
~ On-Line Monitoring:
A Thtorial

Beth A. Schroeder

State University of New York,
Binghamton

On-line monitoring can

complement formal

techniques to increase

application dependability.

This tutorial outlines the

concepts and identifies the

activities that comprise event-

based monitoring, describing

several representative

monitoring systems.

Computer

lthough monitoring has been around since the early 1960s with
the advent of debuggers, the field has recently made some excit-
ing advances. Monitoring systems today monitor distributed

applications and are often themselves distributed. In addition, they are
increasingly seen as a viable solution to areas of growing concern: lack
of dependability and tools to support distributed applications. Monitoring
has succeeded in these areas and has matured in its ability to give users
freedom in defining what is to be monitored.

Monitoring gathers information about a computational process as it
executes’ and can be classified by its functionality (see Figure 1).
Dependability includes fault tolerance and safety. Performance enhance-

ment includes dynamic system configuration, dynamic program tuning,
and on-line steering.* Correctness checking is the monitoring of an appli-
cation to ensure consistency with a formal specification. It can be used to
detect runtime errors or as a verification technique. Security monitoring
attempts to detect security violations such as illegal login or attempted
file access. Control includes cases where the monitoring system is part of
the target system, a necessary component in providing computational
functionality. Debugging and testing employs monitoring techniques to
extract data values from an application being tested. Performance evalu-

ation uses monitoring to extract data from a system that is later analyzed
to assess system performance.

I focus on four of the seven functional areas: dependability, performance
enhancement, correctness checking, and security. The systems in these
functional areas exhibit common characteristics. First, the monitor func-
tions as an external observer of the target software. Unlike control moni-
tors, external observers are not required to provide computational
functionality. Second, the systems are designed to monitor the target soft-
ware and respond while the target software is operational. This forces the
monitoring system to react in a timely manner to events as they occur in
the target system. (Debuggers are not so constrained, because they either
slow the application’s execution rate or simply gather trace data for later
analysis or replay.) Lastly, the monitoring component is a permanent part
of the overall system, although at times it may run at reduced functional-
ity. (This is unlike performance evaluation tools that are, like some hard-
ware test tools, attached to a system.)

We call a monitoring system that

l is an external observer,
l monitors a fully functioning application, and
l is generally intended to be permanent

an on-line monitoringsystem. These systems often do more than just gather
information; they interpret the gathered information and respond appro-
priately. On-line monitoring systems can therefore provide increased
robustness, security, fault-tolerance, and adaptability.

0018.9162/95/14.00 i 1995lEEE

CONCEPTS AND TERMINOLOGY

An on-line monitoring system is a process or set of pos-
siblydistributed processes whose function is the dynamic
gathering, interpreting, and acting on information con-
cerning an application as that application executes. In an
event-based monitoring system, which I discuss here, the
gathered information arrives at the monitoring system in
the form of events. An event describes an activity usually
involving just a small part of the application state space.
Events can be grouped into three primary categories:

l hardware-level events,
l process-level events, and
l application-dependent events.

Hardware-level events are low-level activities such as
page faults, sampling of a cache miss counter, and I/O
channel activity. In Autonet, for example, events include
exceeded threshold on corrupt packets, exceeded thresh-
old on stuck links, or excessive violations occurring from
such things as static on a network line.

Process-level events are events observable external to
the process. Figure 2 illustrates event activity at this level.
Communication between a program and file (or device)
is evident by observing communication between the appli-
cation and the file subsystem (in a Unix-based system).
Communication between processes is similarly visible by
observing activity occurring between an application and
the interprocess communication subsystem, Process state
information is available in the process control subsystem.

Application-dependent events describe activity inter-
nal to an application. The types of application-dependent
events that a monitoring system defines for use depend
on the monitoring system’s purpose. Definingjust the right
event set can be difficult. What set of events is sufficient
to capture the desired behavior in the application? Is it
enough to capture changes to selected variables and mes-
sages passed between processes, or is a higher-level view
needed to observe, for example, changes to the member-
ship of a group of processes?

Sensors

A sensor is an entity that observes the behavior of a
small part of the application system state space. Upon
being triggered, a sensor generates an event. A sensor is
triggered either by a change to the entity it observes or by
a request from the monitoring system. When triggered by
a change to the entity, the sensor is said to trace the entity.
Tracing is performed synchronously with the change in
the value of the entity. When the value of the object
changes, the sensor reports the new value to the moni-
toring system.4 How does the sensor know there has been
a change to the entity? Most frequently, sensors are placed
in the target system at locations where changes to the
entity occur. The sensor code is then executed immedi-
ately after the change occurs.

