
On-line Planning and Scheduling for High-speed Manufacturing

Wheeler Ruml and Minh B. Do and Markus P. J. Fromherz
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

ruml, minhdo, fromherz at parc.com

Abstract

We describe a real manufacturing problem that lies between
job shop scheduling and temporal planning. The setting is on-
line in the sense that new jobs arrive asynchronously, perhaps
several per second, while plans for previous jobs are being
executed. We formalize the problem as a variant of STRIPS
extended with action durations and resources. We present a
hybrid algorithm for this problem that combines techniques
from partial-order scheduling and state-space planning. No
domain-specific search control is used. Our current imple-
mentation successfully controls two prototype plants and our
technology is anticipated to enable a new line of products. By
integrating planning and scheduling, we enable high produc-
tivity even for complex plants.

Introduction
There is currently great interest in extending planning and
scheduling techniques to handle more of the complexities
found in real industrial applications. For example, PDDL
(Fox and Long, 2003) has been extended to handle continu-
ous quantities and durative actions. There are additional di-
mensions to planning complexity besides expressivity, how-
ever. In this paper, we describe a manufacturing problem
domain that emphasizes on-line continual problem solving.
The domain semantics are more complex that in job shop
scheduling but simpler in many ways than PDDL2.1. A
problem instance specifies a manufacturing plant consisting
of several machines and a series of jobs to be completed,
each of which might require several actions on different
machines. As in classical scheduling, resource constraints
are essential because the machines in the plant often can-
not perform multiple actions at once. But action selection
and sequencing are also required because a given job can
usually be achieved using several different sequences of ac-
tions. Moreover, in our setting the set of jobs is only re-
vealed incrementally over time, unlike in classical temporal
planning where the entire problem instance is available at
once. And in contrast to much work on continual planning
(desJardins, Durfee, Ortiz, and Wolverton, 1999), we must
produce a complete plan for each job before its execution
can begin.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

After discussing this problem domain in more detail, we
will present our current solution: an on-line temporal plan-
ner that combines constraint-based scheduling with heuristic
state-space planning. Jobs are optimally planned on an in-
dividual basis, in order of arrival, without reconsidering the
plans selected for previous jobs. To mitigate the restrictive-
ness of this greedy scheme, we represent action times using
temporal constraints instead of absolute times. By main-
taining temporal flexibility as long as possible, we can shift
plans for older jobs later in time to make room for starting
a new job earlier if that improves overall plant throughput.
Although this basic architecture is specifically adapted to
our on-line setting, the planner uses no domain-dependent
search control knowledge. We present some empirical mea-
surements demonstrating that significant plants can be con-
trolled by the planner while meeting our real-time require-
ments. Our integrated on-line approach allows us to achieve
high throughput even for complex plants.

A Simple Manufacturing Domain
The domain is based on a real manufacturing process control
problem encountered by one of our industrial clients. The
application is reminiscent of ‘mass customization,’ in which
mass-produced products are closely tailored and personal-
ized to individual customers’ needs. It also shares charac-
teristics with document printing, although on a much larger
scale. It involves planning and scheduling a series of job
requests which arrive asynchronously over time. The plant
runs at high speed, with several job requests arriving per sec-
ond, possibly for many hours. Each job request completely
describes the attributes of a desired final product. There may
be several different sequences of actions that can be used
to produce a given job. The planning system must decide
how to manufacture all of the desired products as quickly
as possible. In other words, it must determine a plan and
schedule for each job such that the end time of the plan that
finishes last is minimized. This is an on-line task because
the set of jobs grows as time passes. In fact, because it is
the real-world wall clock end time that we want to minimize
and because the job cannot start until it is planned, the speed
of the planner itself affects the value of a plan! However,
the plant is often at full capacity, and thus the planner usu-
ally need only plan at the rate at which jobs are completed,
which again may be several per second. While challeng-

Translator

T
ra

n
sl

at
o

r

job

descriptions

plant model

Planner

STN

Plan Manager

domain description

problem

descriptions

goals

plans

constraints

failures

time info

Plant
plans

rejections,

failures,

updates

Figure 1: The system architecture, with the planning system indicated by the dashed box.

Source 1

Source 2

Machine 1

Machine 2

Machine 3

Machine 4

Destination 1

Destination 2

Figure 2: A schematic view of a manufacturing plant.

ing, the domain is also forgiving: feasible schedules can be
found quickly, sub-optimal plans are acceptable, and plan
execution is relatively reliable. Figure 1 indicates the rela-
tionship between the planning system and the plant. We will
discuss the planning system itself in detail below.

