
Algorithmica (1996) 15: 302–318 Algorithmica
© 1996 Springer-Verlag New York Inc.

On-Line Maintenance of Triconnected Components
with SPQR-Trees1

G. Di Battista2 and R. Tamassia3

Abstract. We consider the problem of maintaining on-line the triconnected components of a graphG. Let
n be the current number of vertices ofG. We present anO(n)-space data structure that supports insertions of
vertices and edges, and queries of the type “Are there three vertex-disjoint paths between verticesv1 andv2?”
A sequence ofk operations takes timeO(k · α(k, n)) if G is biconnected (α(k, n) denotes the well-known
Ackermann’s function inverse), and timeO(n logn + k) if G is not biconnected. Note that the bounds do
not depend on the number of edges ofG. We use theSPQR-tree, a versatile data structure that represents the
decomposition of a biconnected graph with respect to its triconnected components, and theBC-tree, which
represents the decomposition of a connected graph with respect to its biconnected components.

Key Words. Vertex connectivity, Dynamic algorithm, Dynamic data structure, Graph decomposition, Tri-
connected components, Network reliability.

1. Introduction. The development of dynamic algorithms for graph problems has
acquired increasing theoretical interest in the last years and is motivated by many impor-
tant applications in network optimization, VLSI layout, computational geometry, and
distributed computing. The existing literature includes work on connected components,
biconnected components, transitive closure, shortest paths, minimum spanning trees,
and planarity testing (for a survey, see [2]).

An on-line graph problemconsists of performing a sequence of query and update
operations on a graph, such that each operation is completed before the next one is
processed and future operations are not known in advance. We consider on-line graph
problems where the updates are insertions of vertices and edges. Such problems are
also referred to as semidynamic or incremental. Specifically, we consider the following
update operations:

InsertEdge(v1, v2): Add an edge between verticesv1 andv2.
InsertVertex(v, v1, v2): Split edge(v1, v2) into two edges(v1, v) and(v, v2) by insert-

ing vertexv.

1 This research was supported in part by the National Science Foundation under Grant CCR-9007851, by
the U.S. Army Research Office under Grants DAAL03-91-G-0035 and DAAH04-93-0134, by the Office of
Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order
8225, by the NATO Scientific Affairs Division under Collaborative Research Grant 911016, by the Progetto
Finalizzato Sistemi Informatici e Calcolo Parallelo of the Italian National Research Council, and by the Esprit
II BRA of the European Community (project ALCOM). An extended abstract of this paper was presented at
the 17th International Colloquium on Automata, Languages, and Programming, Warwick, 1990.
2 Dipartimento di Discipline Scientifiche, Sezione Informatica, Terza Universit`a di Roma, via della Vasca
Navale 84, 00146 Roma, Italy. dibattista@iasi.rm.cnr.it. Work performed in part while this author was with
the Università di Roma “La Sapienza,” Dipartimento di Informatica e Sistemistica.
3 Department of Computer Science, Brown University, Providence, RI 02912-1910, USA. rt@cs.brown.edu.

Received August 17, 1992; revised January 10, 1994, and September 30, 1994. Communicated by T. Nishizeki.

On-Line Maintenance of Triconnected Components with SPQR-Trees 303

AttachVertex(v, u): Add vertexv and connect it to vertexu by means of an edge.
MakeVertex(v): Add an isolated vertexv.

Any graph can be easily constructed with operationsMakeVertexand InsertEdge.
A connected graph can be constructed by using onlyAttachVertexand InsertEdgeso
that all the intermediate graphs are connected. Similarly, a biconnected graph can be
constructed using onlyInsertVertexandInsertEdgeso that all the intermediate graphs
are biconnected. From now on,n andm denote the number of vertices and edges of the
graph being considered.

In this paper we investigate the problem of maintaining on-line the triconnected
components of a graphG. Namely, we want to support a repertory of operations consisting
of the aforementioned updates and of the following query operation:

ThreePaths(v1, v2): Determine whether three vertex-disjoint paths between vertices
v1 andv2 exist.

After a review of basic definitions in Section2, in Section3 we study the problem
of maintaining the triconnected components of a biconnected graph. First, we present a
versatile data structure, called theSPQR-tree, which essentially represents the decom-
position of a biconnected graph with respect to its triconnected components. A first
application of SPQR-trees to on-line planarity testing of biconnected graphs has been
given in [1] and [2]. In this paper SPQR-trees are defined without reference to pla-
narity. We show that, in a static environment, SPQR-trees support operationThreePaths
in O(1) time usingO(n) space. Next, we consider update operationsInsertVertexand
InsertEdge, and show that the SPQR-tree can be maintained with a constant amortized
number of elementary tree operations and set operations per update. Using a combination
of fast union-find and split-find data structures stored at the nodes of the SPQR-tree, we
obtain anO(n)-space data structure that supports operationsThreePaths, InsertVertex,
and InsertEdgein O(α(k, n)) amortized time,k being the total number of operations
performed (α(k, n) denotes the well-known Ackermann’s function inverse).

Previously, Kanevsky [7] has provided an implicit static representation of the separa-
tion pairs of a biconnected graph that usesO(n) space, but did not consider queries nor
updates. Westbrook and Tarjan [13] have presented a technique for the on-line mainte-
nance of biconnected components that supports queries and updates in amortized time
O(α(k, n)). The on-line maintenance of triconnected components is explicitly men-
tioned as an open problem in [13]. Note that the static computation of the triconnected
components of a graph can be done sequentially inO(n+m) time [5], and on a CRCW
PRAM in O(logn) time with (n+m) α(m, n) processors [3].

