

Proceedings of the 36
0-7695-1874-5/03

On-Line Intrusion Detection and Attack Prevention Using Diversity,

Generate-and-Test, and Generalization

James C. Reynolds, James Just, Larry Clough, Ryan Maglich
Teknowledge Corporation

{reynolds, jjust, lclough, rmaglich}teknowledge.com

Abstract
We have built a system for protecting Internet services

to securely connected, known users. It implements a
generate-and-test approach for on-line attack
identification and uses similarity rules for generalization
of attack signatures. We can immediately protect the
system from many variants of previously unknown attacks
without debilitating waits for anti-virus updates or
software patches. Unique to our approach is the use of
diverse process pairs not only for isolation benefits but
also for detection. The architecture uses the comparison
of outputs from diverse applications to provide a
significant and novel intrusion detection capability. With
this technique, we gain the benefits of n-version
programming without its controversial disadvantages.
The isolation of intrusions is mainly achieved with an out-
of-band control system that separates the primary and
backup system. It also initiates attack diagnosis and
blocking, and recovery, which is accelerated by continual
repair.

1 Introduction

A potential solution to the problem of building more
secure but still affordable and timely systems is to
combine Commercial-Off-The-Shelf (COTS) hardware
and software with proven techniques from the fault
tolerant community. COTS software and hardware can
provide cheap (though unreliable) components to build
information systems. Fault tolerant techniques can build
reliable systems from unreliable components despite
intermittent or transient faults. In fact, highly available
systems have been built with this approach [1]. There
have been many other explorations of fault-tolerant
approaches to providing reliable systems based on COTS
hardware and software [2, 3, 4, 5].

Most fault tolerant techniques work against faults that
can be modeled as rare events occurring at random. The
external faults that pertain specifically to computer and
network security have different characteristics. These
th Hawaii International Conference on System Sciences (
$17.00 © 2002 IEEE
“faults,” namely, computer and network attacks, can
occur frequently and repeatedly. Their success depends on
internal faults that are usually called vulnerabilities. These
vulnerabilities are most often design, programming, or
configuration mistakes, which cause software components
to exhibit unintended behavior when presented with data
or circumstances not foreseen by the developer or
administrator. Vulnerabilities can be exploited by an
attacker to obtain privileges or to inject additional errors
into the system or to deny service to the system’s
legitimate users. An attacker can explore a series of
potential vulnerabilities until successful, and when
successful, he can repeatedly use the exploit that provided
success against the same system or other systems with the
same vulnerability.

These security-related faults not only can propagate
from one machine to another (most dangerously, from a
primary system to its backup system) but they are highly
likely to repeat in time. This implies a significant
additional value for fault diagnosis, including machine
learning techniques, and system adaptation for intrusion
prevention. Early in the development of fault tolerant
computing, considerable attention was paid to fault
diagnosis [6, 7]. With the recognition that most software
faults were Heisenbugs and the importance of failfast
semantics to minimize mean time to repair, fault
diagnosis became a luxury [10].

To combat the long-lived, persistent, and malicious
characteristics of computer and network attacks,
additional innovative techniques are required. One area of
research, which has been applied to this domain by others,
is the study of Byzantine faults [8]. Byzantine faults are
arbitrary faults, that is, faults not defined by the fault
model of the system. As such, they represent a large,
indeed, infinite class of faults. A fundamental result from
the study of Byzantine faults is that fault tolerance for n
Byzantine faults requires 3n+1 redundant components
[9]. Therefore, implementations of the algorithms for
Byzantine fault tolerance may quickly become
impractical, both because of cost and because of system
complexity.
HICSS’03)

Proce
0-769
Our approach is to augment standard fault tolerant
techniques with active defenses and design diversity.
Repeatable errors are prevented by an out-of-band control
system, which modifies the system security posture in
response to detected errors. Where feasible, the system
employs COTS-supplied design diversity (different
operating systems and server applications like web
servers or Data Base Management Systems). These
measures are combined with fault tolerant techniques
(including failure detection, failfast semantics,
redundancy, and failover) to tolerate intrusions.

