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On�line learning processes

in

arti�cial neural networks

Tom M� Heskes Bert Kappen

Department of Medical Physics and Biophysics�

University of Nijmegen� Geert Grooteplein ���

���� EZ Nijmegen� The Netherlands�

Abstract

We study on�line learning processes in arti�cial neural networks from a general point
of view� On�line learning means that a learning step takes place at each presentation of a
randomly drawn training pattern� It can be viewed as a stochastic process governed by a
continuous�time master equation�

On�line learning is necessary if not all training patterns are available all the time� This
occurs in many applications when the training patterns are drawn from a time�dependent
environmental distribution� Studying learning in a changing environment� we encounter a
con�ict between the adaptability and the con�dence of the network�s representation� Mini�
mization of a criterion incorporating both e�ects yields an algorithm for on�line adaptation
of the learning parameter�

The inherent noise of on�line learning makes it possible to escape from undesired local
minima of the error potential on which the learning rule performs 	stochastic
 gradient
descent� We try to quantify these often made claims by considering the transition times
between various minima� We apply our results on the transitions from �twists� in two�
dimensional self�organizing maps to perfectly ordered con�gurations� Finally� we discuss the
capabilities of on�line learning for global optimization�

In J� Taylor� editor� Mathematical Foundations of Neural Networks� Amsterdam� ����� Elsevier� pages ����

����
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� Introduction

��� Why a theory for on�line learning�

In neural network models� learning plays an essential role� Learning is the mechanism by which
a network adapts itself to its environment� The result of this adaptation process� in both natural
as well as in arti�cial systems� is that the network obtains a representation of its environment�
This representation is encoded in its plasticities� such as synapses and thresholds� The function
of a neural network can be described in terms of its input�output relation� which in turn is
fully determined by the architecture of the network and by the learning rule� Examples of
such functions may be classi�cation �as in multi�layered perceptrons�� feature extraction �as in
networks that perform a principle component analysis�� recognition� transformation for motor
tasks� or memory� The representation that the network has learned of the environment enables
the network to perform its function in a way that is �optimally� suited for the environment on
which it is taught�

Despite the apparent di	erences in their functionalities� most learning rules in the current
network literature share the following properties�

�� Neural networks learn from examples� An example may be a picture that must be memo�
rized or a combination of input and desired output of the network that must be learned�
The total set of examples or stimuli is called the training set or the environment of the
neural network�


� The learning rule contains a global scale factor� the �learning parameter�� It sets the
typical magnitude of the weight changes at each learning step�

In this chapter� we set up and work out a theoretical framework based on these two properties� It
covers both supervised learning �learning with �teacher�� e�g�� backpropagation ���� for a review
see ���� ��� and unsupervised learning �learning without �teacher�� e�g�� Kohonen learning ����
for a review see ���� The approach taken in this chapter is therefore quite general� It includes
and extends results from studies on speci�c learning rules �see e�g� ��� �� ��� ����

��� Outline of this chapter

In arti�cial neural networks� on�line learning is modeled by randomly drawing examples from
the environment� This introduces stochasticity in the learning process� The learning process
becomes a discrete�time Markov process�� which can be transformed into a continuous�time
master equation� The study of learning processes becomes essentially a study of a particular
class of master equations� In section 
 we point out the correct way to approximate this master
equation by a Fokker�Plank equation in the limit of small learning parameters� We discuss
the consequences of this approach in the case of just one �xed point of the �average� learning
dynamics�

Section � is more like an intermezzo� Here we discuss two other approaches� The Langevin
approach� which leads to an equilibrium Gibbs distribution� has become very popular in neural
network literature� However� on�line learning� as we de�ne it� cannot be formulated in terms of
a Langevin equation� does not lead to a Gibbs distribution� and is therefore more di�cult to
study� We will also discuss the more �mathematical� approach which describes on�line learning
using techniques from stochastic approximation theory� The mathematical approach has led to
many important and rigorously proven theorems� some of which will be mentioned in section ��

On�line learning� if compared with batch�mode learning where a learning step takes place
on account of the whole training set� is necessary if not all training patterns are available all

�The underlying assumption is that subsequent stimuli are uncorrelated� This is the case for almost all arti�cial

neural network learning rules� However� for biological learning processes and for some applications subsequent

stimuli may be correlated� Then the results of our analysis do not apply�
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the time� This not only the case for biological learning systems� but also in many practical

applications� especially in applications such as �nancial modeling� economic forecasting� robot

control� etcetera� when the training patterns are drawn from a time�dependent environmental

distribution� This notion leads to the study of on�line learning in a changing environment in

section �� Using the same techniques as in section �� we encounter a con�ict between the

adaptability and the con�dence or accuracy of the network�s representation� Minimization of

a suitable criterion� the so�called 	misadjustment	� leads to an optimal learning parameter for

learning in a changing environment�

The derivation of the optimal learning parameter in section � is nice� but of little practical

use� To calculate this learning parameter� one needs detailed information about the neural

network and its environment� information that is usually not available� In section 
 we try
to solve this problem by considering the statistics of the weights� This yields an autonomous

algorithm for learning�parameter adjustment�

Another argument in favor of on�line learning� is the possibility to escape from undesired local
minima of the energy function or error potential on which the learning rule performs �stochastic�

gradient descent� In section  we try to quantify these often made claims by considering the

transition times between various minima of the error potential� Starting from two hypotheses�

based on experimental observations and theoretical arguments� we show that these transition

times scale exponentially with some constant� the so�called 	reference learning parameter	�

divided by the learning parameter�

Well�known examples of undesired �xed points of the average learning dynamics are topo�

logical defects in self�organizing maps� Using the theory of section � we calculate in section ���

the reference learning parameters for the transitions from 	twists	 in two�dimensional maps to

perfectly ordered con�gurations� We compare the theoretically obtained results with results

obtained from straightforward simulations of the learning rule�

Finally� we discuss in section � to what extent on�line learning might be used as a global

optimization method� We derive cooling schedules that guarantee convergence to a global min�

imum� In these cooling schedules� the reference learning parameters discussed in section  play

an important role� We compare the optimization capabilities of on�line backpropagation and

	Langevin�type	 learning for a speci�c example with profound local minima�

� Learning processes and their average behavior

��� From random walk to master equation

Let the adaptive elements of a neural network� such as synapses and thresholds� be given by a

weight vector� w � �w�� � � � � wN �
T � IRN � At distinct iteration times w is changed due to the

presentation of a training pattern �x � �x�� � � � � xn�
T � IRn� which is drawn at random according

to a probability distribution ���x�� The new weight vector w� � w � �w depends on the old

weight vector and on the training pattern�

�w � � f�w� �x� � ���

The function f is called the learning rule� � the learning parameter�

Because of the random pattern presentation� the learning process is a stochastic process� We

have to talk in terms of probabilities� averages� and �uctuations� The most obvious probability

to start with is the probability pi�w� to be in state w after i iterations� This probability obeys

a random walk equation

pi�w
�� �

Z
dNw T �w�jw� pi���w�� ���

�We use the notation AT to denote the transpose of the matrix or vector A�
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with T �w�jw� the transition probability to �walk� in one learning step from state w to state w��

T �w�jw� �

Z
dnx ���x� �N �w� �w� �f�w� �x��� ���

The random walk equation ��� gives a description in discrete time steps�
Bedeaux	 Lakatos
Lindenberg	 and Shuler �� showed	 that a continuous
time description

can be obtained through the assignment of random values �t to the time interval between two
succeeding iteration steps� If these �t are drawn from a probability density

���t� �
�

	
exp

�
�
�t

	

�
�

the probability 
�i� t�	 that after time t there have been exactly i transitions	 follows a Poisson
process� The probability P �w� t�	 that a network is in state w at time t	 reads

P �w� t� �
�X
i��


�i� t�pi�w��

This probability function can be di�erentiated with respect to time	 yielding the master equation

�P �w�� t�

�t
�

Z
dNw

�
W �w�jw�P �w� t� � W �wjw��P �w�� t�

�
� ���

with the transition probability per unit time

W �w�jw� �
�

	
T �w�jw�� ���

Through 	 we have introduced a physical time scale� Here we have presented a nice mathematical
trick to transform a discrete time random walk equation into a continuous time master equation�
It is valid for all values of 	 and �� For the rest of this chapter we will choose 	 � �	 i�e�	 the
average time between two learning steps is our unit of time�

For notational convenience we introduce the averages over the ensemble ��t� of learning
networks

h��w�i��t�
def
�

Z
dNw P �w� t� ��w� �

and over the set � of training patterns

h���x�i�
def
�

Z
dnx ���x� ���x� �

for arbitrary function ��w� and ���x��
The dynamics of equation ��� cannot be solved in general� We will point out the incorrect

