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A new method for on-line monitoring of fermentations using mid-
infrared (MIR) spectroscopy has been developed. The method has
been used to predict the concentrations of glucose and ethanol dur-
ing a baker’s yeast fermentations. A completely automated flow sys-
tem was employed as an interface between the bioprocess under
study and the Fourier transform infrared (FT-IR) spectrometer,
which was equipped with a flow cell housing a diamond attenuated
total reflection (ATR) element. By using the automated flow system,
experimental problems related to adherence of CO2 bubbles to the
ATR surface, as well as formation of biofilms on the ATR surface,
could be efficiently eliminated. Gas bubbles were removed during
sampling, and by using rinsing steps any biofilm could be removed
from the ATR surface. In this way, constant measuring conditions
could be guaranteed throughout prolonged fermentation times (;8
h). As a reference method, high-performance liquid chromatogra-
phy (HPLC) with refractive index detection was used. The recorded
data from different fermentations were modeled by partial least-
squares (PLS) regression comparing two different strategies for the
calibration. On the one hand, calibration sets were constructed from
spectra recorded from either synthetic standards or from samples
drawn during fermentation. On the other hand, spectra from fer-
mentation samples and synthetic standards were combined to form
a calibration set. Differences in the kinetics of the studied fermen-
tation processes used for calibration and prediction, as well as the
precision of the HPLC reference method, were identified as the
main chemometric sources of error. The optimal PLS regression
method was obtained using the mixed calibration set of samples
from fermentations and synthetic standards. The root mean square
errors of prediction in this case were 0.267 and 0.336 g/L for glucose
and ethanol concentration, respectively.

Index Headings: On-line fermentation monitoring; Fourier trans-
form infrared spectrometry; FT-IR spectrometry; Biofilm forma-
tion; Process analysis.

INTRODUCTION

Cultivation of microorganisms is an increasingly used
manufacturing route towards several products ranging
from bulk antibiotics to high-value therapeutic proteins.1

However, the control of these bioprocesses is still sub-
optimal. Only a few parameters (pH, O2, T, . . .) can be
monitored in situ. Additional information required for
process control and decision making is usually based on
data produced by infrequent sampling, which in addition
often has a significant time delay from sampling to ob-
taining the final result.2 Generally, analyses of target
compounds are performed off line by wet chemical as-
says often involving enzymatic reactions or separation
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techniques, such as high-performance liquid chromatog-
raphy (HPLC) or gas chromatography (GC).3,4 These as-
says require a tedious sample preparation that is usually
time consuming.

The ideal method for biochemical process control
should enable direct rapid, precise, and accurate deter-
mination of several target compounds, with minimal or
no sample preparation and reagent consumption. These
requisites are currently fulfilled by spectroscopic meth-
ods, most commonly based on infrared4–9 and Raman8–10

spectroscopy.
Infrared spectroscopy has been employed for years as

an alternative technique for fermentation monitoring. The
relative merits of both near-infrared (NIR) and mid-infra-
red (MIR) spectroscopies have been considered for var-
ious systems,4–9 and it has been established that because
MIR spectroscopy measures the fundamental vibration
modes of molecules, it has the advantage over NIR that
unknown species can also be identified. In addition, the
use of such a technique for on-line or in situ monitoring
enables the detection of transient signals that cannot be
captured otherwise (with e.g., off-line and at-line meth-
ods). However, the high absorption of water poses a prob-
lem for the direct application of IR spectroscopy for mon-
itoring aqueous systems. Several approaches have been
developed to achieve the on-line measurement of biopro-
cesses minimizing this water interference. For this pur-
pose, attenuated total reflection (ATR) based systems
have been employed, placing the ATR element in differ-
ent interfaces between the instrument and the process un-
der study. Doak et al.11 used a multireflection diamond
ATR insertion probe specifically modified to be inserted
through a port of the reaction vessel to achieve in situ
monitoring of Escherichia coli fermentation. An exten-
sive study on the stability of the probe using aqueous
standards has shown a relative variability up to 20%, hav-
ing only very limited data from one real fermentation. A
different approach was described using an ATR probe in
which the transfer of infrared light from the detector to
the dip sensor is achieved through an optical fiber to take
in situ measurements. This system was employed to de-
termine the concentrations of major components in al-
coholic and lactic fermentations.12 However, potential dif-
ficulties when working with probe-based systems are bio-
film formation on the ATR surface as well as gas bubble
adherence.

