
On-line Exact Shortest Distance Query Processing

Jiefeng Cheng, Jeffrey Xu Yu
The Chinese University of Hong Kong, China

{jfcheng,yu}@se.cuhk.edu.hk

ABSTRACT
Shortest-path query processing not only serves as a long es-
tablished routine for numerous applications in the past but
also is of increasing popularity to support novel graph appli-
cations in very large databases nowadays. For a large graph,
there is the new scenario to query intensively against arbi-
trary nodes, asking to quickly return node distance or even
shortest paths. And traditional main memory algorithms
and shortest paths materialization become inadequate. We
are interested in graph labelings to encode the underlying
graphs and assign labels to nodes to support efficient query
processing. Surprisingly, the existing work of this category
mainly emphasizes on reachability query processing, while
no sufficient effort has been given to distance labelings to
support querying exact shortest distances between nodes.
Distance labelings must be developed on the graph in whole
to correctly retain node distance information. It makes
many existing methods to be inapplicable. We focus on
fast computing distance-aware 2-hop covers, which can en-
code the all-pairs shortest paths of a graph in O(|V | · |E|1/2)
space. Our approach exploits strongly connected compo-
nents collapsing and graph partitioning to gain speed, while
it can overcome the challenges in correctly retaining node
distance information and appropriately encoding all-pairs
shortest paths with small overhead. Furthermore, our ap-
proach avoids pre-computing all-pairs shortest paths, which
can be prohibitive over large graphs. We conducted exten-
sive performance studies, and confirm the efficiency of our
proposed new approaches.

1. INTRODUCTION
With the rapid growth of World-Wide-Web, new data

archiving and analyzing techniques, graph data becomes
more and more important. New graph applications include
web mining, biological network analysis, social networks,
XML databases and bioinfomatics. Efficiently querying and
analyzing graph data draws much attention from database
community recently. In this paper, we are interested in a

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

primitive kind of queries, namely, shortest-path queries on
very large graphs, directed or undirected. It asks for the dis-
tance between arbitrary two nodes in the underlying graph,
or even a shortest path between the two nodes, to be re-
turned. Shortest-path query processing not only serves as a
long-established routin for numerous applications in the past
but is of increasing popularity to support novel graph appli-
cations in very large databases nowadays. For example, it
is quite common to ask for the Erdös distance between two
authors in a collaboration network, or to request a short-
est route between two cities in a domestic road network. In
social networks, a commonly used influence measure in soci-
ology is “distance centrality” [40]. And the distance informa-
tion provides a basis for selecting the influential nodes [26]
and features for mining community membership, growth,
and evolution [3]. In biological networks, shortest paths and
distance information are employed to identify optimal path-
ways and valid connectivity in metabolic networks [32]. To
handle the intensive processing of shortest path queries to
support top-k keyword queries [18] and twig matching [17] in
graphs, even the whole edge transitive closure with distance
information of the underlying graph is employed. Shortest-
path queries are so important that fast answering for them
is almost mandatory.

Extensive study has been done on shortest-path query
process, which can be main memory methods or with index
on disks. One of the most well-known algorithms is Dijk-
stra’s algorithm [12]. It is a main memory algorithm and
computes shortest paths from scratch, i.e. without prepro-
cessing the underlying graph. One best time bound of it is
O(|E| lg lg |V |) [10]. For all-pairs shortest path computing,
the algorithm in [31] achieves O(|V | · |E| + |V |2 log log |V |)
time. In [42], over graphs with small integer weights ranged
from −M to M , an algorithm is proposed which runs in
O(M0.68|V |2.58). However, because the system may prefer-
ably need real-time response, computing a shortest path
from scratch at querying time can still become unacceptable
for very large graphs. We are interested in graph labelings
to encode all-pairs shortest paths and assign short labels to
nodes in a preprocessing step, in order to support efficient
on-line exact distance and shortest path query processing.
We do not intend to advance all-pairs shortest path comput-
ing like [31, 42], which are orthogonal to our problem and
whose output can be used to provide us the all-pairs shortest
paths to be encoded. A naive solution to materialize all-pairs
shortest paths can be used to answer queries on any two
nodes, but the O(|V |3) space cost can be prohibitive. It is
worth noting that much work within this category has been

devoted to reachability query processing. For example, [1,
6, 39, 38] all considered assigning intervals to each node to
encode the set of reachable nodes from that node in the un-
derlying graph. However, this type of work can hardly be ex-
tended to support shortest-path queries, because these inter-
vals are usually based on a spanning tree (called tree-cover
in [1, 6, 20]) of the underlying graph, where the distance
information is incomplete for the whole graph. The similar
setback also exists in the work [19, 20] which decomposes
the graph into a number of simple structures, such as chains
or trees, to compress the transitive closure. Furthermore,
many approaches usually focus on directed acyclic graphs
[1, 6, 39, 7, 38, 8, 20] rather than general directed graphs.
For shortest-paths queries, however, general directed graphs
can impose new challenges. Distance labeling was consid-
ered by [30, 37, 14]. But they are for undirected graphs and
can not be applied to directed graphs. Some recent work [15,
16, 29, 11] pre-computes distance information for a number
of selected nodes, which are called landmarks, and considers
approximating the distance of any given two nodes based on
pre-computed distance information. These approaches can
avoid pre-computing all-pairs shortest paths. But they are
thus unaware of the number of shortest paths and exact dis-
tance information that can be recorded by those landmarks,
and can not support exact distance and shortest path an-
swering. [41] preprocesses a graph in Õ(|E| · |V |ω) time,
where ω < 2.376 is the exponent of matrix multiplication.
And any distance query afterward can be answered in O(|V |)
time. However, the preprocessing along needs O(|V |2) space
for matrix operations, which can still be too large for a large
and dense graph.

Cohen et al. in [9] proposed a family of labelings over
directed or undirected graphs, to support both reachabil-
ity and shortest-path queries, based on 2-hop covers. A
distance-aware 2-hop cover [9] provides a time- and space-
efficient solution to shortest path and distance query pro-
cessing and it only needs O(|V | · |E|1/2) space. Though it is
appealing for the theoretical bound on the time and space
complexity, unfortunately, computing 2-hop covers is chal-
lenging. In practice, it almost takes two days even with a
64-processor and 80G-memory super machine for the DBLP

data set in [34, 33].

Contributions: In this paper, we concentrate ourselves on
fast computation of distance-aware 2-hop covers for large
graphs. It imposes new challenges, because the existing
methods [7, 8, 5] often focus on reachability 2-hop covers
(without distance) and assume the underlying graph to be
directed acyclic graphs (or simply DAGs). However, the
strongly connected components in a graph can introduce
many additional shortest paths in addition to those can be
found in its DAG components. Another challenge is how
to efficiently obtain the shortest paths already covered and
those left to be covered as required in computation, since
the all-pairs shortest paths for a large graph can be par-
ticularly large. In addition, a divide-and-conquer approach
[33, 34] needs to partition the underlying graph and is chal-
lenged with incompleteness of node distance information. In
our approach, (1) we exploit strongly connected components
collapsing and graph partitioning to gain speed; (2) we in-
vestigate correctly retaining node distance information and
appropriately encoding all-pairs shortest paths with small
overhead under graph partitioning; (3) we propose heuris-
tics and strategies to achieve high-compression rate in fast

computing distance-aware 2-hop covers; (4) our approach
avoids pre-computing all-pairs shortest paths as required by
existing approaches; 5) we conducted extensive performance
studies, and confirm the efficiency of our proposed new ap-
proaches.

Paper organization: We give our problem statement and
discuss the hardness of the problem to be studied in Sec-
tion 2. We then discuss existing work with their limitations
in computing the distance labeling. Section 2. We give the
outline of our new approach in Section 4, and discuss two
main issues, namely, obtaining a DAG from graph G in Sec-
tion 5, and top-down partitioning strategies, in Section 6, in
order to compute the distance labeling. The experimental
results are discussed in Section 7 followed by discussions of
related work in Section 8. We conclude this paper in Sec-
tion 9.

2. PROBLEM STATEMENT
Let G = (V, E) be an edge-weighted directed graph, where

V is a set of nodes, and E is a set of edges, and every
edge weight is a non-negative number. Here the graph G

is a simple graph which has no loops nor multiple edges.
Given any two nodes u and v in G, the distance from u to v,
denoted δ(u, v), is the minimum total weight along a path
from u and v. And a shortest path from u to v is a path from
u to v with the minimum total weight δ(u, v). We simply
use δ to indicate δ(u, v) when it is obvious.

We focus on answering the exact shortest distance queries,
Qd(u, v), in this paper, which is to query the shortest dis-
tance from u to v, δ(u, v), and we will also address how
to extend the same framework to answer the exact shortest
path queries, Qp(u, v), which is to query the shortest path
from u to v, with low overhead.

In order to fast answer shortest distance queries, Qd(u, v),
one approach is to pre-compute all the shortest paths be-
forehand. In brief, let DG be a set of pairs, 〈(u, v): δ(u, v)〉
(or simply 〈(u, v):δ〉), for every (u, v) in the edge transitive
closure of G, denoted as TG. With the pre-computed DG,
the query Qd(u, v) can be answered as to retrieve δ(u, v) for
the given (u, v) in DG. With additional information as the
predecessor along with (u, v), to be maintained in DG, the
query Qp(u, v) can be answered efficiently too. However,
|DG| can be very large for a large and dense graph G.

