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Abstract

This paper presents Online Topic Model (OLDA), a topic
model that automatically captures the thematic patterns and
identifies emerging topics of text streams and their changes
over time. Our approach allows the topic modeling frame-
work, specifically the Latent Dirichlet Allocation (LDA)
model, to work in an online fashion such that it incremen-
tally builds an up-to-date model (mixture of topics per doc-
ument and mixture of words per topic) when a new doc-
ument (or a set of documents) appears. A solution based
on the Empirical Bayes method is proposed. The idea is
to incrementally update the current model according to the
information inferred from the new stream of data with no
need to access previous data. The dynamics of the proposed
approach also provide an efficient mean to track the top-
ics over time and detect the emerging topics in real time.
Our method is evaluated both qualitatively and quantita-
tively using benchmark datasets. In our experiments, the
OLDA has discovered interesting patterns by just analyzing
a fraction of data at a time. Our tests also prove the ability
of OLDA to align the topics across the epochs with which
the evolution of the topics over time is captured. The OLDA
is also comparable to, and sometimes better than, the orig-
inal LDA in predicting the likelihood of unseen documents.

1 Introduction

As electronic documents become available in streams
over time, their content contains a strong temporal order-
ing. Considering the time information is essential to better
understand the underlying topics and track their evolution
and spread within their domain. In addition, instead of ana-
lyzing large collections of time-stamped text documents as
archives in an off-line fashion, it is more practical for gen-

uine applications to analyze, summarize, and categorize the
stream of text data at the time of its arrival. For example,
as news arrive in streams, organizing it as threads of rele-
vant articles is more efficient and convenient. In addition,
there is a great potential to rely on automated systems to
track current topics of interest and identify emerging trends
in online digital libraries and scientific literature. Identi-
fying these stemming topics is essential for selecting and
establishing state-of-the-art research projects and business
entrepreneurships that would be attractive.

Probabilistic topic modeling is a relatively new approach
that is being successfully applied to explore and predict the
underlying structure of discrete data, such as text. A topic
model, such as the Probabilistic Latent Semantic Indexing
(PLSI) proposed by Hofmann [9], is a statistical genera-
tive model that relates documents and words through latent
variables which represent the topics [14]. By considering a
document as a mixture of topics, the model is able to gen-
erate the words in a document given the small set of la-
tent variables (or topics). Inverting this process, i.e. fitting
the generative model to the observed data (words in doc-
uments), corresponds to inferring the latent variables and,
hence, learning the distributions of underlying topics.

Latent Dirichlet Allocation (LDA) [2] extends the gen-
erative model to achieve the capacity of generalizing the
topic distributions so that the model can be used to gen-
erate unseen documents as well. LDA considers the top-
ics to be multinomial distributions over the words, and as-
sumes the documents to be sampled from a random mix-
tures of these topics. To complete its generative process for
the documents, LDA considers Dirichlet priors for the doc-
ument distributions over topics and the topic distributions
over words.

This paper presents an online version of LDA that auto-
matically captures the thematic patterns and identifies top-
ics of text streams and their changes over time. Our ap-
proach allows LDA model to work in an online fashion such



that it incrementally builds an up-to-date model (mixture of
topics per document and mixture of words per topic) when
a new document (or a set of documents) appears. A solu-
tion based on the Empirical Bayes method is proposed. The
idea is to incrementally adjust the learned topics according
to the dynamical changes in the data with no need to access
the previously processed documents. This is achieved by
sampling words in the newly arrived documents according
to the distribution represented so far by the current model.
The count of words in topics, resulted from running LDA
at a time instance, is used to construct (weighted) priors at
the following time instance. Thus, in our method, the new
topic distributions will correspond to the previous realistic
text structures.

Most of the related work either processes archives in
an off-line fashion (e.g. [16]), post-discretizes the time
([17, 13]), or uses unconjugated priors to multinomial dis-
tributions and trained on all the previous data (e.g. [3, 15]).
Our online topic model, however, makes use of the con-
jugacy property of the Dirichlet distribution to keep the
model’s structure simple, and to enable sequential infer-
ence. In addition, OLDA processes small subsets of data
at a time which improve its memory usage and time com-
plexity. The dynamics of our proposed approach provide a
natural mean to solve the task of detecting emerging trends
in text streams and tracking their drift over time. The idea
is to use the inferred topic description to compute the sim-
ilarities between the aligned topics across time and detect
the topics that appear to be outliers. This approach has the
added advantage that one could compute in real time when
the topic emerges and when it ceases to be an outlier.

Our method is evaluated both qualitatively and quantita-
tively using benchmark datasets. The results are compared
to the original LDA. We have found meaningful patterns in
the discovered topics within the application domain. In ad-
dition, the OLDA model is able to align the topics across the
epochs and, eventually, captures the evolution of the topics
over time easily. The OLDA is also comparable to, and
sometimes better than, the original LDA in predicting un-
seen documents as measured using perplexity.

