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Abstract 
Consider the following file caching problem: in response to a 
sequence of requests for files, where each file has a specified 
size and retrieval cost, maintain a cache of files of total size 
at most some specified k so as to minimize the total retrieval 
cost. Specifically, when a requested file is not in the cache, 
bring it into the cache, pay the retrieval cost, and choose files 
to remove from the cache so that the total size of files in the 
cache is at most k. This problem generalizes previous paging 
and caching problems by allowing objects of arbitrary size 
and cost, both important attributes when caching files for 
world-wide-web browsers, servers, and proxies. 

We give a simple deterministic on-line algorithm that 
generalizes many well-known paging and weighted-caching 
strategies, including least-recently-used, first-in-first-out, 
flush-when-full, and the balance algorithm. On any request 
sequence, the total cost incurred by the algorithm is at most 
k/(k - h + 1) times the minimum possible using a cache of 
size h 5 k. 

For any algorithm satisfying the latter bound, we show 
it is also the case that for most choices of k, the retrieval cost 
is either insignificant or the competitive ratio is constant. 
This helps explain why competitive ratios of many on- 
line paging algorithms have been typically observed to be 
constant in practice. 

1 Background and Statement of Results 
The fire caching problem is as follows. Given a cache 
with a specified size k (a positive integer) and a sequence 
of requests to files, where each file has a specified size (a 
positive integer k) and a specified retrieval cost (a non- 
negative number), maintain files in the cache to satisfy 
the requests while minimizing the total retrieval cost. 
Specifically, when a requested file is not in the cache, 
bring it into the cache, paying the retrieval cost of the 
file, and choose files to remove from the cache so that 
the total size of files remaining in the cache is at most 
k. 

Following Sleator and Tarjan [16], we say a file 
caching algorithm is c(h, k)-competitive if on any se- 
quence the total retrieval cost incurred by the algorithm 
using a cache of size k is at most c(h, k) times the mini- 
mum possible cost using a cache of size h. An algorithm 
is on-line if its response to a request does not depend 
on later requests in the sequence. 

Uniform sizes, uniform costs. With the re- 
striction that all file sizes and costs are the same, 
the problem is called paging. Paging has been exten- 
sively studied. In a seminal paper, Sleator and Tar- 

Xtmouth College, Hanover NH 03755 ney@ldartmouth.edu 

jan [16] showed that least-recently-used and a num- 
ber of other deterministic on-line paging strategies were 
&-competitive. Sleator and Tarjan also showed 
that this performance guarantee is the best possible for 
any deterministic on-line algorithm. 

A simple randomized paging algorithm called the 
marking algorithm was shown to be 2 In k-competitive 
by Fiat et al. [5]. An opt#imal Ink-competitive ran- 
domized paging algorithm was given by McGeoch and 
Sleator [15]. In [19], deterministic paging strategies were 
shown to be loosely O(ln k)-competitive. This means 
roughly that for any sequence, for most values of k, the 
fault rate of the algorithm using a cache of size k is either 
insignificant or the algorithm is O(ln k)-competitive ver- 
sus the optimum algorithm using a cache of size k. Sim- 
ilarly, the marking algorithm was shown to be loosely 
(2 In In k + 0( 1))-competitive. 

Uniform sizes, arbitrary costs. The special 
case of file caching when all file sizes are the same is 
called weighted caching. For weighted caching, Man- 
asse, McGeoch and Sleator [14] showed that an algo- 
rithm called the balance algorithm is k-competitive. 
Subsequently in [19] g a eneralization of that algorithm 
called the “greedy-dual” algorithm was shown to be 
&-competitive. The greedy-dual algorithm gener- 
alizes many well-known paging and weighted-caching 
strategies, including least-recently-used, first-in-first- 
out, flush-when-full, and the balance algorithm. 

Arbitrary sizes, cost = 1 or cost = size. 
Motivated by the importance of file size in caching for 
world-wide-web applications (see comment below), Irani 
considered two special cases of file caching: when the 
costs are either all equal (the goal is to minimize the 
number of retrievals), and when each cost equals the file 
size (the goal is to minimize the total number of bytes 
retrieved). For these two cases, Irani [S] gave O(log’ k)- 
competitive randomized on-line algorithms. 

Comment: the importance of sizes and costs. 
File caching is important for world-wide-web applica- 
tions. For instance, in browsers and proxy servers re- 
mote files are -cached locally to avoid remote retrieval. 
In web servers, disk files are cached in fast memory to 
speed response time. As Irani points out (see [8] and ref- 
erences therein), file size is an important consideration; 
caching policies adapted from memory management ap- 
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plications that don’t take size into account do not work 
well in practice. 