This paper describes the system called HACQIT
(“hack-it”)1. In the remainder of this section, we describe
our assumptions and the system hardware and software
architecture. Section 2 describes our attack identification
and learning mechanisms. Section 3 describes a special
type of detection by diversity. Section 4 describes
isolation mechanisms. Section 5 describes continual
repair. Section 6 contains the conclusions supported by
our work so far.

1.1 Assumptions

HACQIT is not designed to be a general-purpose
server connected to the Internet. Anonymous users are not
allowed. All connections to the system are through a
Virtual Private Network (VPN), and therefore during any
period of operation the number of users is bounded. We
assume that configuration or setup of the system has been
done correctly, which includes the patching of all known
vulnerabilities. We assume the Local Area Network is
reliable, cannot be flooded, and is the only means of
communications between users and the system.

An attacker can be any agent other than legitimate
users who can authenticate through the VPN or HACQIT
system administrators, all of whom are trusted. Attackers
may be expert and well financed, perhaps by foreign
intelligence agencies. They even may have prior access to
HACQIT design documentation. While the financial
supporters of such individuals could employ or subvert
insiders, insiders are assumed to be handled by other
means than HACQIT.

Finally, we assume attackers do not have physical
access to HACQIT cluster hardware. Attacks must entail
communication through the LAN either with software
already resident on a host or new software downloaded by
the attacker to that host

Our project focus is software fault tolerance. Our
model of software faults is that they are either repeatable
or not. Repeatable software faults include attacks
(maliciously devised inputs) that exploit the same

1 HACQIT stands for Hierarchical Adaptive Control of Quality of
service Intrusion Tolerance, but the thrust of our project is much
broader.
edings of the 36th Hawaii International Conference on System Sciences (
5-1874-5/03 $17.00 © 2002 IEEE
vulnerability (bug) in one of our software components.
However, we do not presume to be able to divine intent,
e.g., malice, so all inputs that cause repeated failures are
treated the same -- they are blocked. On the other hand,
we recognize that the system may fail intermittently from
certain inputs, in which case we allow retry of those
inputs.

1.2 Hardware and Software Architecture

The focus of this paper is the software on the HACQIT
“Cluster,” shown in the lower half of Figure 1 (below the
“Corporate LAN”). A HACQIT cluster consists of at least
five computers: a gateway computer running a
commercial firewall and additional infrastructure for
failover and attack blocking; two or more servers of
critical applications, only one of which at any time is the
primary server and, together with a designated backup,
forms a “process pair;” an Out-Of-Band (OOB) machine
for overall control and monitoring; and a “sandbox” for
attack identification (not shown), which is connected to
the OOB machine. The machines in the cluster are
connected by two separate LANs.

In te rn e t

E n c la v e F ire w a ll

C o rp o ra te L A N

A tta c k e r W o rk s ta tio n

A u th o r iz e d U s e r

C lu s te r F ire w a ll

E th e r n e t

A u th o riz e d U s e r

H i ja c k e d L a p to p

S w itc h 1

P r im a ry B a c k u p

O O B M a c h in e
O u t o f B o u n d

C o n tro l N e tw o rk

L e g e n d

S w itc h 2

V P N V P N

V P N

Figure 1. Intrusion tolerant hardware architecture
HACQIT uses primary and backup systems, but they

are unlike ordinary primary and backup systems for fault
tolerance. The two systems are isolated by the OOB
computer, so no propagation of faults, for example, by a
worm or an email virus, directly from the primary to the
backup, is possible. (The hosts are connected by switches
HICSS’03)

Procee
0-769
not hubs, and the switches are configured so that no direct
communication is possible between the primary and
backup.) The potential for propagation from the primary
to the OOB machine is limited by sharply constraining
and monitoring the services and protocols by which the
OOB communicates with the primary. Failover is entirely
controlled by the Mediator/Adapter/Controller (MAC) on
the OOB computer. When failure is detected on the
primary (possibly caused by intrusion), continued service
to the end user is provided by promoting the backup to be
the new primary.