The rest of the paper is organized as follows. Our On-
line LDA approach is introduced in Section 3, following a
short review of the most related work in the literature (Sec-
tion 2). In Section 4, we present the experiments we per-
formed on NIPS and Reuters-21578 datasets and the results
we obtained. Our final conclusions and suggestions for fu-
ture work are discussed in Section 5.

2 Related Work

Considering time information for the task of identifying
and tracking topics in time-stamped text data is the focus of
recent studies (e.g. [4, 7, 10, 11]). Among other approaches,

statistical modeling using versions of PLSI (e.g. [5]) and
LDA (e.g. [16, 3, 6, 13, 12, 15]) have been deployed to
solve this task.

In the probabilistic topic modeling that is based on LDA,
the studies have examined latent topics and their changes
across time in three main fold. The first, as in [16],
had jointly modeled time and word co-occurrence with no
Markov dependencies such that it treated time as an ob-
served continuous variable. This approach, however, works
offline, as the whole batch of documents is used once to
construct the model. This feature does not suit the online
setting where text streams continuously arrive with time.

In addition, many methods use post- or pre-discretized
time analysis. The former involves fitting a topic model
with no reference of time, and then ordering the documents
in time, slicing them into discrete subsets, and examining
the topic distributions in each time-slice. The work in [6] is
one example of such approach. On the other hand, the pre-
discretaized time analysis of topic modeling pre-divides the
data into discrete time slices, and fits a separate topic model
in each slice. Examples of this type include the experiments
with the Group-Topic model [17] and the personal infor-
mation dissemination behavior model [13]. Although our
method discretize the time, it is distinguished by its ability
of utilizing the newly acquired knowledge within the learn-
ing process and tracking the evolution of topics over time.

The work in [3], and most recently [15], have used a time
series analysis to present a dynamic topic model (DTM)
which explicitly models the evolution of topics with time by
estimating the topic distribution at various time instances.
To do so, the authors assume that the parameters are con-
ditionally distributed by normal distributions with mean
equal to the corresponding parameter at the previous time
instance. However, since the normal distribution is not a
conjugate to the multinomial distribution, the model does
not yield a simple solution to the problems of inference and
estimation. Finally, Multiscale Topic Tomography Model
(MTTM) [12] is a sequential topic model which is the most
relevant work to our approach. It uses conjugate priors
using the Poisson distribution to model the generation of
word-counts. Unlike our method, MTTM does assume the
document streams to be of equal sizes.

3 Online LDA

First, before defining the online approach, we describe
the statistical model of LDA [2] and the Gibbs sampling
algorithm for inference in this model [6]. A glossary of
notations used in the paper is given in Table 1.

LDA is a hierarchical Bayesian network that relates
words and documents through latent topics. Since the words
are observed, the document and the topic distributions, θ
and φ, are conditionally independent. Furthermore, the doc-



Table 1. Notation used in the paper
SYMBOL DESCRIPTION
D total number of documents
K number of topics
V total number of unique words
δ size of sliding window
Nd number of word tokens in document d
St a stream of documents arriving at time t
M t number of documents in St

V t number of unique words in St

N t number of word tokens in St

wt
di the unique word associated with the ith token in

document d at time t
zt

i the topic associated with wt
di

θt
d the multinomial distribution of topics specific to

the document d at time t
φt

k the multinomial distribution of words specific to
the topic k at time t

αt
d K-vector of priors for document d at time t

βt
k V t-vector of priors for topic k at time t

Bt
k V t × δ evolution matrix of topic k with columns

= φi
k, i ∈ {t − δ, · · · , t}

ωδ δ-vector of weights of φi, i ∈ {t − δ, · · · , t}

uments are not directly linked to the words. Rather, this re-
lationship is governed by additional latent variables, z, in-
troduced to represent the responsibility of a particular topic
in using that word in the document, i.e. the topic(s) that
the document is focused on. By introducing the Dirichlet
priors α and β over the document and topic distributions,
respectively, the generative model of LDA is complete and
generalized to process unseen documents. LDA is based on
the assumption of exchangeability for the words in a docu-
ment and for the documents in a corpus.

