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Abstract 
We have built a system for protecting Internet services 

to securely connected, known users. It implements a 
generate-and-test approach for on-line attack 
identification and uses similarity rules for generalization 
of attack signatures. We can immediately protect the 
system from many variants of previously unknown attacks 
without debilitating waits for anti-virus updates or 
software patches. Unique to our approach is the use of 
diverse process pairs not only for isolation benefits but 
also for detection. The architecture uses the comparison 
of outputs from diverse applications to provide a 
significant and novel intrusion detection capability. With 
this technique, we gain the benefits of n-version 
programming without its controversial disadvantages. 
The isolation of intrusions is mainly achieved with an out-
of-band control system that separates the primary and 
backup system. It also initiates attack diagnosis and 
blocking, and recovery, which is accelerated by continual 
repair. 

 

1 Introduction 

A potential solution to the problem of building more 
secure but still affordable and timely systems is to 
combine Commercial-Off-The-Shelf (COTS) hardware 
and software with proven techniques from the fault 
tolerant community. COTS software and hardware can 
provide cheap (though unreliable) components to build 
information systems. Fault tolerant techniques can build 
reliable systems from unreliable components despite 
intermittent or transient faults. In fact, highly available 
systems have been built with this approach [1]. There 
have been many other explorations of fault-tolerant 
approaches to providing reliable systems based on COTS 
hardware and software [2, 3, 4, 5]. 

Most fault tolerant techniques work against faults that 
can be modeled as rare events occurring at random. The 
external faults that pertain specifically to computer and 
network security have different characteristics. These 
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“faults,” namely, computer and network attacks, can 
occur frequently and repeatedly. Their success depends on 
internal faults that are usually called vulnerabilities. These 
vulnerabilities are most often design, programming, or 
configuration mistakes, which cause software components 
to exhibit unintended behavior when presented with data 
or circumstances not foreseen by the developer or 
administrator. Vulnerabilities can be exploited by an 
attacker to obtain privileges or to inject additional errors 
into the system or to deny service to the system’s 
legitimate users. An attacker can explore a series of 
potential vulnerabilities until successful, and when 
successful, he can repeatedly use the exploit that provided 
success against the same system or other systems with the 
same vulnerability. 

These security-related faults not only can propagate 
from one machine to another (most dangerously, from a 
primary system to its backup system) but they are highly 
likely to repeat in time. This implies a significant 
additional value for fault diagnosis, including machine 
learning techniques, and system adaptation for intrusion 
prevention. Early in the development of fault tolerant 
computing, considerable attention was paid to fault 
diagnosis [6, 7]. With the recognition that most software 
faults were Heisenbugs and the importance of failfast 
semantics to minimize mean time to repair, fault 
diagnosis became a luxury [10]. 

To combat the long-lived, persistent, and malicious 
characteristics of computer and network attacks, 
additional innovative techniques are required. One area of 
research, which has been applied to this domain by others, 
is the study of Byzantine faults [8]. Byzantine faults are 
arbitrary faults, that is, faults not defined by the fault 
model of the system. As such, they represent a large, 
indeed, infinite class of faults. A fundamental result from 
the study of Byzantine faults is that fault tolerance for n 
Byzantine faults requires 3n+1 redundant components 
[9]. Therefore, implementations of the algorithms for 
Byzantine fault tolerance may quickly become 
impractical, both because of cost and because of system 
complexity. 
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Our approach is to augment standard fault tolerant 
techniques with active defenses and design diversity. 
Repeatable errors are prevented by an out-of-band control 
system, which modifies the system security posture in 
response to detected errors. Where feasible, the system 
employs COTS-supplied design diversity (different 
operating systems and server applications like web 
servers or Data Base Management Systems). These 
measures are combined with fault tolerant techniques 
(including failure detection, failfast semantics, 
redundancy, and failover) to tolerate intrusions. 