�section ���� and the correct �section ���� way to approximate this master equation for small
learning parameters �� To simplify the notation	 we will only consider the one
dimensional case�
In our discussion of the asymptotic dynamics �section ����	 we will generalize to N dimensions�

��� The Fokker�Planck approximation of the Kramers�Moyal expansion

A totally equivalent description of the master equation is given by its full Kramers
Moyal ex

pansion ���

�P �w� t�

�t
�

�X
n��

����n

n�

�
�

�w

�n

fan�w�P �w� t�g � ���

with the so
called jump moments

an�w�
def
�

Z
dw� �w � w��nT �wjw�� � �n hfn�w� x�i�

def
� �n�an�w� � ���
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where all �an are of order �� i�e�� independent of �� By terminating this series at the second term�
one obtains the Fokker�Planck equation

�P �w� t�

�t
	 �� �

�w
f�a��w�P �w� t�g 


��

�

��

�w�
f�a��w�P �w� t�g � ���

In one dimension� the equilibrium distribution of the Fokker�Planck equation can be written in
closed form

Ps�w� 	
N

�a��w�
exp

�
�

�

Z w

dw�
�a��w

��

�a��w��

�
� ���

with N a normalization constant�

Because of the convenience and the simplicity of the result� the Fokker�Planck approach is
very popular� also in neural�network literature on on�line learning processes ���� ��� ��� ����
However� it is incorrect� Roughly speaking� this approximation is possible if and only if the
average step size h�wi and the variance of the step size

�
��w � h�wi��� are proportional

to the same small parameter ����� Learning rules of the type ��� have h�wi 	 O��� but�
��w � h�wi��� 	 O���� and thus do not satisfy this so�called �scaling assumption�� To con�
vince ourselves� we substitute the equilibrium distribution ��� into the Kramers�Moyal expan�
sion ��� and notice that the third� fourth� � � � � � terms are all of the same order as the �rst and
second order terms formally there is no reason to break o� the Kramers�Moyal series after any
number of terms�

��� A small��uctuations expansion

Intuitively� a stochastic process can often be viewed as an average� deterministic trajectory� with
stochastic �uctuations around this trajectory� Using Van Kampen�s system size expansion ����
�see also ������ it is possible to obtain the precise conditions under which this intuitive picture
is valid� We will refer to this as the small��uctuations expansion� It consists of the following
steps�

�� Following Van Kampen� we make the �small��uctuations Ansatz�� i�e�� we choose a new
variable � such that

w 	 ��t� 

p
�� ����

with ��t� a function to be determined� Equation ���� says that the time�dependent stochas�
tic variable w is given by a deterministic part ��t� plus a term of order

p
� containing the

�small� �uctuations� A posteriori� this Ansatz should be veri�ed� The function ���� t� is
the probability P �w� t� in terms of the variable �

���� t�
def
	 P ���t� 


p
��� t� �

�� Using simple chain rules for di�erentiation� we transform the Kramers�Moyal expansion ���
for P �w� t� into a di�erential equation for ���� t�

����� t�

�t
� �p

�

d��t�

dt

����� t�

��
	

�X
n��

����n�n��
n�

�
�

��

�n
f�an���t� 
p

��� ���� t�g �

�� We choose the function ��t� such that the lowest order terms on the left� and righthandside
cancel� i�e��

�

�

d��t�

dt
	 �a����t�� � ����

This is called the deterministic equation�
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�� We make a Taylor expansion of �an���t��
p
��� in powers of

p
�� After some rearrangements

we obtain

�

�

�	��� t�

�t



�X
m��

mX
n��

����n��m�����
n� �m� n��

�a�m���n ���t��

�
�

��

�n �
�m�n 	��� t�

�
�

�� In the limit � � � only the term m 
  survives on the righthandside� This is called the
linear noise approximation� The remaining di�erential equation for 	��� t� is the Fokker�
Planck equation

�

�

�	��� t�

�t

 ��a�����t��

�

��
f�	��� t�g �

�


�a����t��

��

���
	��� t� � ���

where the prime denotes di�erentiation with respect to the argument�

�� From equation ��� we calculate the dynamics of the average �uctuations h�i��t� and the

size of the �uctuations
�
��
�
��t��

�

�

� h�i��t�
�t


 a�����t�� h�i��t�
�

�

�
�
��
�
��t�

�t

 a�����t��

D
��
E
��t�

� a����t�� � ����

�� We started with the Ansatz that � is of order �� From equation ���� we conclude that the
�nal result is consistent with the Ansatz� provided that both evolution equations converge�
i�e�� that

a�����t�� � � � ����

So� there are regions of weight space where the small��uctuations expansion is valid �a�� �
�� and where it is invalid �a�� � ���

Let us summarize what we have done so far� We have formulated the learning rule ��� in
terms of a discrete time Markov process ��� Introducing Poisson distributed time steps we have
transformed this discrete random walk equation into a continuous time master equation ����
Making a small��uctuations Ansatz for small learning parameters �� we have derived equa�
tion ���� for the deterministic behavior and equation ��� for the probability distribution of the
�uctuations around this deterministic behavior� At the same time we have derived the condi�
tion ���� which must be satis�ed for this description to be valid in the limit of small learning
parameters ��

Now that we have made a rigorous expansion of the master equation� we can re�ne our
bold statement that the Fokker�Planck approximation is incorrect� If we substitute the small�
�uctuations Ansatz ���� into the Fokker�Planck equation ���� then the lowest�order Fokker�
Planck equation for � is exactly the same as the lowest�order term ��� in the small��uctuations
expansion� So� if we are only interested in the lowest order� we might as well use the Fokker�
Planck approximation of section �� as long as we keep in mind that only the small�noise
approximation� i�e�� the lowest order term ��� has any validity ����� So� all features beyond that
approximation are spurious and cannot be taken seriously ����� In practice this means that we
may still apply the Fokker�Planck approximation if we study learning with just one minimum�
but must suppress the temptation to extend this approach to learning with various minima�
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��� Asymptotic results in N dimensions

The �rst two jump moments de�ned in equation ��� play an important role and are therefore
given special names� the drift vector� which is just the average learning rule

f�w�
def
� hf�w� �x�i� �

and the di	usion matrix

D
def
�

D
f�w� �x� fT�w� �x�

E
��t�

� �
��

containing the �uctuations in the learning rule Furthermore� we de�ne the Hessian matrix
H�w� with components

Hij�w� � �
�fi�w�

�wj

� �
��

If and only if the Hessian matrix is symmetric�� an energy function or error potential E�w� can
be de�ned such that the learning rule performs �stochastic� gradient descent on this error�

f�w� � �rE�w� � �
��

where r stands for di	erentiation with respect to the weight vector w The Hessian matrix
gives the curvature of the error potential in the di	erent directions The condition �
�� says
that the small��uctuations expansion is valid in regions of weight space with positive de�nite
Hessian H�w� These regions will be called attraction regions

The deterministic equation �

� reads in N dimensions




�

d��t�

dt
� f���t�� � �
��

The attractive �xed point solutions of this �average learning dynamics� will be denoted by w�
If there exists an error potential� then these �xed points are simply the �local� minima At a
�xed point w� we have no drift� ie� f�w�� � � and a positive de�nite Hessian H�w�� The
typical local relaxation time towards these �xed points is

�local �



��min�w��
� �
��

with �min�w
�� the smallest eigenvalue of the Hessian H�w�� To study the asymptotic con�

vergence� we can make an expansion around the minimum w
� In ���� ��� it is shown that�

after linearization of ��t� around the �xed point w�� the evolution equations �

� and �
�� are
equivalent with




�

dm�t�

dt
� �Hm�t�




�

d���t�

dt
� �H���t�� ���t�HT � �D � ����

where the Hessian and the di	usion matrix are both evaluated at the �xed point w� and with
de�nitions for the bias m�t� and covariance matrix ���t�

m�t�
def
� hwi��t� �w

� � ���t�
def
�

�h
w� hwi��t�

i h
w� hwi��t�

iT�
��t�

� ��
�

It can be shown that this linearization is allowed for � small enough and t large enough ����

�In the literature� the matrix H�w� is only called Hessian if it is indeed symmetric�
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From the linear Fokker�Planck equation ���� and the asymptotic evolution equations ����
we conclude that the asymptotic probability distribution for small learning parameters � is a
simple Gaussian� with its average at the 	xed point w� and a covariance matrix 
� obeying

H
� �
�HT � �D � ����

So� there are persistent uctuations of order � that will only disappear in the limit � � �� These
theoretical predictions are in good agreement with simulations �see ���� and simulations in the
following sections��

� Intermezzo� other approaches

��� The Langevin approach

In this section we will point out the di�erence between the �intrinsic� noise due to the ran�
dom presentation of training patterns and the �arti	cial� noise in studies on the generalization
capabilities of neural networks �see e�g� ���� ����� In the latter case� the noise is added to the
deterministic equation ����� i�e�� the weights evolve according to the Langevin equation

dw�t�

dt
� �rE�w�t�� �

p
�T��t� � ����

where ��t� is white noise obeying

�
�i�t��j�t

��
�
� �ij ��t� t�� �

The Langevin equation ���� is equivalent to the Fokker�Planck equation ����

�P �w� t�

�t
� �rff�w� P �w� t�g � T r�P �w� t� �

The equilibrium distribution is �compare with equation ����

Ps�w� �
�

Z
exp

�
�E�w�

T

�
� ����

with Z a normalization constant� The existence of this Gibbs distribution raises the idea to put
learning in the framework of statistical mechanics ���� ��� ���� In these studies� the Langevin
equation ���� is more an �excuse� to arrive at the Gibbs distribution ���� than an attempt to
study the dynamics of learning processes in arti	cial neural networks� The equilibrium distri�
bution of the master equation for on�line learning processes is not a simple Gibbs distribution
�see also ������ which makes the analysis of on�line learning processes much more di�cult�

Because of the equilibrium Gibbs distribution ����� the Langevin equation ���� has also been
proposed as a method for global optimization ��� ��� ��� ���� The discrete�time version

w�t��t��w�t� � f�w� �t �
p
�T �

p
�t � ����

with � Gaussian white noise of variance �� can be simulated easily� The smaller �t� the closer
the correspondence with the continuous Langevin equation� We will call this �Langevin�type
learning� and we will come back on it in section ���� Note that equation ���� does indeed satisfy
the �scaling assumption� mentioned in section ���� both the average step size and the variance
of the step size are proportional to �t� This scaling property explains why equation ���� can
indeed be approximated by a globally valid Fokker�Planck equation� and the learning rule ���
not�
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��� Mathematical approach

Besides the �physical� approach which starts from the master equation� there is the �mathemat�
ical� approach which treats on�line learning in the context of stochastic approximation theory�
The starting point in this approach is the so�called interpolated process� With wn the network
state and �n the learning parameter after n iterations� the interpolated process w�t� is de�ned
by

w�t� 	
tn � t

�n
wn�� 


t� tn��
�n

wn � for tn�� � t � tn �

with t�
def
	 � and tn

def
	 ��
 � � �
�n� This approach has led to many important� rigorously proven

theorems� For example� if �n tends to zero at a suitable rate� i�e�� such that

lim
n��

�n 	 � �
�X
n��

�n 	� �
�X
n��

�pn �� for some p � � � ���

then the interpolated process of wn eventually follows the solution trajectory of the ordinary
di�erential equation ���� with probability � ���� ���� Furthermore� if these and some additional
technical requirements are satis�ed� the learning process will always converge to one of the �xed
points w� of this di�erential equation� In neural�network literature this method has been applied
to the analysis of feature extraction algorithms ���� ���� Similar techniques have been used to
study the convergence of general learning algorithms for small constant learning parameters �����
In the context of global optimization �see section �� the work of Kushner ���� �� is worth
mentioning� In particular Kushner shows that convergence to the global optimum occurs almost
surely� provided that in the limit n � � the learning parameter decreases proportional to
�� log n ��� ����

� A con�ict in a changing environment

��� Motivation and mathematical description

Equation �� states that we must drop the learning parameter to zero in order to prevent
asymptotic �uctuations in the network state� This has been the usual strategy in the training of
arti�cial neural networks� But this is certainly not the kind of behavior one would expect from
a true adaptive system that a neural network� based on real biological systems� should be� A
true adaptive system can always adapt itself to changes in the environment� Biological neural
systems are famous for their ability to correct for the lengthening of limbs during growth� or their
ability to recover �at least partially� after severe damage or surgery� This kind of adaptability
is also desirable for arti�cial neural networks� e�g�� for networks for the control of robots that
su�er from wear and tear� or for neural networks for the modeling of economic processes� In
this section we will therefore discuss the performance of neural networks learning in a changing
environment ����

Mathematically speaking� a changing environment corresponds to a time�dependent input
probability ���x� t�� The probability density of network states w still follows a continuous�time
master equation� but now with time�dependent transition probability Tt�w

�jw��

Tt�w
�jw� 	

Z
dnx ���x� t� 	N �w� �w� �f�w� �x��

def
	
D
	N �w� �w� �f�w� �x��

E
��t�

�

where ��t� stands for the set of training patterns� the �environment�� at time t� The �xed points
w
��t� of the deterministic equation

�

�

dw�s�

ds
	 hf�w�s�� �x�i��t� � ���



On�line learning processes in arti�cial neural networks �

may depend on time� We de�ne the �misadjustment� E as the average squared Euclidian distance
with respect to this �xed point w��t� ���	


E def
�

�

T

Z
T

�
dt

D
jw �w��t�j�

E
��t�

�
�

T

Z
T

�
dt jm�t�j� �Tr ���t�	 � ����

The biasm�t�� de�ned in equation ���� but now with time�dependent w��t� instead of �xed w��
is a measure of how well the ensemble of learning networks follows the environmental change on

the average� It gives the typical delay between what the average network state is� hwi��t�� and
what it should be� w��t�� The covariance matrix ��t� gives the width of the distribution and
thus a measure of �con�dence�� T is a time window to be discussed later�

��� An example� Grossberg learning in a changing environment

Let us �rst discuss a simple model that can be solved without any approximations� We consider
the Grossberg learning rule ���	

�w � ��x�w� �

in a time�dependent environment� The input distribution is moving along the axis with a
constant velocity v� i�e�� ��x� t� � ���x� vt�� We choose

���x� �
�

�l
��l � x� ��l � x� �

with ��x� � � for x � � and ��x� � � for x � �� So� x is drawn with equal probability from the
interval �vt � l� vt � l	� The input standard deviation 	 � l


p
�� is constant� The aim of this

learning rule is to make w coincide with the mean value of the probability distribution ��x� t��
i�e�� the �xed point w��t� of the deterministic equation ���� obeys

w��t� � hxi��t� � vt �

So� �w� � v� the rate of change of the �xed point solution is equal to the rate of change of the
environment�

Straightforward calculations show that the evolution of the bias m�t� and the variance ��t�
is governed by

dm�t�

dt
� �� m�t� � v �

d��t�

dt
� ���� ��� ��t� � ��m��t� � ��	� �

This set of di�erential equations decays exponentially to the stationary solution

m �
v

�
� � �

��	� � v�

���� ��
� ����

Note that this behavior is really di�erent from the behavior in a �xed environment� In a �xed
environment �v � �� the asymptotic bias is negligible if compared with the variance�� However�
in a changing environment �v � ��� the bias is inversely proportional to the learning parameter
�� and can become really important if this learning parameter is chosen too small� In �gure �
we have shown the �simulated� probability density P �w�w��t�� for three di�erent values of the
speed v� For zero velocity the bias is zero and the distribution is sharply peaked� For a relatively
small velocity� the in�uence on the width of the distribution is negligible� but the e�ect on the
bias is clearly visible� For a relatively large speed� the variance is also a�ected and can get pretty
large�

�For the linear learning rule discussed in this example it is even zero� In general� the nonlinearity of the
learning rule leads to a bias of O��� whereas the standard deviation is of O�

p
���
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P

Figure �� Probability distribution for time�dependent Grossberg learning� Learning parameter
� � ���	
 standard deviation � � ���� The input probability ��x� t� is drawn for reference �solid
box�� Zero velocity �solid line�� Small velocity� v � ���� �dashed line�� Large velocity� v � ���
�dash�dotted line��

A good measure for the learning performance is the misadjustment de�ned in equation ����
In the limit T ��
 we can neglect the exponential transients to the stationary state ����� We
obtain

E �
���� � �v�

����� ��
�

This misadjustment is sketched in �gure �
 together with simulation results� For small learning
parameters the bias dominates the misadjustment and we have

E �
v�

��
for � � �v������ �

On the other hand
 for larger learning parameters the variance yields the most important con�
tribution�

E �
���

�
for �v������ � � � � �

Somewhere in between these two limiting cases
 the misadjustment has a minimum at the optimal

learning parameter �optimal which is for this particular example the solution of the cubic equation

�����optimal � �v��optimal � �v� � � �

Reasonable performance of the learning systems can only be expected if v � �
 i�e�
 if the
displacement of the input probability distribution per learning step is much smaller than its
width� In this limit
 we obtain