The generative process of the topic model specifies a
probabilistic sampling procedure that describe how words
in documents can be generated based on the hidden topics.
It can be described as follows:

1. Draw K multinomials φk from a Dirichlet prior β,
one for each topic k;

2. Draw D multinomials θd from a Dirichlet prior α, one
for each document d;

3. For all documents, d, in the corpus, then for all words,
wdi, in the document:

(a) Draw a topic zi from multinomial θd; (p(zi|α))
(b) Draw a word wi from multinomial φz;

(p(wi|zi, β))

Because an exact approach to estimate φ is intractable,
sophisticated approximations are usually used. Griffiths and
Steyvers in [6] proposed Gibbs sampling as a simple and
effective strategy for estimating φ and θ. Under Gibbs sam-
pling, φ and θ are not explicitly estimated. Instead, the pos-
terior distribution over the assignments of words to topics,

P (z|w), is approximated by means of the Monte Carlo al-
gorithm which iterates over each word token in the text col-
lection and estimates the probability of assigning the current
word token to each topic (P (zi = j)), conditioned on the
topic assignments to all other word tokens (z¬i) as follows
[6]:

P (zi = j|z¬i, wdi,ααα,βββ) ∝
CV K

w¬i,j + βwi,j∑V
v=1(CV K

v¬i,j
+ βv,j)

×

CDK
d¬i,j

+ αd,j
∑K

k=1(CDK
d¬i,k

+ αd,k)

where CV K
w¬i,j is the number of times word w is assigned

to topic j, not including the current token instance i; and
CDK

d¬i,j
is the number of times topic j is assigned to some

word token in document d, not including the current in-
stance i. From this distribution, a topic is sampled and
stored as the new topic assignment for this word token. Af-
ter a sufficient number of sampling iterations, the approx-
imated posterior can be used to get estimates of φ and θ
by examining the counts of word assignments to topics and
topic occurrences in documents .

To enable LDA to work in an on-line fashion on data
streams, OLDA model considers the temporal ordering in-
formation and assumes that the documents are divided in
time slices. At each time slice, a topic model with K com-
ponents is used to model the newly arrived documents. The
generated model, at a given time, is used as a prior for
LDA at the successive time slice, when a new data stream
is available for processing. The hyper-parameters β can be
interpreted as the prior observation counts on the number of
times words are sampled from a topic before any word from
the corpus is observed ([14], [1]). So, the count of words in
topics, resulted from running LDA on documents received
at time t, can be used as the priors for the t + 1 stream.

Our approach allows many alternatives for keeping track
of history at any time t, ranging from a full memory that
keeps track of the complete history to a short memory that
keeps the counts of the model associated with time t − 1
only. Such variety of solutions suits the structure of text
repositories, since the flow and nature of document streams
differ according to the type of the corpus and, consequently,
the role of history would be different too. While the current
experiments will demonstrate some of these differences, it
is part of our future work to investigate the role of history
in inferring future semantics.

3.1 Generative Process and Approximate
Inference

To formulate the problem, we first assume that docu-
ments arrive in ascending order of their publication date.



After each time slice, t, of a predetermined size ε, e.g.
an hour, a day, or a year, a stream of documents, St =
{d1,· · · ,dMt}, of variable size, M t, is received and ready
to be processed. The size of the time slice, ε, depends on
the nature of the corpus on which the model is applied, and
on how fine or coarse the resulted description of data is ex-
pected to be. The indices of the documents within a stream,
St, preserve the order by which the documents were re-
ceived during the time slice t, i.e. d1 is the first document to
arrive and dMt is the latest document in the stream. A doc-
ument d received at time t is represented as a vector of word
tokens, wt

d = {wt
d1, · · · , wt

dNd
}. It is naturally the case that

stream St introduces new word(s) in the vocabulary. These
words are assumed to have 0 count in φ for all topics in pre-
vious streams. This assumption is important to simplify the
definition of matrix B and the related computation.

Let Bt−1
k denotes an evolutionary matrix of topic k in

which the columns are the word-topic counts φj
k, generated

for streams received within the time specified by the sliding
window, i.e. j ∈ {t− δ− 1, · · · , t− 1}. Let ωδ be a vector
of δ weights each of which is associated with a time slice
from the past to determine its contribution in computing the
priors for stream St. We assume that the weights in ωt−1

sum to one. Hence, the parameters of a topic k at time t
are determined by a weighted mixture of the topic’s past
distributions as follows:

βt
k = Bt−1

k ωδ (1)

Computing the β’s in this manner ties the topic distribu-
tions in the consecutive models and captures the evolution
of topics in a sequential corpus. Thus, the generative model
for time slice t of the proposed online LDA model is given
as follows:

1. For each topic k = 1, · · · , K
2. Compute βt

k = Bt−1
k ωδ

3. Draw φt
k ∼ Dir(·|βt

k)
4. For each document, d,

5. Draw θt
d ∼ Dir(·|αt)

6. For each word token, wi, in document d
7. Draw zi from multinomial θt

d; (p(zi|αt))
8. Draw wi from multinomial φzi ; p(wi|zi, βt

zi
)

At time slice = 1, the topic parameters, φ1
k, are drawn

from a Dirichlet prior, Dir(·|β1
k), where β1

k is initialized to
some constant, b, as done in the original LDA modeling,
e.g. [6].