Sampling, on the other hand, is the on-demand collec-
tion of information by a monitoring program and is asyn
chronous with the change in the entity’s value. When a
monitoring routine decides to collect an entity’s value, it
sends a message to the appropriate sensor, and the sensor
returns the current value.4

In Figure 3, the monitoring system is notified whenever
a change occurs to the temperature variable temp in the
target system. The sensor is a small code segment in the
application address space that is triggered by a change to
temp. Upon being triggered, the sensor captures the vari-
able’s value and sends an event to the monitoring system.

Sensors can include additional functionality. The user
can define conditions that must be satisfied before the
monitoring system is notified. For example, the sensor may
generate an event onlywhen the temperature exceeds 100
degrees Celsius. The condition is effectively a filter, filter-
ing some events while allowing others to pass.

Figure 1. Primary uses of monitoring.

User
program

Figure 2. Externally observable activities.

Figure 3. Sensing a value in a target system.
I

June 1995

Figure 4. Monitoring tasks. The dark oval represents preexecution tasks. The light gray ovals represent

tasks that can be done either before or during execution. The tasks shown as white ovals must be done

during execution.

Actions, event history, and interference

An action is the monitoring system’s response to an
event or set of events. Actions can for example alter the
application state space, report some aspect of application
behavior to the user, or start up a process.

Some monitoring systems maintain an event history,

which may contain all events since system start-up or some
subset of events (for example, the last twenty events of
each sensed entity, or a count of the number of login events
since the system was booted). An event history’s size is
constrained ultimately by the available storage space. It
should be noted that some kind of event history is neces-
sary if the monitoring system is to evaluate behavior as it
occurs over time.

Monitoring systems are often characterized by the level
of interference they impose upon the application. If the
monitoring system requires the use of application
resources (that is, CPU time, I/O devices, or shared com-
munication channels), it is said to be intrusive. Intrusive
monitoring raises the possibility that through collecting
information to analyze target system behavior, one is alter-
ing that very behavior. This is referred to as the Heisenberg

effect for software. If no resources are consumed, the mon-
itoring system is nonintrusive. A nonintrusive monitoring
system has no effect on the order and timing of events in
the application. A monitoring system can be a nonintrusive
gatherer, but intrusive when it executes actions. Most
monitoring systems, particularly those that rely on soft-
ware added to sensors, are intrusive to some degree.
Completely nonintrusive monitoring systems use dedi-
cated hardware for monitoring.

Monitoring approaches

There are three broad approaches to monitoring: hard-
ware, software, and hybrid approaches. Hardware moni-
toring requires instrumenting the hardware platform on
which the application runs. Tsai et al.5 use dedicated hard-
ware to latch data directly off the target system’s internal
buses. Hardware approaches have the advantage of low

Computer

intrusiveness but generally provide very low-level data.
Software monitoring requires instrumenting the appli-

cation source code, system libraries, or compiler. Software
approaches are generally more portable and present infor-
mation at an abstraction level closer to the users’ way of
thinking than, say, binary code or assembly language
instructions, making them easier to use than hardware
approaches.

Hybrid monitoring brings together the nonintrusive
nature of hardware approaches and the flexibility of soft-
ware approaches. Most monitoring systems employ either
software or hybrid monitoring.

Monitoring can occur either synchronously with appli-
cation execution or asynchronously to the execution.
Synchronous checking, or assertion checking, requires that
the user add assertions to the application code. Assertions
are checks to determine if, for a particular section of soft-
ware, the relevant parts of the system state (for example,
variable values or I/O signals) are within the bounds
needed for that section to operate properly.6 Assertions
are placed directly in the application and can only be
checked when encountered during execution. If more fre-
quent checking is needed, asynchronous checking must be
used. Asynchronous checking is done in an external
process that receives events from the application. Most
monitoring systems are of the latter kind.

Monitoring distributed systems
Monitoring distributed systems brings with it its own

set of problems. The main issues in monitoring distributed
systems are as follows:

l Delays in transfering information mean this informa-
tion may be out of date.

l Variable delays in transfering information result in
events arriving out of order.

l The number of objects generating monitoring informa-
tion in a large system can easily swamp monitors.

l In the likely event that the distributed system is hetero-

geneous, a canonical form is needed to encode messages
passed between heterogeneous machines.