Partial least-squares (PLS) regression13–15 has become
a very popular multivariate data analysis method to ex-
tract information on the concentration of main compo-
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FIG. 1. System for the on-line FT-IR monitoring of yeast fermen-
tation.

nents from the recorded spectra.4–6,16 PLS regression per-
forms a calibration on the basis of data obtained from
one fermentation, and the PLS method obtained is later
applied to the prediction of concentration values of future
fermentation samples not included in the initial calibra-
tion set.

The objective of the present paper was to develop a
robust on-line monitoring method for fermentation mon-
itoring based on Fourier transform infrared (FT-IR) spec-
troscopy with ATR. By way of example, the biotransfor-
mation of glucose into ethanol by yeast was selected be-
cause it is a well-known system with wide-spread appli-
cations in industry (baker’s yeast, beer elaboration,
antibiotics production, etc.). The experimental and che-
mometric problems encountered during method devel-
opment were found to be:

• CO2 adherence on the ATR surface,
• biofilm formation,
• glucose mutarotation,
• different kinetics in the recorded concentration pro-

files of glucose and ethanol during various fermen-
tations used for calibration and prediction, and

• precision of the HPLC reference method.

The different problems are discussed and proper so-
lutions presented. The developed method is characterized
by full automation, short analysis times, simultaneous
multi-analyte determination capability, and robustness. It
is applicable to other bioprocesses and different target
analytes without requiring experimental modifications.
Therefore, this method should be of high interest espe-
cially for modern bioprocess development where multiple
analytes must be measured with high time resolution and
low dead time between sampling and measurement.

MATERIALS AND METHODS

Apparatus. Automated Flow System and Fourier
Transform Infrared Detection. The complete experimen-
tal setup used is schematized in Fig. 1. A computer-con-
trolled flow system acts as an interface between the fer-
mentor and the FT-IR spectrometer containing the ATR
cell for measurements. The flow system consists of Teflon
tubing (inner diameter, 1 mm), one glass F-joint, one
glass Y-joint, a Cavro (Sunnyvale, CA) XP 3000 syringe
pump equipped with a 5 mL syringe, a peristaltic pump
(Masterflex, Cole-Parmer, IL), and a selection valve (Vici

Valco, USA). The characteristic geometry of the F- and
Y-joints, together with a proper flow rate provided by the
peristaltic pump (continuously working) or the syringe
pump, allowed the removal of the CO2 bubbles produced
during the fermentation. For spectrum acquisition a hor-
izontal diamond ATR cell with three internal reflections
(DurasampleII, SensIR) mounted on a Bruker Equinox55
spectrometer equipped with a liquid nitrogen cooled mer-
cury cadmium telluride (MCT) detector was used. The
ATR cell was integrated in a homemade flow cell and
connected to the automated flow system via a 70-cm-long
Teflon tubing and the selection valve (Fig. 1). The flow
system was controlled via the in-house-written MS Visual
Basic 6.0 based program Sagittarius V2 (1.02.0003).
Each FT-IR spectrum was recorded with the instrument
software OPUS (Bruker, Germany) at a resolution of 4
cm21 by coadding 128 scans. The spectral range recorded
extended from 4000 to 700 cm21 with the main spectral
information contained within the 2000–800 cm21 region.

High-Performance Liquid Chromatography Separa-
tion. High-performance liquid chromatography analyses
for the determination of glucose and ethanol concentra-
tions were performed using an HP series 1100 HPLC
analyzer with a refraction index detector equipped with
an 8% Ca21 column (300 mm 3 7.8 mm, Phenomenex,
CA) and a temperature control system. The separation
was achieved under isocratic conditions (flow rate: 0.6
mL/min) with distilled water as the mobile phase and at
a temperature of 75 8C. The peak area was selected as
the analytical signal.

