

On-line multi-threaded scheduling

Citation for published version (APA):
Feuerstein, E., Mydlarz, M., & Stougie, L. (1999). On-line multi-threaded scheduling. (Memorandum COSOR;
Vol. 9921). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/c35d15d0-09eb-4163-a0e2-03b51589fed7

rUle technische universiteit eindhoven

Idepartment of mathematics and computing science

Memorandum COSOR 99-21

On-line multi-threaded scheduling

E. Feuerstein, M. Mydlarz, L. Stougie

Eindhoven, December 1999
The Netherlands

1

On-line multi-threaded scheduling

Leen Stougie:j:Marcelo Mydlarzt

December 1, 1999

Esteban Feuerstein *

Abstract

This paper presents results on on-line scheduling problems with mul
tiple threads. The jobs are organized in a number of sequences called
threads. Each job becomes available (is presented) only at the moment a
scheduling decision is made on all the preceding jobs in the same thread.
Thus, apart from decisions on scheduling of jobs also decisions are required
on the order of exploring the threads.

We consider two different on-line paradigms. The first paradigm can be
regarded as constructing, in an on-line way, a schedule of the jobs which is
to be executed later, a sort of batch process. The other paradigm models
a real-time planning situation, in which the jobs are immediately executed
at the moment they are assigned to a machine.

We study two classical objective functions: the makespan defined as
the maximum completion time of the jobs, and the average completion
time of the jobs, also called the latency of the jobs.

We establish a fairly complete set of results for these on-line multi
threaded scheduling problems. One of the highlights of our results is that
List Scheduling is an optimal algorithm for the makespan problem under
the real-time on-line model if the number of machines does not exceed
the number of threads. Another one is that for the latency problem on
a single machine under both on-line paradigms there exists a non-trivial
algorithm that is best possible and has competitive ratio equal to the
number of threads.

"Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires, and Instituto de Ciencias, Universidad de General Sarmiento, Argentina.
Partly supported by the KIT program of the European Community under contract n. 131
(DYNDATA), by UBA project EX070/J "Algoritmos eficientes para problemas on-line con
aplicaciones" and UBA project EX209 "Modelos y tecnicas de optimizacion combinatoria".
e-mail: efeuerst@dc.uba.ar

tDepartment of Computer Science, Rutgers University, Piscataway, New Jersey 08854
8019. e-mail: marcem@cs.rutgers.edu

tCombinatorial Optimization Group, Faculty of Mathematics, Technical University Eind
hoven, P.O. Box 513, 5600MB Eindhoven, The Netherlands. Supported by the TMR Network
DONET of the European Community ERB TMRX-CT98-0202 and by the KIT program of
the European Community under contract n. 131 (DYNDATA). e-mail: leen@win.tue.nl

Keywords: on-line algorithms, multiple threads, competitive analysis, schedul
ing problems.

1 Introduction

Scheduling problems appear and have appeared in literature and practice in
an enormous variety. The common characteristic of problems of this type is
that they require decisions on the order in which jobs are to be processed on
machines. In this paper we consider on-line scheduling problems with multiple
threads. On-line scheduling problems are scheduling problems of which the
input is not (completely) known in advance: the information about the jobs
to be processed (or even the jobs themselves) becomes available during the
decision process. In multi-threaded on-line scheduling the jobs are organized in
a number of sequences called threads. Each job becomes available (is presented)
only at the moment a scheduling decision is made on all the preceding jobs in
the same thread. Thus, apart from decisions on scheduling of jobs also decisions
are required on the order of exploring the threads.

The general setting of scheduling problems is that jobs are to be scheduled for
processing on machines such as to obtain a schedule that is optimal according
to some objective. Jobs are characterized by, possibly among others, their
processing times. Therefore in almost all scheduling problems time plays a
central role. E.g., almost all well-known objectives in scheduling are functions
of time. In off-line scheduling this time factor is however not a real-time factor:
a schedule is to be found for the given jobs on the given machines, and that
schedule is to be executed in the future.

In on-line scheduling, time may play that same role or a different one. The
first situation arises in the cases in which the characteristics of jobs are revealed
one by one. Jobs are to be scheduled on the machines directly and irrevocably,
without knowledge of jobs that will be presented later. In such cases again
time comes into the model only via the processing times of the jobs and in the
objective. But time does not really elapse; the decision process is a sort of batch
process. In other settings time comes to playa crucial role during the decision
process: information about jobs is seen while time flows; and time flows while
the previously scheduled jobs are being processed. At any point in time some
jobs may be processed and/or machines may be idle. Newly seen jobs must not
necessarily be processed immediately. Sometimes waiting is necessary (e.g~ in
case all machines are busy at the moment the new job comes in and preemption
of jobs is not allowed), in other cases waiting may be a choice of the algorithm.
Thus, the scheduling process can be seen as a real-time process.