MONITORING SYSTEM ACTIVITIES
Many activities, as derived from Snodgrass,’ go into

making monitoring work. These activities are character-
ized by two traits.

l Is the task performed by the user or by the monitoring
system, and

l Is the task performed before execution, during execu-
tion, or both?

In Figure 4, preexecution tasks are shown as the dark-
est ovals (for example, Sensor setup). The light gray ovals
represent tasks that can be done either before or during
execution. The tasks shown as white ovals must be done
during execution. It is desirable to provide as much flexi-
bility as possible by delaying user tasks until later stages.
This lets the user make adjustments as needed without
recompiling the entire monitoring system and application.
In some systems, activities are omitted or combined.

Sensor setup
Sensor setup usually precedes application execution.

Sensor setup performed during execution is difficult in
software-based, application-level monitoring systems
because sensors are generally implemented as embedded
code in the application data space. Sensor configuration
involves deciding what information each sensor will
record and where the sensor will be located, and it can be
done by the monitoring system. Sensor installation, on the
other hand, involves placing the coded sensors at the cor-
rect locations and is generally done by the user. Automated
sensor installation requires the use of dependency analy-
sis like that used in parallel compilers.7

An enabled sensor is ready to collect information. Some
sensors are permanently enabled (that is, permanently
on), whereas others can be individually or collectively
enabled or disabled either automatically or at the user’s
direction.’ Sensor enabling is generally performed by the
monitoring system.

Sensing is the runtime activity of collecting information
about the application. When a sensed event occurs in an
application, it must be conveyed to the monitor. The event
is either conveyed immediately or can be delayed if the
cost of conveying individual events is too high. How events
are conveyed depends on the system architecture. In a sin-
gle-processor or shared-memory system, an event can be
written to a shared-memory location and the monitor noti-
fied by signal or interrupt. In a message-based environ-
ment, events are sent by message.

Event interpretation
Event interpretation is the heart of the monitoring sys-

tem, where the monitoring system interprets the gathered
information. What does the monitoring system need to
allow it to make sense of the information? Hardware-level
and process-level monitoring systems have relatively sim-
ple event interpretation components. For these systems,
the event set is usually fixed and known in advance, so the

event interpretation specification can contain a specific
response for each event type.

Application-dependent monitoring is more difficult. If
a user is looking for error conditions or other violations,
the system needs an event interpretation specification that
contains either a complete description of correct behav-
ior or a description of each error condition. In the former
case, an incoming event is compared to the monitoring
system’s notion of what should be happening to see if the
event is consistent with that notion. IDES8 and Sankar and
Manda19 use this approach.

Where each error condition is described individually, an
event arriving at the monitoring system is compared to the
set of descriptions. A match indicates an error has occurred.
Leveson6 uses this approach in her synchronous monitoring
scheme. The description need not necessarily be of an error
condition. ISSOS and Metal0 both provide a language and
data model (entity-relationship data model) for describing
arbitrary complex scenarios. Incoming events are directed to
the appropriate behavior description. A match occurs when
the events satisfy the description.

Action specification and execution

An action specification is a description supplied by the
user of the action to be taken when significant behavior
occurs. On recognizing a behavior, the monitoring system
executes an appropriate action. Although most monitors
perform some action, often the action does not alter the
application’s state. In some concurrent debuggers, for
example, the monitoring system during execution pas-
sively accepts events, storing them in a repository. On pro-
gram completion, the monitoring system invokes a
program to analyze the events in the repository and for-
mat them for graphical display.

A SAMPLING OF MONITORING
SYSTEMS

I have selected one representative sample from each of
the functional areas that comprise on-line monitoring.
Huang and Kintala’s components enhance the depend-
ability of an application; IDES monitors security viola-
tions; Sankar and Mandal’s methodology provides
correctness checking; and the Falcon system provides a
mechanism for on-line steering of computationally intense
parallel applications. With each sample I focus on the fol-
lowing key questions:

l Events. What are the events?
l Sensing. How is the event data gathered?
l Event interpretation. How does the monitoring system

interpret events?
l Action execution. What response does the monitoring

system make?

