
Machine Learning, 39, 35–58, 2000.
c© 2000 Kluwer Academic Publishers. Printed in The Netherlands.

On-line Learning and the Metrical Task
System Problem

AVRIM BLUM avrim+@cs.cmu.edu
CARL BURCH cburch+@cs.cmu.edu
Department of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213, USA

Editor: Robert Schapire

Abstract. The problem of combining expert advice, studied extensively in the Computational Learning Theory
literature, and the Metrical Task System (MTS) problem, studied extensively in the area of On-line Algorithms,
contain a number of interesting similarities. In this paper we explore the relationship between these problems and
show how algorithms designed for each can be used to achieve good bounds and new approaches for solving the
other. Specific contributions of this paper include:

• An analysis of how two recent algorithms for the MTS problem can be applied to the problem of tracking the
best expert in the “decision-theoretic” setting, providing good bounds and an approach of a much different
flavor from the well-known multiplicative-update algorithms.

• An analysis showing how the standard randomized Weighted Majority (or Hedge) algorithm can be used for the
problem of “combining on-line algorithms on-line”, giving much stronger guarantees than the results of Azar,
Y., Broder, A., & Manasse, M. (1993).Proc ACM-SIAM Symposium on Discrete Algorithms(pp. 432–440)
when the algorithms being combined occupy a state space of bounded diameter.

• A generalization of the above, showing how (a simplified version of) Herbster and Warmuth’s weight-sharing
algorithm can be applied to give a “finely competitive” bound for the uniform-space Metrical Task System
problem. We also give a new, simpler algorithm for tracking experts, which unfortunately does not carry over
to the MTS problem.

Finally, we present an experimental comparison of how these algorithms perform on a process migration problem,
a problem that combines aspects of both the experts-tracking and MTS formalisms.

Keywords: on-line learning, metrical task systems, combining expert advice, randomized on-line algorithms

1. Introduction

The problem of combining expert advice has been studied extensively in the Computa-
tional Learning Theory literature (e.g., Cesa-Bianchi et al., 1993; Freund & Schapire, 1997;
Littlestone & Warmuth, 1994). In this problem, an on-line learning algorithm has access to
n advisors (the “experts”) and must decide which of their advice to follow in making a series
of decisions. A problem with similar flavor is the Metrical Task System problem studied in
the area of On-line Algorithms. In this problem an on-line algorithm is in one ofn “states”,
and must decide how to move among these states to best process a series of tasks being
received. (We describe these two problems more fully below.) In this paper we examine
relations between these problems and use these relations to construct new algorithms for

36 A. BLUM AND C. BURCH

each and derive new guarantees. To help structure the discussion and to frame some of the
issues that arise, we begin with two motivating scenarios.

Scenario 1 (process migration). Consider a process running on some machine in a net-
work that has the ability tomigrate: if it finds that its machine is heavily loaded compared
to another machine in the network, it may decide to move to the other machine in order
to work faster. Say that each minute the process gets load-average information from alln
machines in its network (e.g., by pinging them), and it may use this information to decide
what to do next. What is a good strategy for deciding when and where this process should
move?

Scenario 2 (combining on-line algorithms on-line (Azar, Broder, & Manasse, 1993)).
Consider an on-line problem, such as paging, where we have several plausible on-line
algorithms to choose from (maybe FIFO, LRU, and LFU). Suppose we do not knowa pri-
ori which of these will perform best on an upcoming sequence of requests. Can we combine
these algorithms in some generic way into an on-line strategy whose performance will never
be too much worse than the best of them in hindsight?

Scenario 1 could be modeled in the “decision-theoretic” experts framework of Freund
and Schapire (1997) and Chung (1994) as follows. We view the machines asexpertsand the
loads on the machine aslosses. An unloaded machine has loss 0, indicating that the process
would have wasted no time if it had been on that machine, and a heavily loaded machine (not
counting the load caused by our process itself) has loss approaching 1, indicating the process
would have wasted nearly the entire minute had it been on that machine. At each time step
t , based on information about the past, the process probabilistically selects a machine to
use using some distributionpt and then experiences an expected losspt · `t , where`t is
the vector of losses. Over time, the total expected loss (time wasted) is

∑
t pt · `t , which

we would like to minimize. Unfortunately, moving between machines is not free: it takes
time to transfer one’s state. Thus, a better model for our scenario would be a version of the
experts setting in which not only does an algorithm incur loss by selecting a bad expert, but
it also incurs loss for moving between experts.

Scenario 2 can also naturally be modeled by viewing each on-line algorithm as an “expert”
dispensing advice at each time step about what to do next. In fact, this scenario is simpler
than the first one in the sense that here we explicitly compete against (compare ourselves
to) the best single expert, whereas in Scenario 1 we might have the higher hope of doing
nearly as well as the best strategy that is allowed to switch several times. On the other hand,
in Scenario 2, each expert has some internal state (e.g., the contents of its cache) that affects
how it is charged on each request. Thus if we want to switch from following the advice of
experti to following the advice of expertj and alsoto match j ’s current internal state, we
may also need to incur some kind of “movement cost” (we will discuss this more fully in
Section 3.3).

This notion of an on-line algorithm havingstate, with a cost for moving between states,
is captured by theMetrical Task System(MTS) problem studied in the On-line Algorithms
literature (Borodin, Linial, & Saks, 1992; Irani & Seiden, 1998). In this problem, we imagine

ON-LINE LEARNING 37

the on-line algorithm as controlling a system that can be in one ofn statesorconfigurations,
with some distance metricd among the states specifying the cost of moving from one state
to another. This system incrementally receives a sequence oftasks, where each task has a
cost vectorspecifying the cost of performing the task in each state of the system. Given a
new task, an algorithm must decide whether to process the task in the current state (paying
the amount specified in the cost vector) or to move to a new state and process the task there
(paying both the movement cost and the amount specified in the cost vector for the new state).

The MTS problem is like a version of the decision-theoretic experts problem where there
is a cost to switch between experts, but where there is also one-step lookahead (the algorithm
sees a task before deciding how to process it, instead of choosing an expert before seeing
their losses). One feature of the MTS setting is that the movement cost allows comparison
of an on-line algorithm to the best off-line strategy that is allowed to move between states
arbitrarily , a more ambitious goal than comparing to the best single state. That is, one can
compare the performance of an on-line algorithm to the best possible cost given the entire
sequence of cost vectors in advance. This measure, and in particular the worst-case ratio
over task sequences of the algorithm’s performance to the optimal off-line performance, is
called thecompetitive ratioof the algorithm.

This paper begins in Section 2 by more precisely defining the problems and goals of
the experts and MTS settings. In Section 3 we describe a general relationship between
the settings, and discuss the problem of combining on-line algorithms as a “warm-up” (in
particular as a warm-up to Section 5). In Section 4 we examine several algorithms designed
for the MTS problem and show how these can be applied to the problem of tracking
the best expert in the decision-theoretic setting. Section 5 explores the other direction:
we analyze two algorithms for tracking the best expert in the decision-theoretic setting
based on established weighted-experts algorithms (Herbster & Warmuth, 1998; Littlestone
& Warmuth, 1994) and show that one of them achieves good performance for the MTS
problem, whereas the other has an unbounded competitive ratio. Finally, in Section 6 we
give an empirical comparison of these algorithms and others for the process migration
scenario discussed above.