The software architecture is shown in Figure 2. The
system administrator controls the cluster through the
Policy Editor, which runs on the OOB machine. Policy
parameters determine normal and contingent behavior and
responses to error conditions for all the components. Once
policy has been set, it is disseminated to all components
by the Policy Server on the OOB machine. Overall
monitoring and control responsibility resides with the
MAC.

We will discuss in detail the Forensics Agent,
Sandbox, and Content Filter in Section 2. Other software
components include the following:

• Web Server Protective Wrapper: This
wrapper monitors calls to Dynamic Link
Libraries (DLLs) for file access, process
execution, memory protection changes, and
other potentially malicious functions. When
it detects a violation of specified behavior, it
will alert, disallow, or modify the call
depending on policy [16].

• Application Monitor: This software
implements specification based behavior
monitoring of the critical application in
conjunction with the above wrapper. It starts
and stops its application according to policy.

• Host Monitor: The HM communicates with
the MAC and sends either heartbeats or
alerts. Alerts are divided into two categories,
either severe enough to cause failover or less
severe, which requires further analysis by
the MAC. It receives policies from the
Policy Server through the Native Bridge and
DLL module. The HM implements a
capability to restore a failed primary to a
healthy backup and is also responsible for
continual repair.

• Firewall Controller: The Firewall Controller
runs on the HACQIT cluster gateway
machine, which hosts the firewall to the
cluster. It controls whether requests/replies
are sent through the switch to the primary or
to the backup and uses the Suspicious
Activity Monitor (SAM) Client to block and
add users.
dings of the 36th Hawaii International Conference on System Sciences (H
5-1874-5/03 $17.00 © 2002 IEEE
Sandbox

Cloud

Firewall

Firewall
Controller

SAM Client

Event
LogsTripwire Snort

Native
Bridge DLL

Host
Monitor

Policy
Server

Policy
Editor

App
Monitor

Policy

RMI
TCP

TCP

TCP

CyberPanel
Interface

Forensics
Agent

Protection Wrapper

IIS

MAC

Content
Filter

App Log

Connection
Manager

Backup/Spare
Not Shown

Figure 2. Intrusion tolerant software architecture

2 On-line Attack Learning and
Generalization

HACQIT’s on-line attack identification and
generalization software provides a qualitative
improvement over standard attack prevention. Currently,
for most systems, two inadequate activities are performed
for attack prevention. First, new attack signatures are
downloaded to prevent newly discovered attacks (worms,
viruses, etc.). This takes at least a few hours for humans
to analyze the attacks and craft rules for the attack
prevention software (anti-virus programs, firewalls, etc.)
Second, patches for newly discovered vulnerabilities are
downloaded and applied to critical software. This takes at
least a few days for the vendor to identify the
vulnerability, correct the software, and run extensive
regression testing; it may also require a reboot to install
the patch. Our approach provides immediate protection by
automatically preventing repeated attacks and their
variants without software updates.

We use on-line testing to positively identify attacks,
eliminating false positives, and rule-based similarity
reasoning to use a single attack to recognize a subset of
attacks that exploit the same vulnerability. When a
failover occurs, the MAC asks the Forensics Agent to
start attack diagnosis. The FA analyzes the “App Log”
containing recent requests to determine which request(s)
may have caused the failure. This is the “generate” phase
of the “generate-and-test” approach, one of the oldest
problem-solving paradigms from Artificial Intelligence
[17]. It then tests each suspicious request by sending it
against a “Sandbox.” The Sandbox is an exact duplicate
ICSS’03)

Proc
0-76
of the machine and application that failed. If the
suspicious request causes the same conditions on the
Sandbox that resulted in failover of the primary or
backup, then it is identified as a “Bad Request.” Through
testing the identification avoids false positives, which
makes the most common approach to unknown attack
identification, anomaly detection [11, 12], so impractical.
“Bad Requests” are put on a list the Content Filter uses to
tell the MAC if a future request should be blocked. The
FA learns attacks from failures, while the Content Filter
generalizes bad requests identified by the FA, so that
simple variants are also blocked. In this way, previously
unknown attacks (and yet unseen variants) are
automatically and immediately prevented from repeatedly
causing failover.