�optimal �

�
v

�

����
for v � � �

This optimal learning parameter gives the best compromise between fast adaptability
 which
asks for a large learning parameter
 and high con�dence
 which requires a small �but not too
small�� learning parameter� A similar �accuracy con�ict� is noted by Wiener in his work on
linear prediction theory �����
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Figure �� Misadjustment as a function of the learning parameter for Grossberg learning in a
changing environment� Squared bias �computed� dashed line� simulated� ��� variance �computed�
dash	dotted line� simulated� x�� and error �computed� solid line� simulated� ��� Simulations were
done with 
��� neural networks� Standard deviation input� � � ���� Velocity� v � �����

��� Nonlinear learning rules in nonstationary environments

The Grossberg learning rule is linear and therefore exactly solvable� Of course� most practi	
cal learning rules in neural networks are nonlinear and high dimensional� For nonlinear high	
dimensional learning rules the basic idea is still the same� there is a conict between fast
adaptability �a small bias� and high con�dence �a small variance�� In order to calculate a learn	
ing parameter that yields a good compromise between these two competing goals� we have to
make approximations� similar to the ones made in section �� So� we have to require that the
learning parameter is so small that it is allowed to make the usual small	uctuations expansion�
To linearize around to �xed point� we must now also require that the rate of change v � �w� is
much smaller than the typical weight change �f � Provided these requirements are ful�lled� the
evolution of the bias m�t� and the covariance ���t� is governed by ����

dm�t�

dt
� ��H�t�m�t� � v�t� �

d���t�

dt
� ��H�t����t�� ����t�HT�t� � ��D�t� � ����

with notation H�t�
def
� H�w��t��� and so on� Let us furthermore assume that the changes in the

�speed� v� the di�usionD� and the curvature H are so slow that they can be considered constant
on the local relaxation time �local �see equation ������ Then the bias and covariance matrix tend
to stationary values� The stationary bias is inversely proportional to the learning parameter �
and proportional to the speed v� whereas the variance is proportional to the learning parameter
and more or less independent of the speed� So� for nonlinear learning rules we also obtain a
misadjustment of the form ����

E �
�v�

��
� �� �

with � and � constants that depend on the di�usion D and the curvature H at the �xed point�
Here the time window T must be larger than the local relaxation time �local and smaller than
the time in which at least one of the quantities v� D� or H� changes substantially� Again� the
optimal learning parameter is proportional to v���� For slow changes v and learning parameters
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Figure �� Oja learning� A unit is taught with two	dimensional examples from a rectangle which
is rotating around the origin� The principal component of the covariance matrix lies parallel to
the longest side of the rectangle�

near the optimal learning parameter all conditions for the validity of the evolution equations ��
�
are ful�lled ����

��� An example� Oja learning in a changing environment

A simple example of a nonlinear learning rule is the Oja learning rule ����

�w � � wT
x �x� �wT

x�w� �

This learning rule searches for the principal component of the input distribution� i�e�� the eigen	

vector of the covariance matrix C
def
�

D
xx

T

E
�
with the largest eigenvalue� The network structure

and input space is pictured in �gure �� We take a network with one output neuron� two input
neurons and two weights� The inputs are drawn with equal probability from a two	dimensional
box with sides �l� and �l��

���x�� x�� �
�

�l�l�
��l� � x�� ��l� � x�� ��l� � x�� ��l� � x�� �

The covariance matrix of this input distribution is diagonal�

�C �

�
�� 


 ��

�
�

with ��
def
� l���� for � � �� �� If we choose l� 	 l�� then the two �xed point solutions of the

di�erential equation ���� are w��t� � ���� 
�T � So� the �xed point solution is normalized� but is
still free to lie along the positive or negative axis� To model learning in a changing environment�
the box is rotated around an axis perpendicular to the box� going through the origin� with
angular velocity 
� The principal component of this time	dependent input distribution obeys

w
��t� �

�
cos�
t�
sin�
t�

�
�

For small angular velocities 
 and small learning parameters �� we can apply the approxi	
mations discussed above to calculate the squared bias and the variance� We obtain

jmj� �
�

��

�



�� � ��

�
�

� Tr ���� �
�

�

����

�� � ��

�
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Figure �� Misadjustment as a function of the learning parameter for Oja learning in a changing
environment� Squared bias �computed� dashed line� simulated� �	� variance �computed� dash

dotted line� simulated� x	 and error �computed� solid line� simulated� �	� Simulations were
done with ���� neural networks� Eigenvalues of the covariance matrix of the input distribution�
� � ��� and � � ���� Angular velocity� � � ��������

The sum of these terms yields the misadjustment E � Within this approximation� the minimum
of the misadjustment is found for the optimal learning parameter

�optimal �

�
���

�� � �	��

����
�

The �theoretical� misadjustment is compared with results from simulations in �gure �� Espe

cially in the vicinity of the optimal learning parameter� the approximations seem to work quite
well�

� Learning�parameter adjustment

��� Estimating the misadjustment

The method described above to calculate the optimal learning parameter looks simple and
elegant and may work �ne for the small examples discussed there� but is in practice useless
since it requires detailed information about the environment �the di�usion and the curvature
at the �xed point	 that is usually not available� In this section we will point out how this
information can be estimated from the statistics of the network weights and can be used to yield
an autonomous algorithm for learning
parameter adaptation �����

Suppose we have estimates for the bias and the variance� Mestimate and ��
estimate� respectively�

while learning with learning parameter �� We know that �in a gradually changing environment	
the bias is inversely proportional to the learning parameter� whereas the variance is propor

tional to the learning parameter� So� with a new learning parameter �new� our estimate for the
misadjustment E is

E �
��

��new
M�

estimate �
�new
�

��
estimate � ���	

Minimization of this misadjustment with respect to the new learning parameter �new yields

�new �

�
�M�

estimate

��
estimate

����
� � ���	
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How do we obtain these estimates for the bias and the variance� First� we set the lefthandside
of the evolution equations ���� equal to zero� i	e	� we assume that the bias and the variance are
more or less stationary	 Then� to calculate the bias we must have an idea of the curvature H	
To estimate it� we can use the asymptotic solution of equation ���� that relates the covariance
matrix �the 
uctuations in the network state� to the di�usion �the 
uctuations in the learning
rule�	 Since we can calculate both the di�usion and the covariance� we might try to solve the
remaining matrix equation to compute the curvature	 This seems to solve the problem but
leads us directly to another one� solving an N � N matrix equation� where N is the number
of weights� is computationally very expensive	 Kalman�ltering� when applied to learning in
neural networks ����� and other secondorder methods for learning ��� have similar problems	
Here� it seems even worse since we are only interested in updating one global learning parameter	
Therefore� we will not consider all weights� but only a simple �global� function of the weights�
e	g	�

W
def
�

NX
i��

aiwi �

with a a random vector that is kept �xed after it is chosen	 During the learning process� we keep
track of h�W i�

�
�W �

�
� hW i� and

�
W �

�
	 From these averages� we can estimate a new learning

parameter	 The last problem concerns the averaging	 In theory� the average must be over an
ensemble of learning networks	 Yet� it seems very unpro�table to learn with say ��� networks if
one is just interested in the performance of one of them	 Some authors do suggest to train an
ensemble of networks for reasons of crossvalidation ����� but although it would certainly improve
the accuracy of the algorithm� it seems too much e�ort for simple learningparameter adaptation	
Instead� we estimate the averages by replacing the ensemble averages by time averages over a
period T for the network that is trained	 The time period T must be large enough to obtain
accurate averages� but cannot be much larger than the typical time scale on which the di�usion�
the curvature� or the �speed� changes signi�cantly �see the discussion in section �	��	

The �nal algorithm for learningparameter adjustment consists of the following steps ����	

�	 Gather statistics from learning with learning parameter � during time T � yielding hW i
T
��

W �
�
T
� h�W i

T
� and

�
��W ��

�
T
	

�	 Estimate the variance from

��

estimate �
D
W �

E
T
� hW i�

T
�
T � h�W i�

T

��
�

where the last term is a correction for the average change of W � and the bias from

Mestimate � �
� h�W i

T
��

estimate

h��W ��i
T
� h�W i�

T

�

which can be obtained directly from the stationary solution of the evolution equations ����
for a onedimensional system	

�	 Calculate the new learning parameter �new from equation ����	

��� Updating the learning parameter of a perceptron

As an example� we apply the adjustment algorithm to a perceptron ���� with two input units�
one output unit� two weights �w� and w��� and a threshold �w��	 The output of the network
reads

y�w� �x� 
 tanh

�
�X

i��

wixi

�
�
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with the input vector �x
def
� �x�� x��

T and x� � ��� The learning rule is the so�called delta rule
or Widrow�Ho� learning rule 	