Maintaining the models’ priors as Dirichlet is essentially
useful to simplify the inference problem by making use of
the conjugancy property of Dirichlet and multinomial dis-
tributions. In fact, by tracking the history as prior patterns,
the data likelihood and, hence, the posterior inference in
the static LDA are left the same, and applying them to our
proposed model is a straightforward. The main difference

between the two approaches in this regard is that the in-
ference problem in our online approach is solved by using
chunks of the data instead of the whole set. This makes the
time complexity and memory usage of OLDA efficient and
applicable for genuine applications. Our model uses Gibbs
sampling as an approximate inference method to estimate
the word-topic assignments. The conjugacy property of our
priors makes the application of the sampling method in our
approach very easy.

3.2 Topic Detection and Tracking

The dynamics of our proposed approach provide a natu-
ral mean to capture the topics and their evolution over time.
By constructing the priors as a weighted combination of the
history, the topics are tied and automatically aligned across
time. The matrix Bt

k can be considered as the evolution of
topic k in which the topic development over time is cap-
tured. Furthermore, novel concepts or topics can also be
identified. We define a novel topic as the one which, when
appears, is “different” from the previous (or current) con-
cepts, i.e. is an outlier, and with time it becomes “main-
stream” and, hence, ceases to be an outlier.

After applying the topic modeling, a topic is represented
as a vector of probabilities over the space of words. The dis-
similarity between two topic distributions, p and q, can be
computed in such a space using the Kullback Leibler (KL)
divergence. The KL divergence KL(p ‖ q) represents the
average additional amount of bits required to encode sam-
ples from p with a code based on q [1], and is given by

KL(p ‖ q) =
∑

i

p(i) log
p(i)
q(i)

KL divergence is not a real metric, since it is not symmetric.
Thus, in our work, we compute the average of KL(p ‖ q)
and KL(q ‖ p) and denote it KL distance or DKL in the rest
of the paper.

An emerging topic can be viewed as the one that is dif-
ferent from its peers in the same stream, or from all the
topics seen so far. To quantify the difference, we define a
δ×K distance matrix Dist where each entry, Dist(t, k), is
the DKL between the distributions of topic k at time t and
t + 1. Let CL be a confidence level, and perct be the per-
centile, the value below which a CL percent of distances
computed at time t fall. The identification of emerging
topics can be modeled by considering different approaches
to compute the percentile at time t: either to consider the
K topic distances computed at time t (current percentile -
perct) , or to use all the δ × K distances computed so far
(historic percentile - percALLt). Then, if the KL distance
of a topic, φt

k, from the one that immediately precedes it,
φt−1

k , exceeds the percentile value, perct (percALLt, re-
spectively), the topic is flagged as a nominated emerging



topic. Thus, given the evolution matrices, Bt, the emerging
topic detection algorithm (Edetect) at time t can be formu-
lated as follows:

1. Etopics = ∅; EtopicsALL = ∅;
2. For each previous time slice, j = 2 to δ

3. For each topic, k = 1 to K
4.Compute KL distance,
Dist(j − 1, k) = DKL(Bt

k(:, j) ‖ Bt
k(:, j − 1))

5. Compute perct = percentile(Dist(δ− 1, :), CL);
6. Compute percALLt = percentile(Dist, CL);
7. For each topic, k = 1 to K

8. If Dist(δ − 1, k) > perct

9. Etopics = Etopics ∪ k
10. If Dist(δ − 1, k) > percALLt

11. EtopicsALL = EtopicsALL ∪ k

Thus, the algorithm returns the topics that are flagged as
emerging topics in stream St. Note that the distances in
Dist need not to be recomputed at every time slice and can
be constructed incrementally to reduce time complexity.

3.3 OLDA Algorithm

An overview of the proposed Online LDA algorithm is
shown in Algorithm 1. In addition to the text streams, St,
the algorithm takes as input the CL confidence level, the
weight vector ω, and fixed Dirichlet values, a and b, for ini-
tializing the priors α and β, respectively, at time slice 1.
Note that b is also used to set the priors of new words that
appear for the first time in any time slice. If Nstream de-
notes the number of streams processed, the output of the al-
gorithm will be: Nstream generative models, the evolution
matrices Bk for all topics, and lists of nominated emerging
topics, one for each stream.

Algorithm 1 Online LDA
1: INPUT: b; a; CL; ωδ; St, t ∈ {1, · · · , Nstream}
2: for t = 1 to Nstream do
3: if t = 1 then
4: βt

k = b, k ∈ {1, · · · , K}
5: else
6: βt

k = Bt−1
k ωδ, k ∈ {1, · · · , K}

7: end if
8: αt

d = a, d = 1, · · · , M t

9: initialize φt and θt to zeros
10: initialize topic assignment, zt, randomly for all word to-

kens in St

11: [φt,θt, zt] = GibbsSampling(St, βt, αt)
12: Bt

k = Bt−1
k ∪ φt

k, k ∈ {1, · · · , K}
13: if t > 1 then
14: [Etopics(t),EtopicsA(t)] = Edetect(CL)
15: end if
16: end for