In Section4 we present another data structure, theBC-tree, that represents the ar-
rangement of the biconnected components of a connected graph. The BC-tree contains
as a secondary structure the SPQR-trees of each biconnected component. We show that
the BC-tree can be maintained with a constant amortized number of elementary tree
operations and set operations, plus anO(logn)-time overhead per vertex update. Graphs
that are not connected are represented by aBC-forest. Using the BC-forest, we show how
to maintain on-line the triconnected components of a general graph with anO(n)-space
data structure that supports a sequence ofk operations in timeO(n logn+ k).

304 G. Di Battista and R. Tamassia

2. Preliminaries. We recall some basic definitions on connectivity. A graph, or multi-
graph,G is k-connected if there arek vertex-disjoint paths between any two vertices
of G. 1-connected, 2-connected, and 3-connected graphs are usually called connected,
biconnected, and triconnected, respectively. It is well known thatG is k-connected if
there is no set ofk−1 elements, each a vertex or an edge, whose removal disconnectsG.
Such a set is called a separating(k− 1)-set. Separating 1-sets and 2-sets of vertices are
called cutvertices and separation pairs, respectively.

The biconnected components of a connected graph (also called blocks) are:

(a) Its maximal biconnected subgraphs.
(b) Its separating edges together with their endpoints (trivial blocks).

The triconnected components of a biconnected graphG are defined as follows [5],
[12]. If G is triconnected, thenG itself is the unique triconnected component ofG.
Otherwise, let(u, v) be a separation pair ofG. We partition the edges ofG into two
disjoint subsetsE1 andE2 (|E1|, |E2| ≥ 2), such that the subgraphsG1 andG2 induced
by them have only verticesu andv in common. We continue the decomposition process
recursively onG′1 = G1 + (u, v) and G′2 = G2 + (u, v) until no decomposition is
possible. The resulting graphs are each either a triconnected simple graph, or a set of
three multiple edges (triple bond), or a cycle of length three (triangle). Thetriconnected
componentsof G are obtained from such graphs by merging the triple bonds into maximal
sets of multiple edges (bonds), and the triangles into maximal simple cycles (polygons).
The triconnected components ofG are unique. See [5] and [12] for further details.

In the description of time bounds we use standard concepts of amortized complexity
[10].

3. Biconnected Graphs. In this section we consider the problem of performing on a
biconnected graph a sequence ofThreePaths, InsertVertex, andInsertEdgeoperations.

3.1. SPQR-Tree. Let G be a biconnected graph. Asplit pair of G is either a separation
pair or a pair of adjacent vertices. Asplit componentof a split pair{u, v} is either an edge
(u, v) or a maximal subgraphC of G such that{u, v} is not a split pair ofC. Let {s, t}
be a split pair ofG. A maximal split pair{u, v} of G with respect to{s, t} is such that,
for any other split pair{u′, v′}, verticesu, v, s, andt are in the same split component.

In the example of Figure1(a) the split pairs include{v4, v8} and{v1, v2}, the subgraph
induced byv4, v5, v6, v7, andv8 is a split component,{v5, v7} is a split pair that is not
maximal with respect to{v1, v14}.

Let ebe an edge ofG between verticess andt , called thereference edge. The SPQR-
treeT of G with respect toe describes a recursive decomposition ofG induced by its
split pairs. TreeT is a rooted ordered tree whose nodes are of four types: S, P, Q, and R.
Each nodeµ of T has an associated biconnected multigraph, called theskeletonof µ,
and denoted byskeleton(µ). TreeT is recursively defined as follows (see Figure1):

Trivial Case: If G consists of exactly two parallel edges betweens and t , thenT
consists of a single Q-node whose skeleton isG itself.

Parallel Case: If the split pair{s, t} has at least three split componentsG1, . . . ,Gk

On-Line Maintenance of Triconnected Components with SPQR-Trees 305

Fig. 1.(a) A biconnected graphG. (b) SPQR-treeT of G with respect to reference edge(v1, v14) and skeletons
of the P-, S-, and R-nodes.

(k ≥ 3), the root of T is a P-nodeµ. Graphskeleton(µ) consists ofk parallel
edges betweens andt , denotede1, . . . ,ek, with e1 = e.

Series Case: Otherwise, the split pair{s, t} has exactly two split components, one of
them is the reference edgee, and we denote the other split component byG′. If G′

has cutverticesc1, . . . , ck−1 (k ≥ 2) that partitionG into its blocksG1, . . . ,Gk,
in this order froms to t , the root ofT is an S-nodeµ. Graphskeleton(µ) is the
cyclee0, e1, . . . ,ek, wheree0 = e, c0 = s, ck = t , andei connectsci−1 with ci

(i = 1, . . . , k).
Rigid Case: If none of the above cases applies, let{s1, t1}, . . . , {sk, tk} be the maximal

split pairs ofG with respect to{s, t} (k ≥ 1), and, fori = 1, . . . , k, let Gi be the
union of all the split components of{si , ti } but the one containing the reference
edgee. The root ofT is an R-nodeµ. Graphskeleton(µ) is obtained fromG by
replacing each subgraphGi with the edgeei betweensi andti .