The problem we study in this paper is to efficiently com-
pute a graph distance labeling of minimum size. And, with
such a distance labeling, we can quickly answer exact short-
est distance, Qd(u, v), as well as exact shortest path queries,
Qp(u, v).

In the literature, 2-hop distance labeling is such a labeling
proposed by Cohen et al. in [9] for G. It assigns every node
v ∈ V a label L(v) = (Lin(v), Lout(v)), where Lin(v) and
Lout(v) are subsets of DG whose entries are in the form of
〈(w, v):δ〉 and 〈(v, w):δ〉. Then, a query, Qd(u, v), querying
the shortest distance from u to v, can be answered by

min{δ1+δ2|〈(u, w):δ1〉∈Lout(u)∧〈(w, v):δ2〉∈Lin(v)} (1)

It means to find a node, w, called center, in both Lout(u) and
Lin(v) with the minimum δ1 + δ2. Qd(u, v) will be infinite
if there is no such w found using Eq. (1).

Below, we discuss how to compute the 2-hop distance la-
beling for G, and the difficulty of minimizing |DG| in com-
puting the 2-hop distance labeling.

n0

n1

n7

n8

n3
n4

n6n9

n14

n2

n5

n15
n12

n13

n11

n10

(a) The sample graph

n0 n2

n8

n7 n9

12

12

n1

1

(b) n8 clus-

ter

n0 n1

n15

23

n3n4

n4 n5 n6 n7

12

21 21

n2

1

(c) n15 clus-

ter

L(n0)=(∅,{〈n1:1〉〈n2:2〉〈n8:2〉

〈n10:2〉〈n11:3〉〈n15:3〉})

L(n1)=({〈n1:0〉},{〈n1:0〉〈n2:1〉

〈n8:1〉〈n11:2〉〈n15:2〉})

L(n2)=({〈n1:1〉〈n2:0〉},{〈n2:0〉

〈n8:1〉〈n15:1〉})

L(n3)=({〈n1:2〉},{〈n4:1〉〈n15:2〉})

L(n4)=({〈n4:0〉〈n15:1〉},{〈n4:0〉

〈n15:1〉})

L(n5)=({〈n4:1〉〈n15:2〉},{〈n6:1〉})

L(n6)=({〈n15:1〉},{〈n6:0〉})

L(n7)=({〈n6:1〉〈n8:2〉

〈n9:1〉〈n15:2〉},∅)

L(n8)=({〈n8:0〉},{〈n8:0〉})···

L(n15)=({〈n15:0〉},{〈n15:0〉})

(d) Labels

Figure 1: An example for the distance-aware 2-hop

cover

2-hop distance labeling and 2-hop cover: A 2-hop dis-
tance labeling for G is derived from a distance-aware 2-hop
cover of G, which is defined to be a set of (distance-aware)
2-hop clusters. A 2-hop cluster is constructed based on a so-
called center node w, together with a set of ancestor nodes of
w and a set of descendant nodes of w, which represent short-
est distances from these ancestor nodes to these descendant
nodes, via w.

Formally, let ancs(w) and desc(w) be the sets consisting
of all entries in the form of 〈(a,w):δ〉 and 〈(w, d):δ〉 in DG,
respectively. Let Aw ⊆ ancs(w) and Dw ⊆ desc(w). A 2-
hop cluster, denoted S(Aw, w, Dw), compactly represents a
subset of DG, or, in other words, covers the shortest paths
from u ∈ Aw to v ∈ Dw via w as many as possible. By
“cover”, it means the following equation (Eq. (2)) must hold.

δ(a,w) + δ(w, d) = δ(a, d) (2)

where 〈(a,w): δ(a, w)〉 ∈ Aw and 〈(w, d): δ(w, d)〉 ∈ Dw. It
suggests that the shortest path from u to v is the concate-
nation of the shortest path from u to w and the shortest
path from w to v. Note that it is possible that some a ∈ Aw

and d ∈ Dw , are not covered by S(Aw, w, Dw), due to the
constraint given in Eq. (2).

The distance-aware 2-hop cover L of G compactly encodes
all entries in DG by computing 2-hop clusters. Given L,
the 2-hop distance labeling for G is determined by adding
〈(a, w):δ〉 into all Lout(a) and 〈(w, d):δ〉 into all Lin(d), for
every S(Aw, w, Dw) in L. Let PL be the set of all entries
〈(a, d): δ1 + δ2〉 for any 〈(a,w): δ1〉 and 〈(w, d): δ2〉 in L,
PL ⊇ DG as shown in [9], which implies that all shortest
paths can be answered using the 2-hop distance labeling.
Below, we use the distance-aware 2-hop cover and the 2-hop
distance labeling interchangeably.

Example 1: A running example is shown in Fig. 1. A
small directed graph is given in Fig. 1(a) where all the edge
weights are 1. Fig. 1(b) and Fig. 1(c) show two 2-hop clus-
ters, namely, S(An8 , n8, Dn8) and S(An15 , n15, Dn15), re-
spectively. A 2-hop cluster is illustrated with all its nodes
arranged in three layers, where the center w is place in the
middle, and Aw and Dw are placed on the top and bottom,

respectively. Also, an edge, (u, w) or (w, v), in a 2-hop clus-
ter indicates a shortest path associated with the total weight
for the path.

In Fig. 1(c), S(An15 , n15, Dn15) covers those shortest paths
from n0, n1, n2, n3, n4 and n15 (in An15) to n4, n5, n6, n7 and
n15 (in Dn15), but does not cover the two paths from n0 and
n1 to n7. Consider the path from n0 to n7. The shortest
path from n0 to n7 is not the concatenated path of the short-
est path from n0 to n15 and the shortest path from n15 to
n7 (δ(n0, n15)+δ(n15, n7) > δ(n0, n7)). It is worth of noting
that S(An8 , n8, Dn8) covers the shortest path from n0 to n7,
as given in Fig. 1(b), for δ(n0, n8) + δ(n8, n7) = δ(n0, n7).

Fig. 1(d) gives the resulting 2-hop distance labels com-
puted. Note that, as shown in Fig. 1(d), v are omitted from
Lin(v) and Lout to reduce the space. We maintain 〈w : δ〉 in-
stead of 〈(w, v):δ〉 in Lin(v) and 〈w : δ〉 instead of 〈(v, w):δ〉
in Lout.

Now consider how to answer the shortest distance query,
Qd(n0, n7). Because both n8 and n15 appear in Lout(n0) and
Lin(n7), there is at least a path from n0 to n7. The distance
from n0 to n7 via n15 is 5 = 3+2, and the distance from n0

to n7 via n8 is 4 = 2 + 2. Therefore, the shortest distance
from n0 to n7 is 4, which is the minimum of 5 and 4, as
specified in Eq. (1). We call a labeling redundant like n0 to
n7 via n15, the compression rate will be higher if redundancy
is less in the 2-hop cover. 2

The 2-hop cover program: The size of the 2-hop cover is
given as |L| =

∑
(|Av|+ |Dv |) for all identified S(Av, v, Dv).

The minimum size 2-hop cover problem is NP-hard [9]. The
quality of a 2-hop cover L is weighted by a compression rate,
which is defined to be the ratio of the number of covered en-
tries to the total size of L. The higher compression rate, the
better quality of a 2-hop cover. Cohen et al. give an algo-
rithm to compute 2-hop cover based on the set cover problem
[23]. It chooses 2-hop clusters in iterations. In each itera-
tion, it examines all different 2-hop clusters, S(Aw, w, Dw),
by varying the center w and all possible Aw and Dw. The al-
gorithm picks the best 2-hop cluster in each iteration, where
the best S(Aw, w, Dw) has the maximum ratio as given in
Eq. (3) below.

|S(Aw, w, Dw) ∩ D′
G|

|Aw| + |Dw |
(3)

Here, D′
G is the set of shortest paths not yet covered and

is initially set to be DG. Eq. (3) means to newly cover
as many entries as the dividend with a cost as small as the
divisor. However, pre-computing all-pairs shortest paths can
be prohibitive for a large graph.

3. THE CHALLENGES AND EXISTING SO-
LUTIONS

In this section, we reexamine the existing work to compute
a 2-hop cover (not distance-aware 2-hop cover) [33, 34, 7, 8],
we discuss the main challenges to compute a distance-aware
2-hop cover.

The divide-and-conquer approach: In [34, 33], Schenkel
et al. proposed a divide-and-conquer approach to partition a
graph into small graphs, in order to compute 2-hop covers for
a large graph in three major steps. First, it evenly partitions
the graph G into k subgraphs: G1, G2, · · · , Gk, where the
all-pairs shortest paths of each graph Gi can be read into

w

Dw

Aw

Gi

x1 xd...
x2

a

A 2-hop cluster in PSG

Figure 2: The divide-&-conquer approach

main memory. Second, it computes the 2-hop cover for every
subgraph Gi, for 1 ≤ i ≤ k, and stores the computed 2-hop
covers on disk. [9] can be applied to compute the 2-hop
cover for each subgraph Gi. The third step is called the
cover joining phase, which builds an overall 2-hop cover by
joining the k 2-hop covers for the k subgraphs. In computing
the cover joining phase, [34] builds an auxiliary graph, called
PSG, including all cross-partition edges and additional edges
to specify the connectivity between boundary nodes in all
subgraphs as a higher level graph. It then computes the 2-
hop cover L′ of PSG and obtains the overall cover L for G,
by augmenting L′ using the 2-hop covers computed for Gi

(1 ≤ i ≤ k). As reported in [34, 33], the third step becomes
the bottleneck of the whole processing, on which most of the
running time is consumed.