2. Definitions

2.1. Tracking experts in the decision-theoretic setting

The first setting we consider is the “decision-theoretic” framework for learning from expert
advice (also called the on-line allocation problem) (Freund & Schapire, 1997; Chung,
1994). In this problem the learning algorithm has access ton expertsand faces a sequence
of trials. For trialt , the algorithm chooses a probability distributionpt over the experts. After
choosing this distribution, aloss vector̀ t ∈ [0, 1]n is revealed, and the learning algorithm
is penalized with losspt · `t . This penalty may be understood as the expected loss of the
algorithm when it selects one expert with distributionpt and then incurs that expert’s loss.
We call this the Experts-DTF setting.

This problem is typically analyzed with the goal of performing nearly as well as the best
expert on the given sequence of trials. A stronger goal is thepartitioning bound(considered

38 A. BLUM AND C. BURCH

by Herbster and Warmuth (1998) and Littlestone and Warmuth (1994) for specific classes
of loss functions) of performing nearly as well as the bestsequenceof experts. Specifically,
given a partition of the trial sequence intok segments, we define theloss of the partitionas∑k

i=1 L[i], whereL[i] is the loss of the best expert in segmenti . Our goal is to achieve a
loss of at most

min
P

[a1L P + a2kP], (1)

whereL P is the loss of partitionP andkP is the number of segments inP. We will seek
to achieve this fora1 anda2 as small as possible. (The easier goal of competing against the
best single expert is a restriction of the partitioning bound to the casekP = 1.)

2.2. The MTS problem and the competitive ratio

In theMetrical Task System (MTS) problem(Borodin, Linial, & Saks, 1992; Irani & Seiden,
1998), an on-line algorithm controls a system withn stateslocated at points in a space with
distance metricd. The algorithm receives, one at a time, a sequence oftasks, each of which
has acost vectorspecifying the cost of performing the task in each state. Say the system
currently occupies statei and, given the task vector̀, the algorithm tells the system to
move to statej . Then the algorithm pays both the cost of moving to statej and the amount
specified by the cost vector for processing the task inj ; that is, the cost isdi, j + ` j . (If
i = j then, sincedi,i = 0, the cost is just̀ j .)

In this paper we consider the simplest case of the MTS problem, in which we have a
uniformmetric space. In other words,di, j = 1 for all i 6= j (anddi,i = 0).

The MTS problem is typically analyzed by comparing the performance of an on-line
algorithm to the best that one could have done in hindsight if one had known the task
sequence in advance (called theoptimal off-line cost). Specifically, saycostA(σ) is the cost
to algorithmA for task sequenceσ ; if A is randomized, then for a fixedσ , costA(σ) is a
random variable. We say that algorithmA hascompetitive ratio aif, for someb, for all task
sequencesσ ,

E[costA(σ)] ≤ a · costOPT(σ)+ b, (2)

where OPT is the optimal off-line algorithm (the optimal strategy in hindsight).
This definition is called theoblivious adversarymodel since the order of quantifiers

(∀σE[costA(σ)]) can be viewed as obligating an adversary to chooseσ in advance, before
seeing the outcome ofA’s coin flips. A consequence of this model is that the “state” of the
randomized algorithm at a timet can be thought of as a probability distributionpt over the
states of the task system. Furthermore, to move frompt to distributionpt+1 in the uniform
metric space, the algorithm need pay only an (expected) cost of

d(pt , pt+1) =
∑

i

max
{
0, pt

i − pt+1
i

}
.

ON-LINE LEARNING 39

In other words, say at timet the randomized on-line algorithm has a probability distribution
pt , receives a cost vector`t , and modifies its distribution topt+1. Then its total (expected)
cost is

d(pt , pt+1)+ pt+1 · `t .

For a more “fine-grained” analysis of the MTS problem, we could split the optimal cost
costOPT(σ) into the amount spent on processing taskslocalcostOPT(σ) and the amount spent
for movementmovecostOPT(σ). We could then try for a bound of the form

E[costA(σ)] ≤ a1 localcostOPT(σ)+ a2 movecostOPT(σ)+ b, (3)

optimizinga1 anda2 together. In fact, while for the uniform space the best possible bound
of the form in Eq. (2) hasa = Ä(logn), it is possible to achieve a bound of the form in
Eq. (3) witha2 = O(logn) buta1 = O(1).

Within the On-line Algorithms literature, this kind of refined analysis has been examined
under the notion of ther -unfair competitive ratioconsidered in Blum et al. (1992) and
formalized explicitly by Seiden (1999). In ther -unfair MTS problem, OPT paysr times
more than the on-line algorithm does for movement. That is, to move from statei to state
j and then process a task in statej , the off-line player paysrdi, j + ` j . This parameter
r is known to the on-line and off-line MTS algorithms. Optimizing ther -unfair ratio is
equivalent to optimizing max{a1,a2/r } in Eq. (3) for the standard MTS problem.

The notion of anr -unfair competitive ratio was initially developed to formalize the
problem of recursively combining MTS algorithms in hierarchical metric spaces.1 In fact,
an algorithm for ther -unfair ratio on the uniform metric space is at the heart of the best
algorithm known for the MTS problem onarbitrary metric spaces (Bartal et al., 1997)
(together with an approximation of arbitrary spaces by hierarchical ones (Bartal, 1996)).

2.3. High-level comparison

Notice that the MTS problem is much like the Experts-DTF problem, but with a few key
differences.

• The MTS problem includes a cost for switching between states/experts.
• An MTS algorithm hasone-step lookahead. That is, first the cost vector is announced,

then the algorithm chooses whether to move, and finally the algorithm pays according to
the entry in the cost vector for the new state. In contrast, the Experts-DTF algorithm has
zero lookahead, in that it first pays and then moves.
• Because of the lookahead, MTS algorithms can deal with unbounded cost vectors. Large

losses are actually advantageous to an on-line MTS algorithm in that they are essentially
equivalent to allowing the algorithm to see “farther” into the future. That is, an adversary
trying to defeat an MTS algorithm might as well break apart a large task vector into
several small task vectors since it does not increase the optimal off-line cost and only
delays the information given to the on-line algorithm.

40 A. BLUM AND C. BURCH

Notice that in both settings, deterministic on-line algorithms have very poor worst-case
bounds. In particular, an adversary who knows the deterministic algorithm could at each
time step ensure that the expert (state) that the on-line algorithm is currently using has
a loss of 1, while the others have loss of 0. In this case, in both the MTS and Experts-
DTF settings, the on-line algorithm must pay 1 unit per time step, but in hindsight, by the
pigeonhole principle, there must exist an expert (state) with average loss only 1/n per time
step, for a ratio ofn.

3. General relations and combining on-line algorithms

3.1. General relations

As alluded to above, the problem of achieving a goodr -unfair competitive ratio for the
uniform MTS problem is closely related to the partitioning bound in the Experts-DTF
setting. Roughly, the “r ” parameter allows one to trade off dependence on the lossL of
the partition with dependence on the number of segmentsk the partition has. Formally, we
have the following theorem.

Theorem 1. Let A be a randomized algorithm for the uniform MTS problem that, given
r, achieves an r-unfair competitive ratio of an,r . Then in the Experts-DTF setting, given r,
A will achieve total loss at most

an,r (L + rk)+ b,

where L is the loss of the best k-segment partition, and b is a constant that may depend on
r and n (typically, b ≤ r).