Every time a request is received on the primary, it is
forwarded to the MAC. The MAC calls the Content
Filter’s AllowRequest function with the new request as
the argument. If there is an exact match with a “Bad
Request,” the function returns false to the MAC, meaning
block the request. If an exact match is not found, the
Content Filter analyzes the components of the requests
(both new and bad) and determines if the new request is
"similar" to a bad request. If it is similar, AllowRequest
also returns false; otherwise, it returns true. In this way,
learning is generalized from specific requests that have
been identified as bad.

Similarity is rule based. The one rule currently
implemented is the following: If (1) the query length of
the bad request is greater than 256 and (2) the methods of
the new request and the bad request are the same and (3)
the file extensions of the new and bad requests are the
same and (4) the query length of the new request is
greater than or equal to the query length of the bad
request, then return false (block the request).

With this rule, many variants of Code Red2 I and II are
blocked. The characters in the query are irrelevant to how
Code Red works; the length is critical; so whether
"XXX...”, “NNN...”, or "XNXN..." are in the query of the
attack, the attack is blocked. In addition, the name of the
file (minus the extension) is also irrelevant to how Code
Red works, because it is the file extension that identifies
the resource (Index Server) that is vulnerable to a buffer
overflow, and it is the query that causes the buffer
overflow, not the entire Universal Resource Identifier
(URI). (The URI contains the path identifying the
resource and, optionally, the query.)

Although this rule has been constructed from extensive
ad hoc analysis of Code Red, it only generalizes "learned"
behavior. That is, if the HACQIT cluster has never been

2 Code Red I and II were used to successfully attack hundreds of
thousands of computers in August 2001. It exploited a previously
disclosed vulnerability (a buffer overflow) in Microsoft’s web server,
IIS, when it was used with another software component called Index
Server.
eedings of the 36th Hawaii International Conference on System Sciences (H
95-1874-5/03 $17.00 © 2002 IEEE
attacked by Code Red, it will not stop the first Code Red
attack. It will also not stop the first case of a variant of
Code Red that uses the .IDQ extension instead of the IDA
extension usually found in a Code Red attack. (Index
Server uses files of types indicated by the extensions,
“.IDA” and “.IDQ”; these two extensions are used by IIS
to identify the Index Server resource and are passed to the
Index Server interface.) This variant would first have to
be "experienced," that is, learned as a bad request, and
then generalized by the above rule. Most importantly, the
rule does not prevent use of a resource like Index Server;
it only prevents a wider variety of attacks that exploit an
identified vulnerability in it from reducing availability of
the web server.

It is worth comparing this automatic generalization
with Snort's3 hand-coded rules for preventing Code Red
attacks. Immediately after the flurry of initial Code Red
attacks, Snort aficionados began crafting rules to block
these attacks. It took at least two days before rules were
posted on the Snort site. These were not generalized and
did not work against trivial variants. Some three months
later, the rules block on ".ida" and ".idq" in the URI and
"payload size" greater than 239. The use of the file
extensions shows some generalization but the use of 239
as a limit on legitimate requests intended for Index Server
in fact cause false positives because the payload can be
much greater than 239 (at least 373) without causing the
web server to fail. Our investigation with Code Red II
shows the padding in the query that causes the buffer
overflow is no more than five bytes over the minimum
required. We think this indicates finding the minimum
may not be difficult, either.

The reason for the first condition in the rule is to
differentiate in a trivial way between bad requests that are
buffer overflow attacks and bad requests that are some
other type of attack, like remote command execution.
Unfortunately, it introduces the possibility of false
negatives, that is, a bad request that was a buffer overflow
attack, but with the overflow occurring after less than 256
characters, would be ignored as an example to be
generalized. We think the likelihood of this type of false
negative is very small.