306 G. Di Battista and R. Tamassia

Except for the trivial case,µ has childrenµ1, . . . , µk in this order, such thatµi is
the root of the SPQR-tree of (multi) graphGi ∪ ei with respect to reference edgeei

(i = 1, . . . , k). The endpoints of edgeei are called thepolesof nodeµi . The tree so
obtained has a Q-node associated with each edge ofG, except the reference edgee. We
complete the SPQR-tree by adding another Q-node, representing the reference edgee,
and making it the parent ofµ so that it becomes the root.

An example of the SPQR-tree is shown in Figure1. The maximal split pairs with
respect to reference edge(v1, v14) are:

• Edges(v1, v4), (v1, v2), (v2, v4), (v1, v3), (v4, v3), (v2, v3), (v1, v8), (v3, v8), (v3, v12),
(v12, v8), (v12, v14). Each such edge is associated with a Q-node child of R-nodeµ.
• {v4, v8}, which are the poles of the R-node child ofµ.
• {v8, v14}, which are the poles of a P-node child ofµ.
• {v2, v12}, which are the poles of the other P-node child ofµ.

The next lemmas follow directly from the above definitions:

LEMMA 1. Two S-nodes cannot be adjacent inT . Two P-nodes cannot be adjacent
in T .

LEMMA 2. Letµ be a node ofT . We have:

• If µ is an R-node, then skeleton(µ) is a triconnected graph.
• If µ is an S-node, then skeleton(µ) is a cycle.
• If µ is a P-node, then skeleton(µ) is a triconnected multigraph consisting of a bundle

of multiple edges.
• If µ is a Q-node, then skeleton(µ) is a biconnected multigraph consisting of two

multiple edges.

LEMMA 3. The skeletons of the nodes ofT are homeomorphic to subgraphs of G. Also,
the union of the sets of split-pairs of the skeletons of the nodes ofT is equal to the set
of split-pairs of G.

Let v be a vertex ofG. Theallocation nodesof v are the nodes ofT whose skeleton
containsv. The following property is immediate:

LEMMA 4. Two vertices have a common allocation P-node if and only if they have more
than two common allocation nodes.

The least common ancestorµ of the allocation nodes ofv is itself an allocation node
of v and is called theproperallocation node ofv, denotedµ = proper(v). In the example
of Figure1, vertexv4 is allocated at the two R-nodes, and has proper allocation nodeµ. If
v = s or v = t (the endpoints of the reference edge) we conventionally defineproper(v)
as the unique child of the root ofT (recall that the root ofT is the Q-node of the
reference edge). Ifv 6= s, t , nodeµ = proper(v) is either an R-node or an S-node; also,
µ is the only allocation node ofv such thatv is not a pole ofµ. The set of verticesv with
proper allocation nodeµ is denotedproperset(µ). If µ is a (proper) allocation node ofv,

On-Line Maintenance of Triconnected Components with SPQR-Trees 307

we say thatv is (properly) allocated atµ. Note that ifµ is an S- or R-node,properset(µ)
is not empty, while ifµ is a P- or Q-node,properset(µ) is empty unlessµ is the unique
child of the root.

It is possible to show that SPQR-trees of the same graph with respect to different
reference edges are isomorphic and are obtained one from the other by selecting a
different Q-node as the root. SPQR-trees are closely related to the classical decomposition
of biconnected graphs into triconnected components [5], [12]. Namely, the triconnected
components of a biconnected graphG are in one-to-one correspondence with the internal
nodes of the SPQR-tree: the R-nodes correspond to triconnected graphs, the S-nodes to
polygons, and the P-nodes to bonds. Also, the SPQR-tree extends the notion of tree of
triconnected components [12] by introducing the concepts of poles, allocation nodes,
and proper allocation nodes, which are crucial to the developments of this paper. Note
that our definitions are simpler than the ones originally given by Tutte [12]. SPQR-trees
of planar directed graphs were introduced in [1] and applied to the problem of on-
line planarity testing. In this paper we extend the concept of SPQR-trees to nonplanar
undirected graphs.

LEMMA 5. The SPQR-treeT of G has m Q-nodes and O(n) S-, P-, and R-nodes. Also,
the total number of vertices of the skeletons stored at the nodes ofT is O(n).

PROOF. Clearly, there arem Q-nodes. For each S- or R-nodeµ, we consider a vertex of
properset(µ). Such vertices are all distinct, so that there are at mostn S- and R-nodes.
Also, there are at mostn+1 P-nodes because the parent of a P-node is either an S-node,
an R-node, or the Q-node at the root. Finally, since exactly two vertices of the skeleton
of a node (the poles) are not properly allocated at that node, the total number of vertices
of the skeletons stored at the nodes ofT is O(n).

3.2. Queries

LEMMA 6. OperationThreePaths(v1, v2) returnstrue if and only if there is a P-node
or an R-nodeχ such thatv1 andv2 are both allocated atχ .

PROOF. (If) By Lemma2, skeleton(χ) is triconnected and hence contains three vertex-
disjoint paths betweenv1 and v2. By Lemma3, skeleton(χ) is homeomorphic to a
subgraph ofG, and thusG contains three vertex-disjoint paths betweenv1 andv2.