Samples. Fermentation Samples. Baker’s yeast
(Mautner Markhof Hefe, Austria Hefe AG) fermentations
in a 0.1 M sodium acetate buffer (Merck, pH 5 5.0) were
studied in a 1000 mL fermentor.

Three different fermentation experiments were per-
formed under different initial concentrations, glucose
supply, and fermentation time conditions (see Table I). In
all cases, the pH of the solution decreased by about 0.05
units, but such small changes were found to not affect
the activity of the yeast cells. Samples were taken from
fermentors every 20 minutes, and glucose and ethanol
concentrations were determined by HPLC as described in
the next section. Changes in glucose and ethanol content
throughout each fermentation are shown in Fig. 2. As
expected, the concentration of glucose diminished in the
medium as it was converted into ethanol during yeast
fermentation.

Synthetic Samples. In addition to the samples collected
from fermentation processes, 16 synthetic glucose and
ethanol mixtures in 0.1 M acetate buffer were prepared.
The glucose and ethanol content in the synthetic samples
ranged from 0 to 30 and 0 to 15 g/L, respectively.

Reference Samples for Partial Least-Squares Cali-
bration Set. For PLS regression, three different calibra-
tion sets can be distinguished (see Table I): including
only the FT-IR spectra of the prepared synthetic samples
with known ethanol and glucose concentration (S); in-
cluding both spectra of synthetic samples with known
concentration (S) and spectra of samples from the fer-
mentation A subjected to reference analysis by HPLC;
and including only the samples from the fermentation A.

In addition, to evaluate the influence of the HPLC ref-
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TABLE I. Fermentation conditions and synthetic sample composition.

Samples Sample origin

Starting concentration (g/L)

Dry yeast Glucose Ethanol
Additional

glucose supply
Fermentation

time (h)
Reference
values by

A
B
C

S

SHPLC

Fermentation
Fermentation
Fermentation

Synthetic
mixtures

Synthetic
mixtures

5
10

5

···

···

30
30
10

0–30

0–30

0
0
0

0–15

0–15

No
No

50 mL (100g/L)
after 2.6, 4.6

and 6.3 h

···

···

;7.5
;4.5
;7.5

···

···

HPLC
HPLC
HPLC

Weight

HPLC

FIG. 2. Concentration profiles of ethanol and glucose obtained by
HPLC reference analysis of samples collected from fermentations A, B,
and C.

erence method on the results, the PLS calibration based
on the synthetic samples was not only performed using
the known concentration values for ethanol and glucose
(S in Table I) but also using those values obtained after
analyzing the synthetic samples with the HPLC method
(SHPLC in Table I).

Analytical Procedure. Automated Flow System and
Fourier Transform Infrared Measurements. The flow
system and the FT-IR detector were computer controlled
through the OPUS and Sagittarius V2 software. For every
measurement, a sequence of steps was automatically ex-
ecuted by the programs (see also Fig. 1):

(1) Recording of the background spectrum (acetate
buffer solution, pH 5 5.0).

(2) Conditioning of sampling tubing (F in the figure)
with fresh solution by pumping two fractions of 3
mL from the fermentor to the waste.

(3) Recording of the spectrum of the fermentation
mixture by driving a third 3 mL fraction to the
ATR cell. Simultaneously, a 2 mL volume sample
is manually taken from the fermentor to perform
the corresponding reference analysis.

(4) Cleaning of the flow system (tubing H, D) and
ATR surface by flushing a 5% NaHCO3 solution
for 5 min, followed by a stream of distilled water
for 10 min.

Every cycle (including background measurement, sys-
tem conditioning, sample measurement, and cleaning
steps) took 20 min to be completed. The next measure-
ment cycle began immediately after the end of the pre-
vious one, allowing a sample throughput of 3 h21.