4 Experimental Results

Online LDA (OLDA) is evaluated in three problem do-
mains: document modeling, document classification, and
emerging topic detection. The performance of the proposed
method is compared to the standard version of LDA. OLDA
is trained on the individual stream arriving at each time t,
while the original LDA, named LDA-upto, is trained on all
the streams received up to time t. Both models were run
for 500 iterations and the last sample of the Gibbs sampler
was used for evaluation. The number of topics, K , is fixed
across all the streams. Following the settings in [2, 6], K ,
a, and b are set to 50, 50/K , and 0.1. For now, βt

k de-
pends on the topic distribution of the previous stream only,
i.e. δ = 1. Using different weight settings for ω, three
variants of OLDA are considered specifically for the doc-
ument modeling problem. The standard version of our ap-
proach, which we call OLDA, uses the actual counts of the
previous model to compute the priors.The second model,
namely OLDA-fixed, ignores the history and processes the
text stream using fixed symmetric Dirichlet prior. In the last
version, named OLDA-norm, the counts are normalized be-
tween zero and one before being used. All experiments are
run on 2GHz Pentium(R) M-processor laptop using “Mat-
lab Topic Modeling Toolbox”, authored by Mark Steyvers
and Tom Griffiths1.

4.1 Datasets

The following is a short description of the datasets used
in our experiments.

Reuters-215782. The corpus consists of newswire arti-
cles classified by topic and ordered by their date of issue.
There are 90 categories with some articles classified in mul-
tiple topics. The ApteMod version of this database has been
used in many papers. This version consists of 12,902 docu-
ments, with approximately 27,000 features in total.

For our experiments, only articles with at least one topic
were kept for processing. For data preprocessing, words
were only down-cased and stemmed to their root source.
The resulting dataset consists of 10337 documents, 12112
unique words, and a total of 793936 word tokens. For sim-
plicity, we partitioned the data into 30 slices and considered
each slice as a stream.

NIPS dataset3. The NIPS set consists of the full text
of the 13 years of proceedings from 1988 to 2000 Neu-
ral Information Processing Systems (NIPS) Conferences.

1The Topic Modeling Toolbox is available at:
psiexp.ss.uci.edu/research/programs data/toolbox.htm

2The original dataset is available to download from the UCI Knowledge
Discovery in Databases Archive. http://archive.ics.uci.edu/ml/

3The original dataset is available at the NIPS Online Repository.
http://nips.djvuzone.org/txt.html.



The data was preprocessed for down-casing, removing stop-
words and numbers, and removing the words appearing less
than five times in the corpus. The data set contains 1,740
research papers, 13,649 unique words, and 2,301,375 word
tokens in total. Each document has a timestamp that is de-
termined by the year of the proceedings. Thus, the set con-
sisted of 13 streams in total. The size of the streams, M t,
varies from 90 to 250 documents.

4.2 Document Modeling

The objective of document modeling is a density es-
timation that describes the underlying structure of data.
One common approach to measure this is by evaluating the
model’s generalization performance on previously unseen
documents. Perplexity is a canonical measure of goodness
that is used in language modeling to measure the likelihood
of a held-out test data to be generated from the underlying
(learned) distributions of the model [8]. The higher the like-
lihood is, the lower the perplexity will be, and, hence, better
generalization performance can be achieved. Formally, for
a test set of M documents, the perplexity is [2]:

perplexity(Dtest) = exp
{
−

∑M
d=1 log p(wd)∑M

d=1 Nd

}
(2)

To compute p(wd), several iterations of “query sam-
pling” must be performed to get the document-topic counts
of the unseen document which are required to compute the
likelihood (refer to [8] for details).

We trained the three versions of OLDA and the LDA-
upto topic models on the NIPS and Reuters datasets. At
every time slice, we compare their perplexity performance.
Figures 1 and 2 illustrate the perplexity of the models
trained on Reuters and NIPS, respectively. OLDA improved
the document modeling in Reuters with respect to the LDA
baseline. As for Online models with normalized or fixed
priors, the performance is reversed. This shows that infor-
mation propagated from the past is very useful to predict
future streams in Reuters.

However, testing with NIPS showed a different behav-
ior. OLDA with normalized priors performed better on the
test data. LDA framework, in general, is a statistically data-
dependent approach. So, the role of history would, eventu-
ally, vary according to the homogeneity of the domain. This
justifies the importance of the weight matrix ω.

In addition, when we tested our model on the training
data for NIPS, the perplexity noticeably decreased. Because
our approach has more parameters and they are set accord-
ing to the information propagated from previous streams,
the online model results in better fitting of the data pro-
cessed so far rather than predicting future documents. This
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Figure 1. Comparisons of Perplexities of OLDA and
LDAupto trained on Reuters

result matches similar findings in the literature [12] and sat-
isfies the objective for which our model is applicable.