�

�wi � � 	ydesired � y�w� �x�� 	�� y��w� �x�� xi �

Backpropagation 	��� is the generalization of this learning rule for neural networks with hidden
units� The desired output ydesired depends on the class from which a particular input vector is
drawn� There are two classes of inputs �diamonds� corresponding to positive desired outputs
ydesired � ��� and �crosses� corresponding to negative desired outputs ydesired � ����� We draw
the input vectors �x from Gaussian distributions with standard deviation � around the center

points �c�
def
� ��p� sin��

p
� cos��T 

���x� ydesired� �
�

�

X
���

�

����
exp

�
j�x� �c�j�

���

�
	�ydesired � ���� �

In the optimal situation� the weights and the threshold yield a decision boundary going through
the origin and perpendicular to the line joining the two center points� In other words� the �xed
point solution w� of the di�erential equation ���� corresponds to a decision boundary that is
described by the line

x� sin�� x� cos� � � �

We can model learning in a changing environment by choosing a time�dependent angle ��t�� i�e��
by rotating the center points�

Figures ��a���c� show snapshots of the perceptron learning in a �xed� a suddenly chang�
ing� and a continuously changing environment� respectively� All simulations start with random
weights� input standard deviation � � �� angle ���� � �
�� a constant time window T � ����
and an initial learning parameter � � ���� After this initialization� the algorithm described in
section ��� takes care of the recalibration of the learning parameter�

In a �xed environment 	�gure ��a��� i�e�� with a time�independent input probability density
��ydesired� �x�� the weights of the network rapidly converge towards their optimal values� So� af�
ter a short while the bias is small and the decision boundary wiggles around the best possible
separatrix� Then the algorithm decreases the learning parameter to reduce the remaining �uc�
tuations� Theoretical considerations show that in a �xed environment the algorithm tends to
decrease the learning parameter as 	���

��t� � �

t
for large t�

which� according to the conditions ��
� in section ���� is the fastest possible decay that can still
guarantee convergence to the �xed point w��

The second simulation 	�gure ��b�� shows the response of the algorithm to a sudden change
in the environment� The �rst ���� learning steps are the same as in �gure ��a�� But now the
center points are suddenly displaced from � � �
� to � � ��
�� This means that at time
t � ���� the decision boundary is completely wrong� The algorithm measures a larger bias�
i�e�� notices the �misadjustment� to the new environmental conditions� and raises the learning
parameter� Psychologists might call this �arousal detection� �see e�g� 	����� It can be shown
that� for this particular adjustment algorithm� the quickness of the response strongly depends
on the learning parameter at the time of the change 	���� The lower the learning parameter�
the slower the response� Therefore� it seems better to keep the learning parameter always above
some lower bound� say �min � ������ instead of letting it decrease to zero�

Figure ��c� depicts the consequences of the algorithm in a gradually changing environment�
the situation from which the algorithm was derived� In this simulation� we rotate the center
points with a constant angular velocity � � ��
����� Simple theory� assuming perfect �noise�
less� measurements� tells us that the learning parameter should decrease exponentially towards
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Figure �� Learning�parameter adjustment for a perceptron� The last ��	 training patterns are
shown� Diamonds ��� denote positive desired outputs
 crosses ��� negative desired outputs�
The bold line shows the decision boundary found by the network� Graphs on the right give
the learning parameter �
 the squared bias M�

estimate

 and the variance ��

estimate

 all estimated

from the statistics of the network weights� �a� A �xed environment� ��t�  ��	�  ���� �b� A
sudden change in the environment� ��t� changes abruptly from ��� to ����� �c� A continuously
changing environment� ��t�  ��� � ��t��			�

a constant �optimal� learning parameter ����� In practice
 the �uctuations are too large and
the theory cannot be taken very seriously� Nevertheless
 the pictures show that the overall
performance is quite acceptable�

��� Learning of a learning rule

The algorithm described in section ��� and tested in section ��� is an example of the �learning of
a learning rule� ���� It shows how one can use the statistics of the weight variables to estimate
a new learning parameter� This new learning parameter is found through minimization of the
�expected misadjustment� �see equation ������ The underlying theory is valid for any learning
rule of the form

�w  � f�w� �x� �

which makes the algorithm widely applicable� Although originally designed for learning in chang�
ing environment
 it also works �ne in a �xed environment and in case of a sudden environmental
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change� The qualitative features of the algorithm �turning down the learning parameter if there
is no new information� �arousal detection� in case of a sudden change� seem very natural from
a biological and psychological point of view�

It is di�cult to compare our algorithm with the many heuristic learning	rate adaptation
algorithms that have been proposed for speci
c learning rules in a 
xed environment �see e�g� ���
for a speci
c example or �� ��� for reviews on learning	rate adaptation for backpropagation��
Usually� these algorithms are based on knowledge of the whole error landscape and cannot cope
with pattern	by	pattern presentation� let alone with a changing environment� Furthermore�
most of these heuristic methods lack a theoretical basis� which does not necessarily a�ect the
performance on the reported examples� but makes it very di�cult to judge their �generalization
capability�� i�e�� their performance on other �types of� problems�

The �learning of the learning rule� of Amari ��� is related to our proposal� Amari argues
that the weight vector is far from optimal when two successive weight changes are �likely to be�
in almost the same direction� whereas the weight vector is nearly optimal when two successive
weight changes are �likely to be� in opposite directions� In our notation� this idea would yield
an update of the learning parameter of the form �the original idea is slightly more complicated�

��t� �� � ��t� � �
�W �t�

��t�

�W �t� ��

��t� ��
�

with �W �t�
def
� W �t� � W �t � �� and � a small parameter� The �learning of the learning

rule� leads to the same kind of behavior as depicted in 
gures �a�	�c�� �the rate of convergence
automatically increases or the degree of accuracy automatically increases according to whether
the weight vector is far from the optimal or nearly optimal� ���� Amari�s algorithm is originally
designed with reference to a linear perceptron operating in a 
xed environment� but might also
work properly for a larger class of learning rules in a changing environment�

The more recent �search then converge� learning rate schedules of Darken et al� ���� are
asymptotically of the form

��t� � c

t
for large t �

These schedules are designed for general learning rules operating in a 
xed environment and
guarantee convergence to a 
xed point w�� The parameter c must be chosen carefully� since
convergence is much slower for c � c� than for c � c�� with c� a usually unknown problem	
dependent key parameter� To judge whether the parameter c is chosen properly� they propose
to keep track of the �drift� F �again rewritten in our notation� their notation is slightly di�erent
and more elaborate�

F �t�
def
�

�p
s�W �s�

��
T �t� �

where the average is over the last T learning steps before time t� They argue that the �drift F �t�
blows up like a power of t when c is too small� but hovers about a constant value otherwise� �����
This provides a signal for ensuring that c is large enough� Although not directly applicable to
learning in a changing environment� it is another example of the idea to use the statistics of the
weights for adaptation of the learning parameter� This general idea de
nitely deserves further
attention and has great potential for practical applications�

� Transition times between local minima

��� Context and state of the art

In the preceding sections� we have only discussed learning in the vicinity of one 
xed point
solution of the average learning dynamics� Learning rules with only one 
xed point form a
very limited class� Nowadays popular learning rules� such as backpropagation �� and Kohonen
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learning ����� can have many �xed points	 Some of these �xed points appear to be better
than others	 A well
de�ned measure for how good a particular network state w is� is the error
potential E�w�	 Often� one starts by de�ning an error potential� such as the �average� squared
distance between the networks output and the desired output for backpropagation� and derives
a learning rule from this error by calculating the gradient r with respect to the network state
w as in equation ����	 With batch
mode learning� the network gets stuck in a minimum� in
which minimum only depends on the initial network state	 Many authors �see e	g	 ��� ��� ��� ����
share the feeling that random pattern presentation� i	e	� on
line instead of batch
mode learning�
introduces noise that helps to escape from �bad� local minima and favors lower lying minima	
In this section� we will try to point out a theory that re�nes and quanti�es these statements	 We
will restrict ourselves to learning rules for which equation ���� holds	 Generalization to learning
rules that cannot be derived from a global error potential is straightforward� except that there
is no obvious� unbiased global measure of how good a network state is	

The results of section � give a purely local description of the stochastic process� i	e	� the
analysis yields unimodal distributions	 This is a direct consequence of the �small
�uctuations
Ansatz� ����	 For an error potential with multiple minima� we obtain an approximate description
around each minimum� but not a global description of a multimodal distribution	 Standard
theory on stochastic processes ���� ��� ��� cannot provide us with a general expansion method for
unstable systems� i	e	� stochastic systems with multiple �xed points	 As we noted in section �	��
the Fokker
Planck approximation� although often applied� does not o�er an alternative since its
validity is also restricted to the so
called attraction regions with positive curvature	 Leen and
Orr ����� for example� report simulations in which the Fokker
Planck approach breaks down even
for extremely low learning parameters	 Our approach ���� is based on two hypotheses which are
supported by experimental and theoretical arguments	 These hypotheses enable us to calculate
asymptotic expressions for the transition times between di�erent minima	