This paper describes the system called HACQIT 
(“hack-it”)1. In the remainder of this section, we describe 
our assumptions and the system hardware and software 
architecture. Section 2 describes our attack identification 
and learning mechanisms. Section 3 describes a special 
type of detection by diversity. Section 4 describes 
isolation mechanisms. Section 5 describes continual 
repair. Section 6 contains the conclusions supported by 
our work so far. 

1.1 Assumptions 

HACQIT is not designed to be a general-purpose 
server connected to the Internet. Anonymous users are not 
allowed. All connections to the system are through a 
Virtual Private Network (VPN), and therefore during any 
period of operation the number of users is bounded. We 
assume that configuration or setup of the system has been 
done correctly, which includes the patching of all known 
vulnerabilities. We assume the Local Area Network is 
reliable, cannot be flooded, and is the only means of 
communications between users and the system. 

An attacker can be any agent other than legitimate 
users who can authenticate through the VPN or HACQIT 
system administrators, all of whom are trusted. Attackers 
may be expert and well financed, perhaps by foreign 
intelligence agencies. They even may have prior access to 
HACQIT design documentation. While the financial 
supporters of such individuals could employ or subvert 
insiders, insiders are assumed to be handled by other 
means than HACQIT. 

Finally, we assume attackers do not have physical 
access to HACQIT cluster hardware. Attacks must entail 
communication through the LAN either with software 
already resident on a host or new software downloaded by 
the attacker to that host 

Our project focus is software fault tolerance. Our 
model of software faults is that they are either repeatable 
or not. Repeatable software faults include attacks 
(maliciously devised inputs) that exploit the same 

                                                           
1 HACQIT stands for Hierarchical Adaptive Control of Quality of 
service Intrusion Tolerance, but the thrust of our project is much 
broader. 
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vulnerability (bug) in one of our software components. 
However, we do not presume to be able to divine intent, 
e.g., malice, so all inputs that cause repeated failures are 
treated the same -- they are blocked. On the other hand, 
we recognize that the system may fail intermittently from 
certain inputs, in which case we allow retry of those 
inputs. 

1.2 Hardware and Software Architecture 

The focus of this paper is the software on the HACQIT 
“Cluster,” shown in the lower half of Figure 1 (below the 
“Corporate LAN”). A HACQIT cluster consists of at least 
five computers: a gateway computer running a 
commercial firewall and additional infrastructure for 
failover and attack blocking; two or more servers of 
critical applications, only one of which at any time is the 
primary server and, together with a designated backup, 
forms a “process pair;” an Out-Of-Band (OOB) machine 
for overall control and monitoring; and a “sandbox” for 
attack identification (not shown), which is connected to 
the OOB machine. The machines in the cluster are 
connected by two separate LANs. 
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Figure 1. Intrusion tolerant hardware architecture 
HACQIT uses primary and backup systems, but they 

are unlike ordinary primary and backup systems for fault 
tolerance. The two systems are isolated by the OOB 
computer, so no propagation of faults, for example, by a 
worm or an email virus, directly from the primary to the 
backup, is possible. (The hosts are connected by switches 
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not hubs, and the switches are configured so that no direct 
communication is possible between the primary and 
backup.) The potential for propagation from the primary 
to the OOB machine is limited by sharply constraining 
and monitoring the services and protocols by which the 
OOB communicates with the primary. Failover is entirely 
controlled by the Mediator/Adapter/Controller (MAC) on 
the OOB computer. When failure is detected on the 
primary (possibly caused by intrusion), continued service 
to the end user is provided by promoting the backup to be 
the new primary. 

The software architecture is shown in Figure 2. The 
system administrator controls the cluster through the 
Policy Editor, which runs on the OOB machine. Policy 
parameters determine normal and contingent behavior and 
responses to error conditions for all the components. Once 
policy has been set, it is disseminated to all components 
by the Policy Server on the OOB machine. Overall 
monitoring and control responsibility resides with the 
MAC. 