(Only-If) Assume that there is no P- or R-node where bothv1 andv2 are allocated.
We show thatv1 andv2 are separated by a pair of vertices or by a vertex and an edge.
We consider two cases:

• Verticesv1 andv2 are both allocated at an S-nodeµ.
If v1 andv2 are not adjacent inskeleton(µ), then they are separated inG by the pair
of vertices neighbor ofv1 (or v2) in skeleton(µ). Else,v1 andv2 are both allocated at
a Q-node associated with an edgee of G between them, and they are separated bye
and by any other vertex ofskeleton(µ) distinct fromv1 andv2.
• There are no nodes wherev1 andv2 are both allocated.

Letµ1 = proper(v1) andµ2 = proper(v2), and denote withsi andti the poles ofµi

308 G. Di Battista and R. Tamassia

(i = 1, 2). If µ1 is a descendant ofµ2, thenv1 andv2 are separated by{s1, t1}. If µ2

is a descendant ofµ1, thenv1 andv2 are separated by{s2, t2}. Otherwise,v1 andv2

are separated by either{s1, t1} or {s2, t2}.

The following lemma shows that the condition of Lemma6 can be efficiently tested
if the proper allocation nodes of the vertices are known. It is easily proved by means of
a case analysis.

LEMMA 7. Verticesv1 andv2 are allocated at the same P- or R-nodeχ if and only if
one of the following conditions is satisfied:

• proper(v1) = proper(v2) = χ (in this caseχ is an R-node or the unique child of the
root).
• v1 is a pole ofχ , with χ = proper(v2) (in this caseχ is an R-node).
• v2 is a pole ofχ , with χ = proper(v1) (in this caseχ is an R-node).
• v1 and v2 are the poles ofχ , and the parentχ ′ of χ is an S-node(in this case

proper(v1) = χ ′ or proper(v2) = χ ′).

In a static environment operationThreePathscan be efficiently supported with the
following data structure:

• The SPQR-tree ofG without the Q-nodes children of R-nodes, where each node
stores its type, its poles (but not its skeleton), and a pointer to its parent, called the
parent-pointer. The removal of Q-nodes children of R-nodes eliminates redundant
information and reduces the space requirement toO(n).
• For each vertex, a pointer to its proper allocation node. Such pointers are called

proper-pointers.
• For each vertexv properly allocated at an S-nodeµ, pointers to the (at most two)

children ofµ of whichv is a pole. Such pointers are calledS-pointers.

By Lemma5, this data structure usesO(n) space. Also, it can be constructed in
O(n+m) time using a variation of the algorithm given in [5]. The algorithm for operation
ThreePathsconsists of testing the conditions of Lemma7. This is done by accessing nodes
proper(v1), proper(v2), and their parents by using the proper-pointers ofv1 andv2, and
the parent-pointers inT . Also, if proper(v1) is an S-node, we use the S-pointers ofv1 to
verify the last condition of Lemma7, and similarly forv2. The correctness follows from
Lemma6. We obtain:

THEOREM1. Let G be a biconnected graph with n vertices and m edges. There is an
O(n)-space data structure for G that supports operationThreePathsin O(1) time, and
can be constructed in O(n+m) time.

Note that by storing at each node of the SPQR-tree its distance from root, we can
also return a separation pair or a vertex-edge pair whose removal disconnectsv1 from
v2 whenever operationThreePaths(v1, v2) returnsfalse(see the proof of Lemma6). We
detect the case wherev1 andv2 are adjacent and allocated at the same S-nodeµ by using

On-Line Maintenance of Triconnected Components with SPQR-Trees 309

the S-pointers ofv1 andv2. In this case two such S-pointers point to the same Q-node,
associated with edge(v1, v2). The performance bounds are the same as in Theorem1.

3.3. Updates. Our dynamic environment for biconnected graphs consists of perform-
ing a sequence of intermixedThreePaths, InsertEdge, andInsertVertexoperations. This
repertory of operations is complete for the class of biconnected graphs, since any bicon-
nected graphG with n vertices andm edges can be assembled starting from the triangle
graph (a graph consisting of a cycle with three vertices and edges) with a sequence
of n − 3 InsertVertexandm− 3 InsertEdgeoperations. Also, such a sequence can be
computed inO(n + m) time [2]. Note that if the vertices ofG are labeled, the above
assembly is performed starting from a triangle graph with properly chosen vertex labels.

The effect ofInsertVertex(v, v1, v2) on the structure of the SPQR-tree is to replace
the Q-node of edge(v1, v2) with an S-node having children Q-nodese1 ande2. If the
new S-node is a child of an S-node, it is absorbed into its parent. If, before operation
InsertVertex(v, v1, v2), edge(v1, v2) is the reference edge, then after the operation the
reference edge becomes undefined. In this case we choose(v1, v) as the new reference
edge.

In the example of Figure2, vertexv15 is inserted on the reference edge(v1, v14), and
the new reference edge becomes(v1, v15).

The restructuring of the SPQR-tree caused byInsertEdge(v1, v2) is more complex
(see the example in Figure3). We describe the restructuring with respect to a nonrooted
version ofT . Note that the skeletons of the nodes, and hence the allocation nodes of a
vertex, do not depend on the choice of root node. By Lemma6, only the vertices of the
skeletons are used to answer operationThreePaths. Hence, we do not need to discuss the
updates to the skeleton edges.