The algorithms in [34, 33] can be used to compute the
distance-aware 2-hop cover. However, in addition to the
bottleneck in the third step, it needs high overhead to com-
pute the shortest paths, and the resulting 2-hop cover can
be unnecessarily large. Consider the case shown in Fig. 2.
Here, we assume that there is a subgraph Gi in which node a

is an ancestor of the nodes x1, x2, · · · , xd in Gi, that are in-
volved in the cross-partition edges. Consequently, all nodes,
x1, x2, · · · , xd, also appear in PSG. Furthermore, suppose
that is a 2-hop cluster, S(Aw, w, Dw), in PSG, that contains
all x1, x2, · · · , xd in Aw. In computing the 2-hop cover L

for G by augmenting the 2-hop cover L′ obtained for PSG,
it needs to identify the shortest path from a to w (Fig. 2).
It must examine all entries such as 〈(a, xi): δ(a, xi)〉 and
〈(xi, w): δ(xi, w)〉, for 1 ≤ i ≤ d. There can be many un-
wanted entries in the resulting 2-hop cover, 〈(a, x):δ(a, x)〉,
such that δ(a, x) + δ(x,w) > δ(a,w). (Recall n0 to n7 via
n15 in Example 1.)

DAG-based approach: In [7, 8], we studied DAG-based
approaches to compute the 2-hop cover for G. Given a
directed graph G, we first identify all strongly connected
components (or simply SCCs) in G, and obtain a DAG,
G′, by representing every SCC as a node in G′ where all
in/out edges to/from a SCC are represented as in/out edges
to/from the representative node in G′. It is because, for an-
swering a non distance-aware path query from node u to v,
it is easy to see that if v is reachable from u via a certain
node, w in a SCC, then v is reachable from u via any node
in the SCC. Second, we compute the 2-hop cover for G′ by
utilizing the multi-interval labeling [1] and R-tree to reduce
the high cost of selecting the best 2-hop cluster in every it-
eration, as indicated in the 2-hop cover program. Third, we
determine the 2-hop cover for G based on the 2-hop cover
computed for G′. All nodes in a SCC will share the same

graph labels. The DAG-based approaches outperform the
divide-&-conquer approaches in terms of computational cost
and compression rate [7, 8]. But, there are two main diffi-
culties to compute the distance-aware 2-hop cover based on
the DAG-based approach.

• Issue-1: It cannot take the same approach to obtain a
DAG graph, G′, by condensing SCCs in G as represen-
tative nodes in G′, and then obtain the distance-aware
2-hop cover for G based on the distance-aware 2-hop
cover for G′. It is because that a node w in a SCC
on the shortest path from u to v does not necessarily
mean that every node in the SCC is on the shortest
path from u to v.

• Issue-2: The cost of dynamically selecting the best
2-hop cluster, based on Eq. (3) and Eq. (2), in an
iteration, in the 2-hop cover program, cannot be re-
duced using the multi-interval labeling [1] and R-tree,
because such techniques cannot handle distance infor-
mation. In consequence, in order to be able to select
the best 2-hop cluster in an iteration, it needs to either
maintain all the uncovered distance-aware 2-hop clus-
ters (refer to D′

G in Eq. (3)), or all the already covered
distance-aware 2-hop clusters (DG − D′

G), which con-
sumes very large space and high computational cost.

In this paper, we will study how to overcome the two
difficulties and compute the distance-aware 2-hop cover.

4. A NEW DAG-BASED APPROACH
In this section, we discuss a new DAG-based approach.

Our approach is based on an important observation: if a 2-
hop cluster, S(Aw, w, Dw), is found that covers all shortest
paths containing the center node w, we can remove w from
the underneath graph, because we do not need to consider
again any shortest paths via w any more. Motivated by
the observation, in our new algorithm, to deal with Issue-1,
instead of condensing a SCC into a representative node in
a modified graph as done in [7, 8], we collapse every SCC
into DAG by removing a small number of nodes from the
SCC repeatedly until we obtain a DAG graph. To deal with
Issue-2, when constructing 2-hop clusters, we propose a new
technique to reduce the redundancy1 in 2-hop clusters by
taking the already identified 2-hop clusters into considera-
tion, and therefore avoid storing all-pairs shortest paths (D′

G

in Eq. (3)) to select the next best 2-hop cluster. In addition,
we also propose heuristics to reduce the cost of selecting the
next best 2-hop cluster.

Our new algorithm, called DAPar for Distance-Aware Par-
titioning, is outlined in Algorithm 1. The control flow of Al-
gorithm 1 is sketched in Fig. 4. There are two main phases
in DAPar. In the first phase (line 1-7), it attempts to obtain
a DAG G↓ for a given graph G by removing small number of
nodes, V̂Ci

, from every SCC, Ci(VCi
, ECi

). In computing a

SCC Ci(VCi
, ECi

), every node, w ∈ V̂Ci
is taken as a center,

and S(Aw, w, Dw) is computed to cover shortest paths for

graph G (line 4). Then, all nodes in V̂Ci
will be removed,

and a modified graph G is constructed as an induced sub-
graph of G(V, E), denoted as G[V \ V̂Ci

], with the set of

nodes V \ V̂Ci
. It is important to note that nodes in V̂Ci

are

1refer to Example 1.

Algorithm 1 DAPar(G)

Input: a directed graph G
Output: distance-aware 2-hop cover labeling

1: identify all SCCs, C1(VC1
, EC1

), C2(VC2
, EC2

), · · · , for G;
2: for every Ci(VCi

, ECi
) do

3: V̂Ci
← getDAG(Ci(VCi

, ECi
));

4: construct S(Aw, w, Dw) for every w ∈ V̂Ci
;

5: G← G[V \ V̂Ci
];

6: end for

7: G↓ ← G; {G↓ is a DAG}
8: find a node-separator, Vw, for G↓;
9: partition G↓ into two disconnected subgraphs G> and G⊥ by

removing Vw from G↓;
10: construct S(Aw, w, Dw) for every w ∈ Vw;
11: if G> (G⊥) is small then
12: compute the 2-hop cover for G> (G⊥);
13: else

14: let G↓ be G> (G⊥); goto line 8;
15: end if

G[V \]Vc1
^

G

...
C2

C1

...

+

...

+

...

...

G[V \()]Vc1
^
Vc1
^

+

...G[V \()]Vc1
^
Vc1
^

......
Vw

G

T
GT

+

...

...

...

...

x2 Vc1
^

x1 Vc1
^ x2 Vc1

^

y1 Vc2
^ y2 Vc2

^

x1 Vc1
^

x1 Vc1
^ y1 Vc2

^

w1 Vw w2 Vw

x1 Vc1
^

...y1 Vc2
^

G

T

GT

(a) (b) (c)

(d)(e)

C2

Figure 3: The Algorithm Steps

considered as effective since they are in SCC and may cover
many shortest paths, and, in addition, those nodes do not
need to be reconsidered again to cover shortest paths based
on our observation. Here, Fig. 4 (a) shows a graph G with
several SCCs. Fig. 4 (b)-(d) illustrate the main idea of col-
lapsing SCCs while computing 2-hop clusters. All shortest
paths covered are the union of the shortest paths covered
in 2-hop clusters, S(Aw, w, Dw), for every node, w ∈ V̂Ci

.
Such S(Aw, w, Dw) is computed to cover the shortest paths
in G globally.

In the second phase, for the obtained DAG G↓, we take
a top-down partitioning approach to partition the DAG G↓

(line 8-15), based on our early work in [8]. if a G↓ is large,
we partition G↓ evenly by finding a set of node-separator
Vw. With removal of Vw from G↓, two disjoint subgraph
G> and G⊥ are obtained. We compute 2-hop clusters for
nodes w ∈ Vw, and repeat the same procedure if either G>

or G⊥ is not small until we compute the 2-hop cover for the
original graph G. Fig. 4 (d) and (e) tell that the graph can
be partitioned hierarchically. Note that a key issue here is
how to obtain V̂C and Vw to give high-quality 2-hop covers.
Note that, in a similar fashion, all the nodes in Vw are not
needed further for covering shortest paths in the following
steps.

Vw

GTa

d

a'

G

T

(a) The Bisection of A DAG

Vw

G

T

GTa

d

a'

w1 w2

(b) In Presence of SCCs

Figure 4: The Setback of Graph Partitioning in

Presence of SCCs

4.1 More on Partitioning
Graph partitioning is essential to speed the computing of

2-hop cover for a large and dense graph. In this section,
we discuss the issues of partitioning for a directed graph
without SCCs and with SCCs.