Proof: Consider some sequence of trialsσ . Let L A denote the loss of algorithmA onσ
and letcA denote the expected cost ofA onσ viewed as tasks in a uniform MTS problem
(i.e., cA is what A “believes” its cost is). In other words, ifA is distributed according
to p, receives loss vector̀, and moves to distributionp′, then A “believes” it is paying
d(p, p′)+ p′ · ` when in reality it is payingp · `. ThuscA andL A may differ.

We begin by showing thatL A ≤ cA. Consider a single trial. Let̀i ∈ [0, 1] be the loss
of experti , and letpi andp′i represent the probability assigned to experti before and after
the trial. Then we can bound the loss on that trial as:

L A =
∑

i

pi `i

=
∑

i

p′i `i +
∑

i

(pi − p′i)`i

≤
∑

i

p′i `i +
∑

i :pi>p′i

(pi − p′i)`i

≤
∑

i

p′i `i +
∑

i :pi>p′i

(pi − p′i)

= cA.

ON-LINE LEARNING 41

Now consider a partition that switches between expertsk times and incurs total lossL.
The cost of the best off-line strategy for the partition isL + rk in ther -unfair MTS setting.
Thus we haveL A ≤ an,r (L + rk)+ b (for some constantb) as desired. 2

In particular, an immediate consequence of Theorem 1 is that ifan,r is of the form
(1+ (α ln n)/r), then for any givenε > 0, by settingr = (α ln n)/ε, A can achieve total
loss at most

(1+ ε)L +
((

1+ 1

ε

)
α ln n

)
k+ b

(where typicallyb ≤ α ln n
ε

). We will examine such an algorithm, ODD-EXPONENT, in
Section 4.4.

3.2. Competing against the best state

In the other direction, algorithms that achieve good bounds in the Experts-DTF setting may
or may not perform well on the MTS problem, depending on how well they control their
movement costs. We will discuss this more fully in Section 5. In this section we consider
an easier “warm-up problem”: showing that a specific algorithm (the WMR (Littlestone
& Warmuth, 1994) or Hedge (Freund & Schapire, 1997) algorithm) that competes well
against the bestsingleexpert in the Experts-DTF setting, also achieves good bounds for the
problem of competing against the “best single state in hindsight” in the MTS setting.2 The
essential issue is to show that the algorithm’s movement cost is not too high. We then show
how this can be applied to the problem of combining on-line algorithms on-line mentioned
in Section 1.

We begin with a description of the algorithm.

Algorithm WMR (Hedge). The algorithm has one parameterβ ∈ [0, 1], and maintains
a weightwi for each expert, initialized to 1. At each time step the algorithm chooses an
expert according to distribution pi = wi /

∑n
j=1w j . After receiving the loss vector̀, the

algorithm multiplies each weightwi byβ`i .

The following theorem bounds the loss of this algorithm in the Experts-DTF setting as
function of the loss of the best expert in hindsight.

Theorem 2(Littlestone& Warmuth, 1994; Freund& Schapire, 1997). If the best expert
has total loss L, thenWMR incurs loss at most

ln(1/β)L + ln n

1− β .

We now analyze the algorithm’s movement cost, showing that it is at most ln(1/β) times
larger than its loss in the Experts-DTF setting.

42 A. BLUM AND C. BURCH

Theorem 3. TheWMR algorithm has the property that if it has probability distribution
p, receives loss vector̀, and then updates to probability distributionp′, then

d(p, p′) ≤ ln(1/β)p · `.

Proof: Letwi denote the weight of experti before the trial andw′i denote the weight after.
Let W =∑i wi andW′ =∑i w

′
i , so pi = wi /W and p′i = w′i /W′. Then we have

d(p, p′) =
∑

i :pi>p′i

(
wi

W
− w′i

W′

)

≤
∑

i :pi>p′i

(
wi

W
− w

′
i

W

)

≤
∑

i

(
wi

W
− w

′
i

W

)
=
∑

i

wi

W
(1− β`i)

≤
∑

i

pi (`i ln(1/β)),

which is our desired result. 2

Corollary 1. In the MTS setting, if the best state has total cost L, thenWMR incurs an
expected cost at most

(1+ ln(1/β)) (ln(1/β)L + ln n)

1− β ,

which is at most

(1+ 2ε)L +
(

7

6
+ 1

ε

)
ln n

for ε = 1− β ≤ 1/4.

Proof: The corollary follows by combining Theorems 2 and 3. The only technical issue
involved here is that the MTS setting includes one-step lookahead (the algorithm pays
p′ · `) and unbounded cost vectors, instead of zero-lookahead (the algorithm paysp · `) and
bounded cost vectors (`i ∈ [0, 1]). The lookahead only helps, however, since the WMR
algorithm has the property that for any given`, p′ · ` ≤ p · `. Thus if the largest component
of ` is bounded by 1, we get the desired bound. Ifk is a bound on all components of`,
then we can dividè into k vectors of the form1

k`; WMR’s cost on these vectors obeys the
desired bound and the final probability distribution is the same. By the triangle inequality

ON-LINE LEARNING 43

ond, the cost incurred by WMR (with one-step lookahead) on` directly is at most its cost
on thek pieces.

The conversion to terms ofε uses the inequality−ln(1− ε) ≤ ε + 0.61ε2 for ε ≤ 1/4.
2

3.3. Combining on-line algorithms on-line

The above analysis can be applied to the problem of combining on-line algorithms on-line,
studied by Azar, Broder, & Manasse (1993). In this scenario, we have a collection of on-
line algorithmsA1, A2, . . . , An for some problem, such as paging, that can be viewed as
a metrical task system. In other words, we assume that at each time step a “request” is
received, then each algorithmAi has the opportunity to change its internal state (at a cost),
then each algorithm pays a cost which is a function of both the request and its (new) internal
state. The “master” algorithm is allowed to simulate theAi (thus, at any point in time it
knows the internal state and total loss so far of each) and its goal is to perform nearly as
well as the best of them on the request sequence.

For example, for the paging problem, the “state” of an algorithm is the contents of its
cache and a “request” is a memory access. If the access is to an item residing in the cache
(a hit) then the algorithm pays 0. If the access is to an item not in the cache (amiss), then
the algorithm must throw out some page in its cache and replace it with the page containing
the requested item, for a cost of 1.

Azar, Broder, & Manasse (1993) present a method for combiningn such on-line algo-
rithms that is guaranteed on any request sequence to perform at mostO(logn) times worse
than the best of them. (See Azar, Broder, & Manasse (1993) for the precise statement of the
bounds.) Using the WMR algorithm, we can do better, performing just(1+ ε) times worse
than the best of them (for any givenε > 0), with an additive constant ofO(D

ε
logn), under

the assumption that the underlying metric space has bounded diameterD. Specifically, we
assume there is an upper boundD on the cost for switching from one state (e.g., the state
of algorithm Ai) to another (e.g., the state of algorithmAj).3 For instance, for the paging
problem, the diameter of the space is the cache size: one can always move from the state of
Ai to the state ofAj by dumping the contents ofAi ’s cache and loading inAj ’s. In fact, in
keeping with the MTS framework, when our global algorithm tells us to switch fromAi to
Aj , then instead of doing something clever or “lazy”, we will do exactly this, immediately
switching toAj ’s current internal state.