Allowing arbitrary co&s is likely to be important as 
well. In many cases, the cost (e.g., latency, total trans- 
mission time, or network resources used) will neither be 
uniform across files nor proportional solely to the size. 
For instance, the cost to retrieve a remote file can de- 
pend on the distance the file must travel in the network. 
Even accounting for distance, the cost need not be pro- 
portional to the size, e.g., because of economies of scale 
in routing files through the network. Further, in some 
applications it makes sense to assign different kinds of 
costs to different kinds of files. For instance, some kinds 
of documents are displayed by web browsers as they are 
received, so that the effective delay for the user is deter- 
mined more by the latency than the total transmission 
time. Other documents must be fully transmitted be- 
fore becoming useful. Both kinds of files can be present 
in a cache. In all these cases, assigning uniform costs or 
assigning every file’s cost to be its size size is not ideal.’ 

This paper: arbitrary sizes, arbitrary costs. 
This paper presents a simple deterministic on-line 
algorithm called LANDLORD (shown in Figure 1). 
LANDLORD handles the problem of file caching with ar- 
bitrary costs and integer sizes. The first result is: 

THEOREM 1.1. LANDLORD is &-competitive for 
file caching. 

This performance guarantee is the best possible for any 
deterministic on-line algorithm.2 File caching is not a 
special case of the k-server problem, although weighted 
caching is a special case of both file caching and the 
k-server problem. 

LANDLORD is a generalization of the greedy-dual 
algorithm [19] for weighted caching, which in turn gen- 
eralizes least-recently-used and first-in-first-out (paging 
strategies), as well as the balance algorithm for weighted 
caching. The analysis uses the potential function Q = 
(h - 1) &LL creditIf + kCfEopT cost(f) - credit[f]. 

‘In many applications the actual cost to access a file may vary 
with time; that issue is not considered here, nor is the issue of 
cache consistency (i.e., if the remote file changes at the source, 
how does the local cache get updated? The simplest adaptation 
of the model here would be to assume that a changed file is treated 
as a new file; this would require that the local cache strategy learn 
about the change in some way). Finally, the focus here is on 
simple local caching strategies, rather than distributed strategies 
in which servers cooperate to cache pages across a network (see 
e.g. [lo]). 

2Manasse, McGeoch, and Sleator [14] show that no determin- 
istic on-line algorithm for the well-known k-server problem on 
any metric space of more than k points is better than A- k-h+1 
competitive. This implies that, at least for any special case when 
all sizes are 1 (i.e. weighted caching), no deterministic on-line al- 
gorithm for file caching is better than &-competitive. 

The analysis is simpler than that of [19] for the special 
case of weighted caching. 

In an independent work [3], Cao and Irani showed 
that LANDLORD (with step 7 raising credit[g] as much 
as possible) is k-competitive. They also gave empirical 
evidence that the algorithm performs well in practice. 

This paper: (6, S)-loosely c-competitiveness. 
In practice it has been observed that on “typical” 
request sequences, paging algorithms such as least- 
recently-used, using a cache of size k, incur a cost within 
a small constant factor (independent of 6) times the 
minimum possible using a cache of size k [19]. This is in 
contrast to the theoretically optimal competitive ratio 
of k. A number of refinements of competitive analysis 
have been proposed to try to understand the relevant 
factors. Borodin, Irani, Raghavan, and Schieber [2], 
in order to model locality of reference, proposed the 
access-graph model which restricts the request sequences 
to paths in a given graph (related papers include 
[4, 9, 61). Karlin, Ph’ll’p 1 r s, and Raghavan [ll] proposed 
a variant in which the graph is a Markov chain (i.e. 
the edges of the graph are assigned probabilities, and 
the request sequence corresponds to a random walk) 
(see also [13]). Koutsoupias and Papadimitriou [12] 
proposed the comparative ratio (for comparing classes of 
on-line algorithms) and the diffuse adversary model (in 
which the adversary chooses a probability distribution, 
rather than a sequence, from some restricted class of 
distributions). 

In this paper we introduce a refinement of the 
aforementioned loosely competitive ratio [19] (another 
previously proposed alternative model). The model 
is motivated by two observations: In practice, if the 
retrieval cost is low enough in an absolute sense, the 
competitive ratio is of no concern. For instance, in 
paging, if the fault rate drops below 

time to execute a machine instruction 
time to retrieve a page from disk ’ 

then the total time to handle page faults ceases to be a 
bottleneck in the computation. Similar considerations 
hold for file caching. To formalize this, we introduce 
a parameter E > 0, and say that “low enough” for 
a request sequence T means “no more than E times 
the sum of the retrieval costs” (the sum being taken 
over all requests). This is tantamount to assuming 
that handling a file of cost cost(f) requires overhead 
of ~cost(f) whether it is retrieved or not. 