We will discuss in detail the Forensics Agent, 
Sandbox, and Content Filter in Section 2. Other software 
components include the following: 

• Web Server Protective Wrapper: This 
wrapper monitors calls to Dynamic Link 
Libraries (DLLs) for file access, process 
execution, memory protection changes, and 
other potentially malicious functions. When 
it detects a violation of specified behavior, it 
will alert, disallow, or modify the call 
depending on policy [16]. 

• Application Monitor: This software 
implements specification based behavior 
monitoring of the critical application in 
conjunction with the above wrapper. It starts 
and stops its application according to policy. 

• Host Monitor: The HM communicates with 
the MAC and sends either heartbeats or 
alerts. Alerts are divided into two categories, 
either severe enough to cause failover or less 
severe, which requires further analysis by 
the MAC. It receives policies from the 
Policy Server through the Native Bridge and 
DLL module. The HM implements a 
capability to restore a failed primary to a 
healthy backup and is also responsible for 
continual repair. 

• Firewall Controller: The Firewall Controller 
runs on the HACQIT cluster gateway 
machine, which hosts the firewall to the 
cluster. It controls whether requests/replies 
are sent through the switch to the primary or 
to the backup and uses the Suspicious 
Activity Monitor (SAM) Client to block and 
add users. 
dings of the 36th Hawaii International Conference on System Sciences (H
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Figure 2. Intrusion tolerant software architecture 

2 On-line Attack Learning and 
Generalization 

HACQIT’s on-line attack identification and 
generalization software provides a qualitative 
improvement over standard attack prevention. Currently, 
for most systems, two inadequate activities are performed 
for attack prevention. First, new attack signatures are 
downloaded to prevent newly discovered attacks (worms, 
viruses, etc.). This takes at least a few hours for humans 
to analyze the attacks and craft rules for the attack 
prevention software (anti-virus programs, firewalls, etc.) 
Second, patches for newly discovered vulnerabilities are 
downloaded and applied to critical software. This takes at 
least a few days for the vendor to identify the 
vulnerability, correct the software, and run extensive 
regression testing; it may also require a reboot to install 
the patch. Our approach provides immediate protection by 
automatically preventing repeated attacks and their 
variants without software updates. 

We use on-line testing to positively identify attacks, 
eliminating false positives, and rule-based similarity 
reasoning to use a single attack to recognize a subset of 
attacks that exploit the same vulnerability. When a 
failover occurs, the MAC asks the Forensics Agent to 
start attack diagnosis. The FA analyzes the “App Log” 
containing recent requests to determine which request(s) 
may have caused the failure. This is the “generate” phase 
of the “generate-and-test” approach, one of the oldest 
problem-solving paradigms from Artificial Intelligence 
[17]. It then tests each suspicious request by sending it 
against a “Sandbox.” The Sandbox is an exact duplicate 
ICSS’03) 
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of the machine and application that failed. If the 
suspicious request causes the same conditions on the 
Sandbox that resulted in failover of the primary or 
backup, then it is identified as a “Bad Request.” Through 
testing the identification avoids false positives, which 
makes the most common approach to unknown attack 
identification, anomaly detection [11, 12], so impractical. 
“Bad Requests” are put on a list the Content Filter uses to 
tell the MAC if a future request should be blocked. The 
FA learns attacks from failures, while the Content Filter 
generalizes bad requests identified by the FA, so that 
simple variants are also blocked. In this way, previously 
unknown attacks (and yet unseen variants) are 
automatically and immediately prevented from repeatedly 
causing failover. 

Every time a request is received on the primary, it is 
forwarded to the MAC. The MAC calls the Content 
Filter’s AllowRequest function with the new request as 
the argument. If there is an exact match with a “Bad 
Request,” the function returns false to the MAC, meaning 
block the request. If an exact match is not found, the 
Content Filter analyzes the components of the requests 
(both new and bad) and determines if the new request is 
"similar" to a bad request. If it is similar, AllowRequest 
also returns false; otherwise, it returns true. In this way, 
learning is generalized from specific requests that have 
been identified as bad. 