In this paper we consider on-line scheduling problems of both types. We
define two on-line paradigms, related to the different roles that time may play.

Multi-threaded on-line optimization problems have been proposed first in
[5]. In contrast to ordinary on-line optimization, which could be seen as sin-

2

gle threaded or unthreaded problems, information is contained in one or more
threads. The threads imply a certain order in which information becomes avail
able. As soon as the information at the top of a thread has been processed the
next information in that thread becomes available. In the on-line scheduling
problems that we consider this means that we see the jobs on the top of the
threads, and as soon as we have scheduled a job the next job on that thread
will be revealed to us. It is possible to recognize if a thread is or has become
empty.

This framework models situations in which independent clients present their
requests of jobs to be processed. The set of jobs of each client is given in a
sequential way, and may be seen as a thread. An example of this (corresponding
to the real-time paradigm) is given by an operating system that has to schedule
a certain number of sequential processes that must be executed at one or more
processors. A situation in which multi-threaded scheduling is a batch process
appears in the usage of redirectors for web server load balancing: a redirector
is a machine that receives HTTP requests from clients and (re)directs them to
different web servers, with the goal of, for example, minimizing the response
time to the clients. Yet another example is provided by a shop schedule. Each
job consists of a number of sequential operations. In this case the threads
correspond to the jobs (see [10]). References on other multi-threaded on-line
optimization problems are [6], [7], [2].

For on-line optimization problems in general and for on-line scheduling prob
lems in particular usually no strategy can be found that gives the optimal so
lution for any input sequence. It has become standard to measure the perfor
mance quality of algorithms for on-line optimization problems through competi
tive analysis, in which the quality of an algorithm is measured as the worst-case
ratio of the value of its solution and that of the optimal off-line solution. For an
overview of the literature on on-line optimization we refer to [4]. An up-to-date
survey on on-line scheduling problems is given in [12].

In this paper we study two classical objective functions: the makespan de
fined as the maximum completion time of the jobs, and the sum of completion
times of the jobs, also called the latency of the jobs. This will be done within a
model where the information is given in the form of multiple threads.

Now follows an overview of the results comprised in the table that can be
found in Section 2.4, after we have specified all aspects of the models we studied
more precisely in the preceding subsections of Section 2. We study the makespan
problem only on more than one machine, since the single machine case is trivial.
We do distinguish between the existence of a single thread and of multiple
threads. The results are proven in Section 3.1.

We show that the single and the multi-threaded on-line makespan problems
under the batch-model are equivalent from a point of view of competitiveness to
the ordinary on-line makespan problem without threads.

Under the real-time model we can show easily that there exists an on-line al
gorithm for the single threaded problem that yields the off-line optimal solution,

3

i.e., being I-competitive. The multiple threaded case is more interesting. We
prove that Graham's classical List Scheduling rule [8] (combined with a round
robin exploration of the threads) is a best possible algorithm in case the number
of machines does not exceed the number of threads by more than 1. Otherwise
it is nearly best possible.

For the latency problem the single machine version is far from trivial, though
the combination of a single machine and a single thread leads to a trivial prob
lem. In Section 3.2 we prove that the competitive ratio of any algorithm for the
on-line latency problem is bounded from below by the number of threads under
both the batch and the real-time model. An algorithm is designed that is best
possible for this problem under both on-line models.

Finally, in Section 3.3 we prove that for the latency problem on multiple
machines no algorithm can have a constant competitive ratio, unless under the
real-time model jobs are organized in a single thread, in which case the optimal
off-line solution is easily achieved.

2 Problem definitions and results

In this section we specify the three components constituting the problems that
we study. First, we define the scheduling aspect. The second subsection concerns
various appropriate on-line models for scheduling problems and the third one
models for threads in on-line optimization. We conclude the section with a table
of results.

2.1 Scheduling

The basic characteristic common to all scheduling problems is that jobs are to
be scheduled for processing on one or more machines. Depending on properties
of machines, restrictions on jobs and particular objective functions, an enormous
variety of scheduling problems emerges. A classification of almost all scheduling
problems is given in [11]. We concentrate on the problems that we study here.

As a machine environment we distinguish between the situations of a single
machine and multiple parallel identical machines. Any machine can process any
job, and a feasible schedule requires that any job is processed on one machine
and at any time any machine processes at most one job.

Each job j is completely characterized by its processing time Pi, j = 1,2, ...
Thus, we do not consider problems in which jobs have time windows. We also
do not allow preemption of jobs. We actually do consider precedence relations
between jobs, but only to the extend in which they emerge from the order in
which jobs appear on the threads. We come back to this later in our discussion
on the various thread models.