The typical plants in our application can be schematically
represented as a network of transports linking multiple ma-
chines (Figure 2). A typical plant might have anywhere from
a few to a few hundred machines and transports. Unfin-
ished blocks of raw material can enter the plant from multi-
ple sources and completed jobs can exit at multiple destina-
tions. Transports take a known time to convey jobs between
machines. Each machine has a limited number of discrete
actions it can perform, each of which has a known dura-
tion and transforms its input in a known deterministic way.
These durations may vary over three orders of magnitude.
For simplicity, we currently only consider actions that ma-
nipulate single blocks of material at a time. Actions may not
split a block into two pieces for use in different jobs or join
multiple blocks from different paths in the plant together.
This means that a single job must be produced from a single
unit of material, thereby conflating jobs with material and
allowing plans to be a linear sequence of actions. In our do-
main, adjacent actions must meet in time; material cannot
be left lingering inside a machine after an action has com-
pleted but must immediately begin being transported to its
next location.

Most manufacturing actions require the use of physical

job
descriptions

start tim
e

sent to
Plant

planned,
unsent

being
planned

not yet
planned

job 1
job 2

job 3
job 4job 5

job 6job 7

Figure 3: Stages in the life of a job in the planning system.

plant resources, so planning for later jobs must take into ac-
count the resource commitments in plans already released
for production. Typically there are many feasible plans for
any given job request; the problem is to quickly find one
that finishes soon. The optimal plan for a job depends not
only on the job request, but also on the resource commit-
ments present in previously-planned jobs. Any legal series
of actions can always be easily scheduled by pushing it far
into the future, when the entire plant has become completely
idle, but of course this is not desirable.

Additional Complications
In our application, the planner communicates on-line with
the physical plant, controlling production and responding to
execution failures (right side of Figure 1).1 After a com-
pleted plan is transferred to the lower-level plant controller
software, the planner cannot modify it. There is thus some
benefit in releasing plans to the plant only when their start
times approach. Figure 3 shows the different stages a job
passes through in our system. In the figure, time advances

1In fact, the plant may also reject plans outright without execut-
ing them. We ignore this complication in our presentation.

Job-23
initial: Location(Job-23, Some-Source)

Uncut(Job-23)
Color(Job-23, Raw)
¬Aligned(Job-23)

goal: Location(Job-23, Some-Destination)
HasShape(Job-23, Cylinder-Type-2)
Polished(Job-23)
Clean(Job-23)
Color(Job-23, Blue)

background: CanCutShape(Machine-2, Cylinder-Type-2)
batch: 5

Figure 4: A sample job specification, including background
literals.

downward so plans starting earlier are higher in the figure.
Note that jobs 3 and 4 have been planned but not yet released
from the plan manager to the plant.

Jobs are grouped into batches. A batch is an ordered set of
jobs, all of which must eventually arrive at the same destina-
tion in the same order in which they were submitted, so that
they may be immediately packed and delivered to the end
customer. Multiple batches may be in production simultane-
ously, although because jobs from different batches are not
allowed to interleave at a single destination, the number of
concurrent batches is limited by the number of destinations.

Occasionally a machine or transport will break down, in
effect changing the planning domain by removing the re-
lated actions. The plant is also intentionally reconfigured
periodically. This means that precomputing a limited set of
canonical plans and limiting on-line computation to schedul-
ing only is not desirable. For a large plant of 200 machines,
there are infeasibly many possible broken configurations to
consider. Depending on the capabilities of the machines, the
number of possible job requests may also make plan pre-
computation infeasible. Furthermore, even the best precom-
puted plan for a given job may be suboptimal given the cur-
rent resource commitments in the plant.

To summarize, our domain is finite-state, fully-
observable, and specifies classical goals of achievement.
However, planning is on-line with additional goals arriving
asynchronously. Actions have real-valued durations and use
resources. Plans for new goals must respect resource allo-
cations of previous plans. Execution failures can occur, but
are rare enough that, at least in our current solution, we don’t
explicitly plan ahead for them.