High-Performance Liquid Chromatography Proce-
dure. Samples collected during the fermentations in par-
allel to the FT-IR measurements as well as synthetic sam-
ples (SHPLC) were subjected to HPLC analysis to deter-
mine the concentration of ethanol and glucose. Whereas
standards were directly injected, samples drawn from the
fermentation were centrifuged for 10 min to separate the
solution from the yeast cells, thus interrupting the fer-
mentation process. The supernatant was then filtered
through a Millipore 0.45 mm filter and stored at 4 8C until
HPLC analysis was performed.

Under the selected chromatographic conditions, the peaks
of glucose and ethanol, as well as the acetate buffer, could
be satisfactorily resolved, as can be seen in Fig. 3. Using
this method and standard solutions, calibration curves for
both glucose and ethanol were constructed. The main ana-
lytical features of the method are listed in Table II.

Data Analysis: Partial Least-Squares Regression.
The recorded FT-IR spectra together with the known con-
centration values or the results from HPLC reference
analysis were analyzed using partial least-squares (PLS)
regression, performed with the OPUS and UNSCRAM-
BLER (CAMO, Trondheim, Norway) software. The latter
program also allows for analysis of the regression coef-
ficient vectors. PLS regression has emerged as one of the
most popular multivariate calibration methods. PLS is a
modeling procedure that finds the latent variables in the
spectral matrix that will best predict the latent variables
in the sample concentrations matrix.
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FIG. 3. HPLC spectra of a fermentation sample. Peaks: (1) glucose,
(2) acetate, and (3) ethanol.

FIG. 4. Initial design for the on-line fermentation monitoring system.

TABLE II. Analytical figures of merit for glucose and ethanol de-
termination by HPLC.

Linear regression
equationa R

Standard devi-
ation of the

method

Ethanol
Glucose

y 5 9.993x 2 0.926
y 5 23.305x 2 14.134

0.997
0.998

0.3
1.5

a y 5 peak area; x 5 concentration (g/L).

FIG. 5. Fermentation spectra showing the effect of the presence of CO2

and biofilm formation: (1) optimal yeast fermentation, (2) presence of
CO2, (3) CO2 and biofilm formation, and (4) original yeast.

Partial least-squares regression yields different PLS
models when different numbers of factors are used. These
models are characterized by the determination coefficient,
R2, which evaluates the fit of the model to the calibration
data, and different errors such as RMSEC 5 root mean
square error of calibration, RMSECV 5 root mean square
error of cross-validation, and RMSEP 5 root mean
square error of prediction. All of these errors are calcu-
lated for different numbers of factors used in the PLS
models and can be defined with the following formula:

n
2( ŷ 2 y )O i i

i51ÎRMSE 5
n

where n 5 number of calibration or prediction samples;
yi 5 true concentration; and ŷi 5 predicted concentration.
RMSEC is a measure of how good a PLS model fits the
calibration data set. RMSECV indicates the predictive
ability of the model within the calibration set and the
optimal number of factors to be used. The RMSEP error
evaluates the response of an established calibration model
versus an independent test sample set.

Before and during establishing PLS models, spectra
were checked for outliers by visual inspection of princi-
pal component score plots and by searching for spectra
with unusually high spectral residuals in PLS modeling.
The number of PLS factors to be included in the PLS
calibration models was in all cases assessed by cross-
validating the calibration set. Cross-validation (CV) was
done as full leave-one-out CV. In this technique, one cal-
ibration sample at a time is taken out of the n sample
calibration set, a PLS model is established with the re-
maining n 2 1 samples, and the concentration of the tak-
en out sample is predicted. This procedure is repeated
until all calibration samples have been taken out and pre-
dicted. The n prediction residuals (predicted minus ref-

erence concentration) are used to calculate the RMSECV
of the calibration model. Then, the number of PLS factors
was assessed by plotting the RMSECV versus the number
of PLS factors. The optimum number of PLS factors can
be generally found at the minimum of the plot, but if
RMSECV values at lower PLS factor numbers are not
significantly bigger than the minimum RMSECV, the
smaller number of PLS factors is chosen in order to avoid
over-fitting and to obtain more robust PLS models. The
choice of the number of PLS factors is supported by sta-
tistical decision criteria in both OPUS and Unscrambler.
The RMSECV from full leave-one-out CV tends to give
an optimistic estimation of the true prediction error, but
all calibration models were also validated versus inde-
pendent test sample sets to give the RMSEP (see Results
and Discussion section).

