example was

added sinusoidal interference a sin (wk + @) where

a = 0.8andr$ = 7r/6 for 1 s k s 20000

a = 0.5 and @ = 7r/3 for 20001 s k s 40000.

Then WGN with u. = 0.5 was added to yield the ob-

servations.

We ran our standard on-line scheme (without forget-

ting) and the on-line scheme with forgetting on the data.

In the scheme with forgetting, when the denominator of

(5. 10) exceeded 3000, the denominators of (5. 10) and

(5. 11) were reset to a tenth of their value. Initial estimates

were taken as aii(0) = 0.8, q, (0) = O, q2(0) = 0.6. The

initial amplitude and phase were chosen as 0.5 and 0.5

rad, respectively.

I

I
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Fig. 7. C)n-(ine estimation of phases and amplitudes of periodic interfer-

ence. Tme parameters 63 = (a, , a?. *,, @,) = (0.8, 0.5. rr/3. O). a,, =

97. q = (0.1).a,,= 0,5

Fig. 8 shows how the amplitude and phase are tracked

versus time. Notice that our standard scheme learns the

amplitude and phase for k < 20000. Then it slowly starts

moving towards the new amplitude and phase. In contrast

with forgetting the convergence is fast to the new ampli-

tude and phase. Of course with forgetting the estimates

.irift a little due to the effect of local statistics. For the

!andard on-line scheme, the state level estimates at k =

30000 were gi (k) = – 0.005, q2(k) = 1.004 and the tran-

sition probabilities were al, (k) = 0.961, a22(k) = 0.964.

For the on-line scheme with forgetting at k = 50000, q, (k)

= –0.007, q2(k) = 1.007, all (k) = 0.965, az2(k) =

0.968.
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Fig. 8. On-line estimation of periodic interference with jump changes in

phase and amplitude.

VII. CONCLUSIONS

In this paper we have derived sequential algorithms for

HMM estimation based on maximizing the Kullback-Lei-

bler information measure. The algo~thms proposed use

robust, memor-v efficient, fixed-lag, and sawtooth-lag

smoothing schemes. Simulations confirm that significant

improvements in convergence occur when these on-line

schemes are used.

As an application of the proposed schemes we have ob-

tained on-line estimates of the Markov signal model and

periodic signal from a mixture of the Markov process,

periodic signal, and additive white Gaussian noise. With

the on-line reestimation it is possible to deal with sinu-

soidal disturbances with slowly varying amplitudes, and

phases.

APPENDIX

A. Proof of Lemma 3.1

Proofi Consider the RHS of (3. 12), namely,

~ ~~-,l*i_,(i)ay(k - l)b~(k -1, y,).
;=I

-“.. . . .
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Now

a~-,l.i, -,(i) ~~(Y~-l,s~-l = q[lA~-J

=f(Y~-l,s~-l = qilA~-2,~~-1)

because CYk_ II.~k_, (i) is independent of the value of Ak-,.
Similarly

U,j(k – 1) ~ P(sk = gjl.fk-] = 9(, ~k-1)

=P(sk =qjlsk-1 =q;, Ak-1)

and

bj(k _ l,y~) ‘~(yk[s~ = gj(~ – 1)> ~k-1)

‘~(yklsk-l = ~j(~ – 1), Ak-l).

We can now follow the same proof for the recursion of

the standard forward variable in [5]:

~(~k = q,l~k-1 = q;, Ak-1)

= ~(Sk = gj]~k-1 = gi, Yk-],Ak-1)

f(yklsk = qj(~ – 1), Ak-1)

‘f(ykl Sk = qj(k - l), sk-1 = q;, y~-i,Ak-i)

(7.2)

because ~k is white. Substituting these into the RHS im-
mediately yields ~kl ,~~-, (J).

The proof for backward recursion (3. 13), and for (3. 14)

and (3. 15) are identical to that in [5]. ❑

B. Proof of Lemma 3.2

Proofi Notice that

log ~(yk+,,Sk+]\)l)

‘log~(Y~+,l&.+,,~)+logzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(~k+]l~)

N !i+l

= ,~, ,~1 6(SI - q,) 10gbi(yo

N !N

+ ~ ~ n,j(k + l)loga,~
!={,=]

where n,, (~ + 1) is the number of jumps from state i to

state j till time k + 1 and 6(s, – qi) = 1 if s, = qi and

zero otherwise. Also

E{6(sf _ qi)ly~41,Ak} =f(S,= qi\Y~+l, A,_l)

(7.3)
= 7,tk+l..~,. l(i)

~{tf,, (k + 1)/ykAl,fh)

k+l

= ,~,f(St= gi, S(+l = gjlYk+l,A[_l)

k+l

= ,~, ~rlk+l.A,-, (’, ~)

. .
(7.4)

TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41. N(), 8, AUGUST 1993

where the last equalities in (7.3) and (7.4) follow from

the definitions (3. 11). Substituting these into the defini-

tion of Qk *, (AL, A) in (3.9) proves the lemma. ❑
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