As objectives we consider to minimize the well-known makespan, i.e., the
maximum job completion time, and the latency, i.e., the sum of the job com-

4

pletion times. Since minimizing makespan on a single machine has only trivial
solutions, even in on-line settings, we disregard this combination.

2.2 On-line paradigms

In the survey of Sgall [12] various on-line paradigms are distinguished for schedul
ing problems. We stick to models in which the running time of each job is known
at the moment the job is seen by the on-line algorithm. In this paper we make
a main distinction between two paradigms, regarding the role that time plays in
the process of information (new jobs) becoming available.

In the first paradigm, time does not play any role apart from being part of the
input (running times of jobs) and the objective function. The scheduling process
is a batch process in which jobs are assigned to the machines (processors) and
time slots in which they will be executed at a later stage. The on-line nature
of the problem is given by the fact that the jobs are to be scheduled on the
machines irrevocably and with incomplete information. From now on we will
refer to this paradigm as BATCH.

This paradigm has two variations. In the first one the jobs are only assigned
to a machine and each next job assigned to a particular machine is scheduled
for processing directly after the jobs already assigned to that machine. In the
second variation a job is not only allocated to a machine but also assigned a
time slot on that machine equal in length to its processing time. Of course, the
restriction of one job per machine at any time must remain obeyed.

In this paper we do not consider the latter variation. For minimizing makespan
the order of jobs on one particular machine is irrelevant, whence the two vari
ations coincide in their best possible solutions. For minimizing latency they
are essentially different and the second one is (at least theoretically) inter
esting. However, we have not studied the various problems given under that
definition.

In contrast with the previous paradigm, in the second paradigm scheduling
is a real-time process in which, while some jobs are being processed, time is
really elapsing and new jobs may be seen. In our multi-threaded setting, the
next job in a thread becomes available only at the moment the previous jobs
in the same thread have been started, i.e., not before the moment a machine
becomes available to process the immediately preceding job in the thread. We
call this paradigm REAL-TIME.

The off-line counterpart of the REAL-TIME model would be a scheduling
problem with certain precedence restrictions corresponding to the order of the
jobs on the threads.

A variation of the REAL-TIME paradigm in which the processing time of a
job becomes known only at the moment of its completion has not been consid
ered here as announced above.

5

Table 1: Makespan

BATCH REAL-TIME
l.b. u.b. l.b. u.b.

w = 1 1 1
w ~m-I 1.8520 1.9230 2 -11m 2 -11m
w <m-I 2 - 1I (m + 1 - rm..,:.!.l) 2 -11m

2.3 Threads

When jobs are presented on-line in threads, the threads determine the order
in which the jobs will be seen. We distinguish between the two cases in which
jobs are presented in a single thread and in which jobs are presented in multiple
threads. Within the BATCH model the existence of a single thread is exactly
the same as the usual model without threads, which has been studied quite
extensively in the literature (see [12]).

Within the REAL-TIME model introduced above, however, the existence of
a single thread is different from the situation with no threads at all. In the
most natural model with no threads, jobs arrive over time independently of any
scheduling decision about previously presented jobs. The off-line counterpart is
then a scheduling problem with release times of the jobs. In our REAL-TIME
model with a single thread we assume that all jobs are there but we see them
only if all previous jobs have been started processing. The off-line counterpart
is then a scheduling problem with chain-like precedence constraints on the start
times of the jobs.

Again the problem with no threads has been studied in the literature (see
[12]) .

2.4 Results

An overview of the results is given in the Tables 1 and 2. The numbers found
in the column of the BATCH model in Table 1 concern bounds for any number
of machines. We prove and comment on the results in the tables in the following
section.

3 Competitive analysis

First we give two simple lemmas that settle all the I-competitiveness results in
Tables 1 and 2. In the next three subsections we present the other results

Lemma 3.1 There exist i-competitive algorithms for each one of the on-line
scheduling problems under the REAL-TIME model with a single thread.

6

7

Table 2: Latency

o

BATCH REAL-TIME
l.b. u.b. l.b. u.b.

anyw,m=l w w w w
w = 1 and m ~ 2 00 - 1 1
w > 2 and m > 2 00 - 00 -

In the next three subsections we present the other results

3.1 Makespan

PROOF. There is only one feasible solution for such a problem.

Given the fact that a single thread is not different from no thread within the
BATCH model, the corresponding results can be found in the literature [1, 3, 9].
The numbers found in Table 1 are the currently known bounds for the best
possible competitive ratio for any number of machines (see [1]). The precise
value of the best competitive ratio is unknown.

These bounds actually hold for an infinite number of machines. Closing the
gap between these bounds is a challenging research question. For fixed small
numbers of machines, better bounds are known, and for m = 2 and m = 3 List
Scheduling is known to be a best possible algorithm yielding competitive ratio's
of 3/2 and 5/3, respectively (see [12]).