RESULTS AND DISCUSSION

Initial Experiments. In a first attempt to monitor yeast
fermentations, a simple flow system based on only a peri-
staltic pump (Fig. 4) was used to connect the fermentor
with the ATR flow cell. In this setup, the flow was con-
tinuously circulated over the ATR surface. However, this
system proved to be inadequate for robust bioprocess
monitoring due to the different phenomena that took
place. Illustrative examples of the spectra that represent
these problems are presented in Fig. 5. As a reference,
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FIG. 6. FT-IR spectra from fermentation A recorded every 20 minutes
(initial conditions: 30 g/L glucose, 5 g/L dry yeast). (A) Original spec-
tra, (B) second-derivative spectra. Main glucose peaks: 1150, 1106,
1079, 1034, and 994 cm21; main ethanol peaks: 1085, 1045, and 878
cm21.

FIG. 7. Changes in a-glucose (30 g/L in buffer) spectra with time.
Spectra were recorded immediately after dissolving a-glucose and after
20, 60, and 120 minutes.

the spectrum of yeast fermentation in optimal conditions
is depicted as spectrum 1. The first problem detected was
a strong negative peak at 1640 cm21, as seen in spectrum
2. The fermentation process consumes glucose to produce
ethanol and CO2, resulting in the presence of gas bubbles
in the solution. These bubbles displace water from the
ATR surface and produce a negative contribution to the
baseline when the aqueous background is subtracted.

The second problem can be observed in spectrum 3 of
Fig. 5. Yeast cells can be deposited and adsorbed onto
the ATR surface and form a biofilm that will go on grow-
ing during the fermentation. As a consequence, two char-
acteristic peaks of yeast at 1644 cm21 and 1547 cm21

(amide I and II) are noticeable as the reaction proceeds.
Since the yeast spectrum (spectrum 4 of Fig. 5) addition-
ally presents a strong absorption in the 1200–900 cm21

region, where the most significant signals for ethanol and
glucose are also located, it is necessary to remove the
biofilm for accurate determination of the components of
interest by FT-IR.

Optimized Flow System. The two experimental prob-
lems exposed above required modification of the original
flow system. The optimized flow system is shown in Fig.
1. To avoid the problem of the presence of CO2 bubbles
on the ATR flow cell, the system was modified to include
two degassing mechanisms (Fig. 1). In the first, an extra
loop consisting of an F-joint glass tube and a peristaltic
pump was placed close to the fermentor. The solution was
pumped at a low flow rate (0.5 mL/min) in such a way
that the CO2 produced by yeast cells as well as a part of
the solution were sent back to the fermentor, while the
rest of the solution was sent to the detector through tub-
ing F. As the fermentation was relatively fast, a little
amount of CO2 was still produced in tubing F and D,
leading to the ATR. In order to remove this additional
contribution, one more glass element was added just

ahead of the FT-IR spectrometer. By means of it, the
fermentation solution was divided into two parts and only
the degassed flow was sent to the ATR measurement cell.

The second problem, biofilm formation, can be easily
avoided by including a cleaning step in the experimental
protocol. In this step, a stream of 5% NaHCO3 followed
by distilled water was sent through both H and D Teflon
tubing and circulated over the ATR surface. After this
treatment, the ATR cell was ready for a new measure-
ment. The versatility of the computer-controlled flow sys-
tem allowed for the implementation of this on-line clean-
ing step without the need for disassembling the setup.

Fourier Transform Infrared Spectra of Fermenta-
tion. Figure 6 shows the original spectra of fermentation
A and the corresponding second-derivative spectra, ob-
tained using the optimized system described in the previ-
ous section. Spectral derivatives can remove baseline ar-
tifacts, such as spectral offsets and sloping baselines. They
can also be considered as a pseudo resolution enhancement
technique because of their ability to highlight slight vari-
ations in the slope and contours of bands. As can be ob-
served in the figure, second-derivative spectra showed
higher spectral band resolution than the original spectra
and baseline shifts were eliminated. Band assignments for
ethanol and glucose peaks are also shown (Fig. 6B).