Similarity is rule based. The one rule currently 
implemented is the following: If (1) the query length of 
the bad request is greater than 256 and (2) the methods of 
the new request and the bad request are the same and (3) 
the file extensions of the new and bad requests are the 
same and (4) the query length of the new request is 
greater than or equal to the query length of the bad 
request, then return false (block the request). 

With this rule, many variants of Code Red2 I and II are 
blocked. The characters in the query are irrelevant to how 
Code Red works; the length is critical; so whether 
"XXX...”, “NNN...”, or "XNXN..." are in the query of the 
attack, the attack is blocked. In addition, the name of the 
file (minus the extension) is also irrelevant to how Code 
Red works, because it is the file extension that identifies 
the resource (Index Server) that is vulnerable to a buffer 
overflow, and it is the query that causes the buffer 
overflow, not the entire Universal Resource Identifier 
(URI). (The URI contains the path identifying the 
resource and, optionally, the query.) 

Although this rule has been constructed from extensive 
ad hoc analysis of Code Red, it only generalizes "learned" 
behavior. That is, if the HACQIT cluster has never been 

                                                           
2 Code Red I and II were used to successfully attack hundreds of 
thousands of computers in August 2001. It exploited a previously 
disclosed vulnerability (a buffer overflow) in Microsoft’s web server, 
IIS, when it was used with another software component called Index 
Server. 
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attacked by Code Red, it will not stop the first Code Red 
attack. It will also not stop the first case of a variant of 
Code Red that uses the .IDQ extension instead of the IDA 
extension usually found in a Code Red attack. (Index 
Server uses files of types indicated by the extensions, 
“.IDA” and “.IDQ”; these two extensions are used by IIS 
to identify the Index Server resource and are passed to the 
Index Server interface.) This variant would first have to 
be "experienced," that is, learned as a bad request, and 
then generalized by the above rule. Most importantly, the 
rule does not prevent use of a resource like Index Server; 
it only prevents a wider variety of attacks that exploit an 
identified vulnerability in it from reducing availability of 
the web server. 

It is worth comparing this automatic generalization 
with Snort's3 hand-coded rules for preventing Code Red 
attacks. Immediately after the flurry of initial Code Red 
attacks, Snort aficionados began crafting rules to block 
these attacks. It took at least two days before rules were 
posted on the Snort site. These were not generalized and 
did not work against trivial variants. Some three months 
later, the rules block on ".ida" and ".idq" in the URI and 
"payload size" greater than 239. The use of the file 
extensions shows some generalization but the use of 239 
as a limit on legitimate requests intended for Index Server 
in fact cause false positives because the payload can be 
much greater than 239 (at least 373) without causing the 
web server to fail. Our investigation with Code Red II 
shows the padding in the query that causes the buffer 
overflow is no more than five bytes over the minimum 
required. We think this indicates finding the minimum 
may not be difficult, either. 

The reason for the first condition in the rule is to 
differentiate in a trivial way between bad requests that are 
buffer overflow attacks and bad requests that are some 
other type of attack, like remote command execution. 
Unfortunately, it introduces the possibility of false 
negatives, that is, a bad request that was a buffer overflow 
attack, but with the overflow occurring after less than 256 
characters, would be ignored as an example to be 
generalized. We think the likelihood of this type of false 
negative is very small. 

Note that although this rule seems very Microsoft-
oriented, as the concept of file extensions does not exist 
under Unix, it should be possible to generalize this to file 
types under Unix. The key distinction to be made is, does 
the path in the URI identify a document to be returned to 
the requester or does it identify an executing resource 
such as a search engine, a DBMS, etc.? Other 
improvements to generalization would use analysis based 
on HTTP headers and body content. 