Note that although this rule seems very Microsoft-
oriented, as the concept of file extensions does not exist
under Unix, it should be possible to generalize this to file
types under Unix. The key distinction to be made is, does
the path in the URI identify a document to be returned to
the requester or does it identify an executing resource
such as a search engine, a DBMS, etc.? Other
improvements to generalization would use analysis based
on HTTP headers and body content.

One additional aspect of the design of the Content
Filter software is worth discussing. Its UpdateBadReq

3 Snort is the most widely used Intrusion Detection System.
ICSS’03)

Proc
0-76
function uses AllowRequest in a very clever way. It first
calls AllowRequest with the bad request received from
the MAC. If AllowRequest returns true, that means the
bad request is not on the bad request list, so it is added. If
AllowRequest returns false, that means it is on the bad
request list, so it is not added to the list. This prevents
duplication. However, with the addition of generalization,
not only will duplicates be prevented, but also trivial
variants will not extend the bad request list to a
performance-crippling length. As there are over 21792 (or
more than the number of atoms in the universe) variants
of Code Red, this is an important and effective design.

3 Detection by Comparison of Outputs
from Diverse Software

Although we detect intrusions through various sensors
like Snort and the Windows NT/2000 Security Event Log
and begin attack diagnosis for many different cases, we
use diversity to provide a unique and powerful
discriminator. Duplicate and compare is an old and
effective strategy for hardware error detection [15]. The
same input is sent to identical components and the outputs
from the components are compared. If the outputs are
different, an error has been detected. If the input is retried
and the outputs are the same, the failure was transient;
otherwise, the components must be repaired or replaced.

Typically, the duplicated components are within one
single device, such as a CPU, which, in the case of
permanent (hard) failure, is the unit repaired and replaced.
If this is not the case, the module or system consisting of
the paired components, must stop. (Following Gray and
Reuter [10], we call this behavior failfast, because the
delay between detecting the error and stopping must
happen as quickly as possible to prevent fault
propagation.) If a system built on paired components
simply stops, then the redundancy has supported error
detection but not failure masking, which is necessary to
provide continued service despite failures.

HACQIT combines redundancy and diversity to both
detect errors and mask failures for software components.
This is a unique innovation for software fault tolerance.
HACQIT uses two software components with identical
functional specifications but different implementations. It
can be seen as combining the benefits of N-version
programming [13] without its controversial disadvantages
[14], namely higher cost overall and lower quality
components (versions).

We can do this with web server and other well known,
TCP/IP based applications like mail servers, because
these applications must implement a single specification,
and there are already many implementations of them. The
HACQIT version discussed in this paper uses two web
servers, Microsoft’s Internet Information Service (IIS)
and the open source Apache web server, to implement this
eedings of the 36th Hawaii International Conference on System Sciences (H
95-1874-5/03 $17.00 © 2002 IEEE
design approach. We also have evidence that multiple
implementations of an identical specification do result in
a small percentage of common errors [18]4.

Every HTTP request to the primary is intercepted and
sent to the MAC. After checking that the request is
allowed, the request is sent to both web servers, one on
the primary and one on the backup, one IIS and one
Apache. The HTTP specification defines the status codes
with which a web server must respond. The MAC
compares the responses (analogous to the outputs from
duplicate hardware). If the status codes are different, the
result indicates that a failure may have occurred.

In this case, failfast semantics demands failover as
quickly as possible, especially because the danger from
intrusion propagation is so much greater than the danger
from transient fault propagation. The question, then, is
how to determine which web server was successfully
attacked. An analysis of HTTP status codes makes this
possible.