Two fundamental restructuring primitives aremergingR-nodes andsplittingS-nodes.
Merging two R-nodes consists of identifying the nodes and unioning their sets of neigh-
bors and skeleton vertices. Splitting an S-node is defined below.

Letµ be an S-node and letµ0, . . . , µk−1 (k ≥ 3) be the circular sequence of neighbors
ofµ. Note that, by Lemma1, nodesµ0, . . . , µk−1 are not S-nodes. Also, letv0, . . . , vk−1

be the vertices ofskeleton(µ), where(vi , vi+1) is an edge ofskeleton(µi). Splittingµ
betweenµi andµj consists of replacingµ with two new S-nodes,ν1 andν2, with the
circular sequence of neighbors given byµi+1 · · ·µj−1 andµj+1 · · ·µi−1, respectively. If
νi has no neighbors, then it is removed.Splittingµbetweenvi andvj consists of replacing
µ with two new S-nodes,ν1 andν2, with the circular sequence of neighbors given by
µi · · ·µj−1 andµj · · ·µi−1, respectively. Ifνi has no neighbors, then it is removed.
Splittingµ betweenµi andvj is similarly defined.

Now we are ready to describe the restructuring of the (unrooted) SPQR-tree in con-
sequence of operationInsertEdge(v1, v2). Let λ be a new Q-node, associated with the
new edge(v1, v2). We distinguish five cases:

1. v1 andv2 have exactly one common allocation nodeµ, which is an R-node.
We simply add a tree edge betweenλ andµ.

2. v1 andv2 have exactly one common allocation nodeµ, which is an S-node.
We splitµ betweenv1 andv2, yielding nodesν1 andν2, and replace it with a new
P-nodeν adjacent toλ, ν1, andν2.

310 G. Di Battista and R. Tamassia

Fig. 2. Example of restructuring of the SPQR-tree in operationInsertVertexwhen the new vertex is inserted
on the reference edge: (a) beforeInsertVertex; (b) afterInsertVertex.

3. v1 andv2 have a common allocation P-nodeµ (such a P-node is unique).
We simply add a tree edge betweenλ andµ.

4. v1 andv2 have exactly two common allocation nodesµ1 andµ2.
Nodesµ1 andµ2 are adjacent inT . We replace the tree edge(µ1, µ2) with a new
P-nodeν adjacent toλ, µ1, andµ2.

5. v1 andv2 do not have common allocation nodes.
Let5 be the minimal path inT whose extreme nodesµ1 andµ2 are allocation nodes
of v1 andv2, respectively.

On-Line Maintenance of Triconnected Components with SPQR-Trees 311

Fig. 3. Example of restructuring of the SPQR-tree in operationInsertEdge: (a) beforeInsertEdge; (b) after
InsertEdge.

(a) Remove all the edges of5.
(b) Split every S-nodeµ of 5 between its neighbors in5, or betweenvi and the

unique neighbor ofµ in 5 if µ = µi (i = 1 or 2).
(c) Merge all the R-nodes of5 into a new R-nodeν, whose skeleton vertices are the

union of all the vertices of the skeletons of the R-nodes and P-nodes of5, plus
v1 andv2.

(d) Connect toν, by means of new tree edges, Q-nodeλ, the former P-nodes of5,
and the new nodes created in Step5(b).

(e) Absorb the degree-2 S- and P-nodes neighbors ofν into edges.

In the example of Figure3 we illustrate operationInsertEdge(v7, v10). Part (a) shows
the SPQR-tree before the insertion, with path5 drawn with thick lines. Part (b) shows

312 G. Di Battista and R. Tamassia

the SPQR-tree after the insertion. Note the split of the S-node and the absorption of the
P-node that are on path5.

By Lemma4, the above five cases are exhaustive. Concerning the correctness of
Case5, observe that the split pairs associated with the edges of path5, except those
associated with P-nodes, are no longer split pairs after the insertion.

In the rooted version of the SPQR-treeT , the above restructuring corresponds to
performing a sequence of merge and split operations on the sets of children and sets of
properly allocated vertices for selected R- and S-nodes ofT . Hence, the circular split of
an S-node reduces toO(1) standard splits of a linear sequence. The action takes place
along a subpath of the path ofT betweenµ1 = proper(v1) andµ2 = proper(v2).

We measure the complexity of the restructuring in terms of the number of the following
elementary operations: access to the parent of a node, merge of two sets (of children
or of properly allocated vertices), and split of a set (of children or of properly allocated
vertices). In the following lemma, the amortization refers to a sequence of updates starting
from the triangle graph.

LEMMA 8. The SPQR-tree can be maintained with O(1) elementary operations per up-
date(InsertVertexor InsertEdge).The bound is worst case forInsertVertexand amortized
for InsertEdge.

PROOF. The bound forInsertVertexis immediate from the above description. Regarding
InsertEdge, the nontrivial case is whenv1 andv2 do not have common allocation nodes,
and the number of elementary operations can beÄ(n) in the worst case. However, their
amortized number isO(1) as the following analysis shows.

We define thepotential8 of T as

8 = c · |R| + c ·
∑
µ∈P

deg(µ),

where|R| is the number of R-nodes,P is the set of P-nodes,deg(µ) is the number of
children of nodeµ, andc is a constant to be determined later.