The samples amply demonstrate that there are varied
and interesting ways to address each question. At the end
of each sample I briefly discuss the potential advantages

~
~

and/or disadvantages of the approach. See Table 1 for a ,
summary of characteristics. I

Huang and Kintala
Huang and Kintala” have developed a set of software

June1995

,
r-

Table 1. Summary of monitoring system characteristics.

Purpose

Configure
sensors

Huang and Kintala IDES Sankar and Mandal Falcon
Dependability Security Correctness checking On-line program steering

Sensor provided User writes Sensors created by User writes sensors
as library routine sensors before monitor compiler before execution

execution

Install sensors User manually User manually Sensors installed
adds sensors

User manually
adds sensors to automatically adds sensors

before execution kernel before before execution before execution

execution

Enable sensors Always enabled Always enabled Always enabled Enabled/disabled

during execution

Event Built into Profiles and Annotations added User describes
interpretation monitoring statistical models to source event/action
specification system define behavior using view language

Event Match occurs when Match occurs on Match occurs Match occurs
interpretation heartbeat not every event on every event when events

received satisfy condition

in view

Sensing

Action

specification

Action
execution
detected

Sampling Tracing

Restart application Anomaly records

on node or backup provided to user

Executed when Executed when
match occurs anomaly occurs

Tracing Sampling and tracing

Diagnostic information User encodes decision

provided to user routines and actions

Executed when Executed when
inconsistency match occurs
detected

components that are easily incorporated into an existing
application to enhance its level of fault tolerance: watchd
watches an application process and recovers it in the event
the process or node on which the process resides crashes;
libft is used to specify and checkpoint critical data, recover
checkpointed data, log events, and locate and reconnect a
recovered process; and REPL provides facilities for on-line
replication of user-specified files on a backup host. I focus
on watchd, the component responsible for gathering infor-
mation to determine whether a process has crashed.

One approach to sensor setup is to augment the appli-
cation process with a routine that periodically sends a
heartbeat message (that is, an “I am alive” event) to
watchd. When the event arrives, the monitoring system
does nothing. If the heartbeat message is not received
within a specified period of time, the monitoring system
assumes the application is hung and restarts the target
process at an initial or checkpointed state on the host node
or backup node.

DISCUSSION. Watchd has the benefit of being minimally
intrusive. The heartbeat routine is provided as a library
routine so the user need onlylinkwith the library and write
code to periodically invoke the routine. On the other hand,

the approach is limited to detecting only process crash.

Intrusion Detection Expert System (IDES)

IDES8 is a model for a real-time intrusion-detection
expert system. The model proposes to detect numerous
security violations ranging from attempted break-ins by
outsiders to system penetrations and abuses by insiders.
Events in IDES include login, command execution, pro-
gram execution, file access, file protection violation, and
device access. For IDES to be totally transparent to the
user, sensors need to reside in the kernel. A likely place to
install a sensor to detect attempts to log onto a Unix sys-
tem, for example, would be in the login process. When a
user ID is entered, the sensor is triggered and sends an
event to IDES.

To interpret events, IDES matches an incoming event
against a set of profiles. A profile characterizes a subject’s
behavior with respect to an object; it serves as a descrip-
tion of normal activity between a subject and object.
Subjects are the initiators of activities (such as user or
process) while objects are the receivers of activities (such
as files, records, or terminals). When a profile match is
found, the monitor uses the event history and a statistical
model identified in the profile to determine whether the

Computer

current event is consistent with the normal behavior
described by the profile. If the event is normal, it updates
the profile. Otherwise, it is stored as an anomaly and
reported to the operator.

The knowledge possessed by the monitoring system is
of two kinds. The first kind is a set of activity rules that are
applicable independent of the application being moni-
tored; activity rules specify the action to be taken when a
condition is satisfied. For example, when a match occurs
between an event and a profile, the action taken is to
update the profile and check for anomalous behavior. The
second kind is the set of profiles, statistical metrics, and
statistical models that are unique to an application and
must be supplied by the user.

DISCUSSION. Adding a new object would, in the worst
case, involve adding a sensor to the kernel, adjusting pro-
files to include the allowable actions on the new object,
and installing a new statistical model for evaluating the
reasonableness of an action taken against the object. It is
conceivable to update the profiles and statistical models
on-line. Adding a new sensor to the kernel would neces-
sitate rebooting the system, at a minimum.