Consider 2-hop cover computing when partitioning a di-
rected graph without SCCs (DAG). As shown in Fig. 4(a),
a DAG, G↓, can be evenly partitioned with a set of node-
separator Vw, resulting in two subgraphs G> and G⊥. We
can obtain high quality distance-aware 2-hop covers using
bisection for a DAG. There are two main issues. First, the
shortest paths covered using nodes in the node-separator Vw,
as the centers 2-hop clusters, are global, in the graph G↓.
In other words, they cover the shortest paths across G> and
G⊥. Let the shortest paths covered using Vw be Pw. Fur-
thermore, after the bisection, let the two sets of all shortest
paths covered in resulting subgraphs G> and G⊥ are de-
noted as DG>

and DG>
, respectively. Then, due to the fact

Pw ∩ DG>
= ∅ and Pw ∩ DG⊥

= ∅, we will never cover the
same shortest paths in G> or G⊥ more than necessary. It
can be easily verified because G↓ is a DAG. However, this
does not hold any longer in G in the presence of SCCs.

Consider a SCC as shown in Fig. 4(b). Here, a, a′ and
some nodes in Vw, such as w1 and w2, are in the same SCC.
In other words, both the shortest paths from a to a′ and
from a′ to a can possibly contain w1 and w2. Therefore, Pw,
if we use the same approach to evenly partition G↓ using
the node-separator Vw, can contain shortest paths between
nodes in G> and/or between nodes in G⊥ respectively. Con-
sequently, those paths will be covered multiple times when
computing 2-hop clusters in G↓, G>, as well as G⊥. It re-
duces the compression rate for computing the 2-hop cover.
As a remark, it becomes important to collapse SCCs in a
general directed graph G, to obtain a DAG G↓ from G.

We collapse a SCC, Ci(VCi
, ECi

), into a DAG, by selecting

a small number of nodes such as a set V̂Ci
⊆ VCi

. Then, we

construct 2-hop clusters based on the nodes in V̂Ci
followed

by removing V̂Ci
from G. It is important that selection of a

small number of nodes in V̂ leads to reduction of unnecessary
redundancy in the 2-hop cover. It is because a node, w, in a
SCC can be connected by many nodes in a graph, because
any node that connect to a node w′ in the same SCC connect
to w. It also means that we will have large Aw and Dw of
2-hop clusters, and we will include many redundancy in our
resulting 2-hop cover if we do not select the nodes wisely.

5. FROM SCC TO DAG
In this section, we discuss two issues: collpasing SCCs

from graph G to obtain a DAG, and how to compute 2-hop
clusters along with the process of collapsing SCCs.

5.1 Collapsing SCCs
We discuss how to collapse SCCs into a DAG (refer to

line 3 in Algorithm 1). We can find out all SCCs in graph
G, denoted C1(VC1 , EC1), C2(VC2 , EC2), · · ·), in O(|V |+|E|)
time [10].

Consider a SCC, C(VC , EC), in G, we find a minimum

number of nodes, V̂C ⊆ VC , such that all cycles in the SCC
C are disconnected by removing V̂C from C. We consider all
simple cycles in C(VC , EC) and compute V̂C in two steps,
where a simple cycle contains no other cycle in the graph.
In the first step, we find out all simple cycles in C, σ1, σ2,

· · · σm, and determine all member nodes on each cycle σ.
In the second step, we choose a minimum number of nodes
V̂C such that any cycle σ contains at least one node in V̂C .
The removal of all nodes in V̂C will disconnect all cycles,
σ, in C. This problem has been studied in [36, 22] and it
requires O((VC +EC)(m+1)) time. In our problem setting,
however, the number of simple cycles m can be very large
and listing all simple cycles is not practical. Therefore, we
adapt an early stop strategy in the depth-first traversal [36]
when enumerating all simple cycles in C. That is, in the
first step, every time when the number of cycles identified
reaches a given limit, we stop and start selecting a number
of nodes to disconnect those already identified cycles (the
second step task). After removing those nodes from C, we
then continue the first step to search the remaining cycles
in C. We repeat the two steps until no cycles in C can be
identified.

The second step is a set cover problem [10]. The ground
set ∆ to be covered consists of all cycles in C, namely,
∆ = {σ1, σ2, · · · , σm}. Consider all nodes v1, v2, · · · , on
all simple cycles in G. We associate a subset of ∆, ∆i, for
each member node vi, s.t. ∆i consists of all simple cycles σj

that contains vi. The problem is to find a set, S, consisting
of a minimum number of sets from ∆1, ∆2, · · · , such that
any σi ∈ ∆ can be found in at least one set ∆j ∈ S. Then,

V̂C is immediately known from S. The set cover problem is
NP-hard and we use the greedy algorithm [10] to obtain S.

Note: C[VC \ V̂C] contains no cycle and the SCC C will be

collapsed by deleting all nodes of V̂C from G. It is easy to see
that after removing all nodes in V̂ = V̂C1∪V̂C2 ∪· · ·∪V̂Cl

, all
cycles in G will be disconnected thus G contains no SCCs.
We obtain a DAG G↓ as the induced graph G[V \ V̂].

5.2 Reducing 2-Hop Clusters
We discuss a technique to reduce the redundancy in 2-hop

clusters by already identified 2-hop cluster (refer to line 4 in
Algorithm 1 for example). It can be used to construct any
2-hop clusters in a 2-hop cover program.

In order to remove all nodes in V̂ from G, we need to con-
struct |V̂ | 2-hop clusters. And each node w ∈ V̂ becomes a
center for one of those 2-hop clusters. Since it is not practi-
cal to precompute all shortest paths in G and maintain all
already computed 2-hop clusters for G, we do not want to
compute all 2-hop clusters based on Eq. (3). A naive so-
lution is to construct S(Aw, w, Dw) by including all nodes

in ancs(w) into Aw and desc(w) into Dw, for all w ∈ V̂ .

Algorithm 2 ReduceCluster

1: For each node w ∈ V̂ , two shortest-paths graphs, Aw, and
Dw, are constructed;

2: Choose the node w ∈ V̂ such that the number of descendants
of w in all A and D is the largest among all nodes in V̂ ;
construct S(Aw, w,Dw) based on Aw and Dw; remove w from

V̂ ; if V̂ becomes empty then terminate;

3: Update all A and D for nodes in V̂ to remove all descendants
of w from A and D, and goto 2;

n2

n4

n1

n3 n15

n0

(a) An4

n6

n4

n7

n5 n15

(b) Dn4

Figure 5: Shortest-Paths

Graphs

n3

1

n5

1

n4

333

nnnn

4

111

444 111

1 33322222

n0 n1 n15

n15 n6 n7

n2

222

Figure 6: S(An4
,n4,Dn4

)

Though this naive solution can obviously cover all shortest
paths containing any w ∈ V̂ , it in fact introduces many re-
dundant entries in Aw and Dw of S(Aw, w, Dw). Therefore,
we propose a heuristics to construct all required 2-hop clus-
ters and reduce the redundancy in S(Aw, w, Dw) by already
identified S(Aw′ , w′, Dw′). Its overall steps is described in
Algorithm ReduceCluster (Algorithm 2). To understand the
three steps, we first explain two important components in
step 1 (line 1) and step 3 (line 3) in Algorithm 2.

Shortest-paths graphs: [10] describes a shortest-paths
tree constructed in single source shortest path algorithms.
When the shortest path from the source s to some node
t is found, the immediate predecessor on the path is also
recorded for t. Thus, after the single source shortest path
algorithm finds all shortest paths from s to its reachable
nodes, a shortest-paths tree can be formed, where a tree
edge is added for each node from its recorded immediate
predecessor to it. Such a shortest-paths tree contains one
shortest path from the source s to every reachable node t

from s. However, in order to obtain a shortest-paths graph
for the source s, we make a slight modification. We record
all immediate predecessors for t with which the same min-
imum weight can be derived for a shortest path from s to
t. This is easy with Dijkstra’s algorithm [10]. Due to the
lack of space, we omit the details. The shortest-paths graph
is a DAG, because it only contains edges from nearer nodes
t to relatively far nodes t′ such as δ(s, t) < δ(s, t′). The
shortest-paths tree can be easily extended to the shortest-
paths graph. The shortest-paths graph for s contains all
alternative shortest paths from s to every reachable node t

from s.
For each node w ∈ V̂ , two shortest-paths graphs, Aw and

Dw, are constructed. Dw is constructed upon G to include
all shortest paths starting from w; while Aw is constructed
upon G↑ to include all shortest paths ending at w in G. G↑

is an auxiliary graph obtained from G which contains the
same set of nodes in G↓, but edges in the reversed direction
as in G↓. That is, we add an edge (v, u) to G↑ only if (u, v)
is in G↓. For our running example, An4 and Dn4 is shown
in Fig. 5. To construct S(Aw, w, Dw), nodes in Dw and Aw

can be directly obtained from Aw and Dw, respectively.

Update for A and D: Consider S(Aw′ , w′, Dw′) to be an

w

Aw

Dw

a

d

w'

Figure 7:

S(Aw, w,Dw) and

S(Aw′ , w′, Dw′)

A

D

n0

n1

n7

n8

n3

n4

n6n9

n14

n2

n5

n12

n13

n11

n10

(a)

A

D

n0

n1

n7

n8

n3

n4

n6n9

n14

n2

n5

n12

n13

n11

n10

(b)

Figure 8: Two Bisections for the

Fixed Strategy

identified 2-hop cluster in the 2-hop cover program. A up-
date operation on Aw and Dw can be used to reduce redun-
dancy in S(Aw, w, Dw), based on the correlation between
S(Aw′ , w′, Dw′) and S(Aw, w, Dw). The following theorem
provides the basis for our update operation.