Status codes lie in five general categories:
Status codes 100 – 199: Informational. Request

received, continuing process
Status codes 200 – 299: Success. Action was received,

understood and accepted.
Status codes 300 – 399: Redirection. Further action

must be taken in order to complete the request.
Status codes 400 – 499: Client Error. The request

contains bad syntax or cannot be fulfilled.
Status codes 500 – 599: Server Error. The server failed

to fulfill an apparently valid request.
There are only ten different combinations of different

status code combinations. Most are impervious to analysis
or simply not indicative of an error. One meaningful
combination for detection that can occur is 200/400. This
means one web server responded with success while the
other responded with client error. For the latter case, the
cause is usually a malformed request or a request for a
resource that does not exist on one machine. Either cause
would indicate that the machine responding with success
should be taken off-line (stopped). For example, this is
the case when the well-known attack, Code Red, is sent in
a request to IIS and Apache: IIS is taken over by Code
Red but responds with a success code (200) while Apache
is unharmed and responds with an client error code (400).

Another meaningful combination is 200/300
(success/redirection). This indicates one web server (the
one responding with success) sent back different content
than the other, which responded with redirection, because
the client already had the content requested. In this case,
the cause is assumed to be that content has changed on the
first web server indicating a defacement may have
occurred. That server would be taken off-line.

4 In the study cited, for the two most diverse implementations of the
POSIX specification, their errors in common were less than ten percent
of the total errors.
ICSS’03)

Proce
0-769
Other combinations of different status codes are
ignored. Different status codes in general are rare,
including the two combinations analyzed in the preceding
paragraphs. If those combinations occur but are not
caused by an intrusion, service will still continue, as a
primary suspected of compromise will be immediately
replaced by its backup.

Besides comparing status codes, failures can be
detected by other sensors in the system. For example, the
HM monitors system health rules, which include
detections of Quality of Service (QoS) violations to the
HM, e.g., each process has a specified maximum CPU
utilization percentage. The rule allows authorized
processes to exceed the percentage parameter for short
periods but will kill the offending process after that,
including the web server, which might be appropriate if
its process is taken over by an intruder.

4 Software Isolation

4.1 Diversity

As described in the section about “Detection”, COTS-
provided diversity is part of HACQIT’s design. Not only
does it help with the detection through comparison
mechanism, but it also is part of our isolation strategy.
Most attacks used exploits of particular vulnerabilities in
a software product, either a server application like a web
server or an operating system or one of its major
components like the networking protocol stack. An
exploit that works against one product of a type of
software (web server, OS, etc.) will seldom work against
another product of the same type. Consequently, as long
as we have two different web servers operating on our
primary and backup, an exploit that succeeds on one
should not propagate to the other, even though we are
passing the request that contains the exploit to both.

4.2 Random Rejuvenation

It is possible for an intrusion to become part of a
legitimate process (create a new thread that lives within
the process) but not do anything (“sleep”) for an
indefinite length of time. In this case, our detection
mechanisms may not detect a failure until the malign
thread(s) “wake up” and attempt to do some damage.
Random rejuvenation is a counter-measure for this type of
intrusion. The MAC randomly initiates a failover with the
average interval between random failovers set through the
Policy Editor. This should minimize the effectiveness of
“stealth” attacks that sleep before they cause errors we
can identify. Typically, this value should be set at a few
hours or more.
edings of the 36th Hawaii International Conference on System Sciences (
5-1874-5/03 $17.00 © 2002 IEEE
5 Recovery

The wrappers on our web servers mediate every
attempt to access the file system through the web server
process, allowing only policy-authorized operations, for
example, appending messages to the message board store,
which is the system’s implemented application. Thus,
every file access by a wrapped process should be
legitimate. Even if the process is taken over by a buffer
overflow attack, the wrapper continues to mediate file
access and prevent unauthorized file access. For example,
Code Red I can succeed in starting a new thread within
the IIS process, but it will not be allowed to read the root
directory, where it looks for a file named “NOWORM.”

However, we have designed HACQIT to incorporate
multiple, layered defenses. In particular, we would like to
detect unauthorized file accesses due to wrapper failure or
other unknown vulnerabilities, to accelerate recovery. We
call the overall capability (detection and correction)
Continual Repair.