The bound for WMR follows immediately from Corollary 1.

Theorem 4. Given n on-line algorithms for a problem that can be formulated as a Metrical
Task System of diameter at most D> 0,and givenε <1/4,theWMR algorithm can combine
them such that on any request sequenceσ it incurs expected cost at most

(1+ 2ε)L +
(

7

6
+ 1

ε

)
D ln n,

where L is the cost of the best of the n algorithms on request sequenceσ .

44 A. BLUM AND C. BURCH

Proof: Let us write our cost in units ofD. That is, given cost vector̀, we will view it as
˜̀ = 1

D `. In these units, the space has diameter 1, so the bound of Corollary (1) applies. If
we rewrite costs in terms of single units, the cost of WMR is multiplied byD, but so is the
costL of the best of then algorithms. Thus, the factor ofD appears only in the additive
constant. 2

4. MTS-style algorithms

We now investigate several algorithms designed for the MTS problem and how they can be
applied to the Experts-DTF setting.

To describe these algorithms, we need the notion of thereduced lossof an expert (usually
called thework functionin the On-line Algorithms literature). For a parameterr , the reduced
lossL̂ t

i of experti at timet is defined as follows. InitiallŷL0
i is 0. Given a loss vector̀t we

update each expert’s reduced loss to

L̂ t+1
i = min

{
L̂ t

i + `t
i ,min

j 6=i
L̂ t

j + `t
j + r

}
.

(Using MTS terminology,̂Lt
i is the optimal off-line cost for servicing the firstt tasks and

ending at statei , if we are in ther -unfair setting where the off-line algorithm paysr to
switch its state.) Notice that̂Li is never greater than the actual total loss incurred by expert
i , and furthermorêLi and L̂ j can never differ by more thanr . The point of this definition
is that by competing against the reduced losses (rather than against the potentially much
higher true losses) we will be able to achieve a good partitioning bound.

If L̂ i = L̂ j + r , then so long as expertj does not incur a loss, experti can incur losses
with impunity without increasing its reduced loss. To emphasize this point, if one expert’s
reduced loss isr more than another’s, we will say that the higher ispinnedby the lower.
Several MTS algorithms allocate probability to experts as a function of the reduced losses;
such an algorithm must place zero probability on all pinned experts.

4.1. Two experts

The following algorithm LINEAR (Blum et al., 1992) achieves an optimal competitive ratio
for ther -unfair MTS problem on two states. In the Experts-DTF setting, the algorithm can
be viewed as follows.

Algorithm L INEAR (Blum et al., 1992). The algorithm has one parameter r . LetL̂i

represent the reduced loss of expert i with respect to r . The algorithm allocates

p0 = 1

2
+ L̂1− L̂0

2r

probability to expert0 and p1 = 1− p0 probability to expert1.

ON-LINE LEARNING 45

This strategy moves probability linearly between experts, so that an expert’s probability
is zero when it is pinned. This strategy’s MTS performance problem turns out to be optimal
and is summarized by the following theorem.

Theorem 5 (Blum et al., 1992). LINEAR has r-unfair competitive ratio1+ 1/r on the
two-state MTS problem.

By combining this with Theorem 1, we get the corollary that the partitioning bound of
LINEAR for two experts is at most

(1+ 1/r)L + (r + 1)k+ b

(where in factb = r/2). To achieve a somewhat better bound (and to illustrate the potential-
analysis involved), we analyze the algorithm directly in the Experts-DTF setting.

Theorem 6. For integer parameter r, the loss ofLINEAR for two experts is at most(
1+ 1

2r

)
L +

(
r + 1

2

)
k

for any k-segment partition of loss L.

Proof: Consider segmenti of the partition with a lossL[i]. Because the algorithm is
symmetric, we may assume without loss of generality that the better expert for the segment
is expert 0. (SoL[i] represents the total loss of expert 0 in the segment.) Letδ represent the
fractional component of̂L1− L̂0. We will use a potential function over this segment of4

8 = rp2
1 +

1

2
p1+ δ(1− δ)

4r
.

Notice that8 is always between 0 andr + 1/2. (If L̂1 − L̂0 = −r + δ for δ ∈ [0, 1], then
p1 = 1− δ/2r and so8 = r + 1/2− δ.)

Say the algorithm receives loss vector〈`0, `1〉. Our goal is to show that the algorithm’s
cost plus potential change is at most`0(1+ 1

2r), because then the total cost for segment
i would be at most(1+ 1

2r)L[i] plus the maximum potential change between segments,
r + 1/2. Thus the total cost for the partition would be at most(1+ 1

2r)L + (r + 1
2)k.

If `0 = `1, then the algorithm’s cost plus potential change is just`0 and we are done. If
not, then we may assume〈`0, `1〉 is 0 in one of its components because we can divide the
vector into two pieces〈 ˆ̀, ˆ̀〉 and〈`0 − ˆ̀, `1 − ˆ̀〉 for ˆ̀ = min{`0, `1}. This division does
not affect the algorithm’s cost or final probability distribution, and does not changeL[i].
We split the remaining possibilities into four cases.

Case 1. The vector is〈`, 0〉 and L̂1 − L̂0 ≥ −r + `. Then L̂1 − L̂0 decreases bỳ and
so p0 decreases bỳ/2r andp1 increases bỳ/2r . Notice that the last term of the potential

46 A. BLUM AND C. BURCH

function increases by at most`(1− `)/4r . The amortized cost, then, is

p0`+18 ≤ p0`+
(

p1`+ `2

4r
+ `

4r
+ `(1− `)

4r

)
= `

(
1+ 1

2r

)
.

Case 2. The vector is〈`, 0〉 and for somẽ̀ ∈ [0, `) we haveL̂1− L̂0 = −r + ˜̀. Thenp1

increases from 1− ˜̀/2r to 1, andδ drops from ˜̀ to 0. The amortized cost is

p0`+18 =
˜̀

2r
`+

(
˜̀ −
˜̀2
4r
+
˜̀

4r
−
˜̀(1− ˜̀)

4r

)
≤ `

(
1+ 1

2r

)
.

Case 3. The vector is〈0, `〉 and L̂1 − L̂0 ≤ r − `. Then p1 decreases bỳ/2r . The last
term of the potential function increases by at most`(1− `)/4r . The amortized cost is

p1`+18 ≤ p1`+
(
−p1`+ `2

4r
− `

4r
+ `(1− `)

4r

)
= 0.

Case 4. The vector is〈0, `〉 and for somẽ̀ ∈ [0, `) we haveL̂1 − L̂0 = r − ˜̀. Thenp1

drops from ˜̀/2r to 0, and, becauser is integral,δ drops from 1− ˜̀ to 0. The amortized
cost is

p1`+18 =
˜̀

2r
`+

(
−
˜̀2
4r
−
˜̀

4r
− (1−

˜̀) ˜̀
4r

)
≤ 0.

In all cases, the algorithm’s cost is at most`0(1+ 1/2r). 2

4.2. WORK-FUNCTION

For the(r = 1) MTS problem on more than two states, the WORK-FUNCTION algorithm of
Borodin, Linial, & Saks (1992) is provably optimal for deterministic algorithms (even on
general metrics).