Interesting features observed in the first spectrum of
fermentation A are indicated with asterisks in Fig. 6.
Concretely, unexpected changes at 1056 (decrease), 1080
(increase), and 1154 cm21 (decrease) can be observed.
This can be explained by looking at the reagents em-
ployed: at the beginning of the fermentation, a-glucose
was added to the yeast solution and the isomerization into
b-glucose was not taken into account. The spectrum of
b-glucose shows an absorption maximum at 1080 cm21

that can be assigned to the C–O stretching mode of the
anomeric C–O–H group.17 Figure 7 shows the spectra re-
corded from a freshly prepared solution of a-glucose dur-
ing the first two hours. As can be seen, the sugar muta-
rotation is clearly visible in the recorded spectra after 1
hour: the maximum at 1080 cm21 increases as b-glucose
is formed and the maxima at 1056 and 1154 cm21 (a-
glucose C–O stretching modes) decrease. Once equilib-
rium is reached, the spectra remain constant. These spec-
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TABLE III. Results from PLS regression (number of factors 5 3).

Glucose
All spectra
RMSEP, g/L
Without first spectraa

S → B
2.290

A → B
0.963

AS → B
1.470

All spectra
Without first spectraa

S → C
0.488

A → C
2.600

AS → C
0.409

R2

RMSEC, g/L
RMSECV, g/L
RMSEP, g/L

99.99
0.086
0.110
0.640

99.92
0.250
0.371
0.554

99.83
0.346
0.404
0.650

99.99
0.086
0.110
0.352

99.92
0.250
0.371
2.340

99.83
0.346
0.404
0.267

Ethanol
All spectra
RMSEP, g/L
Without first spectraa

S → B
1.420

A → B
0.440

AS → B
0.520

All specra
Without first spectraa

S → C
0.507

A → C
3.88

AS → C
0.327

R2

RMSEC, g/L
RMSECV, g/L
RMSEP, g/L

99.99
0.055
0.074
0.563

99.93
0.114
0.176
0.455

99.93
0.122
0.152
0.499

99.99
0.055
0.074
0.515

99.93
0.114
0.176
3.720

99.93
0.122
0.152
0.336

a Excluding the first three spectra from fermentation A and B and the first two spectra from fermentation C. Notation: (AS) calibration set including
data from fermentation A and synthetic samples S; (AS → B) calibration model AS applied to predict samples from fermentation B.

TABLE IV. Results from PLS regression of synthetic samples
(number of factors 5 3).

Glucose

S SHPLC

Ethanol

S SHPLC

R2

RMSEC, g/L
RMSECV, g/L

99.9
0.086
0.110

99.89
0.337
0.413

99.99
0.055
0.074

99.94
0.128
0.149

tral changes are also present in the first spectra of fer-
mentation A (Fig. 6B).

Chemometric Analysis. When multivariate methods
such as PLS regression are employed, the selection of the
proper spectral range is an important issue. The spectral
range should thus include information describing the
main features of the analyte and matrix components while
regions dominated by artifacts or noise should be ex-
cluded.7 In the present study, two regions were used:
from 1198 to 960 cm21 and from 892 to 862 cm21.

In order to evaluate the origin of the errors that can be
found when performing PLS regression, three different
calibration sets were formed, based on the data of fer-
mentation A with concentrations obtained by HPLC and
the data of the synthetic samples S using the known con-
centration values from their preparation (see also Table
I). The calibration sets consisted of data from fermenta-
tion A (denoted as A), data from synthetic samples S
(denoted as S), and the combination of A and S (denoted
as AS). The results obtained for each one of the different
calibrations together with the cross-validation results are
listed in Table III. In all cases, samples from other fer-
mentations (B and C) were used for test set validation of
the calibration models (A, S, AS).