��� The hypotheses

Again� we start with the master equation ��� in a �xed environment	 In section � we showed that
in the attraction regions� where the Hessian H�w� is positive de�nite� Van Kampens system
size expansion can be applied for small learning parameters �	 Each attraction region contains
exactly one minimum of the error E�w�	 We say that minimum � lies inside attraction region
A�	 T�� stands for the transition region connecting attraction regions � and �	 In the transition
regions the Hessian has one negative eigenvalue	 We can expand the probability density P �w� t��

P �w� t� �
X
�

P��w� t� �
X
��

P���w� t� �

where P��w� t� is equal to P �w� t� inside attraction region A� and zero outside� and similar
de�nitions for P���w� t� in the transition regions�	 For proper normalization� we de�ne the
occupation numbers

n��t�
def
�

Z
A�

dNw P �w� t� �

i	e	� the occupation number n��t� is the probability mass in attraction region A�	 From the
master equation ���� we would now like to extract the evolution of these occupation numbers
n��t�	

Figure � shows the histogram of ����� independently learning one
dimensional networks
at three di�erent times �see ���� for details�	 We use this simple example to give an idea of
the evolution of the master equation in the presence of multiple minima and to point at a
few characteristic properties of unstable stochastic systems �see �����	 The learning networks

�We neglect the probability mass outside the attraction and transition regions since it is negligible if compared

with the probability mass inside these regions and has no e�ect on our calculation of transition times anyway�
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�� �

�
�a�

�� �

�
�b�

�� �

�
�c�

w

Figure �� Histogram found by simulation of ����� one�dimensional neural networks learning on
an error potential with a local and a global minimum	 �a� t 
 �� Initial distribution	 �b� t 
 ����
Two peaks	 �c� t 
 ���� Stationary distribution	

perform stochastic gradient descent on a one�dimensional error potential with a local minimum
at w � �� and a global minimum at w � �	 The weights are initialized with equal probability
between �� and � ��gure ��a�� t 
 ��	 On a time scale of order ���� the local relaxation
time �local in equation ����� P �w� t� evolves to a distribution with peaks at the two minima
��gure ��b�� t 
 ����	 The probability mass in the transition region is much smaller than the
probability mass in the attraction regions� transitions between the minima are very rare	 The
global relaxation time to the equilibrium distribution ��gure ��c�� t 
 ���� is much larger than
the local relaxation time	

Our �rst hypothesis is well�known in the theory of unstable stochastic processes ���	 It says
that the rare transitions may a�ect the probability mass� but not the shape of the distribution
in the attraction regions	 In other words� we assume that after the local relaxation time� we are
allowed to �decouple time and space� in the attraction regions�

P��w� t� 
 n��t� p��w� �

This assumption seems to be valid when the attraction regions are well separated and when the
transitions between them are rare	 Substitution of this assumption into the master equation
yields

dn��t�

dt

 �

X
�

�Z
T
��

dNw�

Z
A�

dNw T �w�jw� p��w�

�
n��t�

�

Z
A�

dNw�

X
�

Z
T��

dNw T �w�jw� P���w� t� �

The �rst term in this equation corresponds to probability mass leaving attraction region A��
the second term to probability mass entering A�	
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Let us concentrate on the �rst term alone and neglect the second term� This corresponds to
a simulation in which all networks that leave the attraction region A� are taken out� The term
between brackets is the probability per unit time to go from attraction region A� to transition
region T�� � The inverse of this term is called the transition time � �A� � T��� from attraction
region A� to transition region T�� �

� �A� � T��� �

�Z
T��

dNw�

Z
A�

dNw T �w�jw� p��w�

�
��

� �		�

Below we will sketch how to calculate this transition time for small learning parameters �� We
will show that it is of the form

� �A� � T��� � exp

�

���
�

�
for small ��

with 
���� the so�called reference learning parameter� a constant independent of the learning
parameter �� If the learning parameter is chosen much smaller than the reference learning
parameter� the probability to go from the attraction to the transition region within a �nite
number of learning steps is negligible� Furthermore� the reference learning parameters play an
important role in the derivation of cooling schedules that guarantee convergence to the global
minimum �see section ��

So� we can compute how the transition time � �A� � T��� from the attraction region to the
transition region scales as a function of the learning parameter �� But we are more interested
in the transition time � �A� � A�� from attraction region A� to attraction region A�� i�e�� the
average time it takes to get over transition region T�� � What happens in this transition region�
In the transition regions the small��uctuations expansion of section ��	 is not valid� If we still
try to apply it� we notice that �in this approximation scheme� the �uctuations tend to explode
�see equation ��	��� On the other hand� in the attraction regions the �asymptotic� �uctuations
are proportional to the learning parameter� The idea is now that� for small learning parameters
�� the transition time from attraction region A� to A� is dominated by the transition time from
A� to transition region T�� � More speci�cally� our second hypothesis states that

lim
���

�� ln � �A� � A�� � lim
���

�� ln � �A� � T��� � 
��� �

i�e�� that the reference learning parameter for the total transition from one attraction region to
another can be estimated by calculating the reference learning parameter for the transition from
the attraction region to the transition region�

��� Calculation of the reference learning parameter

In this section we will sketch how to calculate the reference learning parameter


��� � � lim
���

� ln

�Z
T��

dNw�
Z
A�

dNw

Z
dnx ���x� �N�w� �w� �f�w� �x�� p��w�

�
�	��

for the transition from attraction region A� to transition region T�� � We recall from section ���
that the local probability distribution p��w� can be approximated by a Gaussian with its average
at the minimum w

�

� and variance ��
� � �K� obeying

H�K� �K�H� � D� � �	��

where the Hessian H�
def
� H�w�

�� and the di�usion matrix D�
def
� D�w�

�� are both evaluated at
the minimum w

�

��
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In equation ����� we have to integrate over all w and �x such that

w � A� and w
� � w	 �f�w� �x� � T�� �

So�� both w and w
� are within order � of the boundary B�� between attraction region A� and

transition region T�� 
 Now it is easy to prove ���� that� for small learning parameters �� the
integral in ���� converges to an integral over the boundary B�� times some term of order �

This latter term disappears if we take the logarithm� multiply with �� and take the limit � � 

Finally� in the limit � � � the only remaining term is

���� � � lim
���

� ln

�Z
B��

dN��w exp

�
�
�w �w

�

��
TK��

� �w�w
�

��

��

��
�

The integral can be approximated using the method of steepest descent
 The largest contribution
is found when the term between brackets is maximal on the boundary B��
 So� the largest
contribution comes from the �easiest� path from the local minimum w

�

� to the transition region
T�� 
 The matrix K��

� de�nes the local �metric�
 The �nal result is

���� � inf
w�B��

�
�w�w

�

��
TK��

� �w�w
�

��

�

�
� ����

Roughly speaking� the reference learning parameter is proportional to the height of the error
barrier and inversely proportional to the local �uctuations
 The result is similar to the classical
Arrhenius factor for unstable stochastic �chemical� processes ����
 In the next section we will
apply this formula to calculate the reference learning parameter for the transition from a twist
��butter�y�� to a perfectly ordered con�guration in a self�organizing map


� Unfolding twists in a self�organizing map

��� Twists are local minima of an error potential

The Kohonen learning rule ���� ��� tries to capture important features of self�organizing pro�
cesses
 It has not only applications in robotics� data segmentation� and classi�cation tasks� but
may also help to understand the formation of sensory maps in the brain
 In these maps� the
external information is represented in a topology�preserving manner� i
e
� neighboring units code
similar input signals
 Properties of the Kohonen learning procedure have been studied in great
detail ��� ���
 Most of these studies focussed on the convergence properties of the learning rule�
i
e
� asymptotic properties of the learning network in a perfectly ordered con�guration
 In this
context� Ritter and Schulten ���� ��� were the �rst to use the master equation for a description
of on�line learning processes


It is well�known that not only perfectly ordered con�gurations� but also topological defects�
like kinks in one�dimensional maps or twists in two�dimensional maps� can be �xed point so�
lutions of the learning dynamics ����
 With a slight change� the Kohonen learning rule can be
written as the gradient of a global error potential ���
 Then the topological defects correspond
to local minima of this error potential� whereas global minima are perfectly ordered con�gu�
rations
 The unfolding of a twist in a two�dimensional map is now simply a transition from a
local minimum to a global minimum
 Using the theory developed in section �� we will calculate
the reference learning parameters for these transitions and compare them with straightforward
simulations of the learning rule


As an example� we consider a network of � units
 Each unit has a two�dimensional weight
vector� so� the total eight�dimensional network state vector is written w � ��w�� � � � � �w��

T �
�w��� w��� w��� � � � � w���

T 
 Each learning iteration consists of the following steps


�For simplicity� we will only consider the case in which the learning rule is bounded� i�e�� for which there exists
an M �� such that jf�w� �x�j � M � for all w and all �x � ��
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�� An input �x � �x�� x��
T is drawn with equal probability from a square�

��x�� x�� �
�

�
��� 	 x�� ���� x�� ��� 	 x�� ���� x�� �

�� The 
winning unit
 is the unit with the smallest local error

ei�w� �x� �
�

�

X
j

hij j�wj � �xj� �

Here h is called the lateral�interaction matrix� The closer two units i and j in the 
hard�
ware
 network con�guration the stronger the lateral interaction hij � We choose it of the
form

h �
�

�� 	 ���

�
BBBBBB�

� � �� �

� � � ��

�� � � �

� �� � �

�
CCCCCCA

�

with � � � � � the so�called lateral�interaction strength� � � � means no lateral inter�
action� Which unit 
wins
 depends on the network state w and on the particular input
vector �x� We will denote the winning by ��w� �x� or just ��

�� The weights are updated with

�wi� � 	 fi��w� �x� � �	

e��w� �x�


wi�

� 	 h�i�x� � wi�� � ����

So in principal all weights are moved towards the input vector� To what extent depends
on the lateral interaction between the particular unit and the winning unit�

Equation ���� is exactly the Kohonen learning rule� The di�erence is step �� the determination
of the winning unit� In Kohonen�s procedure the winner is the unit with the smallest Euclidian
distance to the input vector� We propose to determine the winning unit on account of the local
error ei�w� �x� the same error that is di�erentiated to yield the learning rule ����� Then and
only then it can be shown ��� ��� that this learning procedure performs �stochastic� gradient
descent on the global error potential�

E�w� �
D
e��w��x��w� �x�

E
�
�

For � � � the local error ei�w� �x� is just the Euclidian distance between the weight �wi and the
input �x which makes both learning procedures totally equivalent�

Careful analysis shows that for � � � � �� � ����� the error potential has �� � �� di�erent
possible minima� � global minima and �� local minima� To visualize these network states we
draw lines between the positions of the �two�dimensional� weight vectors of neighboring units
i�e� between ��� ��� ��� and ���� As can be seen in �gure ��a� the global minima correspond
to perfectly ordered con�gurations� They are called 
rectangles
� The 
twist
 or 
butter�y
 in
�gure ��b� is an example of a topological defect� a local minimum� For � � � i�e� no interaction
all minima are equally deep� At � � �� the local minima representing twists disappear and
only global minima representing rectangles remain�

�The gradient of E�w� consists of two parts� the di�erentiation of the local error and the di�erentiation of the
�winner�take�all mechanism�� This latter term	 which is the most di
cult one	 exactly cancels if and only if the
�winner� is determined on account of the local errors ei�w� �x� ����
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Figure �� Con�gurations in a two	dimensional map
 �a� Rectangle
 �b� Twist


��� Theory versus simulations

We will calculate the reference learning parameter �� for the transition from the local to the
global minimum� i�e�� from a twist to a rectangle� for di�erent values of �� This reference
learning parameter tells us how the average time needed to unfold a twist scales as a function
of the learning parameter �� We go through the following steps�

�� Choose the lateral�interaction strength ��

�� Determine the position of the local minimum w
�� i�e�� the exact network weights of the

twist in 	gure 
�b��

� Calculate the Hessian H and the di�usion matrix D at this minimum from equation ����
and ����� respectively�

�� Solve equation ��� to 	nd the covariance matrix K and its inverse K���

�� On the boundary between the attraction and the transition region� the determinant of the
Hessian of the error potential E�w� is exactly zero� Find the point w on this boundary
with the smallest distance �w �w��TK���w�w���

�� Compute the reference learning parameter ����� from equation ����

The 	fth step� optimization under the awkward constraint that the determinant of the Hes�
sian matrix must be zero� is by far the most di�cult one� For larger problems� i�e�� a higher
dimensional weight space� this may become too di�cult� The solid line in 	gure � gives the
�theoretically� obtained reference learning parameter as a function of the strength ��

Straightforward simulations of the learning procedure are used for comparison� For each
choice of the interaction strength �� we train ��� independently operating networks for � di�erent
learning parameters� For each learning parameter� we determine the transition time ����� The
reference learning parameter �� follows from the best possible 	t of the form

ln ���� � ����� � d ln ��� � c �

The reference learning parameters ����� obtained in this way are indicated by an asterix in
	gure �� The theoretically obtained reference learning parameters are somewhat smaller than
the ones obtained from straightforward simulations� This might be due to the neglect of the
transition region�

In ��
� we also try to calculate the transition times for the transition from a �kink�� a topo�
logical defect in a one�dimensional map� to a �line�� a perfectly ordered con	guration� Again�
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Figure �� The reference learning parameter �� as a function of the lateral�interaction strength ��
Solid lines show the theoretically obtained results� Simulation results are indicated by an ����

this is a transition from a local minimum	 the kink	 to a global minimum	 the line� For small �	
when this transition becomes very improbable 
for � � � the dynamics of the learning rule is
such that a kink cannot be removed	 the reference learning parameters predicted by theory do
no longer agree with the results obtained from simulations� A possible explanation is the vio�
lation of the �rst assumption explained in section ���� in the limit � � � the transition region	
which normally acts as a bu�er between the two attraction regions	 vanishes and the assumption
that transitions only a�ect the masses and not the shapes of the probability distributions in the
attraction regions is no longer valid� Further study is necessary to solve this problem�

In all this	 we must not forget that	 if we really want to calculate the reference learning
parameter	 detailed knowledge about the environment and the network structure is needed� The
same notion came up in section �	 where we tried to calculate the optimal learning parameter for
learning in a changing environment� To a certain extent we could solve this problem in section �
by considering the statistics of the weights� Here it is much more di�cult	 since we need to
extract global information from the network dynamics� A solution might be a pre�learning
phase	 similar to the ones proposed for simulated annealing processes 
see e�g� ����

� On�line learning and global optimization

��� The analogy with simulated annealing

On�line learning is a stochastic process� The �intrinsic noise� due to the random pattern pre�
sentation enables transitions between di�erent minima� The larger the learning parameter	 the
greater this noise	 so the easier the transitions� We might compare this with simulated an�
nealing ��	 ��� or Langevin equations ���	 ��� 
see also section ���� In the simulated annealing
approach a candidate w is picked at random according to some �generating probability func�
tion�� The error E
w� of the candidate w� is compared with the error E
w of the current state
w� Downhill steps are always accepted	 uphill steps are accepted with a probability proportional
to

exp

�
�

E
w��E
w

T

�
�

The noise parameter T is called the temperature� Using this dynamics	 it can be shown that
after su�cient time	 the probability distribution P 
w� t resembles a Gibbs distribution� With
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a proper cooling schedule� i�e�� a smart choice for the temperature as a function of time� conver�
gence to the global optimum can be guaranteed for these processes� Can we draw an analogy to
on�line learning in neural networks� even when simulated annealing is really di�erent from the
learning procedure ��	
 Or more speci�cally� how should we choose our noise parameter� the
learning parameter� to get the fastest possible convergence to the global minimum
 Starting
from the transition times derived in section �� we will try to answer these questions�

��� Derivation of a cooling schedule

For simplicity� we will �rst consider a two�level system with one global minimum E� � E�w�

�
	

and one local minimum E� � E�w�

�	� The average error potential E�t	 is de�ned

E�t	
def
 hE�w	i��t�  n��t	E� � n��t	E� �O��	  E� � n��t	�E� �E�	 �O��	 � ���	

where we use n��t	�n��t	  �� i�e�� we neglect the probability mass in the transition region� This
is correct for times t much larger than the local relaxation time of order ��� �see the discussion
in section ���	� Then the probability distribution P �w� t	 is strongly peaked in the vicinity of the
minima of the error potential� The variance of these local probability distributions is of order �
and thus the average error potential of the networks in the vicinity of a particular minimum w�

hE�w	i���� �E�w�	 �
�

�

D
�w�w�	TH�w�w�	

E
����

� Tr �H����	� � �Tr D �

is also of order �� For the moment� we will neglect this term� It will only play a signi�cant role
when either n��t	 or n��t	 becomes of order ��

The occupation number n��t	 obeys the di�erential equation

dn��t	

dt
 �

n��t	

���
�
n��t	

���
� ���	

with transition time ��� for the transition from attraction region A� to A� of the form �see
section �	