Modeling the Domain
This manufacturing domain can be modeled by a straight-
forward temporal extension of STRIPS. As in PDDL, we
distinguish between two types of input to the planner. Be-
fore planning begins, a domain descriptions containing lit-
eral and action templates is provided (top of Figure 1). Then
the problem descriptions arrive on-line, containing initial
and goal states, which are sets of literals describing the start-
ing and desired configurations (left of Figure 1). A simple
example job specification is given in Figure 4. In this exam-

CutOn2(?block)
preconditions: Location(?block, Machine-2-Input)

Uncut(?block)
Aligned(?block)
CanCutShape(Machine-2, ?shape)

effects: Location(?block, Machine-2-Output)
¬Location(?block, Machine-2-Input)
HasShape(?block,?shape)
¬Uncut(?block)
¬Aligned(?block)

duration: 13.2 secs
allocations: M-2-Cutter at ?start + 5.9 for 3.7 secs

Figure 5: A simple action specification.

ple, Some-Source and Some-Destination are virtual
locations where all sources or destinations are placed. In ad-
dition to job-dependent literals, sometimes it is convenient
to specify actions using preconditions that refer to literals
that are independent of the particular goals being sought.
This ‘background knowledge’ about the domain is supplied
separately in the job specification, although it could also be
compiled into the action specifications. In our example, the
possible shapes that a machine can cut are specified in this
way.

The movement of material by transports and the transfor-
mation of material by machine actions can be directly trans-
lated from the plant model into traditional logical precondi-
tions and effects that test and modify attributes of the ma-
terial. A simple example is given in Figure 5. Our action
representation is similar to the durative actions in PDDL2.1
with actions having specified real-valued duration bounds.
Although the example shows a constant duration, one may
also specify upper and lower bounds and let the planner
choose the desired duration of the action. (This is helpful for
modeling controllable-speed transports.) The intended se-
mantics is that the logical effects become true exactly when
the action’s duration has elapsed. The notable extension of
our representation over PDDL2.1 is the explicit representa-
tions of resources. Actions can specify the exclusive use
of unit-capacity resources for time intervals specified rela-
tive to the action’s start or end times. For example, the Cu-
tOn2 action in Figure 5 specifies exclusive use of the M-2-
Cutter from 5.9 seconds after the start of the action until 3.7
seconds later. Machines with several independent resources
or with actions that have short allocation durations relative
to the overall action duration can work on multiple jobs si-
multaneously, so locations and resource allocations are not
equivalent. In PDDL, arbitrary predicates can be made to
hold at the start, end, or over the duration of an action. This
expressivity is not needed in our domain.

To summarize, there are two inputs to the planner:

• A domain is a set of actions, each of which is a 4-tuple
a = 〈Pre, Eff, dur, Alloc〉, where Pre and Eff are sets
of literals representing the action’s preconditions and ef-
fects; dur is pair 〈lower, upper〉 of scalars representing the
upper and lower bounds on action duration; and Alloc is a
set of triplets 〈res, offset, dur〉 indicating that action a uses

OnlinePlanner
1. plan the next job
2. if an unsent plan starts soon, then
3. foreach plan, from the oldest through the imminent one
4. clamp its time points to the earliest possible times
5. release the plan to the plant

PlanJob
6. search queue← {final state}
7. loop:
8. dequeue the most promising node
9. if it is the initial state, then return
10. foreach applicable operator
11. undo its effects
12. add temporal constraints
13. foreach potential resource conflict
14. generate all orderings of the conflicting actions
15 enqueue any feasible child nodes

Figure 6: Outline of the hybrid planner.

resource res during an interval [sa + offset, sa + offset +
dur] where sa is the starting time of a.

• A problem description for a particular job is a 4-tuple of
〈batch, Initial, Goal, Background〉, where batch is a batch
id and Initial, Goal, and Background are sets of literals.

Given a domain description (top of Figure 1) and a low-
level delay constant tdelay capturing the latency of the plant
controller software, the planner then accepts a stream of jobs
arriving asynchronously over time (left side of Figure 1).
This stream corresponds to the standard notion of a PDDL
problem instance. For each job, the planner must eventu-
ally return a plan: a sequence of actions labeled with start
times (in absolute wall clock time) that will transform the
initial state into the goal state. Any allocations made on the
same resource by multiple actions must not overlap in time.
Happily, plans for individual jobs are independent except for
these interactions through resources. Additional constraints
on the planner include 1) plans for jobs with the same batch
id must finish at the same destination, 2) plans for jobs with
the same batch id must finish in the same order in which the
jobs were submitted, 3) the first action in each plan must
not begin sooner than tdelay seconds after it is issued by the
planner, and 4) subsequent actions must begin at times that
obey the duration constraints specified for the previous ac-
tion (thus it is assumed that the previous action ends just as
the next action starts).