Glucose Mutarotation. Initially, all spectra of fermen-
tation samples were included in PLS calibration and pre-
diction. As can be seen in Table III, the value of RMSEP
obtained for the prediction of fermentations B or C using
the calibration models A, S, or AS is unusually high,
especially for glucose concentration. Specifically, when
using AS and S calibration sets to predict the glucose
concentration of fermentation B, the RMSEP values are
1.470 and 2.290 g/L, respectively. This error can be ex-
plained by keeping in mind that the first spectra of each
fermentation also contained information about the con-

formational change undergone by glucose. A further
comparison of the spectra showed that this information
was contained in the first three spectra of fermentations
A and B and just in the first two spectra of fermentation
C. Thus, to check the influence of this extra-variability
of the data, these spectra were excluded from the set of
samples, and PLS calibrations were run again. The results
are also shown in Table III. In this case, the values of
RMSEP were acceptable, especially when compared to
the errors obtained when all spectra were included. The
exclusion of the first spectra of the fermentation samples
resulted in a decrease of the RMSEP for glucose concen-
tration by a factor between 1.11 and 3.6. From a che-
mometric point of view, the mutarotation of glucose is
problematic as it includes an additional spectral variation
in the fermentation process that is represented by only a
very small number of spectra from the fermentation and
that is not properly captured by the calibration. However,
this problem can be easily avoided experimentally once
it is identified by using the already mutarotated glucose
solutions in the fermentation process.

Synthetic versus Real Fermentation Samples. From
Table III, it can be clearly seen that RMSEC and
RMSECV are much smaller for PLS models using only
synthetic samples (S) compared to PLS models based on
real fermentation samples (A, AS). The synthetic PLS
models thus provide good results when predicting syn-
thetic samples but lack the information about the matrix
components in real fermentation samples. Therefore, as
expected, RMSEP values are much higher than RMSEC
and RMSECV values for the same PLS method. On the
other hand, PLS calibrations based on fermentation sam-
ples include valuable information about real samples but
are affected by experimental errors introduced by the ref-
erence analysis required for the determination of glucose
and ethanol concentrations.

Influence of High-Performance Liquid Chromatog-
raphy Reference Method. In order to investigate the or-
igin of the error introduced in those PLS predictions of
real samples based on calibration set S (S→B, S→C), the
synthetic samples were analyzed using the HPLC refer-
ence method (SHPLC), and the concentration values ob-
tained were employed as inputs for the PLS calibration.
The results are shown in Table IV, together with those
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FIG. 8. Sample space spanned in PLS regressions. A, B, and C are
data from fermentations; S is data from synthetic samples.

obtained for calibration set S. As can be seen, in this case
both RMSEC and RMSECV values are in the same range
as those obtained when using real fermentation samples
for calibration, indicating that the sources of error are not
only the lack of information about the real matrix com-
position but mostly the experimental errors imposed by
the HPLC reference method itself.

Test-Set Validation. As can be seen in Table III, both
calibrations S and A give a similar error when predicting
the concentration values of B, but the situation is different
when predicting fermentation C. In the latter case, the pre-
diction error provided by calibration A is unusually high.
This can be explained by having a look at the concentra-
tion ranges of the different calibration sets A and S and
the test set samples B and C. In Fig. 8 the concentrations
of ethanol are plotted versus the concentrations of glucose
for the three fermentations and also for the synthetic sam-
ples. While fermentations A and B are located in the same
region of the plot, fermentation C always has a lower con-
tent of glucose than A and B. On the other hand, the
synthetic samples are distributed covering the whole range
of concentrations that are possible. As a consequence, the
PLS model calibrated with samples from a specific fer-
mentation (such as A) will only be adequate to predict the
concentration of a similarly behaving fermentation (as is
B). Obviously, it will fail in the prediction of a different
fermentation procedure generating a wider concentration
range (case of C) since the model would have to extrap-
olate outside the range in which it was calibrated. Better
prediction results are obtained when using a synthetic cal-
ibration set covering all of the possible concentration
range, although the best result is provided by a mixed
calibration set including both synthetic samples (distrib-

uted over the whole concentration range) and real samples
(introducing the information of the real sample matrix), as
can be seen in Table III (AS→C).