To verify the ability of our model of visualizing the
data, we analyzed the posteriors of OLDA estimated from
Reuters and NIPS corpora. Due to lack of space, only two
examples from NIPS and Reuters are listed in Table 2 and 3
respectively.

Like the standard LDA, our method is able to identify
meaningful topics in NIPS such as classification, speech
recognition, Bayesian learning, and regression. The top-
ics discovered in Reuters at every stream fit well with the
categories that the articles belong to. Yet, OLDA is able to
find these topics with no access to the entire data. Rather,
the model is generated from a small fraction of documents,
which makes our model superior in terms of time and mem-
ory efficiency. Figure 3 compares the execution time re-
quired for OLDA and the standard LDA to generate the
topic model at every time instance for Reuters. It can be
seen that OLDA requires approximately a constant time,
depending on the size of each stream, while the run time
required by LDA-upto to analyze the data is accumulative.
In addition, LDA requires the whole data to be stored for fu-
ture processing, however, our model stores only a metadata
of the data in terms of a small number of generative models.

Furthermore, OLDA is able to identify more fine topics
that may be represented by a small number of documents
at a certain point of time. For example, in NIPS, the topic
“Support Vector Machine” (SVM) appeared in three docu-
ments in year 1995, in two documents in year 1998, in six
documents in 1999, and in 9 documents in 2000.

Table 4 lists the “SVM” documents that appeared in
1995 and the “SVM” topic distribution over words gener-
ated by LDAupto, OLDA, and OLDA-norm. The table also
shows the weight of the topic “SVM” in the document dis-
tribution generated by the models. The number between
brackets represents the rank of the topic “SVM” in the doc-
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ument, e.g. rank (1) means the topic has the highest weight
in the corresponding document. LDA-upto was not able to
detect “SVM” as a distinguished topic, so we report four
topics that had the highest weights in “SVM” documents.
On the other hand, both the OLDA models were able to
detect the topic and assign high weight for it in the docu-
ments’ distributions. The same observation is found in the
1998 and 1999 models. LDAupto was only able to detect
“SVM” in the year 2000.

Many of the topics discovered, like “reinforcement
learning” in Table 2, have a strong and constant identity
over the years, while other topics were a mixture of ei-
ther meaningful themes, like topic 14 which is a mixture of
“SVM” and “character recognition”, or “junk” topics that
are holding words like “abstract”, “figure”, “introduction”
and so on. Our intuition is that the number and size of rel-
evant documents is an important factor. By examining the
distribution of topic SVM from year 1998 to 2000, it can be
clearly seen how SVM related words are dominating over
character recognition terms as the number of SVM articles
increases. In addition, the setting of the number of com-
ponents, K , has a major impact too. On inspection, we
tested OLDA with different settings for K (see Figure 2).
However, detailed analysis of the effect of the number of
component is part of our future work.

Table 2. Examples of topics estimated by OLDA from
NIPS corpus and its evolution over 13 years

Topic 12: Reinforcement Learning
88: state learning system states time cycles recurrence failure weight algorithm
89: node system state rule learning nodes tin match transition
90: state learning rule system node algorithm change rules controller dynamic
91: learning state reinforcement system world time adaptive planning controller
92: state learning action task exploration tasks sutton elemental
93: learning state reinforcement control time action task optimal based
94: learning state optimal control dynamic policy action time adaptive
95: learning state optimal action policy control reinforcement grid dynamic
96: learning state action policy reinforcement algorithm optimal time
97: learning state action reinforcement time policy optimal algorithm dynamic
98: state learning policy reinforcement optimal time action step control
99: state learning policy action reinforcement optimal rl time
2000: state learning policy action reward time reinforcement belief
Topic 14: Character Recognition - SVM
88: input error vector classifier method classification connection problem
89: input vector classification limited feature characters figure error
90: feature vector large number digits input scale cun parameters local
91: feature vector input large category classification characters error recognition
92: recognition risk character digit feature input vectors digits cun
93: character distance recognition characters rate error segmentation large field
handwritten
94: distance recognition character address feature handwriting lines text pen
95: style recognition support content vectors distance feature character database
96: distance tangent recognition machine character simard digit prototype vec-
tors
97: recognition character window distance handwritten machine digit dimen-
sionality ocr
98: recognition distance kernels character machine kernel sv segmented support
99: kernel support recognition vector svm digit machines kernels rotation
2000: kernel support vector svm machines svms kernels feature recognition

Table 3. Examples of topics estimated by OLDA from
Reuters corpus and its evolution over the first 10 streams