Algorithm W ORK-FUNCTION (Borodin, Linial, & Saks, 1992). We maintain the reduced
loss of each expert. When the current expert becomes pinned by another, the algorithm moves
to the pinning expert.(In the uniform metric, this is the expert with least reduced loss.)

For example, say we have four experts whose current reduced losses are〈5, 6, 5.9, 5〉, and
we are at the third expert. Given loss vector〈0.5, 0.1, 0.6, 0.3〉, WORK-FUNCTION would
update the reduced losses to〈5.5, 6.1, 6.3, 5.3〉. Since expert 3 is now pinned by expert 4,
we would move to expert 4.

Because of the adversarial model of competitive analysis, deterministic algorithms have
very poor competitive ratios. Borodin, Linial, & Saks (1992) show that the best achiev-
able guarantee for deterministic algorithms is 2n− 1, and that WORK-FUNCTION achieves
this guarantee. This is much worse than the competitive ratios achieved with randomized

ON-LINE LEARNING 47

algorithms, but in practice (including the experiments of Section 6) WORK-FUNCTION can
perform well.

4.3. MARKING

A simple randomized algorithm for the uniform metric space is the MARKING algorithm of
Borodin, Linial, & Saks (1992) and Fiat et al. (1991).

Algorithm M ARKING . We maintain a counter for each state. At the beginning of each
phase, the counters are reset to0, and the algorithm occupies a random state. Given a cost
vector`, we increment the i th counter by`i . When the counter for our current state reaches
r , we move to a random state whose counter is less than r. If no such state exists, we begin
a new phase by resetting the counters and going to a random state.

This algorithm was designed for the “fair” setting in whichr = 1. For that case, its
competitive ratio is 2Hn (whereHn ∈ [ln n, ln n+ 1] is thenth harmonic number), which
is optimal to constant factors (Borodin, Linial, & Saks, 1992). For the “unfair” setting,
however, the competitive ratio does not decrease as substantially withr as we would like:
the ratio becomes(1+1/r)Hn. Therefore, the partitioning bound resulting from Theorem 1
is worse than for other algorithms; specifically, the coefficient onL is not a constant, even
for large values ofr .

Corollary 2. The loss ofMARKING for n experts will be at most

Hn(1+ 1/r)L + Hn(r + 1)k+ r

for any k-segment partition of loss L.

In fact, it is easy to construct examples where the loss of MARKING isÄ(L logn), where
L is the loss of the best single expert (i.e.,k = 1).

In contrast, we describe below an algorithm whose competitive ratio is 1+O (log(n)/r),
resulting in a much better Experts-DTF partitioning bound.

4.4. ODD-EXPONENT

The following algorithm of Bartal et al. (1997) for ann-state MTS is inspired by the LINEAR

2-state algorithm.

Algorithm O DD-EXPONENT (Bartal et al., 1997). Let t be an odd integer, and let L̂i

represent the reduced loss of expert i . Then place

pi = 1

n
+ 1

n

n∑
j=1

(
L̂ j − L̂ i

r

)t

probability on expert i .

48 A. BLUM AND C. BURCH

The motivation for this algorithm is that fort = 1 we have a direct generalization of
LINEAR. However, settingt = 1 causes the algorithm to spend too much for movement.
Larger values oft allow for substantially decreased movement costs at the expense of
relatively small increases in task-processing cost. Specifically, the following is a theorem
of Bartal et al. (1997).

Theorem 7 (Bartal et al., 1997). For an n-node uniform task system, the r-unfair com-
petitive ratio ofODD-EXPONENT is 1+ 1

r (2n1/t t).

In particular, notice that, if we lett be the odd integer closest to lnn, then the bound
provided by Theorem 7 is approximately 1+ 1

r (2e ln n).
Theorems 1 and 7 immediately imply a bound for the Experts-DTF setting.

Corollary 3. Let c be a positive real number. ConfigureODD-EXPONENT with t the odd
integer closest toln n andr= (2n1/t t)c,and predict according to its probability distribution.
Then the partitioning bound for n experts will be at most(

1+ 1

c

)
L + (2(c+ 1)n1/t t

)
k+ 2cn1/t t

≈
(

1+ 1

c

)
L + (2e(c+ 1) ln n) k+ 2e cln n,

for any k-segment partition of loss L.

Proof: This is a corollary of Theorem 7 by applying Theorem 1. The additive term comes
from the fact that in the analysis of Bartal et al. (1997), the algorithm competes against not
the minimum reduced loss, but the average, which is at mostr more. 2

4.4.1. Implementation. In an implementation of ODD-EXPONENT, using reduced loss
strictly as defined above introduces a problem: the algorithm could allocate negative prob-
ability to an expert. (Consider the case where one expert has reduced loss ofr while the
rest are zero.) The analysis of Bartal et al. (1997) skirts the issue by observing that we may
assume without loss of generality that experts with zero probability incur zero loss, and
furthermore, because of the one-step lookahead in the MTS setting, that an expert never
receives a greater loss than that needed to set its probability to zero. (An adversary will not
choose to give an expert more loss, since the algorithm will not experience it and the loss
may hurt the off-line optimal.)

If we wish to implement ODD-EXPONENT, we must confront the possibility that tasks
observed will not obey this condition. We can address this by using a modification of
reduced loss,̃L, in computing the probability distribution of the strategy. ThisL̃ is computed
as follows. Say the strategy receives a loss vector`. We will changeL̃ i to become, not
min{L̃ i + `i ,min j L̃ j + ` j + r } as for reduced loss, but min{L̃ i + `i , x}, wherex is the
greatest value such that no probabilities are negative. (In an implementation one can compute
x using numerical techniques.) This avoids negative probabilities because each probability
that would have become negative with the unmodified reduced loss becomes zero instead.

ON-LINE LEARNING 49

This modification maintains the same competitive ratio because we can think of it as
dividing each cost vector into two pieces,˜̀ and` − ˜̀, where ˜̀ = L̃ t+1 − L̃ t . For ˜̀, the
algorithm is competitive with respect to the off-line player’s cost on˜̀ (which itself is less
than the off-line player’s cost oǹ). For ` − ˜̀, the algorithm will pay nothing, since the
vector is non-zero only at states whereL̃ = x, and these states have no probability.

5. Multiplicative weight-updating algorithms

As observed in Section 3.1, an analog of Theorem 1 does not hold for Experts-DTF al-
gorithms in the MTS setting, since they may not control their movement costs well. We
examine one such algorithm, based on Littlestone and Warmuth’s WML, that works well
for the Experts-DTF setting but not the MTS setting. We then examine another algorithm,
a variant of Herbster and Warmuth’s weight-sharing algorithm, that we show succeeds in
both settings.

5.1. A weight-threshold algorithm

The WML algorithm, due to Littlestone and Warmuth, is the following strategy for the
on-line discrete prediction problem.

Algorithm WML (Littlestone& Warmuth, 1994). The algorithm uses two parameters,
β ∈ [0, 1] andα ∈ [0, 1/2], and maintains a weightwi for each expert, initialized to1.
When an expert makes a mistake, we multiply its weightwi byβ, but only if its weight is at
leastαW/n, where W=∑wi . We then select the prediction on which the most weight falls.

The obvious generalization to the Experts-DTF setting is to placewi /W probability on
experti . However, this does not result in a good worst-case bound. Consider a two-expert
example where expert 0 incurs no loss and expert 1 has a loss of one for each trial. Thenw0

remains at one whilew1 stops decreasing when it reachesβα/(2−βα). For each subsequent
trial the algorithm incurs at leastβα/2 loss, so the loss is arbitrarily large.