Theorem 1: Given two 2-hop cluster S(Aw′ , w′, Dw′) and
S(Aw, w, Dw). If Aw (or Dw) contains w′ and a node a ∈
Aw (or d ∈ Dw) is also a descendant of w′ in Aw (or Dw),
then a (or d) and w′ is redundant in Aw (or Dw) and can
be removed from Aw (or Dw), respectively. 2

Proof Sketch: As shown in Fig. 7, we consider that a is a
descendant of w′ in Aw. For any node d of the descendant of
w, it is also the descendant of w′. And S(Aw′ , w′, Dw′) can
cover the shortest path from a to d before w is considered
as the center, that is, δ(a, d) = δ(a,w′) + δ(w′, d). However,
if S(Aw′ , w′, Dw′) cannot cover this way, namely δ(a, d) <

δ(a, w′)+δ(w′, d), then S(Aw, w, Dw) cannot either. We ex-
plain it as follows with Fig. 7. There are δ(a, w) = δ(a,w′)+
δ(w′, w) (the subpath property of a shortest path) and δ(w′, d)
≤δ(w′, w)+δ(w, d) (the triangle inequality). Based on them,
we can have δ(a, w′)+ δ(w′, d)〉≤δ(a,w)+ δ(w, d)〉. So there
exists δ(a, d) < δ(a, w) + δ(w, d). Thus in any case, we can
remove 〈(a, w), δ(a,w)〉 from Aw. On the other hand, we
can obtain the similar argument for 〈(w, d), δ(w, d)〉 when d

is a descendant of w′ in Dw. 2

Therefore, in step 2 (line 2) of ReduceCluster, it tries to
pick the 2-hop cluster which can maximally reduce remain-
ing A and D. And only nodes in the updated Aw and Dw

needs to be included in Aw and Dw based on Theorem 1,
as given in step 3 (line 3) in ReduceCluster. We only need
to compute two shortest-paths graphs for a small number of
nodes in v̂ and update them by centers of identified 2-hop
clusters effectively.

Example 2: For our running example, S(An4 , n4, Dn4) can
be reduced using S(An15 , n15, Dn15). From Fig. 5, we can
find that n0, n1 and n2 are descendants of n15 in An15 while
n6 and n7 are descendants of n15 in Dn15 . So, together with
n15, they will be removed from An4 and Dn4 respectively as
shown in Fig. 6. 2

6. TOP-DOWN PARTITIONING
In this section, we focus on top-down partitioning (line 8-

15) in Algorithm 1. Given a DAG G↓, with a set of node-
separator Vw, it is partitioned into two subgraphs G> and
G⊥. We discuss two strategies to identify 2-hop clusters,
based on Vw. and cover all shortest paths between G> and

n14n13

n1n0 n10

n11

n12

1

3

2

2

3

1

(a)
S(An11

,n11,Dn11
)

n7

n6
2 1

1

456 3

n0 n1 n3 n4n2 n5

(b) S(An6
,n6,Dn6

)

n0

n10

2

n1

n11 n12 n13n14

1

21 43

(c)
S(An10

,n10,Dn10
)

Figure 9: 2-hop clusters Constructed During Top-

Down Partitioning

G⊥. The first one is the fixed strategy, which fixes the cen-
ters in the subsequent 2-hop cover program. We further
propose a flexible strategy as an enhancement to identify
quality center candidates to form Vw. The flexible strategy
is fast and robust in producing high quality 2-hop covers.

6.1 The Fixed Strategy
It is intuitive that a number of high quality 2-hop clusters

can result a high compression rate 2-hop cover. In [8], we
prove that with the same space cost, S(Aw, w, Dw) covers
more paths when the cardinality of Aw and Dw are more
similar. That is, balanced 2-hop cluster are preferred. We
in [8] proposed to bisect a DAG G↓ in the middle before the
2-hop cover program begin: it sorts all nodes in the DAG
G↓ using topological sort [10]. All directed edges (ordered
pairs) are arranged to direct toward one direction. Then, the
bisection is to cut G↓ in the middle. One half of nodes go to
A, and the other half go to D, and A and D are two subsets
of V (G), respectively. Next, we obtain an induced subgraph,
Gc(Vc, Ec), with the set of edges Ec = {(a, d)|a ∈ A, d ∈ D}.
From Gc, we find a set of nodes Vw ⊂ Vc such that every
edge in Ec is incident to some node vw ∈ Vw. Here, G> and
G⊥ are two induced subgraphs that contain sets of nodes,
V (G>) = A \ Vw and V (G⊥) = D \ Vw, respectively.

Our first strategy finds a node-separator Vw with the same
process as above. Then, we construct 2-hop clusters based
on all w ∈ Vw in the same way as discussed in Section 5.2.
All shortest paths 〈(a, d), δ〉, where a ∈ G> and d ∈ G⊥, can
thus be covered, because Vw is a node-separator and any
shortest path from a to d must hence contain some node
w ∈ Vw. Also, all S(Aw, w, Dw) covers all shortest paths
containing any w ∈ Vw.

The fixed strategy can already compute high-compression-
rate distance-aware 2-hop covers and gracefully scale to large
graphs. However, the following example suggests that it is
still inadequate to handle graphs which are sparse or have
structures as long chains and tree-like subgraphs. To refine
the graph partitioning to be adaptable to the structure of
the underlying graph, we propose another strategy.

Example 3: Fig. 8 shows two possible ways of bisection on
the DAG using the fixed strategy. First, we obtain Vw =
{n4, n8, n11}, and construct three 2-hop clusters, namely,
S(An4 , n4, Dn4) (Fig. 6), S(An8 , n8, Dn8) (Fig. 1(b)), and
S(An11 , n11, Dn11) (Fig. 9(a)). Second, we have Vw = {n6, n8,

n10}, which results in three 2-hop clusters: S(An6 , n6, Dn6)
(Fig. 9(b)), S(An8 , n8, Dn8) (Fig. 1(b)), S(An10 , n10, Dn10)
(Fig. 9(c)). We will select the first way of bisection in
Fig. 8(a) over the second way in Fig. 8(b), because 2-hop
clusters on n6 and n10 are not so balanced as those on n4

and n11. 2

w1

Aw1

Dw1

w2

Aw2

Dw2

wk

Awk

Dwk

......

......

......

u

v

Figure 10: A Bisection Based on 2-Hop Clusters

G

w1

w2

Aw1

Dw1

w3

Aw3

Dw3

Aw2

Dw2

(a) S(Aw2
, w2, Dw2

) not Good

w1

Aw1

Dw1

w2

Aw2

Dw2

w3

Aw3

Dw3

A=Aw1

D=Dw1

A=Aw1

D=Dw1

A=Aw1 Aw2

D=Dw1 Dw2

...

(b) S(Aw2
, w2, Dw2

) is

Skipped

Figure 11: Our Flexible Strategy

6.2 The Flexible Strategy
The hierarchical partitioning of [8] resembles a fixed strat-

egy in that it first find Vw and then construct 2-hop clusters
by restricting centers in Vw, and thus Vw is predetermined
before a 2-hop cover program starts. In this paper, we fur-
ther propose a flexible strategy for top-down partitioning. It
features a bisection on the underlying graph resulted from a
2-hop cover program where centers are not predetermined to
better adapt to local unusual structure such as long chains
and tree-like subgraphs.

In this strategy, a node-separator Vw, where Vw = Vw1 ∪
Vw2 , is obtained in two steps. The first step performs a
bisection on G↓ and computes Vw1 . The purpose is to fast
roughly partition graph G. The second step is to compute
Vw2 based on the bisection in the previous step. The purpose
is to ensure that G> and G⊥ are surely disjoint, in other
words, there is no any path cross G> and G⊥ when Vw is
removed. Fig. 10 illustrates the idea. In the first step, we
attempt to identify a set of 2-hop clusters, S(Aw1 , w1, Dw1),
S(Aw2 , w2, Dw2), · · · , to roughly partition G. All nodes in
Awi

will be included in the graph G>, whereas all nodes in
Dwi

will be included in graph G⊥. After the first step, there
exist links, for example, a path from u in Aw2 to v in Dw2 .
The second step is to cut those cross paths.

Below, we discuss the first step called a bisection based
on 2-hop clusters followed the discussion on the second step
called Sweeping remaining cross-partition edges.

A bisection based on 2-hop clusters: The main idea of
this step is described as follows. Initially, we compute all 2-
hop clusters, S(Aw1 , w1, Dw1), S(Aw2 , w2, Dw2), · · · , for all
nodes in G, and select the best S(Awi

, wi, Dwi
), among all

2-hop clusters, based on Eq. (3). In a 2-hop cover program,
in every iteration, it needs to find the next best 2-hop clus-
ter, which requires reranking. We want to find high-quality
rough node-separator Vw1 , and we want to avoid reranking
which comes with high cost. As shown in Fig. 11, suppose

we select w2 as the center for the first S(Aw1 , w1, Dw1), we
want to select S(Aw3 , w3, Dw3) as the next best rather than
S(Aw2 , w2, Dw2). It is because the overlapping between the
two 2-hop clusters, S(Aw1 , w1, Dw1) and S(Aw2 , w2, Dw2) is
very large, whereas there is no overlapping between the two
2-hop clusters, S(Aw1 , w1, Dw1) and S(Aw3 , w3, Dw3). This
step results in two sets of nodes, A and D, based on 2-hop
clusters identified in the 2-hop cover program, where A con-
tains all Awi

computed and D contains all Dwi
(Fig. 10).