TOPIC 6: Gold
1: pct interest expect hold rmj gold secur ounc plc agenc
2: interest pct gold expect plc secur hold agenc volum western
3: pct gold interest hold expect agenc given british made ounc
4: hold gold pct land mine agenc given state interest expect
5: ton made agenc pct expect interest state mine north gold
6: reserv gold ton ounc mine ltd agenc silver expect averag
7: gold coin reserv ltd ounc properti ventur immedi develop interest
8: gold ventur or reserv copper develop mine western ltd coin
9: gold copper ton averag ounc mine ltd feet assai ventur
10: reserv averag gold ounc ventur mine ltd ton pct earlier
TOPIC 28: Crude
1: reuter export industri mine produc tonn plan quota output tin
2: industri export reuter produc minist countri accord tonn told miner
3: state industri reuter told member minist output mine accord onli
4: oil opec bpd crude state offici accord industri told output
5: oil state barrel crude minist ecuador offici reuter export output
6: oil barrel crude opec energi minist export ecuador output member
7: oil barrel crude bpd refineri opec minist petroleum state output
8: oil opec crude bpd barrel arabia saudi energi nazer ecuador
9: oil crude energi minist barrel dai gas countri petroleum offici
10: oil barrel opec crude relief revenu energi dai field develop



Table 4. The topic “SVM” (distribution & documents)
from NIPS in LDA, OLDA, and OLDA-norm at year 1995.
The top lists the weight and rank of the topic SVM for each
document. The bottom list the distribution of the topic from
each model

Document Title LDA OLDA OLDA-
norm

Support Vector Regression Machines - 0.1(2) 0.41(1)
Support Vector Method for Function Approx-
imation, Regression Estimation, and Signal
Processing

- 0.13(2) 0.54(1)

Improving the Accuracy and Speed of Sup-
port Vector Machines

- 0.26(1) 0.39(1)

Model Topic Distribution
LDA - problem, space, points, solution, regions, number, solutions, set,

find, approach, boundary, large, solve, method, constraints, maxi-
mum, dimensional
- function, approximation, optimal, basis, linear, order, form, gen-
eral, case, ai, process, variable, continuous, theory, section, equa-
tion, degree
- training, error, set, data, test, prediction, performance, sets, num-
ber, examples, validation, experiments, problem, size, generaliza-
tion
- data, estimate, regression, method, variance, bias, based, sample,
statistical, neural, selection, true, samples, criterion, fit, risk

OLDA style, recognition, support, content, vectors, distance, feature, char-
acter, vector, database, vapnik, error, accuracy, speed, lines, sv, bi-
linear

OLDA-
norm

function, basis, vector, space, support, feature, kernels, regression,
set, radial, smoothing, regularization, estimation, method, equiva-
lent, vapnik, dimensional

It is also interesting to track the popularity of a topic as a
function of time. This can be easily done by examining the
topic evolution matrices. Figure 4 illustrates the popularity
of two topics, the “Bayesian learning” and “multilayer neu-
ral networks” (NN), in terms of topic probability at each
year. The first topic is clearly gaining more interest in the
literature while the topic “NN” is declining.

4.2.1 Document Classification

The distribution of a document over topics can be consid-
ered a reduced description of the document in a new space
spanned by the small set of latent variables [2]. So, the
performance of the topic model can be evaluated by investi-
gating the amount of discriminative information that is pre-
served in the document distributions. One way to do this is
by solving a classification problem. For evaluation, classi-
fication accuracy and F1 measure are common measures.

We conducted a two class-classification problem us-
ing the Reuters dataset. At each time slice, OLDA and
LDAupto models were trained without using the true class
labels with K set to 50, as in [2]. Then, the document
distributions, θt

d, are used to train a Support Vector Ma-
chine (SVM) to classify the “earn” class4. SVM was run
five times using different 20 − 80% partitions of train-test
sets. The average F1 at every time stream for both models

4SVMLight software package is used for our experiments. It is avail-
able at: http://svmlight.joachims.org/.
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Figure 4. Tracking topics in NIPS over 13 years. Top:
topic 32 (Bayesian Learning). Bottom: topic 8 (Multilayer
neural networks - supervised learning/gradient descent)

is given in Figure 5, and the performance in terms of clas-
sification accuracy averaged over all the streams is given in
Table 5. While trained on a small subset of the corpus, our
approach is able to generate a model that is as descriptive
as the one generated using the whole data. In fact, the low
F1 obtained with OLDA were due to the random partition-
ing that resulted in test sets that do not include any positive
example.
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Figure 5. Average F1 of OLDA and LDAupto trained on
Reuters

4.2.2 Emerging Topic Detection

The objective of this set of experiments is to test the abil-
ity of our method to detect novel topics at the time of their



Table 5. The average, minimum, maximum, and standard
deviation of the classification accuracy over all streams of
Reuters corpus

Model accuracy min
accuracy

max
accuracy

STDEV

OLDA 94.67 87.69 95.54 1.43
LDAupto 95.15 78.86 96.73 3.14

arrival. We test the emerging topic detection at two con-
fidence levels: 90% and 95%. We applied the emerging
topic detection method on NIPS and a number of topics
were flagged at each year. For example, Topic “SVM” was
detected at year 1999 at both confidence levels. Figure 6
illustrates the distance and probability of topic “SVM” with
CL set to 90%. The year at which the topic distance ex-
ceeds the historic (current) percentile is marked by # (∗).
Because the number of components K is fixed, an emerging
topic appears first with a small and/or similar topic. For ex-
ample, when “SVM” first appeared in 1995, it shared topic
14 with the topic “character/digit recognition”.