To show that all known bounds hold for the corresponding problems with
multiple threads in the BATCH model as well, we first make the following
observation.

Lemma 3.2 There exist I-competitive algorithms for each one of the on-line
single machine scheduling problems under the BATCH model with a single
thread.

Lemma 3.3 A lower bound on the competitive ratio of anyon-line algorithm
for a problem with a single thread must be a lower bound on the competitive
ratio of anyon-line algorithm for the same problem with multiple threads.

PROOF. At any point in time there is only one job available for scheduling.
Therefore List Scheduling, which schedules each job as soon as a machine be
comes available, yields the optimal solution. 0

PROOF. This is easily seen from the fact that in a w-threaded problem it is
always possible to have w - 1 threads empty or, if this is not appreciated, filled
with jobs with negligibly small processing times. 0

The following theorem shows that within the BATCH model, for the makespan
problem the competitive ratio of the multi threaded problem is at most that of
the single threaded one.

Theorem 3.1 Given any algorithm A for the single threaded BATCH makespan
problem having competitive ratio p, there exists a p-competitive algorithm Aw

for the multi-threaded version.

PROOF. Given algorithm A for the single-threaded problem we construct al
gorithm A w simply by considering the input data of the w threads in a round
robin fashion, i.e., given an arbitrary numbering of the threads it applies algo
rithm A to the sequence given by the first job of the first thread, the first job
of the second thread, and so on until the first job of the last thread, followed
by the second job of the first thread, the second job of the second thread and
so on, skipping threads that have become empty. Thus, Aw ignores the extra
information available in comparison to the single threaded case.

Suppose that Aw is not p-competitive. This means that there is a multi
threaded input o"w such that the cost of A w on o"w is greater than p times the
optimal cost on o"w. Obviously, Aw's cost on o"w is exactly the same as A's

cost on the single thread 0" consisting of the jobs in the order that Aw treats
them. On the other hand, the optimal off-line solution on 0" is the same as that
of the multi-threaded problem on o"w, and therefore, A is not p-competitive, a
contradiction.

That the optimal solutions for the single thread 0" and the multi-threaded
input o"w coincide is true because in the BATCH model any assignment of jobs
to machines can be obtained independently of the order in which the jobs are
presented, and for makespan the order of jobs on each single machine is irrele
vant. 0

We notice that the competitive ratios of algorithms for w-threaded problems
can be much larger than those of their single threaded counterparts as is shown
in [6] for the paging problem and in this work (Section 3.2) for the latency
problem on 1 machine.

The results for the REAL-TIME model with w > 1 threads are given in the
following theorems.

Theorem 3.2 Any algorithm for the w-threaded REAL-TIME makespan prob-
lem is at least 2 - If m 11 -competitive, for m > 1.m+1- ---;;;-

8

PROOF. We define the following problem instance constructed by the adversary.
There are m - 1 jobs with processing time B, the B-jobs. Each of the w threads
starts either with rm~ll or with lm~l J B-jobs. After having scheduled all B
jobs on w - 2 threads two threads remain with B-jobs. The other threads are
now empty. Let us call the remaining non-empty threads Thread 1 and Thread
2. Let Thread 1 be the thread that contains the B-job that is scheduled last
by the on-line algorithm and let bl be the total number of B-jobs on Thread 1.
Threads 1 and 2 are continued with jobs with processing time S < B, S-jobs.
S is chosen such that (m - rm~ll)S = B.

Suppose that a job J of size S or B is scheduled on a machine that has
already been assigned a B-job. Now, the adversary can present a job of size
M = B + S, the M-job, on the same thread immediately behind J. Since J
starts at time B, the M-job cannot start before time B, yielding a makespan of
at least B + M, which will be shown to be too high.

Thus, let us suppose that neither an S-job nor a B-job is scheduled on a
machine that has already a B-job assigned to it. In this case the adversary places
m -1- bl S-jobs on Thread 1, and 1 S-job on Thread 2.

Consider the moment just after all m-1 B-jobs have been scheduled on m-1
different machines. Notice that at this moment none of the S-jobs of Thread
1 can have been scheduled. We can consider the following three situations. In
the first one the S-job on Thread 2 has not been scheduled yet. In the second
one the S-job on Thread 2 has been scheduled to the only machine that does
not have a B-job. In the third one the S-job on Thread 2 has been scheduled
before a B-job (coming from Thread 1).

In the first two situations, all S-jobs (of Threads 1 and 2) will be scheduled
to the same machine (the only one that does not have a B-job), yielding for that
machine a total processing time of(1+(m-1-bl))S ~ (m-rm~ll)S= B.