A and D will be used to derive the G> and G⊥.
The above goal can be achieved as below. Compute and

sort all 2-hop clusters, S(Aw1 , w1, Dw1), S(Aw2 , w2, Dw2),
· · · , for all nodes in G, and select S(Awi

, wi, Dwi
) along the

precomputed order. Suppose 2-hop cluster S(Awi
, wi, Dwi

)
is picked, A and D will be updated immediately to include
Awi

and Dwi
excluding wi, respectively. In the next (i+1)-

th iteration, we only consider S(Awi+1
, wi+1, Dwi+1

) satis-
fying wi+1 6∈ A ∪ D, as depicted in Fig. 12(a). It is clear
for each a in Awi+1

(or (d in Dwi+1
), we have a 6∈ D (or

d 6∈ A), respectively. Otherwise, we must have wi+1 6∈ D

(or A). Therefore, except for the centers w1, w2, . . . , wk,
any node in G↓ can only be included in either A or D ex-
clusively. We let Vw1 = {w1, w2, · · · , wk}.

In order to construct S(Aw, w, Dw), we just include all
nodes in A(w) (or D(w)) into Aw (or Dw), respectively. Be-
cause each shortest path from a node a in A(w) to w (or
from w to a node d in D(w)) can only be covered by an cor-
responding node a in Aw (or d in Aw) and such a in Aw (or
d in Aw) cannot be redundant. Therefore, we only need to
obtain a fixed ranking for all nodes w by the score of Eq. (3)
for S(Aw, w, Dw). And we do not need to consider updating
the ranking during the 2-hop cover program, because all Aw

or Dw do not change. So the 2-hop cover program examines
every center and chooses 2-hop clusters according to such
an ranking. It scans the entire ranking list of centers to fin-
ish the first step. To avoid computing out all-pairs shortest

paths covered by a 2-hop cluster, we use |Aw|×|Dw|
|Aw|+|Dw|

to re-

place Eq. (3), where the number of shortest paths covered
by S(Aw, w, Dw) is roughly calculated as |Aw| × |Dw |. We
illustrate this step in Example 4 using our running example.

Example 4: For our running example in Fig. 8, the 2-
hop cover program forms the initial ranking as n4, n3, n5,

n8,n6, n9, n2, n10, n11, n7, n1, and first picks the 2-hop
cluster based on n4 (Fig. 6). We have A = {n1, n2, n3, n4}
and D = {n4, n5, n6, n7}. Then, 2-hop cluster of centers in
A ∪ D will not be considered any more. Only n8, n9, n10

and n11 can be centers. The next 2-hop cluster picked is
constructed from n8 (Fig. 1(b)). Then only n10 and n11 are
left for consideration. We construct another 2-hop cluster
from n11 (Fig. 9(a)) and no more nodes left can be centers.
This generates our preferred way of bisection in Fig. 8(a).

2

Sweeping remaining cross-partition edges: Note that
Vw1 is not necessarily to be a separator of G↓, as showed
in Fig. 10, because there can be an edge (u, v) which can
not be disconnected by removing Vw1 . The second step is
to sweep cross-partition edges to obtain a node separator
of G. We obtain Vw2 as follows. We first identify the set
of cross-partition edges Ec to be all edges (a, d) such that
both are false for a ∈ A ∧ d ∈ A and a ∈ D ∧ d ∈ D.
We initialize Vw2 to be ∅, and iteratively add to Vw2 a node
v with the largest degree in Ec, that is the node with the

w

Aw

Dw

A

D

(a)

w

Aw

Dw

A

D

(b)

w

Aw

Dw

A

D

(c)

Figure 12: Dealing with Different 2-Hop Clusters

largest number of edges in Ec being incident with v, and
remove those edges incident to v from Ec. We repeat it until
Ec becomes empty and obtain Vw2 . Obviously, Vw1 ∪ Vw2

is a node-separator of G↓. We continue to augment L with
2-hop clusters constructed based on Vw2 in the same way
as in our fixed strategy. Then G> and G⊥ are two induced
subgraphs that contain sets of nodes, V (G>) = A\Vw2 and
V (G⊥) = D \ Vw2 , respectively.

The enhanced scheme: The first enhancement over the
above two step basic scheme aims at using less 2-hop clusters
to complete the bisection. Consider S(Aw, w, Dw) which is
to be picked in the above 2-hop cover program. As illus-
trated by Fig. 12(b), when Aw or Dw does not overlap with
A or D, we can skip such S(Aw, w, Dw) by directly merging
Aw and Dw to D or A, respectively. That is, if Aw ∩A = ∅,
all nodes in Aw and Dw are added into D; if Dw ∩D = ∅, all
nodes in Aw and Dw are added into A. This improvement
tries to quickly “tear off” two subgraphs, G> and G⊥, from
each other.

A further step is to skip S(Aw, w, Dw) which does not
have Aw ∩ A = ∅ (or Dw ∩ D = ∅), which is illustrated by
Fig. 12(c). We still add all nodes in Aw and Dw into D

(or A). It is useful when Aw is very small but Dw is very
large (or the reverse), because such a 2-hop cluster confers
low compression rate when |Aw| and |Dw | differs largely,
as we prefer balanced 2-hop clusters. This enhancement
can introduce duplicated subgraphs in G> and G⊥, both
containing overlapped nodes in Aw ∩ A (or Dw ∩ D). It
is only triggered when two thresholds meet: We set two
thresholds on |Aw| < τ1 and |Dw| > τ2, or |Dw | < τ1 and
|Aw| > τ2.

Example 5: Consider our running example in Fig. 8, af-
ter the 2-hop clusters of n4 and n8 are picked, we are to
construct the 2-hop cluster on n11. Note that all nodes in
Dn11 do not appear in D. So all nodes in S(An11 , n11, Dn11)
(Fig. 9(a)) can be merged into A and S(An11 , n11, Dn11)
can be skipped. Now, V (G>) = {n1, n2, n3, n10, n11} and
V (G⊥) = {n5, n6, n7, n9} and the cross cover only includes
S(An4 , n4, Dn4) and S(An8 , n8, Dn8). 2

7. PERFORMANCE EVALUATION
We conducted extensive experiment studies to evaluate

the performance of different approaches to compute distance-
aware 2-hop covers. Specifically, We use PM+ to illustrate
the performance of the flat partitioning as in [34]. For our
proposed approach, we use FIX to denote the fixed strategy
method and FLE the flexible strategy. For all of them, we
both use the same center graph approach to compute 2-hop
covers for small graphs, when the number of nodes are below
the same threshold, in order to appreciate the performance
improvement by different strategies. All those algorithms

10,000 20,000 30,000 40,000
0

1000

2000

3000

4000

Number of Nodes

E
la

ps
ed

 T
im

e
(s

ec
.)

PM+
FLE
FIX

(a) Elapsed Time (sec.)

10,000 20,000 30,000 40,000
10

5

10
6

10
7

10
8

10
9

Number of Nodes

2−
H

op
 C

ov
er

 S
iz

e

PM+
FLE
FIX

(b) Cover Size

Figure 13: Performance on Directed Graphs of In-

creasing Size

11,000 12,000 13,000 14,000
0

500

1000

1500

2000

2500

3000

3500

Number of Edges

E
la

ps
ed

 T
im

e
(s

ec
.)

PM+
FLE
FIX

(a) Elapsed Time (sec.)

11,000 12,000 13,000 14,000

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Number of Edges

2−
H

op
 C

ov
er

 S
iz

e

PM+
FLE
FIX

(b) Cover Size

Figure 14: Performance on Directed Graphs of In-

creasing Density

are implemented using C++.
We generated various synthetic data using the random

directed graph generator named GraphBase developed by
Knuth [28]. We vary two parameters, |V | and |E|, in the
two generators, and use the default values for the other pa-
rameters. Extensive tests are also on real datasets, including
EcoCyc [27], XMark [35], DBLP2 and metabolic networks.
More detailed specification can be found in Section 7.3. It
is important to note that our work focuses on encoding the
graph transitive closure or even all-pairs shortest paths in
the graph. Even if the graphs to be used during testing
can be read into main memory, it is not easy to keep the
graph transitive closure or even all-pairs shortest paths in
the graph in main memory, to support on-line exact distance
queries for any two nodes.

We conducted all the experiments on a PC with a 3.4GHz
processor, 180G hard disk and 2GB main memory running
Windows XP.

7.1 Exp-1: Bottom-Up Partitioning v.s. Top-
Down Partitioning

We conduct experiments to compare PM+, FIX and FLE.
Four sets of random directed graphs are generated for this
purpose by GraphBase. Graphs in each sets contain the
same number of nodes and edges but with various seeds for
the random graph generator, with a fixed graph density of
1.2 as the ratio of the number edges to the number of nodes.
Because this is common among real world data graphs. The
4 sets of graphs contain 10K, 20K, 30K, and 40K nodes re-
spectively, where K is for kilo. We show the performance
on one graph for each set, because all graphs in the same

2http://dblp.uni-trier.de/xml/

20,000 40,000 60,000 80,000
0

1000

2000

3000

4000

5000

6000

7000

Number of Nodes

E
la

ps
e

T
im

e
(s

ec
.)