Sankar and Mandal

Sankar and Manda19 have developed a methodology to
continuously monitor an executing Ada program for spec-
ification consistency. The user annotates an Ada program
with constructs from Anna, a formal specification lan-
guage. Annotations are predicates (that is, Boolean-val-
ued expressions) that express constraints on Ada language
constructs such as data objects, types, subtypes, subpro-
grams, and exceptions. The annotation below constrains
all values of type EVEN to be even numbers. EVEN-CON-

STRAINT is the annotation name.

type EVEN is new INTEGER;

- 1 < < EVEN-CONSTRAINT > >

-lwhereX:EVEN=>Xmod2=0;

Sensing is achieved indirectly by adding annotations to
the target system. By annotating the code, the user is at
the same time selecting the sensor locations. The compiler
transforms the annotations into checking functions, each
function as a separate task. In place of the transformed
annotation, the compiler inserts a call to the checking
function. The call statement then is a sensor, and the
checking function task becomes a monitor. An event
occurs when the call statement is executed.

Since each annotation is transformed into its own mon-
itor, the monitor code is usually quite simple. In EVEN-CON-

STRAINT above, the monitor checks that the parameter is
even and returns the value if the condition is true or raises
an exception otherwise. If an inconsistency occurs, diag-
nostic information is provided.

DISCUSSION. Because of its synchronous checking
approach, sensors can be installed automatically by the
compiler. However, adding another annotation requires
recompiling the application software. Also, because a sep-
arate checking task is created for every annotation, a poten-
tially large number of monitors can exist for an application.

Falcon

Falconi is a set of tools that support on-line steering of
parallel and distributed applications. The approach
offers a way of providing interactivity to high-perfor-
mance applications that separates the interactive com-
ponent from the computationally intensive component
and provides a dynamic link between the two. The inter-
active, or steering, component monitors the application,
displays the information to the end user or submits it to
a steering agent, accepts steering commands from the
user, and enacts changes that affect the application’s exe-
cution.

Events are user defined, involving application-specific
data. As an example, an event can be generated when a
thread has attempted to obtain a mutex lock and another
generated when the thread has succeeded in obtaining the
lock. The user defines the sensors using a sensor specifi-
cation language and manually inserts them in the target
program. Sensors forward events to a local monitor resi-
dent on the target program’s processor, which collects the
events and can apply filters to reduce the monitoring over-
head or analysis tools to produce higher level information.

To interpret events, the gathered events (once filtered and
analyzed) are matched against event/action records stored
in a repository. When the condition in the event/action
record is satisfied, a match occurs and the associated action
is executed. The action might be to perform some actual
steering action on the application, note the occurrence of
some monitoring event for future reference, or simply for-
ward the event for display or further processing.

DISCUSSION. Falcon is the most general of the moni-
tors discussed. It supports sampled sensors, traced sen-
sors, and traced sensors with filtering and computing
capabilities. Sensors can be enabled and disabled. The
monitoring system can be configured to meet the needs of
the application. On-line steering is done either interac-
tively by directly involving the user or by means of user-
developed algorithms. Sensors, however, must be defined
before execution begins and must be installed manually
by the user.

ON-LINE MONITORING IS INCREASINGLY SEEN AS A VIABLE

means of increasing application dependability. Formal
methods, often regarded as a way of guaranteeing a cer-
tain level of dependability, are not without shortcomings.
More importantly, they are difficult to apply comprehen-
sively to large development projects. Design assumptions
made by formal techniques to deal with unpredictability
of the external environment or to simplify a problem can
be violated at runtime. In some cases, it may simply be
unfeasible to formally verify some properties.

On-line monitoring can be used to complement formal
techniques to increase the overall dependability of an
application. In addition, monitoring distributed and par-
allel systems during execution can provide information
that can be used to reconfigure the system, tune the appli-
cation, steer its outcome, or provide visualization of behav-
ior. With monitoring systems today being more general
(less target architecture and application specific), they are
promising tools for wider use in the future. I

June 1995

Acknowledgments
I thank Sudhir Aggarwal, State University of New York,

Binghamton, for his time and suggestions given gener-
ously throughout the development of this article. I also
thank Chandra Kintala, AT&T Bell Laboratories, and
Karsten Schwan, Georgia Tech, for reviewing parts of the
manuscript.