This is accomplished using the native security event
auditing of Windows NT/2000. With this feature, the HM
can detect any process creation and every access to the
file system almost immediately (within a second). File
accesses include reads, writes, appends, executes, lists of
directories, changes to the directory, and access to file
attributes. In addition, the HM knows the system files that
are allowed to execute and the specific pre-existing
directory of system data files they must be able to access.
Finally, there are uncompromised copies of all files on a
separate disk connected to the out-of-band machine.

Continual Repair performs the following actions: 1) If
a file is executed which is not either (a) on the approved
list of processes allowed to execute, or (b) executed by a
wrapped process, it is an unauthorized process, and the
HM will terminate it; 2) If an unauthorized process has
created or deleted a file, the HM sets the server state as
“Unhealthy” and notifies the MAC; the MAC will then
set the server off-line and failover; 3) If the unwrapped
process created a file, the HM will remove the file; 4) If a
file is modified or deleted by other than a wrapped
process, the HM will retrieve a copy of the file from the
OOB machine to replace the one that was modified or
deleted. The copy will be valid as of the last failover.

The last two actions precede what occurs after every
failover: the wrapped processes are terminated, and an
integrity check is performed on the allowed executable
files and the directory of system data files. If no integrity
violations are found, the MAC is notified that the server is
“Healthy.” When the server is promoted to on-line spare,
backup, or primary, its data files are re-synchronized with
the files from the previous instantiation of process pairs.

Continual Repair prevents two common goals of
network attacks: to leave Trojans or “Zombies” for later
exploitation or to delete necessary executable or data files
HICSS’03)

Proc
0-76
to deny service to the end users. Continual Repair does
not mediate all potential changes to persistent data (files)
to create a transactional file system where, if the
persistent data begins in a correct state, no change violates
correctness. However, it is worth noting that even with a
transactional system, system delusion is possible via
insider or hijacked trusted clients manipulating data.
Rollback is used to mitigate this problem, but does not
solve it.

6 Plans

We would like to increase the complexity of our web
server based application to see if it scales to real-world
use. We would like to host a second TCP/IP application,
for example, email, which is inherently stateful, and see if
the techniques we have developed would extend
successfully. We would like to checkpoint the persistent
stores for our applications using a commercial Database
Management System, so that we could provide fine-
grained rollback once an error in data, perhaps caused by
an undetected intrusion, has been discovered.

7 Conclusion

We have developed an intrusion tolerant system for a
dynamic but simple web server application. We have
developed a novel technique that uses application
diversity to support both detection (through comparison
of status codes) and isolation (by significantly reducing
the likelihood of the same attack succeeding on both the
primary and backup).

We believe at least four conclusions are supported by
our work:

1) Even for the general case (any server on the
Internet), it is possible to prevent repeated
attacks from succeeding, even when the
attacks can be varied, with a combination
of attack learning and generalization as part
of a control loop that filters out bad
requests, which have been verified using a
sandbox approach. Note that the sandbox
could run on a virtual machine and not
require any additional hardware.

2) Diversity (or n-version programming) can
in fact be effectively used for intrusion
tolerance, but its main value is in detection
not isolation.

3) For a bounded problem space (not an
unbounded number of anonymous uses), it
is possible to use techniques from the fault
tolerance field, suitably modified, to
increase the availability of our systems in
the face of concerted cyber attacks.
eedings of the 36th Hawaii International Conference on System Sciences (H
95-1874-5/03 $17.00 © 2002 IEEE
4) For a problem space with less restrictive
assumptions, it is possible to significantly
improve on how fast and how cheaply we
can recover from intrusions with the
implementation of continual on-line repair.

Of course, these benefits have a cost in additional
hardware, software, and administration.