A Hybrid Planner
We have implemented our own temporal planner using an
architecture that is adapted to this on-line domain. The over-
all objective is to minimize the end time of the known jobs.
We approximate this by optimally planning only one job at
a time instead of reconsidering all unsent plans. As we will
see below, the large number of potential plans for a given
job and the close interaction between plans and their sched-
ules means that it is much better to process scheduling con-

straints during the planning process and allow them to focus
planning on actions that can be executed soon. The planner
uses state-space regression to plan each job, but maintains as
much temporal flexibility as possible in the plans by using a
simple temporal constraint network (STN) (Dechter, Meiri,
and Pearl, 1991). This network represents a feasible interval
for each time point in each plan. Time points are restricted
to occur at specific single times only when the posted con-
straints demand it. Because the planner maintains the partial
orders between different actions in plans for different jobs
through the STN while conducting the backward state-space
search, it can be seen as a hybrid between state-space search
and partial-order planning. A sketch of the planner is given
in Figure 6. The outer loop corresponds to the plan manager
in Figure 1.

After planning a new job, the outer loop checks the queue
of planned jobs to see if any of them begin soon (step 2).
It is imperative to recheck this queue on a periodic basis, so
‘soon’ is defined to be before some constant amount after the
current time and we assume that the time to plan the next job
will be smaller than this constant. The value of this constant
depends on the domain and is currently selected manually.
If this assumption is violated, we can interrupt planning the
next job and start over later. As plans are released and exe-
cute, resource contention will only decrease, so the time to
plan the new job should decrease as well. It is important that
new temporal constraints are added by the outer loop only
between the planning of individual jobs, as propagation can
affect feasible job end times and thus could invalidate pre-
viously computed search node evaluations if planning were
underway.

Due to details of the plant controller software, the planner
must release jobs to the plant in the same order in which
they were submitted. This means that jobs submitted before
any imminent job must be released along with it (step 3).
Only at this stage are the allowable intervals of the job’s
time points forcibly reduced to specific absolute times (step
4). Sensibly enough, we ask that each point occur exactly
at the earliest possible time. Because the temporal network
uses a complete algorithm (a variation on Cervoni, Cesta,
and Oddi, 1994) to maintain the allowable window for each
time point, we are guaranteed that the propagation caused
by this temporal clamping process will not introduce any
inconsistencies.

Planning Individual Jobs

When planning individual jobs, the regressed state represen-
tation contains the (possibly partially-specified) state of the
job. The start and end of each action and each resource al-
location are represented by timepoints in the temporal net-
work. Temporal constraints are used to represent the order
and durations of actions and to resolve resource contention.
Action schemata are kept in lifted form—variables can ap-
pear in states but must be bound in the final plan. A* search
is used to find the optimal plan for the job, in the context of
all previous jobs. We will discuss the state representation,
regression semantics, branching rule, and objective function
in turn.

State Representation Because the plan must be fea-
sible in the context of previous plans, the state con-
tains information both about the current job and pre-
vious plans. More specifically, the state is a 4-tuple
〈Literals, Bindings, Tdb, Rsrcs〉 in which

Literals describes the regressed logical state of the current
job.

Bindings are the variable bindings for all the variables oc-
curring in literals associated with any planned job. Thus,
in Figure 3, the variable bindings are used to ground all
lifted actions in the plans for jobs 1–4 and actions in the
partial plan for job 5.

Tdb is the temporal database represented as a simple tem-
poral network (STN) containing all known time points
and the current constraints between them. Examples of
time points include the start/end times of actions or re-
source allocations. As soon as a plan for a given job is
sent to the plant (jobs 1 and 2 in Figure 3), time points
associated with that plan in the Tdb are no longer allowed
to float but are clamped at their lower bounds.

Rsrcs is the set of current resource allocations. Each re-
source allocation is of the form 〈res, tp, tp〉 with res is a
particular resource and tp1, tp2 are two time points in the
Tdb representing the duration res is allocated to some ac-
tion. Note that there are multiple resources in the domain
and each resource can have multiple (non-overlapping)re-
source allocations.