In the third situation, the m -1- bl S-jobs on Thread 1 cannot start before
time S, since a B-job of Thread 1 starts after the S-job of THread 2. Again the
S-jobs of Thread 1 must be scheduled on the only machine that has no B-job.
The last S-job on this machine will not finish before time S + (m - 1 - bdS ~

(m - rm~ll)S = B.
In each of these three situations, the adversary presents an M-job behind

the job scheduled last on the same thread. The resulting schedule has makespan
B+M=2M-S.

Clearly, an optimal off-line algorithm schedules all jobs of the thread that
contain the M-job first. Notice that, in all situations, there are at most m jobs
on this thread. The remaining jobs are then scheduled in a list scheduling way
afterwards. This results in a schedule with makespan M. Thus, the competitive
ratio is at least (2M -S)jM = 2-SjM. The adversary's choice of M = B+S =
(m - rm~ll + l)S, yields the theorem. 0

As a corollary we obtain a lower bound of 2 - 1.. on the competitive ratio in
m

9

case w 2: m - 1.

Corollary 3.1 Any algorithm for the w-threaded REAL-TIME makespan prob
lem is at least 2 - ~-competitive if w 2: m - 1.

PROOF. In case w 2: m - 1, we have that rm,;;-ll = 1 by which the corollary
follows from the previous theorem. 0

In the following theorem will be revealed that Graham's famous List Schedul
ing algorithm [8] combined with a round robin exploration of the threads proves
to be best possible 2 - ~-competitive in case w 2: m - 1. List Scheduling con
siders the jobs in any arbitrary order and assigns each next job to the machine
that is becoming available first. The resulting combination of round robin and
List Scheduling we call RRLS.

Theorem 3.3 RRLS is a 2 - ~-competitive algorithm for the multi-threaded
REAL-TIME makespan problem.

PROOF. It is known that List Scheduling is 2 - ~-competitive for anyon-line
makespan problem, independently of the order in which the jobs are considered
for scheduling on the machines, as long as no idle time on any of the machines
occurs, i.e., as long as no machine is not busy while there are still jobs available
for processing. Clearly, List Scheduling combined with a round robin routine
for dealing with the threads gives a schedule that satisfies this property. 0

We have not been able to find an algorithm that has a competitive ratio
equal to the lower bound of Theorem 3.1 in case w < m -1. It is not difficult to
devise an input that shows that also in this case RRLS has a competitive ratio
of at least 2 - 1....

m
It can be shown that the lower bound in Theorem 3.1 can be improved in

some cases. We can make a small improvement in case m,;;-l 2: 2 to a lower bound
of 2- m+I-\~J using essentially the same input sequence.

We used jobs with only three different processing times in the proof. That
more different processing times might be useful is revealed by the lower bound
of 7/4 for the case m = 4, establishing that RRLS is also best possible in
this case.

Lemma 3.4 Any algorithm for the multi-threaded REAL-TIME makespan prob
lem on 4 machines is at least 2 - t-competitive.

PROOF. That 7/4 is the lower bound on the competitive ratio of algorithms in
case w 2: 3, is already given in Theorem 3.1. Therefore, we give the proof for
w = 2. Moreover, threads can always be left empty, so that the lower bound

10

using two threads is also a lower bound for a problem with more than two
threads.

We just give the adversarial thread construction. Both threads start with a
job with processing time 3, followed by a job with processing time 2, on its turn
followed by a job with processing time 1. Finally, there is a job with processing
time 4 hidden behind the job that is scheduled last. It is a simple matter of
going through all possibilities to see that no on-line algorithm cam avoid that
the starting time of this last job becomes at least 3, leading to the ratio of
~4. 0

We do not expect, however, that 2 - 11m is the right lower bound for all
cases.

3.2 Latency on a single machine

In this subsection we prove the results on the latency problem defined on a
single machine. The following trivial lemma allows us to prove results for both
on-line paradigms simultaneously.

Lemma 3.5 Lower and upper bounds on competitiveness of on-line algorithms
for single machine problems under the BATCH and REAL-TIME models coin
cide.

PROOF. It is obvious that the extra freedom there is in the BATCH model
compared to the REAL-TIME model cannot be exploited on a single machine:
any feasible solution within the BATCH model can also be obtained in the
REAL-TIME model. 0

First we derive the lower bound of w on the competitive ratio of the sin
gle machine problem with w threads, followed by an algorithm that is w
competitive. We will use the REAL-TIME model.

Theorem 3.4 No algorithm for the w-threaded on-line single machine latency
problem is better than w-competitive under the REAL-TIME model.