��� � exp

�
����
�

�
for small � � ���	

and similarly for ���� From ���	 and ���	� we can derive a di�erential equation for the average
error E�t	�

dE�t	

dt
 �

�
E�t	�E�

���
�
E� �E�t	

���

�
�

We would now like to choose the learning parameter � as a function of time t such that the
average error potential E�t	 decreases as fast as possible� i�e�� to choose ��t	 such that the term
between brackets is as large as possible �����

�E�t	 �E��
d

d��t	

�
�

������t		

�
 �E� �E�t	�

d

d��t	

�
�

������t		

�
�

This de�nes a relationship between E�t	 and ��t	� which can be used to transform the di�erential
equation for E�t	 into a di�erential equation for the time trajectory of the optimal ��t	� Using
the form ���	� we obtain �for small learning parameters ��t	�

d��t	

dt
 ����t	

�
�

����������t		
�

�

����������t		

�
�

Now� suppose that the transition from the local to the global minimum is �easier� than vice
versa� i�e�� has a shorter transition time and thus a smaller reference learning parameter�� Then

�As we will argue in section ���� a transition from a higher minimum to a lower minimum is in almost all cases

easier than vice versa� If the reverse is true� then the local minimum is the �most attractive� minimum and� by

replacing ���� for ���� in what follows� we can only guarantee convergence to this minimum�
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we can neglect the second term between brackets if compared with the �rst term� For large t�
the lowest order solution of the remaining di�erential equation yields ���	

�
t� �
���
ln t

� O

�
ln ln t


ln t��

�
� 
���

This constitutes our �nal optimal cooling schedule� It only depends on the reference learning
parameter ��� for the transition from the local to the global minimum�

In a sense� the derived cooling schedule is indeed optimal� A �faster� cooling schedule� e�g�
�
t� � ����� ln t� cannot guarantee that a network starting at the local minimum will indeed
reach the global minimum� We could say that the transition from the local to the global minimum
is �closed�� The optimal cooling schedule keeps this transition just �open�� A �slower� cooling
schedule� e�g� �
t� � � ���� ln t� gives also an open transition� but convergence will take longer
than with the optimal cooling schedule� By looking at the transition times we can easily check
whether a particular transition is open or closed� If the transition time grows at most linearly
with time t the transition is open� if it grows faster than linearly with time t the transition is
closed� For the optimal cooling schedule 
��� the transition time ��� from the local to the global
minimum grows linearly with time t�

Generalization to more minima is tedious� Nevertheless� the �nal cooling schedule is of the
same form ���	

�
t� �
��

ln t
for large t �

The optimal �� depends on the reference learning parameters between the various minima� It
is bounded by ���	

�min � �� � �min � 
M���
�max � �min� �

with �min and �max the smallest and the largest �nite reference learning parameter� respectively�
and M the number of minima� This kind of �exponentially slow� cooling schedule is common
ground in the theory of stochastic processes for global optimization ���� ��	�� In cooling schedules
for simulated annealing the optimal �� is called �the critical depth� ��	� It is the depth 
suitably
de�ned� of the deepest local minimum which is not a global minimum state ���	� In this context�
the approach taken in ���	 is most similar to ours� the critical depth is computed from the
structure of a Markov chain� i�e�� from transition probabilities between di�erent states� Neither
we� nor other authors� claim that it is easy to calculate the optimal parameter �� for practical
optimization problems� We only try to give an intuitive feeling of the factors that determine
this parameter�

��� Global optimization and on�line backpropagation

In this last section we will discuss an example of on�line backpropagation with profound local
minima� The structure of the network is depicted in �gure �
a�� There are � synapses and �
thresholds� so� N � � adaptive elements� These elements are combined in the weight vector
w � 
w��� w��� w��� w��� w��� w��� w��� w��� w���

T � The network has � variable inputs� x� and x��
Thresholds are incorporated by de�ning x� � y� � ��� The outputs y� and y� of the hidden
units are given by

yi � tanh

�
� �X

j��

wijxj

�
� �

�There is a method called fast simulated annealing ���� ��� based on a cooling schedule that decreases with ��t�
The di	erence is the use of a Cauchy distribution 
with an in�nite variance� instead of a Gaussian distribution

with a �nite variance which is more similar to on�line learning processes for the generation of new states�
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Figure �� �a� Network structure� �b� XOR problem�

the output y� of the network by

y� 	 tanh

�
�

�X
j��

w�jyj

�
� �

The goal of the backpropagation learning rule is to minimize the quadratic error potential 
���

E��w� 	
�

�p

pX
���


y��w� x
�
�
� x

�
�
�� x

�
�
�
� def

	
�

p

pX
���

E��w� �x
�� � ���

where the sum is over all p training patterns� indicated by three�dimensional vectors �x� 	
�x�

�
� x

�
�
� x

�
�
�T � The components x�

�
and x

�
�
give the input values of the network for pattern ��

the component x�
�
the desired output value� We will use desired output values of ���� instead

of �� to prevent divergence of the weights� Rather than minimizing the error ���� it is often
convenient to minimize an error of the form

E�w� 	 E��w� � �E��w� � ���

with E��w� an extra term� the so�called bias 
��� �not to be confused with the bias m of
sections �� � and ��� We will use the bias

E��w� 	
�



�X
i��

�X
j��

h
w�

ij � �
i�

� ��

with � 	 ��� and � 	 ����� Incorporation of this bias has a few advantages among which there
are prevention of local minima with in�nite weights and reduction of training times 
����

After 
���� we choose the set of p 	 � training patterns sketched in �gure ��b�� Circles
indicate negative output� crosses positive output� This is just the usual XOR truth table with
one additional pattern at the origin� Because of this additional pattern� the error potential ���
has not only global minima� but also profound local minima��� The thick lines in �gure ��b�
show the separation lines of the hidden units that lead to the optimal solution� At the global
minima all �ve training patterns are correctly classi�ed� The thin lines give the separation
lines corresponding to the local minima� At the local minima only four patterns are correctly
classi�ed� For symmetry reasons there are � local and � global minima�

We will compare the optimization capabilities of the following two learning procedures�

��At the local minima in the original XOR problem� carefully analyzed in ����� at least one of the weights is
either in�nite or zero� After incorporation of the bias 	��
� we did not encounter any of these �stupid� minima�
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Figure ��� Asymptotic performance E versus transition time � for on�line learning ��� and
Langevin�type learning ���	 The lines serve to guide the eye	

�	 At each learning step
 one of the patterns
 say �
 is drawn at random from the set of �
patterns
 and a learning step is performed�

�w  �� r �E��w� �x
�� � �E��w�� �

This
 of course
 is an on�line learning process of the type discussed in this chapter	

�	 Arti�cial noise is added to the gradient of the total error potential
 averaged over all
training patterns�

�w  �r �E��w� � �E��w�� �t �
p
�T �

p
�t �

with � noise of variance �	 This is called �Langevin�type learning�� it is a discretized
version of the Langevin equation �see section �	��	 We will choose �t  �	

For both learning procedures we take an ensemble of ���� independently operating neural net�
works
 all starting at a local minimum	 We train this ensemble for a few di�erent values of
� and T 	 From the dynamics of the occupation numbers at the local and global minima
 we
measure the transition times ���� and ��T �	 Besides this
 we collect the average error potential
at the stationary situation
 so
 for very long learning times	 These are denoted E��� and E�T �	
The average error E can be viewed as a measure of the asymptotic performance of the learning
procedure
 the transition time � as the typical time to reach it	 As can be seen from �gure ��

where the asymptotic performance E is plotted as a function of the transition time � 
 on�line
learning is highly preferable above Langevin�type learning� the same transition time yields a
much better asymptotic performance for on�line learning than for Langevin�type learning	

The inhomogeneous intrinsic noise due to the random pattern presentation explains the
better performance of on�line learning processes	 For Langevin�type learning
 the noise is homo�
geneous
 i	e	
 the same at each minimum
 whereas for on�line learning the noise is related to the
di�usion D
 the �uctuations in the learning rule
 which is a function of the weights	 Usually we
will have that the higher the error potential
 the more there is to learn
 the larger the �uctuations
in the learning rule
 the higher the noise level
 and the easier to escape	 Roughly speaking
 the
reference learning parameter for a transition from minimum � to 	 is proportional to the height
of the barrier between � and 	 and inversely proportional to the local �uctuations at �	 In
the backpropagation example of this section
 the reference learning parameter for the transition
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from the global to the local minimum is much larger than the reference learning parameter for
the reverse transition� whereas the �reference temperature� for both transitions is of the same
order of magnitude� This explains the form of �gure ���

Generalization of these arguments suggests that the inhomogeneous noise coming from the
random presentation of patterns in on	line learning processes helps to �nd the global minimum�
The comparison made above is just a simplistic and speci�c example� but it gives a nice idea of
the usefulness of on	line learning if compared with other optimization techniques�
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