One additional aspect of the design of the Content 
Filter software is worth discussing. Its UpdateBadReq 

                                                           
3 Snort is the most widely used Intrusion Detection System. 
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function uses AllowRequest in a very clever way. It first 
calls AllowRequest with the bad request received from 
the MAC. If AllowRequest returns true, that means the 
bad request is not on the bad request list, so it is added. If 
AllowRequest returns false, that means it is on the bad 
request list, so it is not added to the list. This prevents 
duplication. However, with the addition of generalization, 
not only will duplicates be prevented, but also trivial 
variants will not extend the bad request list to a 
performance-crippling length. As there are over 21792 (or 
more than the number of atoms in the universe) variants 
of Code Red, this is an important and effective design. 

3 Detection by Comparison of Outputs 
from Diverse Software 

Although we detect intrusions through various sensors 
like Snort and the Windows NT/2000 Security Event Log 
and begin attack diagnosis for many different cases, we 
use diversity to provide a unique and powerful 
discriminator. Duplicate and compare is an old and 
effective strategy for hardware error detection [15]. The 
same input is sent to identical components and the outputs 
from the components are compared. If the outputs are 
different, an error has been detected. If the input is retried 
and the outputs are the same, the failure was transient; 
otherwise, the components must be repaired or replaced. 

Typically, the duplicated components are within one 
single device, such as a CPU, which, in the case of 
permanent (hard) failure, is the unit repaired and replaced. 
If this is not the case, the module or system consisting of 
the paired components, must stop. (Following Gray and 
Reuter [10], we call this behavior failfast, because the 
delay between detecting the error and stopping must 
happen as quickly as possible to prevent fault 
propagation.) If a system built on paired components 
simply stops, then the redundancy has supported error 
detection but not failure masking, which is necessary to 
provide continued service despite failures. 

HACQIT combines redundancy and diversity to both 
detect errors and mask failures for software components. 
This is a unique innovation for software fault tolerance. 
HACQIT uses two software components with identical 
functional specifications but different implementations. It 
can be seen as combining the benefits of N-version 
programming [13] without its controversial disadvantages 
[14], namely higher cost overall and lower quality 
components (versions). 

We can do this with web server and other well known, 
TCP/IP based applications like mail servers, because 
these applications must implement a single specification, 
and there are already many implementations of them. The 
HACQIT version discussed in this paper uses two web 
servers, Microsoft’s Internet Information Service (IIS) 
and the open source Apache web server, to implement this 
eedings of the 36th Hawaii International Conference on System Sciences (H
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design approach. We also have evidence that multiple 
implementations of an identical specification do result in 
a small percentage of common errors [18]4. 

Every HTTP request to the primary is intercepted and 
sent to the MAC. After checking that the request is 
allowed, the request is sent to both web servers, one on 
the primary and one on the backup, one IIS and one 
Apache. The HTTP specification defines the status codes 
with which a web server must respond. The MAC 
compares the responses (analogous to the outputs from 
duplicate hardware). If the status codes are different, the 
result indicates that a failure may have occurred. 

In this case, failfast semantics demands failover as 
quickly as possible, especially because the danger from 
intrusion propagation is so much greater than the danger 
from transient fault propagation. The question, then, is 
how to determine which web server was successfully 
attacked. An analysis of HTTP status codes makes this 
possible. 