CONCLUSION

Robustness is a critical issue in the development of
calibration models for on-line implementation to provide
information intended to be used as the basis of reliable
process control. Keeping this idea in mind, a method in-
cluding an SIA system as interface between the fermentor
under study and an MIR-ATR detector has been devel-
oped. Experimental and chemometric sources of error
have been considered and minimized, providing a method
that can be successfully applied to several bioprocesses
carried out under different experimental conditions, with
only the limitation of being performed in the same fer-
mentation medium. The main errors have been found in
the precision of the reference method (HPLC) for the
target analytes and in the improper selection of the cali-
bration samples. Thus, a calibration set including syn-
thetic as well as experimental samples covering the whole
range of concentrations in which the analytes can be pres-
ent is mandatory to obtain fast and reliable results in real-
time monitoring of bioprocesses.

ACKNOWLEDGMENTS

G.M. thankfully acknowledges the financial support received from a
Marie Curie fellowship from the European Union (HPMT-CT-2000-
00059). Furthermore B.L, G.M., J.D., and J.R.B. acknowledge financial
support received from the Austrian Science Foundation within project
No 13686. J.R.B. also acknowledges a postdoctoral grant held by the
Spanish Secretarı́a de Estado de Educación y Universidades and co-
financed by the European Social Foundation.

1. H. C. Vogel and C. L. Todaro, Fermentation and Biochemical En-
gineering Handbook: Principles, Process Design, and Equipment
(Noyes Publications, New Jersey, 1996).

2. S. Vaidyanathan, S. A. Arnold, L. Matheson, P. Mohan, B. McNeil,
and M. Harvey, Biotechnol. Bioeng. 74, 376 (2001).

3. K. S. Y. Yeung, M. Hoare, N. F. Thornhill, T. Williams, and J. D.
Vaghjiani, Biotechnol. Bioeng. 63, 684 (1999).

4. R. C. Willson, in Manual of Industrial Microbiology and Biotech-
nology, A. L. Demain and J. L. Davies, Eds. (ASM Press, Wash-
ington, D.C., 1999), 2nd ed., pp. 266–272.

5. D. Picque, D. Lefier, R. Grappin, and G. Corrieu, Anal. Chim. Acta
279, 67 (1993).

6. Ph. Fayolle, D. Picque, and G. Corrieu, Vib. Spectrosc. 14, 247
(1997).

7. J. B. Cooper, K. L. Wise, W. L. Welch, M. B. Sumner, B. K. Wilt,
and R. R. Bledsoe, Appl. Spectrosc. 51, 1613 (1997).

8. S. Sivakesava, J. Irudayaraj, and A. Demirci, J. Indust. Microbiol.
Biotechnol. 26, 185 (2001).

9. A. C. McGovern, D. Broadhurst, J. Taylor, N. Kaderbhai, M. K.
Winson, D. A. Small, J. J. Rowland, D. B. Kell, and R. Goodacre,
Biotechnol. Bioeng. 78, 527 (2002).

10. A. D. Shaw, N. Kaderbhal, A. Jones, A. M. Woodward, R. Good-
acre, J. J. Rowland, and D. B. Kell, Appl. Spectrosc. 53, 1419
(1999).

11. D. L. Doak and J. A. Phillips, Biotechnol. Prog. 15, 529 (1999).
12. Ph. Fayolle, D. Picque, and G. Corrieu, Food Control 11, 291

(2000).
13. K. R. Beebe and B. R. Kowalski, Anal. Chem. 55, 1007A (1987).
14. E. V. Thomas, Anal. Chem. 66, 795A (1994).
15. H. Martens and T. Naes, Multivariate Calibration (John Wiley and

Sons, Chichester, 1989).
16. F. Despagne, D. L. Massart, and P. Chabot, Anal. Chem. 72, 1657

(2000).
17. D. M. Back, D. F. Michalska, and P. L. Polavarapu, Appl. Spectrosc.

38, 173 (1984).

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0006-3592()74L.376[aid=6044631]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0006-3592()63L.684[aid=2869891]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0003-7028()51L.1613[aid=6044630]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=8756-7938()15L.529[aid=6044629]