FLE
FIX
FLE(NR)
FLE(NI)

(a) Elapsed Time (sec.)

20,000 40,000 60,000 80,000
0

0.5

1

1.5

2

2.5
x 10

8

Number of Nodes

2−
H

op
 C

ov
er

 S
iz

e

FLE
FIX
FLE(NR)
FLE(NI)

(b) Cover Size

Figure 15: Our Approaches on Graphs with Increas-

ing Size

21,000 30,000 40,000 50,000
70

80

90

100

110

120

130

140

150

Number of Edges

E
la

ps
ed

 T
im

e
(s

ec
.)

FLE
FIX

(a) Elapsed Time (sec.)

21,000 30,000 40,000 50,000

0.5

1

1.5

2
x 10

5

Number of Edges

2−
H

op
 C

ov
er

 S
iz

e

FLE
FIX

(b) Cover Size

Figure 16: Our Approaches on DAGs with Increas-

ing Density

set have similar performance. The total number of short-
est paths in the 4 graphs are 12.94M, 43.19M, 100.03M and
165.71M, respectively, where M is for mega. To compare the
performance on graphs with various density, we also tested
on 4 graphs with 10K nodes. They have 11K, 12K, 13K, and
14K edges, while 3.49M, 12.94M, 18.85M and 26.99M shortest
paths, respectively. We illustrate the performance of the
three algorithms in Fig. 13 and Fig. 14. The figures show
that when the graph is large and dense, FIX and FLE can
be significantly faster than PM+, and smaller 2-hop covers
can be obtained with FIX and FLE than those from PM+.
The main reason is that as the number of nodes or edges in
the underlying graph increases, the size of the PSG graph
generated by PM+ increases also. So PM+ may need to re-
cursively partition the PSG and perform the cover joining
phase repeatedly. And the cover join phase is costly. This
is the case on the graph of 40K nodes in Fig. 13 and 14K
edges in Fig. 14. The cover join phase is costly. For exam-
ple, when processing the graph of 14K edges in Fig. 14(a),
PM+ spent 3, 140 seconds in total. But 2, 605 of them are
for cover joining. Further more, repeated cover join phases
can generate more inaccurate entries. On the graph of 14K
edges in Fig. 14(b), total entries generated is around 794M.
However, only about 4M entries are with correct distance in-
formation and should be kept. In contrast, for the same
graph, FLE and FIX only spent 166 and 92 seconds; and the
resulted 2-hop cover size is 0.8M and 0.7M, respectively.

7.2 Exp-2: Performance of Different Strate-
gies

For our proposed algorithms, We show their performance
on 4 large graphs with a fixed density of 1.5. The 4 graphs

contain 20K, 40K, 60K, and 80K nodes respectively. They
contain 139.47M, 543.61M, 1.21 billion and 2.16 billion num-
ber of shortest paths, respectively. To appreciate the power
of our proposed technique to reduce the redundancy in 2-
hop clusters (Section 5), we further illustrate the one with-
out reducing the redundancy as FLE(NR). We also illustrate
one version without the enhancement Section 6.2 as FLE(NI).
Fig. 15 shows the performance of them. In Fig. 15(a) and
Fig. 15(b), FLE(NR) and FLE(NI) performs similarly: they
all need slightly shorter time but result in larger cover than
FLE and FIX. Particularly, the size by FLE and FIX can be
smaller than that by FLE(NR) and FLE(NI) up to an order of
magnitude. For example, on the 80K nodes graph, FLE(NR)

and FLE(NI) spend 5195 and 6572 seconds, respectively. And
FLE and FIX spend 6689 and 6998 seconds. But cover size
resulted from FLE(NR) and FLE(NI) are as high as 198.48M
and 215.67M, respectively. While FLE and FIX can obtain
the covers with the size of 51.81M and 50.70M, respectively.
Therefore, the proposed optimization techniques such as re-
duce the redundancy in 2-hop clusters and enhanced flexible
partitioning are very effective to get hight-quality 2-hop cov-
ers.

To get the difference of FLE and FIX, we tested them on
4 large DAGs with 20, 000 nodes by the random DAG gen-
erator developed by Johnson baugh [24]. The 4 DAGs have
various number of edges as shown in Fig. 16. FLE can be
faster than FIX when the graph is sparse, as indicated with
the graph with 21K edges. However, when the graph is dense,
FLE can obtain a cover with smaller size than can FIX. For
example, with graph with 21K edges. The size of the over
by FLE is 16.27K smaller than that by FIX, and it spends 26
more seconds than FIX does. FIX can be fast because it can
result in small subgraphs G> and G⊥. Because FIX fixes a
number of centers with most incident edges among all nodes.
And all such centers and incident edges will removed from
G> and G⊥.

7.3 Exp-3: Tests on XML and Real Datasets
We tested several real datasets: Ecoo157, AgroCyc, An-

thra, HpyCyc, Human, Mtbra, and VchoCyc are from Eco-
Cyc [27]; Reactome, aMaze, and KEGG are metabolic networks
from [38]. DBLP, XMK10M and XMK20M, are XML documents;
We selected a subset of DBLP , which consists of all the
records for 5 conferences, SIGMOD, VLDB, ICDE, EDBT
and ICDT; The DBLP graph contains edges from all parent-
child relationships and bibliographic links. Then, for XMK10M
and XMK20M, the graph contains edges from parent-child and
ID/IDREF relationships. Reactome, aMaze, and KEGG are
metabolic networks [38]. Table 1 lists parameters of these
graphs including total number of shortest paths and the 2-
hop cover size and the elapsed time resulted by FIX, FLE and
PM+. For example, on XMK20M, it is a sparse graph. The
size of the over by FLE is 3.41M smaller than that by FIX,
and FLE uses 5836 seconds less time than FIX does also. For
many graphs, PM+ also achieves similar small 2-hop cover
size to ours. It is due to those graphs are not large and
dense. But it worths noting the time it spends is usually an
order of magnitude more than that used by FIX or FLE. Some
graphs are too dense or too large for PM+ to perform the
cover joining phase (the third step) with our limited main
memory capacity. PM+ has to partition the graph recur-
sively and repeatedly performs the joining phase more than
once for the same graph. The partial 2-hop cover during the

Data Set |V | |E| |DG| Time |H| Time |H| Time |H|

1 Ecoo157 12,620 17,308 2.4M FLE 23.07 58, 279 FIX 28.00 60, 157 PM+ 200.25 54, 841
2 AgroCyc 13,969 17,694 2.73M FLE 22.90 60, 794 FIX 30.99 61, 913 PM+ 229.66 91, 052
3 aMaze 11,512 28,700 83.2M FLE 642.31 411, 911 FIX 636.91 387, 762 PM+ - -
4 Anthra 13,733 17,307 2.44M FLE 22.91 66, 154 FIX 31.67 65, 262 PM+ 215.10 57, 217
5 HpyCys 5,565 8,474 1.11M FLE 14.04 39, 898 FIX 18.13 39, 570 PM+ 102.68 33, 266
6 Human 40,051 43,879 2.8M FLE 28.5 84, 791 FIX 32.90 84, 754 PM+ 231.95 133, 865
7 Kegg 14,269 35,170 145.65M FLE 1934.66 824, 244 FIX 1934.6 822, 891 PM+ - -
8 Mtbrv 10,697 13,922 2.03M FLE 20.29 55, 577 FIX 10.02 54, 989 PM+ 173.97 48, 430
9 Reactome 3,647 14,447 6.42M FLE 54.67 100, 057 FIX 53.01 90, 105 PM+ 870.11 52, 869
10 Vchocyc 10,694 14,207 2.34M FLE 21.62 68, 362 FIX 28.18 65, 222 PM+ 195.66 51, 054
11 DBLP 52,682 59,395 409,467 FLE 20 88, 070 FIX 19 91, 076 PM+ 173.81 266, 834
12 XMK10M 167,866 198,412 2.01G FLE 2,642 26.68M FIX 3,435 23.80M PM+ - -
13 XMK20M 336,243 397,713 8.45G FLE 10,727 94.29M FIX 16,563 97.71M PM+ - -

Table 1: Performance on real graphs

joining phase can contains an overwhelming number of total
entries before removing inaccurate ones in it.

7.4 Exp-4: Querying Performance
In terms of performance of distance queries for 2-hop cov-

ers, we compare the 2-hop cover method FLE with the Dijk-
stra algorithm. We tested 100 randomly generated queries
for the average querying time to be considered for each one.
Fig. 17(a) and (b) show their performance regarding dif-
ferent distance value. While Fig. 17(c) shows all random
queries for graphs in Table 1. The 2-hop cover can outper-
form the Dijkstra algorithm up to two orders of magnitudes.
For XMK20M graph, the 2-hop cover spends 32 mini-seconds,
while Dijkstra needs 1.015 seconds.