8 References

1. T. Barclay, J. Gray, and D. Slutz, Microsoft
TerraServer: A Spatial Data Warehouse, MS-TR-99-29,
Microsoft Research, Advanced Technology Division, One
Microsoft Way, Redmond WA 98052, June 1999.
2. H. Abdel-Shafi, E. Speight, and J. K. Bennet,
“Efficient User-Level Thread Migration and Checkpointing
on Windows NT Clusters,” Proceedings of the 3RD USENIX
NT Symposium, Seattle WA, July 1999.
3. J. Strouji, P. Schuster, M. Bach, and Y. Kuzmin, “A
Transparent Checkpoint Facility on NT,” Proceedings of
the 2nd USENIX NT Symposium, Seattle WA, pp. 77-85,
August 1998.
4. Y. Huang, P. E. Chung, C. Kintala, C. Y. Wang, and
D. R. Liang, “NT-SwiFT: Software Implemented Fault
Tolerance on Windows NT,” Proceedings of the 2nd
USENIX NT Symposium, Seattle WA, pp. 47-54, August
1998
5. J. S. Plank, M. Beck, G. Kingsley, and K. Li,
“Libckpt: Transparent Checkpointing under Unix,”
Proceedings of USENIX Winter Technical Conference,
New Orleans LA, pp. 213-223, January 1995.
6. F. P. Preparata, G. Metze, and R. T. Chien, “On the
Connection Assignment Problem of Diagnosable Systems,”
IEEE Transactions on Electronic Computers, EC16, pp.
848-854, 1967.
7. T. Dahbura, “System-Level Diagnosis: A Perspective
for the Third Decade,” Concurrent Computations:
Algorithms, Architecture, and Technology, (Tewksbury,
Dickson, and Schwartz, eds.) Plenum Press, Chapter 21,
pp. 411-434, 1988.
8. M. Castro and B. Liskov, “Practical Byzantine Fault
Tolerance,” Proceedings of the 3rd Symposium on
Operating System Design and Implementation, New
Orleans LA, February 1999.
9. L. Lamport, R. Shostak, and M. Pease, “The
Byzantine Generals Problem,” ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3, pp.
382-401, July 1982.
10. J. Gray and A. Reuter, Transaction Processing:
Concepts and Techniques, San Francisco, CA: Morgan
Kaufmann Publishers, 1993.
11. R. A. Maxion and K. M.-C. Tan, “Benchmarking
Anomaly-Based Detection Systems,” Proceedings of the
International Conference on Dependable Systems and
Networks, pp. 623-630, New York NY, June 2000.
12. Schwartzbard and A. K. Ghosh, “A Study in the
Feasibility of Performing Host-Based Anomaly Detection
in Windows NT,” Proceedings of the 2nd International
Workshop on Recent Advances in Intrusion Detection, West
Lafayette IN, September 1999.
ICSS’03)

Proceedings
0-7695-187
13. Avizienis, “The N-Version Approach to Fault-
Tolerant Software,” Transactions on Software Engineering,
Vol. SE-22, No. 12, pp. 1491-1501, December 1985.
14. S. S. Brilliant, J. C. Knight, and N. G. Leveson,
“Analysis of Faults in an N-Version Software Experiment,”
IEEE Transactions on Software Engineering, Vol. SE-16,
No. 2, February 1990.
15. L. Spainhower and T. A. Gregg, “IBM S/390 Parallel
Enterprise Server G5 fault tolerance: A historical
perspective,” IBM reprint, 0018-8646/99, 1999.
16. Goldman, N. M. and Balzer, R. M., “Virtual Libraries
and Active Sandboxes,” Proceedings of ICSE 2000,
Limerick, Ireland.
17. Lindsay, R., B. G. Buchanan, E. A. Feigenbaum, and
J. Lederberg, Applications of Artificial Intelligence for
Chemical Inference: The DENDRAL Project, McGraw-Hill
Book Company, New York, 1980.
18. Koopman, P. and J. DeVale, “Comparing the
Robustness of POSIX Operating Systems,” Proceedings of
the 29th International Symposium on Fault-Tolerant
Computing Systems (FTCS-29), Madison, WI, June 1999.
 of the 36th Hawaii International Conference on System Sciences (HICSS’03)
4-5/03 $17.00 © 2002 IEEE