Status codes lie in five general categories:  
Status codes 100 – 199: Informational. Request 

received, continuing process 
Status codes 200 – 299: Success. Action was received, 

understood and accepted. 
Status codes 300 – 399: Redirection. Further action 

must be taken in order to complete the request. 
Status codes 400 – 499: Client Error. The request 

contains bad syntax or cannot be fulfilled. 
Status codes 500 – 599: Server Error. The server failed 

to fulfill an apparently valid request. 
There are only ten different combinations of different 

status code combinations. Most are impervious to analysis 
or simply not indicative of an error. One meaningful 
combination for detection that can occur is 200/400. This 
means one web server responded with success while the 
other responded with client error. For the latter case, the 
cause is usually a malformed request or a request for a 
resource that does not exist on one machine. Either cause 
would indicate that the machine responding with success 
should be taken off-line (stopped). For example, this is 
the case when the well-known attack, Code Red, is sent in 
a request to IIS and Apache: IIS is taken over by Code 
Red but responds with a success code (200) while Apache 
is unharmed and responds with an client error code (400). 

Another meaningful combination is 200/300 
(success/redirection). This indicates one web server (the 
one responding with success) sent back different content 
than the other, which responded with redirection, because 
the client already had the content requested. In this case, 
the cause is assumed to be that content has changed on the 
first web server indicating a defacement may have 
occurred. That server would be taken off-line. 
                                                           
4 In the study cited, for the two most diverse implementations of the 
POSIX specification, their errors in common were less than ten percent 
of the total errors. 
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Other combinations of different status codes are 
ignored. Different status codes in general are rare, 
including the two combinations analyzed in the preceding 
paragraphs. If those combinations occur but are not 
caused by an intrusion, service will still continue, as a 
primary suspected of compromise will be immediately 
replaced by its backup. 

Besides comparing status codes, failures can be 
detected by other sensors in the system. For example, the 
HM monitors system health rules, which include 
detections of Quality of Service (QoS) violations to the 
HM, e.g., each process has a specified maximum CPU 
utilization percentage. The rule allows authorized 
processes to exceed the percentage parameter for short 
periods but will kill the offending process after that, 
including the web server, which might be appropriate if 
its process is taken over by an intruder. 

4 Software Isolation 

4.1 Diversity 

As described in the section about “Detection”, COTS-
provided diversity is part of HACQIT’s design. Not only 
does it help with the detection through comparison 
mechanism, but it also is part of our isolation strategy. 
Most attacks used exploits of particular vulnerabilities in 
a software product, either a server application like a web 
server or an operating system or one of its major 
components like the networking protocol stack. An 
exploit that works against one product of a type of 
software (web server, OS, etc.) will seldom work against 
another product of the same type. Consequently, as long 
as we have two different web servers operating on our 
primary and backup, an exploit that succeeds on one 
should not propagate to the other, even though we are 
passing the request that contains the exploit to both. 

4.2 Random Rejuvenation 

It is possible for an intrusion to become part of a 
legitimate process (create a new thread that lives within 
the process) but not do anything (“sleep”) for an 
indefinite length of time. In this case, our detection 
mechanisms may not detect a failure until the malign 
thread(s) “wake up” and attempt to do some damage. 
Random rejuvenation is a counter-measure for this type of 
intrusion. The MAC randomly initiates a failover with the 
average interval between random failovers set through the 
Policy Editor. This should minimize the effectiveness of 
“stealth” attacks that sleep before they cause errors we 
can identify. Typically, this value should be set at a few 
hours or more. 
edings of the 36th Hawaii International Conference on System Sciences (
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5 Recovery 

The wrappers on our web servers mediate every 
attempt to access the file system through the web server 
process, allowing only policy-authorized operations, for 
example, appending messages to the message board store, 
which is the system’s implemented application. Thus, 
every file access by a wrapped process should be 
legitimate. Even if the process is taken over by a buffer 
overflow attack, the wrapper continues to mediate file 
access and prevent unauthorized file access. For example, 
Code Red I can succeed in starting a new thread within 
the IIS process, but it will not be allowed to read the root 
directory, where it looks for a file named “NOWORM.” 

However, we have designed HACQIT to incorporate 
multiple, layered defenses. In particular, we would like to 
detect unauthorized file accesses due to wrapper failure or 
other unknown vulnerabilities, to accelerate recovery. We 
call the overall capability (detection and correction) 
Continual Repair. 