References

1. R. Snodgrass, “A Relational Approach to Monitoring Com-
plex Systems,“ACM Trans. Computer Systems, Vol. 6, No. 2,

May 1988, pp. 156-196.
2. W. Gu, J. Vettrr, and K. Schwan, “AnAnnotated Bibliography

of Interactive Program Steering,” SIGPlan Notices, Vol. 29,

No. 9, Sept. 1994, pp. 140-148.

3. S. Mullender, ed., Distributed Systems, 2nd ed., ACM Press,

New York, 1993, pp. 283-312.
4. M. Kaelbling and D. Ogle, “Minimizing Monitoring Costs:

Choosing Between Tracing and Sampling,” Proc. 23rd Int’l

Conf. SystemSciences, IEEE CS Press, Los Alamitos, Calif. Jan.

1990, pp. 314-320.
5. J.J.P. Tsai et al., “ANoninterference Monitoring and ReplayMech-

anism for Real-Time Software Testing and Debugging,” IEEE

Trans. SofrwareEng., Vol. 16, No. 8, Aug. 1990, pp. 897-916.

6. N. Leveson and T. Shimeall, “Safety Assertions for Process-
Control Systems,“Proc. 13thlnt’l. Symp. Fault-Tolerant Com-

puting, IEEE CS Press, Los Alamitos, Calif., Order No. 477

(microfiche only), 1983, pp. 236-240.

Dependent Dynamic Monitoring of Distributed and Parallel
Systems,“IEEE Trans. Parallel andDistributed Systems, Vol. 4,

No. 7, July 1993, pp. 762-778.

8. D.E. Denning, “An Intrusion-Detection Model,” IEEE Trans.

Software Eng., Vol. 13, No. 2, Feb. 1987, pp. 222-232.

9. S. Sankar and M. Mandal, “Concurrent Runtime Monitoring

of Formally Specified Programs,” Computer, Vol. 26, No. 3,

Mar. 1993, pp. 32-41.
10. K. Marzullo et al., “Tools for Distributed Application Man-

agement,” Computer, Vol. 24, No. 8, Aug. 1991, pp. 42-51.

11. Y. Huang and C. Kintala, “Software-Implemented Fault Tol-

erance: Technologies and Experience,“Proc. 23rdInt’lSymp.
on Fault-Tolerant Computing, IEEE CS Press, Los Alamitos,

Calif., Order No. 3680-02T, 1993, pp. 2-9.
12. W. Gu et al., “Falcon: On-line Monitoring and Steering of

Large-Scale Parallel Programs,“Tech. Report GIT-CC-94-21,

College of Computing, Georgia Institute of Technology,

Atlanta, Ga., 1994.

BethA. Schroeder is a PhD candidate in computer sci-

ence at State University of New York at Binghamton. Cur-

rent research interests include on-line monitoring,

distributed real-time systems, and safety-critical systems.

She received an MS in computer sciencefrom Temple Uni-

versity in 1991, an MBAfrom the University of La Verne in
1986, and a BSc in computer sciencefrom the University of

Southern Mississippi in 1984.

Readers can contact the author via e-mail at beths@cc.

~ 7. D.M. Ogle, K. Schwan, and R. Snodgrass, “Application- gatech.edu

Object-Oriented
Application
Frameworks
edited by Ted G. Lewis

One of the next major steps in
object-oriented design and pro-
gramming is framework design
and programming. This book
addresses the anticipated surge of

interest in what has previously been a little-understood
technology and helps the reader understand the
subtleties of this new technology. The first part is an
introduction to the underlying principles of object-
oriented design. The second is a comparative survey
of frameworks for personal computers and UNIX
workstations. The last part is an illustration of the uses
of frameworks.

352 p39g. .Qril 1995. Softcover. ISBN O-13-213984-7.
Catalog # RSOOO25 - $44.00 Makers / $50.00 List

Now Available on IEEE
Computer Society On-Line

l This month in Computer: Article Summaries, Binary
Critic, Hot Topics, Letters to the Editor, Software Chal-
lenges, and Table of Contents (a new option off the
main menu)

*Abstracts and tables of contents of Computer Society
publications (weeks before publication)

l Conference calendar
l Calls for papers
l Career opportunities
l Volunteer directory
l General membership and subscription information

*Author guidelines and copyright forms
l Computer Society Press Catalog
l Staff contact list
l Senior/staff manager list
l 1994 IEEE fellows

The server is available with a gopher client at info.com-
puter.org or a WWW client at http://www. computer.org.
For more detailed information, send questions on e-mail
to on-line.access@ computer.org.