The second observation is that in practice, we do 
not expect the choice of cache size k to be the pessimal 
one for most of our input sequences. Thus, we are more 
interested in what happens at a typical value of k. To 
formalize this, we introduce a parameter 6 > 0, and 
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Algorithm LANDLORD 

Maintain a real value credit[f with each file f in the cache. 
When a file g is requested: 
1. if g is not in the cache then 
2. until there is room for g in the cache: 
3. For each file f in the cache, decrease credit[fJ by A . size[f, 
4. where A = minfEcahe credit [f/size[fl. 
5. Evict from the cache any file f such that credit[f = 0. 
6. Bring g into the cache and set credit[g] + cost(g). 
7. else Reset credit[g] to any value between its current value and cost(g). 

Figure 1: The on-line file caching algorithm LANDLORD. Credit is given to each file when it is requested. “Rent” 
is charged to each file in the cache in proportion to its size. Files are evicted as they run out of credit. Step 
7 is not necessary for the worst-case analysis, but it is likely to be important in practice: raising the credit as 
much as possible in step 7 generalizes the least-recently-used paging strategy; not raising at all generalizes the 
first-in-first-out paging strategy. 

say that a caching strategy is “good enough” if it is 
good for at least (1 - 6) n of the choices for L in any 
range { 1,2, . . . , n}. These two observations give us the 
following formalism: 

DEFINITION 1 .l. A file caching algorithm A is (6, a)- 
loosely c-competitive if, for any request sequence r and 
any integer 12 > 0, at least (1 - Qz of the values 
k E { 1,2, . . . , n} satisfy 

cost(A, k, r) 5 max 
{ 

c. cost(OPT, k, r), 6. c cost(f) 
> 

. 
f-. 

(1.1) 

Here cost(A) k, r) denotes the cost incurred by algorithm 
A using a cache of size k on sequence r. OPT denotes 
the optimal algorithm, so that cost(OPT, k, r) is the 
minimum possible cost to handle the sequence T using 
a cache of size k. The sum on the right ranges over all 
requests in T, so that if a file is requested more than 
once, its cost is counted for each request. 

Since the standard competitive ratio grows with k, 
it is not clear apriori that any on-line algorithm could be 
(E, 6)-loosely c-competitive for any c that depends only 
on 6 and 6. Our second result is the following. 

THEOREM 1.2. Every &-competitive algorithm is 
(E, @-loosely c-competitive for any 0 < E, 6 < 1 and 

1 1 
c&e- In- . 1 1 5 c 

The interpretation is that for most choices of k, the 
retrieval cost is either insignificant or the competitive 
ratio is constant. 

This result supports the intuition that it is mean- 
ingful to compare an algorithm against a “handicapped” 
optimal algorithm (most competitive analyses consider 
the case h = k). A strong performance guarantee, even 
against a handicapped optimal algorithm, may be as (or 
more) meaningful than a weak performance guarantee 
against a non-handicapped adversary. 

Our proof is similar in spirit to the proof in [19] for 
the special case of paging. (The proof here is simpler, 
more general, and gives a stronger result.) 

Of course the following corollary is immediate: 

COROLLARY 1 .l. LANDLORD is (e, S)-loosely c- 
competitive for c & eQ [ln +I. 

This helps explain why the competitive ratios of the 
many on-line algorithms that LANDLORD generalizes are 
typically observed to be constant. 

Theorem 1.2 and Corollary 1.1 are tight in the 
following sense: 

CLAIM 1.1. For any E and 6 with 0 -C 6, S < 1, there 
is a constant c = R($ In 4) such that LANDLORD is not 
(e,6)-loosely c-competitive. 

The proof will be given in the full paper. For complete- 
ness, we also consider randomized algorithms: 

CLAIM 1.2. Every 0 In m -competitive algorithm is 
( “1 

(E, 6)Joosely c-competitive for any 0 < E, 6 < 1 and 

1 
ct0 l+lng+lnlnl ( . 

E > 

We also leave the proof of this result to the main paper. 
(This proof is similar to the proof of Theorem 1.2.) 



Since it is shown in [17, 181 that the marking algorithm 
(a randomized on-line algorithm) is (1 + 2 In A)- 
competitive for paging, it follows that 

CLAIM 1.3. The marking algorithm is (E, S)-loosely c- 
competitive for paging for 

c-0 l+ln~+lnlnl ( . 
e > 

We estimate the constant in the big-0 to be about 2e. 