By Lemma5,8 = O(n). Let N be the number of elementary operations performed in
anInsertEdgeoperation, and letA = N+18 be the corresponding amortized quantity.

A constant number of elementary operations is performed at each node of5, so that
N ≤ a · l + b, wherel is the length of path5, anda andb are constants.

Let R5 and P5 be the sets of R- and P-nodes on path5, respectively. Since, by
Lemma1, there are no two consecutive S-nodes in5, we have that|R5| + |P5| ≥
(l − 1)/2. Since all R-nodes of5 are merged and the degree of all P-nodes of5 is
decreased by one, we have that18 = −c · (|R5| − 1+ |P5|) ≤ −c · (l − 3)/2.

Hence, the amortized number of elementary operations is

A ≤
(
a− c

2

)
· l + b+ 3c

2
.

By choosingc = 2a, we have thatA = O(1).

On-Line Maintenance of Triconnected Components with SPQR-Trees 313

Fig. 4.Representation of the nodes of the SPQR-tree in the dynamic data structure.

We use the following dynamic data structure:

• The SPQR-treeT of G without the Q-nodes children of R-nodes.
• For each nodeµ of T , depending on the type ofµ, we represent the set of children of
µ and the set of properly allocated vertices,properset(µ), as follows (see Figure4):

— For an R-node we use thecondensible nodestructure of [13], whereproperset(µ)
is a union-find data structure with amortized time complexityO(α(k, n)) [11] per
operation (α(k, n) denotes the well-known Ackermann’s function inverse). Also,
each child ofµ has a pointer to an element ofproperset(µ).

— For an S-node we represent the children and proper vertices (which form a sorted
sequence) as a split-find data structure that supports insert, split, and find operations
in O(1) amortized time [4], [6].

— Finally, we use direct pointers for the children of a P-node, whose setproperset(µ)
is empty.

THEOREM2. A data structure for biconnected graphs exists that supports a sequence of
k operations, each aThreePaths, InsertEdge,or InsertVertex,starting from the triangle
graph, in time O(k · α(k, n)), where n is the number ofInsertVertexoperations. At any
time the space requirement is linear in the current number of vertices.

PROOF. With the above data structure, finding the proper allocation node of a vertex and
accessing a parent R- or S-node needs a preliminary find operation and takesO(α(k, n))
amortized time. Our analysis of the split and merge operations in the restructuring of
the SPQR-treeT shows that split operations are performed only on S-nodes, while
union operations are performed only on R-nodes (see Figure5). Transfers of children or
properly allocated vertices between nodes happens only through insertions and deletions
of individual elements (see, e.g., Figure5(b)).

Hence, the lack of interaction between the union-find and split-find data structures
implies anO(α(k, n)) amortized time bound for each elementary operation performed
in the restructuring ofT . By Lemma8, we conclude that a sequence ofk operations,
each aThreePaths, InsertEdge, or InsertVertex, starting from the triangle graph, takes
total timeO(k · α(k, n)).

314 G. Di Battista and R. Tamassia

Fig. 5. Examples of merge and split operations: (a) Merge of R-nodes. (b) Split of an S-node. Note that the
poles of the R-node, formerly in the proper allocation set of the S-node, are transfered to the proper allocation
set of the R-node.

4. General Graphs. In this section we extend our techniques to general (nonbicon-
nected) graphs. First, we consider connected graphs, and then nonconnected graphs.

4.1. BC-Tree. Let G be a connected graph withn vertices. TheBC-treeB of G has a
B-node for each block (biconnected component) ofG, and a C-node for each cutvertex
of G. Edges inB connect each B-nodeµ to the C-nodes associated with the cutvertices
in the block ofµ. The BC-tree is rooted at an arbitrary B-node. Also, the B-node of each
nontrivial blockB stores the SPQR-tree ofB. Observe that the number of blocks ofG
is O(n), and the total number of vertices in the blocks ofG is O(n) as well.

The BC-tree is a variation of the data structures for maintaining biconnected compo-
nents described in [9] and [13]. The innovation introduced here is attaching an SPQR-tree
at each B-node.

If vertex v is a cutvertex,bcproper(v) denotes the C-node associated withv. Other-
wise,bcproper(v) denotes the B-node of the unique block containingv. It is easy to see
that, knowingµ1 = bcproper(v1) andµ2 = bcproper(v2), we can determine inO(1)

On-Line Maintenance of Triconnected Components with SPQR-Trees 315

time whetherv1 andv2 are in the same block ofG [9]: namely the block associated with
nodeµ contains verticesv1 andv2 if and only if the undirected path ofB betweenµ1

andµ2 containsµ but no other B-node. This is equivalent to testing whether one of the
following eight mutually exclusive conditions is verified:

• µ = µ1 = µ2 (neitherv1 norv2 are cutvertices).
• µ = µ1 andµ2 is the parent ofµ (v1 is not a cutvertex, andv2 is a cutvertex).
• µ = µ2 andµ1 is the parent ofµ (v1 is a cutvertex, andv2 is not a cutvertex).
• µ = µ1 andµ is the parent ofµ2 (v1 is not a cutvertex, andv2 is a cutvertex).
• µ = µ2 andµ is the parent ofµ1 (v1 is a cutvertex, andv2 is not a cutvertex).
• µ is the parent ofµ1 andµ2 (bothv1 andv2 are cutvertices).
• µ is the parent ofµ1, andµ2 is the parent ofµ (bothv1 andv2 are cutvertices).
• µ is the parent ofµ2, andµ1 is the parent ofµ (bothv1 andv2 are cutvertices).