This motivates a different generalization of the algorithm.

Algorithm T HRESH. As in WML, this algorithm uses parametersβ ∈ [0, 1] andα ∈
[0, 1/2], and maintains a weightwi on each expert, initialized to1. When expert i incurs
a loss of̀ i , we multiply its weightwi byβ`i but only if its weight is at leastαW/n, where
W =∑wi . Let Ŵ be the sum of weightswi that are at leastαW/n. Put zero probability
on expert i ifwi < αW/n and putwi /Ŵ probability on expert i otherwise.

5.1.1. Experts-DTF performance

Theorem 8. Given n experts, THRESHwill incur a loss of at most(
ln(1/β)

(1− β)(1− α)
)

L +
(

ln(n/βα)

(1− β)(1− α)
)

k

for any k-segment partition of loss L.

50 A. BLUM AND C. BURCH

Proof: The proof follows the general structure of the proof in Littlestone and Warmuth
(1994).

Consider a loss vector̀t for trial t . Remembering that̂W ≥ W(1− α), we can bound
how the total weightWt changes after each trial.

Wt+1 =
∑

wt
i≥αWt/n

β`
t
iwt

i +
∑

wt
i<αWt/n

wt
i

≤
∑

wt
i≥αWt/n

(
1− (1− β)`t

i

)
wt

i +
∑

wt
i<αWt/n

wt
i

= Wt

(
1− (1− β)

∑
wt

i≥αWt/n

wt
i

Wt
`t

i

)

≤ Wt

(
1− (1− β)(1− α)

∑
wt

i≥αWt/n

wt
i

Ŵt
`t

i

)
= Wt (1− (1− β)(1− α)pt · `t)

Consider a segment in which experti incurs a total loss ofLi . Say that the total weight at
the beginning of the segment isW0. Because THRESHnever allows a weight to fall below
βαW/n, the initial weight of experti in the segment is at leastβαW0/n. Thus its weight
after the segment is at leastβLi βαW0/n. If we let Wfinal represent the total weight after the
segment ends, we can bound our total loss for the segment,

∑
t pt · `t .

βLi βαW0

n
≤ Wfinal

≤ W0
∏

t

(1− (1− β)(1− α)pt · `t)

So we have

Li lnβ + ln
βα

n
≤ −(1− β)(1− α)

∑
t

pt · `t ,

which gives us a total loss for the segment of

∑
t

pt · `t ≤ ln(1/β)

(1− β)(1− α) Li + ln(n/βα)

(1− β)(1− α) .

Therefore the total cost to THRESHover the partition is at most

ln(1/β)

(1− β)(1− α) L + ln(n/βα)

(1− β)(1− α)k

for ak-segment partition of lossL. 2

ON-LINE LEARNING 51

5.1.2. MTS performance. This result, unfortunately, does not carry over to the MTS
setting. Consider the two-expert case. Say that expert 1 incurs a large enough loss for its
weight to drop to slightly belowα/(2−α). At this point, the algorithm has all probability on
expert 0. Now, suppose expert 0 incurs a tiny loss, just sufficient to bringw1 to equalαW/n.
This forces the algorithm to moveα/2 probability over to expert 1. Now suppose expert 1
incurs an infinitesimal loss so thatw1 < αW/n. This forces the algorithm to moveαW/n
probability back to expert 0. This situation can repeat indefinitely, causing the algorithm
to incur unbounded movement cost with insignificant increase in the off-line optimal cost,
giving an unbounded competitive ratio.

(Admittedly, this is a pathological case. Indeed, in the experiments of Section 6, THRESH

performs comparably to the SHARE algorithm we now consider.)

5.2. A weight-sharing experts algorithm

We now describe a weight-sharing algorithm based on the Variable-share algorithm of
Herbster and Warmuth (1998) and prove that it achieves good bounds in both the Experts-
DTF and MTS settings.

Algorithm SHARE. The algorithm has two parameters: β ∈ [0, 1] is the usual penalty
parameter andα ∈ [0, 1/2] is a “sharing” parameter. The algorithm maintains n weights
w1, . . . , wn, each initialized to1. The weights are used to determine the probability distri-
bution in the usual way, namely pi = wi /W, where W=∑i wi . Given a loss vector̀ the
algorithm updates the weights using the formula:

wi ← wiβ
`i + α1/n,

where1 =∑i (wi − wiβ
`i).

The update rule used by this algorithm can be viewed as follows. We first update as usual:
wi ←wiβ

`i . This reduces the sum of the weights by some amount1. We then distribute
anα fraction of this1 evenly among then experts (α1/n each).

5.2.1. Experts-DTF performance

Theorem 9. Given n experts, SHARE incurs a loss of at most(
ln(1/β)

(1− β)(1− α)
)

L +
(

ln(n/α)

(1− β)(1− α)
)

k,

for any k-segment partition of loss L.

Proof: Consider a specific segment of the given sequence of trials. Our goal is to show
that, for any experti , the lossL A incurred by the algorithm in this segment is at most

52 A. BLUM AND C. BURCH

(ln(1/β)Li + ln(n/α)) /(1− β)(1− α), whereLi is the loss incurred by experti in the
segment.

For timet , define the algorithm’s probability distribution to bept , the loss vector to be
`t , and the sum of the weights to beWt . Then, using the usual weighted-update analysis
(e.g., see the first portion of the proof of Theorem 8), we have

Wt+1 ≤ Wt (1− (1− β)(1− α)pt · `t).

So, if W0 is the sum of weights at the start of the segment andWfinal is the sum of weights
at the end of the segment, thenWfinal is bounded by

Wfinal ≤ W0
∏

t

(1− (1− β)(1− α)pt · `t). (4)

Now consider the weight of experti . In the update made at timet , the amount added towi

due to the share update isα(Wt−Wt+1)/(1−α)n. (This is becauseWt+1 = Wt −1t +α1t ,
where1t is the value of1 specified in the algorithm at timet .) In the entire segment,
therefore, the total amount added towi due to the share updates isα(W

0−Wfinal)

(1−α)n . Thus, even
if wi is zero at the start of the segment, by the end of the segment we have

w
final
i ≥ βLi

(
α(W0−Wfinal)

(1− α)n
)
, (5)

since the worst case forwi is if the penalty for the expert’s loss applies maximally to the
required shared amount, when the penalties all come after the sharing.

For convenience, define

5 =
∏

t

(1− (1− β)(1− α)pt · `t), (6)

So inequality (4) can be written asWfinal ≤ W05. Using the fact thatWfinal ≥ w
final
i ,

plugging into inequality (5) we get:

5 ≥ βLi α(1−5)
(1− α)n .

We can now solve for5.

5 ≥ βLi α

(1− α)n+ βLi α
≥ β

Li α

n

This gives us

−ln5 ≤ Li ln(1/β)+ ln
(n

α

)
.