2 Proofs of Theorems 1.1 and 1.2. 
THEOREM 1.1. LANDLORD is &-competitive forfile 
caching. 

Proof. Define potential function 

Q&(/r--1). c credit [f] + k. c cost(f) - credit [f]. 
fELL fEoPT 

Here LL denotes the cache of LANDLORD; OPT denotes 
the cache of OPT. For f $! LL, by convention credit[f] 2 
0. Before the first request of a sequence, when both 
caches are empty, Cp is zero. After all requests have 
been processed (and in fact at all times), Cp 2 0. Below 
we show that at each request: 

when OPT retrieves a file of cost c, Q increases by 
at most kc; 

when LANDLORD retrieves a file of cost c, 0 de- 
creases by at least (k - h + 1)~; 

at all other times @ does not increase. 

These facts imply that the cost incurred by LANDLORD 
is bounded by k/(k - h + 1) times the cost incurred by 
OPT. 

The actions affecting Cp following each request can 
be broken down into a sequence of steps, with each step 
being one of the following. We analyze the effect of each 
step on a. 

b OPT evicts a file f. 
Since credit[f] 5 cost(f), Q cannot increase. 

b OPT retrieves a file g. 

In this step OPT pays the retrieval cost cost(g). 
Since credit[g] 2 0, @ can increase by at most 
k . cost(g). 

l LANDLORD decreases credit[f] for all f E LL. 
Since the decrease of a given credit[f] is Asize( 
the net decrease in Cp is A times 

(h - 1) size(LL) - k size(oPT fl LL), 
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where size(X) denotes xf eX size(f). 

When this step occurs, we can assume that the 
requested file g has already been retrieved by OPT 
but is not in LL. Thus, size(OPTnLL) 5 h-size(g). 

Further, there is not room for g in LL, so that 
size(LL) 2 k - size(g) + 1 (recall that sizes are 
assumed to be integers). Thus the decrease in the 
potential function is at least A times 

(h - l)(k - size(g) + 1) - k(h - size(g)). 

Since size(g) >_ 1 and k >_ h, the expression above 
is at least (h - l)(k - 1+ 1) - k(h - 1) = 0. 

LANDLORD evicts a file f. 

LANDLORD only evicts f when credit[f] = 0. Thus, 
Cp is unchanged. 

LANDLORD retrieves the requested file g and 
sets credit[g] to cost(g). 

In this step LANDLORD pays the retrieval cost 
cost(g). 

Since g was not previously in the cache (and 
credit[g] was zero), and because we can assume 
that g E OPT, Cp decreases by -(h - l)cost(g) + 
k cost(g) = (k - h + l)cost(g). 

LANDLORD resets credit[g] between its current 
value and cost(g). 

Again, we can assume g E OPT. If credit[g] changes, 
it can only increase. In this case, since (h - 1) < k, 
@ decreases. 0 

THEOREM 1.2. Every &-competitive algorithm is 
(6, &)-loosely c-competitive for any 0 < e, 6 < 1 and 
c 1 e$[ln $1. 

Proof. Let A be any & -competitive algorithm. Let 
r be any request sequence and n > 0 any integer. Fix 
any6,6>0. Letc=e$pn3]. 

Our goal is to show that at most 6n of the values 
IcE{1,2,...,n}satisfy 

cost(A, k, r) > max 
t 

c(k)cost(CPT, 1, r), t.xcost(f) 
I 

. 
fEr 

(2.2) 
Call the values of k satisfying condition (2.2) “bad” 
values, and suppose for contradiction that there are 
more than 6n of them. Then there are at least 

(2.3) B h 1 + 
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bad values 1 < k1 < k2 < .. . < kB < n such that for 
eachi=2,3,,.,B, 

- 

(2.4) ki - ki-1 + 1 > en/c > eki/c. 

Since A is &-competitive, choosing k = ki and 
h = ki-1 shows that 

cost(A, ki, r) 5 k. _ ,“; 
2 i 1 

+ 1 cost(OPT, kidl, r) 

L +St(OPT, ki-l, r). (2.5) 

Since cost(A, ki-1, r) 2 ccost(OPT, ki-1, r) (by condi- 
tion (2.2)), bound (2.5) implies 

(2.6) cost(A, ki, r) 5 dcost(A, ki-1, r). 

From condition (2.2) and induction on bound (2.6) it 
follows that 

e c cost(f) < cost(A, kB, r) 
fEr 

Thus, B - 1 < In l/c. But this contradicts the choice of 
B in definition (2.3). 0 
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