This is accomplished using the native security event 
auditing of Windows NT/2000. With this feature, the HM 
can detect any process creation and every access to the 
file system almost immediately (within a second). File 
accesses include reads, writes, appends, executes, lists of 
directories, changes to the directory, and access to file 
attributes. In addition, the HM knows the system files that 
are allowed to execute and the specific pre-existing 
directory of system data files they must be able to access. 
Finally, there are uncompromised copies of all files on a 
separate disk connected to the out-of-band machine. 

Continual Repair performs the following actions: 1) If 
a file is executed which is not either (a) on the approved 
list of processes allowed to execute, or (b) executed by a 
wrapped process, it is an unauthorized process, and the 
HM will terminate it; 2) If an unauthorized process has 
created or deleted a file, the HM sets the server state as 
“Unhealthy” and notifies the MAC; the MAC will then 
set the server off-line and failover; 3) If the unwrapped 
process created a file, the HM will remove the file; 4) If a 
file is modified or deleted by other than a wrapped 
process, the HM will retrieve a copy of the file from the 
OOB machine to replace the one that was modified or 
deleted. The copy will be valid as of the last failover. 

The last two actions precede what occurs after every 
failover: the wrapped processes are terminated, and an 
integrity check is performed on the allowed executable 
files and the directory of system data files. If no integrity 
violations are found, the MAC is notified that the server is 
“Healthy.” When the server is promoted to on-line spare, 
backup, or primary, its data files are re-synchronized with 
the files from the previous instantiation of process pairs. 

Continual Repair prevents two common goals of 
network attacks: to leave Trojans or “Zombies” for later 
exploitation or to delete necessary executable or data files 
HICSS’03) 
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to deny service to the end users. Continual Repair does 
not mediate all potential changes to persistent data (files) 
to create a transactional file system where, if the 
persistent data begins in a correct state, no change violates 
correctness. However, it is worth noting that even with a 
transactional system, system delusion is possible via 
insider or hijacked trusted clients manipulating data. 
Rollback is used to mitigate this problem, but does not 
solve it. 

6 Plans 

We would like to increase the complexity of our web 
server based application to see if it scales to real-world 
use. We would like to host a second TCP/IP application, 
for example, email, which is inherently stateful, and see if 
the techniques we have developed would extend 
successfully. We would like to checkpoint the persistent 
stores for our applications using a commercial Database 
Management System, so that we could provide fine-
grained rollback once an error in data, perhaps caused by 
an undetected intrusion, has been discovered. 

7 Conclusion 

We have developed an intrusion tolerant system for a 
dynamic but simple web server application. We have 
developed a novel technique that uses application 
diversity to support both detection (through comparison 
of status codes) and isolation (by significantly reducing 
the likelihood of the same attack succeeding on both the 
primary and backup). 

We believe at least four conclusions are supported by 
our work: 

1) Even for the general case (any server on the 
Internet), it is possible to prevent repeated 
attacks from succeeding, even when the 
attacks can be varied, with a combination 
of attack learning and generalization as part 
of a control loop that filters out bad 
requests, which have been verified using a 
sandbox approach. Note that the sandbox 
could run on a virtual machine and not 
require any additional hardware. 

2) Diversity (or n-version programming) can 
in fact be effectively used for intrusion 
tolerance, but its main value is in detection 
not isolation. 

3) For a bounded problem space (not an 
unbounded number of anonymous uses), it 
is possible to use techniques from the fault 
tolerance field, suitably modified, to 
increase the availability of our systems in 
the face of concerted cyber attacks. 
eedings of the 36th Hawaii International Conference on System Sciences (H
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4) For a problem space with less restrictive 
assumptions, it is possible to significantly 
improve on how fast and how cheaply we 
can recover from intrusions with the 
implementation of continual on-line repair. 

Of course, these benefits have a cost in additional 
hardware, software, and administration. 
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