4.2. Updates. We add to our repertory of updates, operationAttachVertex. The restruc-
turing of the BC-tree in consequence of operationAttachVertex(v, u) consists of adding
a new B-node for the trivial block(u, v), and a new C-node for vertexu if it was not
formerly a cutvertex.

We now examine the structural changes of the BC-tree when operation
InsertEdge(v1, v2) is performed onG. If v1 and v2 are in the same blockB of G,
then the primary structure of the BC-tree stays unchanged, and we process the inser-
tion in the secondary structure (SPQR-tree) of the B-node ofB. Otherwise, the effect
of InsertEdgeis to merge the “old blocks” corresponding to the B-nodes on the path
5 between nodesµ1 = bcproper(v1) andµ2 = bcproper(v2) into a “new block.” The
primary structure ofB is updated by means of a sequence of merge operations. To update
the secondary structure, we need to construct efficiently the SPQR-tree of the new block
from the SPQR-trees of the old blocks, as follows:

1. Create a new Q-nodeλ for the newly inserted edge(v1, v2).
2. For each B-nodeµ of 5, let B be the block ofµ (B is an old block), and letu and
v be the vertices ofB associated with the C-nodes neighbors ofµ in 5. If µ = µi ,
then letu = vi , and letv be the vertex associated with the unique neighbor C-node
of µ in 5 (i = 1, 2). We add a fictitious edgeeB betweenu andv in B, and update
the SPQR-tree ofB accordingly. LetµB be the Q-node of the fictitious edgeeB.

3. Let B∗ be the old block of maximum size (number of vertices). For each old block
B 6= B∗, we reroot the SPQR-tree ofB at Q-nodeµB.

4. Replace Q-nodeµB∗ with a new S-nodeν, and connect it toλ and to nodeµB for
each old blockB 6= B∗. The order of the children ofν is given by the sequence of
B-nodes along5.

5. Absorb into tree edges the degree-2 Q-nodes of the fictitious edges.

Informally speaking, the correctness of the above algorithm is justified by the fact
that the old blocks plus the newly inserted edge form a “ring,” which is represented by
an S-node. The reason for rerooting all the old blocks but the largest one is that each
vertex is involved in no more than a logarithmic number of rerootings, since after each
rerooting the size of its block at least doubles.

Rerooting the SPQR-tree of a blockB can be easily done in time proportional to

316 G. Di Battista and R. Tamassia

the number of vertices ofB. Clearly, the number of R-nodes and the degrees of the P-
nodes is not affected by the rerooting so that the potential of the SPQR-tree of blockB,
as defined in the proof of Lemma8, stays unchanged. Note that although the allocation
nodes of each vertex remain the same, the proper allocation node of each vertex in general
changes. This implies a rebuilding of the union-find and split-find data structures, which
can also be done in time proportional to the number of vertices ofB.

In the following we determine the time complexity of maintaining the BC-tree in
a sequence ofThreePaths, InsertEdge, InsertVertex, andAttachVertexoperations. We
perform a separate amortized analysis for the numberN of elementary operations per-
formed, and the timet to rebuild the SPQR-trees of the blocks.

We denote the old blocks withB1, . . . , Bk, whereBk = B∗, and letni + 1 be the
number of vertices of blockBi . Note that the new block has

∑k
i=1 ni + 1 vertices.

The numberN of elementary operations performed in operationInsertEdgeis

N =
k∑

i=1

Ni ,

whereNi is the number of elementary operations performed in blockBi .
Let 8Bi be the potential of the SPQR-tree of blockBi , as defined in the proof of

Lemma8. By the proof of Lemma8, we have

Ni +18Bi ≤ d,

whered is a constant.
We define potential function81 for graphG as follows:

81 =
∑

all blocks B

8B + d|B|,

where|B| denotes the number of edges of the BC-treeB and8B is the potential of the
SPQR-tree of blockB, as defined in the proof of Lemma8. Note that81 = O(n).

Sincek − 1 edges of the BC-treeB are contracted as a consequence of operation
InsertEdge, we conclude that the amortized numberA of elementary operations per-
formed inInsertEdgeis

A = T +181 = O(1).

The amortized analysis of the remaining operations is straightforward. Thus, in a
sequence ofl ThreePaths, InsertEdge, InsertVertex, andAttachVertexoperations,O(l)
elementary operations are performed.

Now we turn to the amortized analysis of the rebuilding time. We define the potential
function82 of G as

82 =
∑

all blocks B

nB log
1

nB
,

wherenB + 1 is the number of vertices of blockB.
We have that82 ≤ 0 and|82| = O(n logn). With an appropriate choice of the time

unit, the rebuilding timet in operationInsertEdgeis given by

t = 2(n1+ · · · + nk−1).

On-Line Maintenance of Triconnected Components with SPQR-Trees 317

The variation of potential caused byInsertEdgeis given by

182 = (n1+ · · · + nk) log
1

n1+ · · · + nk
−

k∑
i=1

ni log
1

ni
.

LEMMA 9. Consider the function f(x) = x log(1/x), and let1 ≤ x1 ≤ · · · ≤ xk. We
have

f (x1+ · · · + xk)− (f (x1)+ · · · + f (xk)) ≤ −2(x1+ · · · + xk−1).