PROOF. The prooffor the single-threaded case (w = 1) is trivial. To prove the
theorem for w ~ 2 we present the following adversarial input sequence. The
w threads have each of them a job with processing time 1 at the first position.
Then only one of the threads has after this job a sequence of n "small" jobs
with processing time € each. The adversary will "hide" this sequence of small
jobs in the thread that will be explored last by the on-line algorithm. Notice
that anyon-line algorithm should schedule one of the first jobs in the threads
last (among all the other first jobs in the threads).

11

The optimal schedule processes all jobs of the second thread first, yielding

The sum of completion times of the on-line algorithm, that processes the w
jobs with processing time 1 first, is given by

12

1 1= 1 + n 2 + 2"n2(n2 + 1)10 + n(l + n 2€) + 2"n(n + 1)(1 - 10)

< 4n2 + 2n4
€.

1 1
'2n(n + 1)(1 - 10) + n(l- 10) + 1 + n2(n(1 - 10) + 1) + '2n2(n2 + 1)10

> n2n(1 - 10) = n 3(1- 10)

ZOPT

ZSAPT

Before we present a w-competitive algorithm we will show that another
very natural algorithm fails to be w-competitive. The off-line problem with
out threads is well-solved by the Shortest Processing Time first rule (see [13]):
At each step among the unscheduled jobs the one with smallest processing time
is selected to be scheduled next.

This suggests for the multi-threaded on-line problem the Shortest Available
Processing Time first rule (SAPT): At each step, from among the unserved
jobs at the head of the threads, schedule the one with the shortest processing
time first.

The following instance shows that there is no constant c such that SAPT
is c-competitive: there are two non-empty threads, one containing n jobs with
processing time 1 - 10 and the other one starting with a job with processing time
1 followed by n 2 jobs with processing time 10 < 1.

SAPT will first schedule all the jobs in the first thread and then all the jobs
in the second thread. This yields

For this sequence the optimal strategy is obviously to start processing the
first job of the thread that contains the n small jobs. Then these n jobs with
processing time 10 are processed and afterwards the remaining w - 1 jobs with
processing time 1, leading to a sum of completion times

1 1
2"w(w + 1) + nw + 2"n(n + 1)10

1 1 2 1 1 2
nw + -w + -w + -n€ + -n €.

2 2 2 2

Therefore, the ratio between the two tends to w if 10 = o(n-2) and n tends
to infinity. 0

1 1= 1 + n + 2"n(n + 1)10 + (1 + n€)(w - 1) + 2"(w - l)w

11 2 1 1 2 1
n + -w + -w - -n€ + -n 10 + -nw€.

2 2 2 2 2

(1)

(2)

We distinguish two cases.

• At iteration n a job has been processed from thread i as well. In that case

PROOF. We will prove the lemma by induction on n. For n = 0 we have
that if the first job selected to be processed is the one in front of thread i (i.e.
h = Jo(i)), then Sl(i) = Po(i) > 0, and Sl (j) = So(j) = 0 for j ¥ i.

We assume that the lemma is true up to iteration n. Now, consider the
(n+1)-stiteration. Suppose that In+l = In(i). Thus,

• At each iteration a job on the head of one of the non-empty threads
is processed. The job selected is the one for which the sum of its own
processing time and the processing times of all preceding jobs in the same
thread is minimal. Ties are broken arbitrarily.

where the second inequality follows from the induction hypothesis.

Lemma 3.6 If In+l = In(i) tilen Sn+l (i) 2: Sn+l (j), j = 1, ... , w, for all n > O.

13

We will show that BWT is best possible for the multi-threaded on-line single
machine latency problem. To facilitate the exposition we introduce some nota
tion. Let Sn (i) denote the sum of the processing times of the jobs from thread i
that have been processed before or at iteration n, i = 1, ... , w. Let I n (i) denote
the job at the head of thread i at the beginning of iteration n + 1, and Pn(i) its
processing time, i = 1, ... , w. Moreover, let I n be the job that is processed at
the n-th iteration.

In terms of this notation BWT processes at iteration n + 1 job I n+1 = In(i)
ifPn(i)+Sn(i) ::; Pn(j)+Sn(j), for all j = 1, ... , w with thread j non-empty.

The following preliminary lemma brings us close to the proof of w-competitiveness
of BWT.

Therefore, for any c > 0 we can choose n large enough and E small enough
such that ZSAPT / ZOPT > c.

The problem with SAPT is that it persists in exploring the same thread even
if each job appearing at the head of it does not have a great advantage over the
jobs on the head of other threads. The next algorithm avoids this anomalous
behavior by balancing the total work done on each of the threads. We call the
algorithm BWT (for Balance Work done per Thread).