ON-LINE LEARNING 53

Recalling the definition of5 in (6), we notice that

−ln5 ≥ (1− β)(1− α)L A,

so

L A ≤ Li ln(1− β)+ ln(n/α)

(1− β)(1− α)

as desired. 2

For α = 1/n, in the limit asβ → 1 andn→ ∞, the bound in Theorem 9 approaches
roughly(1+ ε/2)L + (2

ε
ln n)k, for ε = 1− β. Comparing this to the bound in Corollary 3

for ODD-EXPONENT, we see that for the sameL coefficient (setting1
c = 2

ε
) the bound on

SHARE has ak coefficient that is approximately 2e times better. Of course, the bound in
Corollary 3 may not be tight, both because the bound in Theorem 7 is not known to be tight
for the MTS setting and because the conversion of Theorem 1 may lose some exactness.

5.2.2. MTS performance. As we have already remarked, the SHARE algorithm performs
well in both settings. The bound for the MTS setting is almost as good as that of ODD-
EXPONENT. The primary loss is the appearance of a new(logr)/r term in the competitive
ratio.

Theorem 10. Given r, configureSHARE with α = 1/(2r + 1) andβ = max{1/2, 1− γ },
whereγ = 1

r ln(n/α). Then in the uniform MTS setting, SHARE has an r-unfair competitive
ratio of at most

1+ 8

r
(ln n+ ln(2r + 1)) .

(Note: these constants have not been optimized; the formulas used forα andβ are designed
mainly to simplify the analysis.)

Proof: Suppose that the optimal off-line strategy makesk moves on the given task se-
quence. Let OPTt denote the cost incurred by this strategy between its(t − 1)st andt th
moves, and letlocalcostOPT =

∑k+1
t=1 OPTt . Then we can write the optimal off-line cost

costOPT as

costOPT= localcostOPT+ rk.

Let us consider separately the local costlocalcostand the movement costmovecostof the
SHARE algorithm. Theorem 9 shows that the local cost satisfies

localcost≤ localcostOPT

(
ln(1/β)

(1− β)(1− α)
)
+ k

(
ln(n/α)

(1− β)(1− α)
)
. (7)

54 A. BLUM AND C. BURCH

(In fact, the MTS problem has one-step lookahead, which only helps.) Defineε as 1− β,
soε = min{1/2, γ }. In the case thatε = γ , by inequality (7) we have

localcost≤ localcostOPT(1+ ε/2+ ε2/3+ · · ·)/(1− α)+ kr/(1− α)
≤ localcostOPT(1+ ε)/(1− α)+ kr/(1− α)
≤ costOPT(1+ γ)/(1− α).

On the other hand, ifε = 1/2, we haveγ > 1/2 and hence

localcost≤ localcostOPT(1+ ε)/(1− α)+ 2krγ /(1− α)
≤ costOPT(1+ 2γ)/(1− α).

Now we would like to show that the movement cost is bounded by(3ε/2)localcost. If
we can get this, then we can bound our total cost by

costOPT(1+ 2γ)(1+ 3ε/2)/(1− α) < costOPT(1+ 5γ)/(1− α)
< costOPT(1+ 8γ),

which is our goal.
To analyze the movement cost, note that the total weightW′ after the weight update is

less thanW, and so we have the following.

d(p, p′) =
∑

i :pi>p′i

(
wi

W
− wiβ

`i + α1/n

W′

)

≤
∑

i :pi>p′i

(
wi

W
− wiβ

`i

W′

)

≤
∑

i :pi>p′i

(
wi

W
− wiβ

`i

W

)
From here we can proceed as in Theorem 3 to bound the movement cost by ln(1/β) ≤ 3ε/2
times the local cost. 2

6. Process migration simulation

We now describe some brief experimental results comparing the algorithms analyzed above
and others on data representing a process migration problem. Process migration has aspects
of both the MTS problem and the Experts-DTF settings. There is a cost to move between
machines, but there is also zero lookahead.

As data for process migration, we use load averages collected from 112 machines around
the CMU campus. We queried each machine every five minutes for 6.5 days. From these
machines, we selected 32 that were busy enough to be interesting for this analysis.

Each five-minute interval corresponds to a trial with loss vector`t . For machinei , we
set`t

i = 1 if the machine had a large load average (more than 0.5), and`t
i = 0 if it had a

ON-LINE LEARNING 55

small load average. The intent of this is to model the decision faced by a “user-friendly”
background process that suspends its work if someone else is using the same machine.

We took the distance between the machines to be 0.1, indicating that 30 seconds of
computation would be lost for movement between machines. In research process migration
systems, the time for a process to move is roughly proportional to its size. For a 100-KB
process, the time is about a second (Eskicioglu, 1990). Our distance corresponds to large
but reasonable memory usage.

Our simulations compared the performance of nine algorithms, including four simple
control algorithms:

Uniform The algorithm picks a random machine and stays there.

Greedy After each trial the algorithm moves to the machine that incurred the least loss in
that trial (with ties broken randomly).

Least-Used After each trial the algorithm moves to the machine that has incurred the least
total loss so far.

Recent The algorithm moves to the machine that has incurred the least loss over the lastk
trials.

We implemented MARKING, ODD-EXPONENT (with t = 3), THRESH, and SHARE. Because
these algorithms have tunable parameters, we divided the data into a training set and a test
set, 936 trials each. We optimized parameters on the training set and report the performance
with these parameters on the test set. We also present the performance of each algorithm
with a “naive” parameter setting, to give a sense of the dependence of the behavior of the
algorithm on the tuning of its parameters.

For each algorithm we determined the expected loss for the probability vectors they calcu-
lated. One valid criticism of using probabilistic algorithms for real problems is the variance
between runs; so we also calculated the standard deviation over 200 trials of each algorithm.
To get a feel of how each algorithm behaves, we included the expected number of moves.

This data is summarized in Table 1 where costs are given relative to the optimal off-line
sequence, which suffered a loss of 3.8 and moved 8 times in the test sequence.

We also tried an inter-machine distance of 1.0. Table 2 summarizes these results. For an
inter-machine distance of 1.0, the optimal off-line sequence suffered a loss of 11 and moved
6 times during the 936 trials. (As one would expect, the loss is higher but there are fewer
movements.)

Comparing these algorithms to the simpler control algorithms indicates that their added
sophistication does indeed help. The numbers seem to indicate that the MTS-based algo-
rithms are less sensitive to parameter settings. The specific experiments summarized here
show that the MTS algorithms performing somewhat better; if the parameters are set based
on thetestdata, this difference decreases.

The numbers indicate that WORK-FUNCTION slightly outperforms the randomized al-
gorithms, despite its worse theoretical guarantee. This is not too surprising because a
randomized algorithm is essentially using its probability distribution to hedge its bets,
placing probability on states that do not necessarily appear optimal. This is somewhat

56 A. BLUM AND C. BURCH

Table 1. Performance relative to optimal off-line sequence (d = 0.1) on process migration data.

Parameter Cost Std Expected Naive Cost
Algorithm setting ratio dev moves setting ratio

UNIFORM 206.69 29.03 0.00

GREEDY 55.11 4.33 265.34

LEAST-USED 117.71 0.00 5.00

RECENT k : 6 17.92 0.00 103.00 k : 5 24.37

WORK-FUNCTION r : 1.0 5.66 0.00 17.00 r : 1.0 5.66

MARKING r : 1.0 5.97 0.72 20.54 r : 1.0 5.97

ODD-EXPONENT t : 3, r : 10.0 5.96 0.79 15.84 t : 3, r : 1.0 6.05

THRESH β : 9.5× 10−6, α : 10−4 7.16 0.66 14.53 β : 0.5, α : 0.01 20.89

SHARE β : 5.2× 10−7, α : 10−8 6.55 0.63 14.58 β : 0.5, α : 0.01 19.44

Table 2. Performance relative to optimal off-line sequence (d = 1.0) on process migration data.