PROOF. By induction onk. The base case(k = 2) is easy to prove by a simple analysis
of the binary entropy functionh(x) = f (x)+ f (1− x) for 0< x < 1. For the inductive
step, we have

f (x1+ · · · + xk)− (f (x1)+ · · · + f (xk))(1)

= f (x1+ (x2+ · · · + xk))− f (x2+ · · · + xk)+ f (x2+ · · · + xk)

− (f (x1)+ · · · + f (xk))(2)

= (f (x1+ (x2+ · · · + xk))− (f (x1)+ f (x2+ · · · + xk)))

+ (f (x2+ · · · + xk)− (f (x2)+ · · · + f (xk)))(3)

≤ −2x1− 2(x2+ · · · + xk−1)(4)

= −2(x1+ · · · + xk−1).

By Lemma9, we have that the amortized rebuilding timea of operationInsertEdge
is

a = t +182 = 0.

The remaining operations can only decrease the potential82. Hence, recalling that
−82 = O(n logn), we have that in a sequence ofl ThreePaths, InsertEdge, InsertVertex,
andAttachVertexoperations, the total rebuilding time isO(n logn). We conclude that a
sequence ofk operations, each aThreePaths, InsertEdge, InsertVertex, or AttachVertex,
takes timeO(n logn+ kα(k, n)) = O(n logn+ k).

THEOREM3. A data structure for connected graphs exists that supports a sequence
of k operations, each aThreePaths, InsertEdge, InsertVertex,or AttachVertex,starting
from a single vertex, in time O(n logn + k), where n is the number ofInsertVertex
andAttachVertexoperations. At any time the space requirement is linear in the current
number of vertices.

4.3. Nonconnected Graphs. For graphs that are not connected, we addMakeVertexto
the repertory of update operations, and consider theBC-forest, which is the forest of
the BC-trees of the connected components. When anInsertEdgeoperation joins two
components, we rebuild the BC-tree of the connected component of smaller size, so that
it becomes a subtree of the BC-tree of the larger component. We can charge the rebuilding
time to the vertices of the graph. Each time a vertex is involved in a rebuilding operation,
the size of its connected component at least doubles. Hence, the total rebuilding time is
O(n logn). Recalling Theorem3, we obtain:

318 G. Di Battista and R. Tamassia

THEOREM4. A data structure for general graphs exists that supports a sequence of k
operations, each aThreePaths, InsertEdge, InsertVertex, AttachVertex,or MakeVertex,
starting from the empty graph, in time O(n logn + k), where n is the number of
InsertVertex, AttachVertex,andMakeVertexoperations. At any time the space require-
ment is linear in the current number of vertices.

Very recently La Poutr´e has shown that the time bound of Theorem4 can be reduced
to O(k · α(k, n)) [8].

References

[1] G. Di Battista and R. Tamassia, Incremental Planarity Testing,Proc. 30th IEEE Symp. on Foundations
of Computer Science, 1989, pp. 436–441.

[2] G. Di Battista and R. Tamassia, On-Line Planarity Testing,SIAM Journal on Computing, 25(5) (1996),
to appear.

[3] D. Fussell, V. Ramachandran, and R. Thurimella, Finding Triconnected Components by Local Re-
placements,Automata, Languages and Programming(Proc. 16th ICALP), Lecture Notes in Computer
Science, Vol. 372, Springer-Verlag, Berlin, 1989, pp. 379–393.

[4] H. N. Gabow and R. E. Tarjan, A Linear Time Algorithm for a Special Case of Disjoint Set Union,
J. Comput. Systems Sci., 30 (1985), 209–221.

[5] J. Hopcroft and R. E. Tarjan, Dividing a Graph into Triconnected Components,SIAM J. Comput., 2
(1973), 135–158.

[6] H. Imai and T. Asano, Dynamic Orthogonal Segment Intersection Search,J. Algorithms, 8 (1987), 1–18.
[7] A. Kanevsky, A Characterization of Separating Pairs and Triplets in a Graph,Congress. Numer., 74

(1990), 213–232.
[8] J. A. La Poutré, Maintenance of Triconnected Components of Graphs,Automata, Languages and Pro-

gramming(Proc. 19th ICALP), Lecture Notes in Computer Science, Vol. 623, Springer-Verlag, Berlin,
1992, pp. 354–365.

[9] R. Tamassia, On-Line Planar Graph Embedding,J. Algorithms(to appear). (Preliminary version inProc.
15th ICALP, Lecture Notes in Computer Science, Vol. 317, Springer-Verlag, Berlin, 1988, pp. 576–590.)

[10] R. E. Tarjan, Amortized Computational Complexity,SIAM J. Algebraic Discrete Methods, 6 (1985),
306–318.

[11] R. E. Tarjan and J. van Leeuwen, Worst-Case Analysis of Set-Union Algorithms,J. Assoc. Comput.
Mach., 31 (1984), 245–281.

[12] W. T. Tutte,Graph Theory, Encyclopedia of Mathematics and Its Applications,Vol. 21, Addison-Wesley,
Reading, MA, 1984.

[13] J. Westbrook and R. E. Tarjan, Maintaining Bridge-Connected and Biconnected Components On-Line,
Algorithmica, 7 (1992), 433–464.