• At iteration n a job has been processed from thread k "I i. In this case

Sn+l(i) Sn(i)+Pn(i)

Sn-l (i) + Pn-l (i)

> Sn-l(k) + Pn-r(k) = Sn(k) = Sn+l(k)

> Sn(j) = Sn+l(j) Vj"l i,k.

where the first inequality comes from BWT's decision in the n-th iteration
and the last inequality follows from the induction hypothesis.

o

Theorem 3.5 BWT is w-competitive for the w-threaded on-line single machine
latency problem.

PROOF. Let the h-th job of the i-th thread be scheduled at iteration n of BWT.
Its completion time is then given by

w

Cff.WT =L Sn(k) ::; wSn(i)
k=l

due to Lemma 3.6. Besides, Sn(i) ::; cfhPT , because also in the optimal solution
at least the 1st up to the h-1-st job of the i-th thread must have been processed
before the h-th job of this thread. Thus, for every individual job we have

CBWT < wS (i) < wCOPT .,h _ n _ ,h

The theorem follows since both optimal and BWT solution values are the sum
of the individual completion times. 0

We notice that BWT is a polynomial time algorithm.

3.3 Latency on multiple machines

We now prove the results on the latency problem defined on more than one ma
chine. Apart from the problem with a single thread in the REAL-TIME model,
which has competitive ratio 1, for all other problems on multiple machines no
algorithm exists with constant competitive ratio. We will show it first for the
BATCH model.

Theorem 3.6 No on-line algorithm with constant competitive ratio exists un
der the BATCH model for the latency problem on more than one machine.

14

15

t = 1, ... , k - 1.
n'/m
'" . -2t~ zn ,
i=1

where mnL1 is the earliest possible starting time of the set of jobs that loads
a machine for the second time. In case machine 1 or 2 is reloaded the earliest

As group k will reload at least one machine already loaded, the cost of scheduling
the n k /m jobs (at least) of group k will be at least

h

h2 + L i = h2 + h(h + 1)/2 ~ 2h2.
i=1

h

h2 + ~)h2 + i) = (h + 1)(h2 + h/2) 2': h3
.

i=1

Therefore, the ratio between the two algorithms cannot be bounded by any
constant.

Thus, anyon-line algorithm that could have a constant competitive ratio
must schedule the given set of jobs on at least 2 machines. Suppose without
loss of generality that it uses (among others) the machines 1 and 2.

Then, the adversary continues the thread with k groups of jobs (k will be
defined later), leaving all other threads empty. The i-th group will be composed
of n i jobs, each one with processing time n-2i . Group i+ 1 follows group i. From
each group i at least n i /m jobs must be assigned to the same machine. Each
machine receiving at least ni /m jobs from some group i will be called "loaded".
Machines 1 and 2 will be called loaded, too. Now k is chosen as the first index
for which the on-line algorithm loads a machine that was already loaded before;
Le. the adversary stops the sequence as soon as the on-line algorithm loads any
machine for the second time. Thus, at least nk /m jobs from group k are assigned
to an already loaded machine. As each group loads at least one machine, loading
all the machines (without re-Ioading any machine twice) will take at most m - 2
groups. Therefore, k ~ m - 1.

The contribution to the cost by the n t /m jobs (at least) of group t that load
a machine will be at least

An optimal algorithm would process the jobs on two machines yielding a cost
of

PROOF. Consider the following adversarial sequence. Let w - 1 threads be
empty and one thread begin with a job with processing time h2 followed by h
jobs with processing time 1, for some h 2': 1.

Suppose that the on-line algorithm processes all the jobs on a unique ma
chine. Its cost would be

<

nk 1m k-l
" ~n-2(k-l) = .!!:.-.
~ m m 2
i=l

k n'lm nk 1m k-l

h2 + ~ +L L in-2t + L n m n-2(k-l)

t=l i=l i=l

>

As a result, anyon-line algorithm will have a cost of at least

16

Finally we prove the same result for the REAL-TIME model when the num
ber of threads is greater than 1.

Theorem 3.7 No on-line algorithm with constant competitive ratio exists un
der the REAL-TIME model with more than one thread for the latency problem
on more than one machine.

Thus, any c-competitive algorithm will have c ~ m2(4~3+k)' which tends to
infinity when n tends to infinity. 0

We notice that in case there are only two machines, m = 2, necessarily the
first group must reload directly machine 1 or 2, k = 1, yielding a cost of at least
(nk/m) > n/m2.

A better schedule is obtained by assigning the first h + 1 jobs (the first with
processing time h2 and the subsequent h with processing time 1) to machine
1, and each of the subsequent groups to an empty machine. This is possible
because, as we argued before, k :S m - 1. Its cost, which is obviously greater
than or equal to the optimal cost, is

possible starting time of the reloading set of jobs is at least 1, yielding a cost of
at least

17

Therefore, a lower bound on the competitiveness of an on-line algorithm is:

o

m(n+1)+m~E _ 2(n+1)+n(n+1)E
m + nm(n

2
m+3) E 2 + n(nm + 3)E '

4 Conclusions

which tends to infinity when E =o(n-2) and n tends to infinity.