The quality of 2-hop covers is important for efficient query
processing. For example, 2-hop covers of AgroCyc, Human

and DBLP obtained with PM+ are larger than those cov-
ers obtained with FLE. Then, the querying performance of
larger covers degrades accordingly. In this tests, for the three
graphs mentioned above, we can obtain the elapsed time as
0.17, 0.15 and 0.13 mini-seconds with PM+ covers. How-
ever, such numbers for the smaller covers are 0.087, 0.098
and 0.049. The smaller 2-hop covers by FLE outperform the
larger 2-hop covers by PM+ noticeably.

8. RELATED WORK
Extensive work has been done on shortest path query pro-

cess. Main memory methods includes the Dijkstra’s algo-
rithm [12], Floyd [13] and Bellman-Ford [4]. [10] provides
a comprehensive introduction to them. [42, 31] are two re-
cent results. Main memory methods are orthogonal to our
problem and the output can be used to provide us the all-
pairs shortest paths to be encoded. There is also work to
only materialize shortest paths in a number of subgraphs of
the underlying graphs, which are further organized to attain
pruning of nodes for exploration at querying time. Instances
are [2], HEPV [21] and HiTi [25].

The more related work to ours follows the paradigm to
encode the underlying graphs and assign short labels to
nodes, in order to support efficiently query processing. [1,
6, 39, 38] all considered assigning intervals to nodes which
encodes the set of reachable nodes from that node in the
underlying graph to support reachability query processing.
However, they can hardly be extended to support shortest
path queries, because these intervals are usually based on
a spanning tree (called tree-cover in [1, 6, 20]) of the un-

4 8 12 16
0

1

2

3

4

5

6

7
x 10−3

Distance

E
la

ps
ed

 T
im

e
(s

ec
.) 2−Hop

Dijkstra

(a) DBLP

4 8 12 16 20 24 28 32 36
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance

E
la

ps
ed

 T
im

e
(s

ec
.) 2−Hop

Dijkstra

(b) XMK20M

1 2 3 4 5 6 7 8 9 10 11 12 13
101

102

103

104

105

106

Different Graphs

El
ap

se
d T

im
e (

mi
cro

−s
ec

.) 2−Hop
Dijkstra

(c) Real Datasets

Figure 17: Distance Querying Time

derlying graph, where distance information are incomplete
for the whole graph. Similar problem also exists in some
work [19, 20] which decomposes the graph into a number
of simple structures, such as chains or trees, to compute
and compress the transitive closure. Distance labels were
considered by [30, 37, 14]. But they can not be applied
to directed graphs. [15, 16, 29, 11] considered material-
izing complete distance information for a subset of nodes
in the graph, called landmarks, for approximating the dis-
tance of any given two nodes. Similar to them, we also
need to compute the complete distance information for a
certain number of centers. However, the major difference is
that they can not answer exact distance and shortest path
queries for two nodes. While we focus on compressing the
whole distance information and shortest paths in the graphs
with those centers. [41] preprocesses a graph first to answer
any one subsequent distance query in O(|V |) time. How-
ever, the preprocessing itself needs O(|V |2) space for matrix
operations. There has been research work focus on efficient
computing of 2-hop covers [33, 34, 7, 8, 5]. Surprisingly,
existing work emphasizes on the reachability of the 2-hop
cover problem, while no sufficient effort has been devoted
for distance-aware 2-hop cover problem. Only [33, 34] con-
sidered distance-aware 2-hop covers, which is examined in
this paper. Our approach significantly outperforms the ex-

isting approach when the underlying graph is either large or
dense.

9. CONCLUSION
In this paper, we concentrate ourselves on fast compu-

tation of distance-aware 2-hop covers for large graphs. We
exploit strongly connected components collapsing and graph
partitioning to gain speed. We have investigated how to cor-
rectly retain node distance information and appropriately
encode all-pairs shortest paths with small overhead under
graph partitioning. We propose heuristics and strategies to
achieve high-compression rate in fast computing distance-
aware 2-hop covers. We suggest using the fixed strategy if
the graph is dense; while if the graph is sparse, the flexible
strategy is recommended.

Acknowledgment
The work described in this paper was supported by grant
from the Research Grants Council of the Hong Kong Special
Administrative Region, China (No. 418206).

10. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

management of transitive relationships in large data and
knowledge bases. In Proc. of SIGMOD’89, 1989.

[2] R. Agrawal and H. V. Jagadish. Algorithms for searching
massive graphs. IEEE Trans. on Knowl. and Data Eng.,
06(2), 1994.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: membership,
growth, and evolution. In Proc. of KDD ’06, 2006.

[4] R. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[5] R. Bramandia, B. Choi, and W. K. Ng. On incremental
maintenance of 2-hop labeling of graphs. In Proc. of WWW
’08, 2008.

[6] L. Chen, A. Gupta, and M. E. Kurul. Stack-based
algorithms for pattern matching on dags. In Proc. of
VLDB’05, 2005.

[7] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computation of reachability labeling for large graphs. In
Proc. of EDBT’06, 2006.

[8] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computing reachability labelings for large graphs with high
compression rate. In Proc. of EDBT ’08, 2008.

[9] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In Proc.
of SODA’02, 2002.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT Press, 2001.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Predicting
internet network distance with coordinates-based
approaches. In Proc. of SIGCOMM ’04, 2004.

[12] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Math., 1:269–271, 1959.

[13] R. W. Floyd. Shortest path. Communications of the ACM,
5:345, 1962.

[14] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance
labeling in graphs. J. Algorithms, 53(1):85–112, 2004.

[15] A. V. Goldberg and R. F. Werneck. Computing
point-to-point shortest paths from external memory. In
Proc. of ALENEX ’05, 2005.

[16] A. V. Goldberg and R. F. Werneck. Reach for a*: Efficient
point-to-point shortest path algorithms. In Proc. of
ALENEX ’06, 2006.

[17] G. Gou and R. Chirkova. Efficient algorithms for exact
ranked twig-pattern matching over graphs. In Proc. of
SIGMOD ’08, 2008.

[18] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In Proc. of SIGMOD ’07,
2007.

[19] H. V. Jagadish. A compression technique to materialize
transitive closure. ACM Trans. Database Syst.,
15(4):558–598, 1990.

[20] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently
answering reachability queries on very large directed
graphs. In Proc. of SIGMOD ’08, 2008.

[21] N. Jing, Y.-W. Huang, and E. A. Rundensteiner.
Hierarchical encoded path views for path query processing:
An optimal model and its performance evaluation. IEEE
Trans. on Knowl. and Data Eng., 10(3), 1998.

[22] D. B. Johnson. Finding all the elementary circuits of a
directed graph. SIAM J. Comput., 4(1):77–84, 1975.

[23] D. S. Johnson. Approximation algorithms for combinatorial
problems. In Proc. of STOC’73, 1973.

[24] R. Johnsonbaugh and M. Kalin. A graph generation
software package. In Prof. of SIGCSE’91, 1991.

[25] S. Jung and S. Pramanik. An efficient path computation
model for hierarchically structured topographical road
maps. IEEE Trans. on Knowl. and Data Eng., 14(5), 2002.

[26] D. Kempe, J. Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In Proc. of
KDD ’03, 2003.

[27] I. M. Keseler, J. Collado-Vides, S. Gama-Castro,
J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil, and
P. D. Karp. Ecocyc: a comprehensive database resource for
escherichia coli. Nucleic Acids Research, 33(D334-7), 2005.

[28] D. E. Knuth. The Stanford GraphBase: a platform for
combinatorial computing. ACM Press, 1993.

[29] T. S. E. Ng and H. Zhang. Predicting internet network
distance with coordiantes-based approaches. In Proc. of
INFOCOM ’01, 2001.

[30] D. Peleg. Proximity-preserving labeling schemes. J. Graph
Theory, 33:167–176, 2000.

[31] S. Pettie. On the shortest path and minimum spanning tree
problems. PH.D Dissertation, The University of Texas at
Austin, 2003.

[32] S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and
D. Schomburg. Metabolic pathway analysis web service
(Pathway Hunter Tool at CUBIC). Bioinformatics,
21(7):1189–1193.

[33] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An
efficient connection index for complex XML document
collections. In Proc. of EDBT’04, 2004.

[34] R. Schenkel, A. Theobald, and G. Weikum. Efficient
creation and incremental maintenance of the HOPI index
for complex XML document collections. In Proc. of
ICDE’05, 2005.

[35] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. Xmark: A benchmark for xml
data management. In Proc. of VLDB’02, 2002.

[36] R. E. Tarjan. Enumeration of the elementary circuits of a
directed graph. SIAM J. Comput., 2(3):211–216, 1973.

[37] M. Thorup and U. Zwick. Approximate distance oracles. In
Proc. of STOC ’01, 2001.

[38] S. TrißI and U. Leser. Fast and practical indexing and
querying of very large graphs. In Proc. of SIGMOD ’07,
2007.

[39] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual
labeling: Answering graph reachability queries in constant
time. In Proc. of ICDE’06, 2006.

[40] S. Wasserman and K. Faust. Social Network Analysis.
Cambridge University Press, 1994.

[41] R. Yuster and U. Zwick. Answering distance queries in
directed graphs using fast matrix multiplication. In Proc. of
FOCS ’05, 2005.

[42] U. Zwick. All pairs shortest paths using bridging sets and
rectangular matrix multiplication. J. ACM, 49(3):289–317,
2002.