Parameter Cost Std Expected Naive Cost
Algorithm setting ratio dev moves setting ratio

UNIFORM 71.40 10.90 0.00

GREEDY 40.75 2.91 265.34

LEAST-USED 41.07 0.00 5.00

RECENT k : 11 6.62 0.00 41.00 k : 5 19.71

WORK-FUNCTION r : 1.0 3.34 0.00 13.00 r : 1.0 3.34

MARKING r : 0.4 3.74 0.40 20.54 r : 1.0 4.27

ODD-EXPONENT t : 3, r : 1.0 3.36 0.51 15.84 t : 3, r : 1.0 3.36

THRESH β : 0.027,α : 10−8 5.52 0.34 10.66 β : 0.5, α : 0.01 8.20

SHARE β : 0.044,α : 10−8 5.59 0.39 11.56 β : 0.5, α : 0.01 7.68

analogous to a stock market, in which the main reason to diversify is to minimize the down-
side risk more than to maximize expected gain. In these experiments, all the algorithms
performed better than their worst-case guarantees. In practice, ODD-EXPONENT follows
WORK-FUNCTION very closely, although it smooths the transitions between states.

One of the most fascinating features of this study is how similarly these algorithms per-
form despite the differences in their techniques and backgrounds. The experiments support
the analysis of this paper, which illustrates how these separate techniques can work for both
scenarios.

7. Summary

In this paper we consider the relationship between the Metrical Task System problem and
the problem of tracking the best expert in the “decision-theoretic” experts setting. We show

ON-LINE LEARNING 57

Table 3. Summary of theoretical results.

Algorithm Competitive ratio Partitioning bound

LINEAR (n = 2) 1+ 1
r (Blum et al., 1992)

(
1+ 1

2r

)
L + (r + 1

2

)
k (Th 6)

MARKING Hn
(
1+ 1

r

)
(Borodin, Linial, & Saks, 1992) Hn

(
1+ 1

r

)
L + Hn(r + 1)k (Cor 2)

ODD-EXPONENT 1+ 2e
r ln(n) (Bartal et al., 1997)

(
1+ 1

c

)
L + (2e(r + 1) ln n) k (Cor 3)

THRESH unbounded
(

ln(1/β)
(1−β)(1−α)

)
L +

(
ln(n/βα)

(1−β)(1−α)
)
k (Th 8)

SHARE 1+ 8
r ln (n(2r + 1)) (Th 10)

(
ln(1/β)

(1−β)(1−α)
)

L +
(

ln(n/α)
(1−β)(1−α)

)
k (Th 9)

that any MTS algorithm also has a partitioning bound in the Experts-DTF setting based
on its r -unfair competitive ratio in the uniform metric space. We also show how several
specific Experts-DTF algorithms can be applied to the MTS setting, and introduce and
analyze several new variations. Their bounds are summarized in Table 3. As a special case
of our results, we show how the basic randomized Weighted-Majority algorithm can be
used for the problem of combining on-line algorithms on-line.

Interestingly, algorithms of quite different styles—the “work-function-based” or
“reduced-loss-based” algorithms designed for the MTS problem, and the multiplicative
weight-updating schemes more common in the Experts-DTF setting—yield similar bounds.
In the MTS setting, the somewhat better theoretical bounds of ODD-EXPONENTmay be offset
by the relative simplicity, intuitiveness, and ease of implementation of SHARE.

There are many settings that combine the problem of picking the best decision/expert/state
with a cost for frequently changing one’s mind. The process migration problem is one for
which we have performed some simple experiments. It would be interesting to see more
generally what sorts of algorithms turn out to be best for other problems of this nature.

Acknowledgments

Avrim Blum is supported in part by NSF National Young Investigator grant CCR-9357793.
Carl Burch is supported in part by a National Science Foundation Graduate Fellowship.

Notes

1. Those papers used a definition ofr -unfair in which OPT pays thesameas the on-line algorithm for movement,
but OPT paysr times less locally. The motivation was that each “state” was really a sub-space in which
(recursively) one had an on-line algorithm with competitive ratior . The definition we are using is the same
as that one, scaled by a factor ofr . We choose to define it as we do here to make the connection to the
Experts-DTF setting more clear.

2. This can be thought of as an∞-unfair MTS problem.
3. Azar, Broder, & Manasse (1993) do not make this assumption. In their formulation, to move from the state of

Ai to the state ofAj , one might potentially have to undo all ofAi ’s actions since the beginning of time and
redo all ofAj ’s. This is the reason for their worse bounds.

4. If the losses are always in{0, 1} then the proof can be simplified by ignoringδ (it will always be 0) and
ignoring cases 2 and 4 (which only occur whenp0 or p1 is 0).

58 A. BLUM AND C. BURCH

References

Azar, Y., Broder, A., & Manasse, M. (1993). On-line choice of on-line algorithms.Proc ACM-SIAM Symposium
on Discrete Algorithms(pp. 432–440).

Bartal, Y. (1996). Probabilistic approximations of metric spaces and its algorithmic applications.Proc IEEE
Symposium on Foundations of Computer Science(pp. 183–193).

Bartal, Y., Blum, A., Burch, C., & Tomkins, A. (1997). A polylog(n)-competitive algorithm for metrical task
systems.Proc ACM Symposium on Theory of Computing(pp. 711–719).

Blum, A., Karloff, H., Rabani, Y., & Saks, M. (1992). A decomposition theorem and lower bounds for randomized
server problems.Proc IEEE Symposium on Foundations of Computer Science(pp. 197–207).

Borodin, A., Linial, N., & Saks, M. (1992). An optimal online algorithm for metrical task systems.J. of the ACM,
39(4), 745–763.

Cesa-Bianchi, N., Freund, Y., Helmbold, D., Haussler, D., Schapire, R., & Warmuth, M. (1993). How to use expert
advice.Proc ACM Symposium on Theory of Computing(pp. 382–391).

Chung, T. (1994). Approximate methods for sequential decision making using expert advice.Proc ACM Workshop
on Computational Learning Theory(pp. 183–189). New York, NY: ACM Press.

Eskicioglu, M. (1990). Process migration in distributed systems: A comparitive survey. Tech. Rep. TR 90-3,
University of Alberta.

Fiat, A., Karp, R., Luby, M., McGeoch, L., Sleator, D., & Young, N. (1991). Competitive paging algorithms.J. of
Algorithms, 12, 685–699.

Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to
boosting.J. Comp Syst Sci, 55(1), 119–139.

Herbster, M. & Warmuth, M. (1998). Tracking the best expert.Machine Learning, 32(2), 286–294.
Irani, S. & Seiden, S. (1998). Randomized algorithms for metrical task systems.Theoretical Computer Science,

194(1–2), 163–182.
Littlestone, N. & Warmuth, M. (1994). The weighted majority algorithm.Information and Computation, 108(2),

212–261.
Seiden, S. (1999). Unfair problems and randomized algorithms for metrical task systems.Information and Com-

putation, 148(2), 219–240.

Received July 10, 1998
Accepted June 1, 1999
Final Manuscript June 1, 1999