In year 2000, more “SVM” documents are received and,
hence, the probability of the topic sharply increased while
the distance from the topic distribution at year 1999 de-
creased. Thus, the topic ceases from being an emerging
topic and the algorithm does not consider it novel anymore.
The reason why “SVM” was not detected in the year 1995
could be related to the number of documents, i.e. number
of tokens, that are associated to the topic compared to other
topics. As can be seen in Figure 6, the probability of the
topic at that year, stream = 8, is very low. To address
this behavior, we are working on a “weighted KL distance”
which is invariant with respect to the number of tokens as-
sociated to a topic.

Another set of synthetic experiments is performed on
Reuters data. The documents of two classes, “crude” and
“coffee”, were held out for some number of streams. Then,
at the forth (seventh) time slice, the documents of “crude”
(“coffee”) were released. Our emerging topic detection was
able to detect both topics as emerging topics at the time of
their release for both the current and historic distances.

Table 3 lists the distribution of Topic 28 before and af-
ter releasing the “crude” documents while Table 6 illus-
trates the output of our method for CL= 95% using the
historic percentile. The topic 28 (18) in stream 4 (7)
clearly corresponds to the “crude” (“coffee”) documents
that were released at that time. The topic “crude”, though,
appeared again as a new emerging topic, at stream 10
for example (see Table 6). The words “opec”, “relief”,
“revenue”, and “development” are clearly the cause of the
flag. These words indicate new news regarding some re-
lief/development efforts of the Opec.
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Figure 6. Distance and probability of Topic 14 (Charac-
ter recognition - SVM) over 13 years. The topic is flagged
as emerging topic at years 1990 and 1996 with historic
percentile(#) and at years 1994 and 1999 with current per-
centile (∗). The confidence level is 90%

Table 6. The output of the Emerging Topic Detection on
Reuters corpus. The crude topic (28) is detected at stream
4 and the coffee topic (18) is detected at stream 7. The
distributions, probability, percentage of documents of both
the past and the new topics are listed

STREAM 4 DOCUMENTS 340 WORDS 12112 TOKENS 23603 Perc= 1.8986
TOPIC 28
(Past) %doc 27.3 p(topic) 0.019:

state industri reuter told member minist output mine accord onli
(Current) %doc 29.412 p(topic) 0.0276:

oil opec bpd crude state offici accord industri told output

STREAM 7 DOCUMENTS 339 WORDS 12112 TOKENS 23331 Perc= 1.7182
TOPIC 18
(Past) %doc 35.0 p(topic) 0.02:

total mai bought between rais harvest reuter accord sinc maiz
(Current) %doc 38.643 p(topic) 0.0234:

export total quota bag coffe brazil reuter mai bought between

STREAM 10 DOCUMENTS 335 WORDS 12112 TOKENS 24677 Perc=
1.6763
TOPIC 28
(Past) %doc 25.373 p(topic) 0.0161:

oil crude energi minist barrel dai ga countri petroleum offici
(Current) %doc 26.866 p(topic) 0.0263:

oil barrel opec crude relief revenu energi dai field develop



5 Conclusions

We have developed an online topic model for discrete
data to model the temporal evolution of topics in data
streams. Our approach is a non-Markov on-line LDA Gibbs
sampler topic model (OLDA) in which the current model,
along with the new data, guide the learning of a new gener-
ative process that reflects the dynamic changes in the data.
This is achieved by using the generated model, at a given
time, as a prior for LDA at the successive time slice, when
a new data stream becomes available for processing.

The weight of history in the generative process can be
controlled by the weight matrix depending on the homo-
geneity of the domain. Our model results in an evolutionary
matrix for each topic in which the evolution of the topic over
time is captured. In addition, we proposed an algorithm to
detect emerging topics based on the framework of OLDA.

By processing small subsets of documents only, OLDA
is able to learn meaningful topics, similar and in some cases
better than the LDA baseline. Our method also outperforms
LDA in detecting topics represented by a small set of docu-
ments at a certain point in time.

The proposed approach can be extended in many direc-
tions. Examining different settings for the weight matrix is
part of our future work to investigate its effect on the learned
models. We are also considering the use of prior-knowledge
to learn (or enhance the construction of) the parameters. In
addition, different alternatives are considered for the dis-
tance metric used to compute the dissimilarities between
topic distributions. We plan to construct a weighted dis-
tance metric that “normalizes” the document size and dis-
tinguishes between inter-topic differences and intra-topic
drifts.
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