We have provided a fairly complete picture of the competitiveness of on-line
multi-threaded scheduling problems on parallel machines with objectives mini
mizing makespan and latency. One open question is if it is possible to find an
on-line algorithm that has a competitive ratio which matches the lower bound
for minimizing makespan under the REAL-TIME model in case the number of
machines exceeds the number of threads by more than 1.

Given the adversarial instances one might expect that randomized algo
rithms can do substantially better for most of the problems. We leave this as
an interesting subject for further studies.

nm ()""' . nm nm + 3m - 1 + L.J ZE + (nmE + 1) =m + 2 E

i=l

On the other hand, an optimal off-line algorithm, schedules all jobs of the
second thread first and then the job of the first thread. Its cost is bounded from
above by

~ n(n+ 1)
m + m L.".(1 + iE) = m(n + 1) + m 2 E

i=l

PROOF. Consider the following instance. There are 2 non-empty threads and
w - 2 empty threads. Both non-empty threads start with a job with processing
time 1. One of the two jobs has to be scheduled first. The thread to which
this job belongs, say thread 1, contains no further jobs. The other thread, the
second thread, continues with m - 2 jobs with processing time 1 and nm jobs
with processing time f.

After having scheduled the job of the first thread on one machine, an on-line
algorithm cannot do better than scheduling the first m - 1 jobs of the second
thread on the remaining m - 1 machines. Afterwards, the best the on-line
algorithm can do is distributing the nm jobs with processing time E evenly over
the m machines, such that n of them are scheduled to each machine.

In this way, the cost of the on-line algorithm is:

A related problem that could be studied occurs in case of infinite multiple
threads; i.e., each thread contains an infinite sequence of information. In that
case different competitive measures can be defined, e.g., stating that an algo
rithm has to be competitive at every point in the decision process, or in the
limit. In In [6, 7] it is shown that infinite multiple threads may yield compet
itiveness that is different from the case with finite threads. Moreover, both in
the case of finite and infinite threads, fairness restrictions may be imposed on
the way of processing jobs from the various threads.

Another variation of the problem is obtained when the processing times of
the jobs become known only after completion.

5 Bibliography

References

[1] S. Albers. Better bounds for on-line scheduling. In Proc. of the 29th An
nual ACM Symp. on Theory of Computing (STOC), 1997, 130-139.

[2] H. Alborzi, E. Torng, P. Uthaisombut, S. Wagner, The k-client Prob
lem. In Proc. of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1997), pp.73-82.

[3] Y. Bartal, A. Fiat, H. Karloff, R. Vohra. New algorithms for an ancient
scheduling problem. J. Comput. Syst. Sci. 51, 359-366, 1995, 359-366.

[4] A. Borodin and Ran EI-Yaniv. On-line Computation and Competitive
analysis. Cambridge University Press, Boston, 1998.

[5] E. Feuerstein. On-line paging of structured data and multi-threaded paging.
Ph.D-Thesis, Universita di Roma "La Sapienza", 1995.

[6] E. Feuerstein, A. Strejilevich de Lorna. On multi-threaded paging. In
Proc. Seventh Annual International Symposium on Algorithms and Com
putation (ISAAC'96), Lecture Notes in Computer Science 1178, Springer
Verlag, 1996, 417-426.

[7] E. Feuerstein, A. Strejilevich de Lorna. Different competitiveness measures
for multi-threaded paging, International Workshop on On-line Algorithms,
OLA98, Udine, Italy, 1998.

[8] R.L. Graham, Bounds for certain multiprocessing anomalies. Bell System
Technical Journal 45, 1966, 1563-1581.

[9] D.R. Karger, S.J. Philips, E. Torng. A better algorithm for an ancientll
scheduling problem. J. of Algorithms 20, 1996, 400-430

18

[10] T. Kimbrel. Online and offiine preemptive two-machine job shop schedul
ing. IBM Research Report RC 21520, 1999.

[11] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. Sequenc
ing and scheduling: algorithms and complexity. In S.C. Graves, A.H.G.
Rinnooy Kan, P.H. Zipkin (eds.). Handbooks in Operations Research, Vol.
4. North Holland, 1993.

[12] J. Sgall. On-line scheduling. In On-line Algorithms - The state of the Art,
A. Fiat and G. Woeginger (eds.), Lecture Notes in Computer Science
1442, Springer-Verlag, 1998, 196-23l.

[13] W.E. Smith. Various optimizers for single-stage production. Naval
Res.Logist. Quart. 3, 1956, 59-66.

19