Regression Semantics The logical goal state of a job can
consist of both positive and negative literals. Each regressed
logical state in our planner is a 3-tuple L = 〈Lt, Lf , Lu〉
where Lt, Lf , and Lu are the disjoint sets of literals that
are true, false, and unknown (or ‘don’t care’), respectively
(Le, Baral, Zhang, and Tran, 2004). The distinction between
false and unknown literals is important in our domain be-
cause there may be fine-grained restrictions on the accept-
able values for unspecified attributes of the job. If Pre+(a)
and Pre−(a) are the sets of positive and negative precon-
ditions and Add(a) and Del(a) are the sets of positive and
negative effects of action a, then the regression rules used to
determine action applicability (step 10 for Figure 6) and to
update the state literals (step 11) are
Applicability Action a is applicable to the literal set L if

1) none of its effects are inconsistent with L and 2) any
preconditions not modified by the effects of a are con-
sistent with L. More formally, 1) (Add(a)

⋂
Lf = ∅) ∧

(Del(a)
⋂

Lt = ∅), and 2) (Pre+(a)
⋂

Lf ⊂ Del(a)) ∧
(Pre−(a)

⋂
Lt ⊂ Add(a)).

In many planning settings, an additional criterion for ap-
plicability can be added without destroying completeness:
at least one effect of a must match L ((Add(a)

⋂
Lt 6=

∅) ∨ (Del(a)
⋂

Lf 6= ∅)). This is not necessarily valid
in our setting because adding a ‘no-op’ action a may give
more time for an existing resource allocation to run out,
enabling other actions to be used which might lead to a
shorter plan.

Update The regression of L = 〈Lt, Lf , Lu〉 over an appli-

cable action a is derived by undoing the effects of a and
unioning the result with a’s preconditions. For a given lit-
eral l modified by an effect of a, its status will be unknown
in the regressed state unleast it is also specified by a cor-
responding precondition of a (e.g., ¬l is a precondition of
a). More formally, 1) Lt = (Lt \ Add(a))

⋃
Pre+(a);

2) Lf = (Lf \ Del(a))
⋃

Pre−(A); and 3) Lu =
(Lu

⋃
(Add(a)

⋃
Del(a))) \ (Pre+(a)

⋃
Pre−(a))

Given that |Lf | is usually much larger than |Lu| in our do-
main, we explicitly store Lt and Lu in our current imple-
mentation and assume that all other literals belong to Lf .

Although it is not usually the case in our domain, we
should note that if the goal state were always fully spec-
ified (with no unknown literals) and every action’s effects
had corresponding preconditions, all states would be fully
specified. One could then simplify the logical state repre-
sentation to L = 〈Lt, Lf 〉 and simplify the regression rules
to

Applicability Action a is applicable iff all its effects match
in L: Add(a) ⊂ Lt and Del(a) ⊂ Lf .

Update Regressing 〈Lt, Lf 〉 through a gives 〈(Lt \
Add(a))

⋃
Del(A), (Lf \ Del(a))

⋃
Add(a)〉

Branching rule While the first step in creating regressed
states is to branch over the actions applicable in L, each can-
didate action a can in fact result in multiple child nodes
due to resource contention. Some scheduling algorithms
use complex reasoning over disjunctive constraints to avoid
premature branching on ordering decisions that might well
be resolved by propagation (Baptiste and Pape, 1995). We
take a different approach, insisting that any potential over-
laps in allocations for the same resource be resolved imme-
diately. Temporal constraints are posted to order any poten-
tially overlapping allocations (step 14 in Figure 6) and these
changes propagate to the action times. Because action du-
rations are relatively rigid in typical plants, this aggressive
commitment can propagate to cause changes in the potential
end times of a plan, immediately helping to guide the search
process. Because multiple orderings may be possible, there
may be many resulting child search nodes.

For example, in Figure 3, assume that a is the current can-
didate action when searching for a plan for job 5 and that a
uses resource r for a duration [s, e]. We also assume that
there are n actions in the plans for jobs 1–4 that also use
r, implying n existing non-overlapping resource allocations
[s1, e1]....[sn, en] and corresponding time points in the tem-
poral database. When trying to allocate r for a, one obvi-
ous and consistent choice is putting it after all other previ-
ous allocations by adding the temporal constraint en < s.
However, there can also be gaps between the existing al-
locations [si, ei], allowing us to post constraints such as
ei < s < e < si+1. Each such possible allocation for r
generates a distinct child node in the search space. Because
action a can use several different resources r, the number
of branches is potentially quite large. However, immedi-
ately resolving any potential overlaps in allocations for the
same resource avoids the introduction of disjunctions in the
temporal network, maintaining the tractability of temporal

timet1 t2 t3 t4 t5 t6 t7

end time of
current plan

end time of
prev. job

estimated
remaining
makespan

predicted
planning

time

earliest
start time

planning
start time

Figure 7: Important time points for constructing and evalu-
ating a plan.

constraint propagation.
The planner has many attributes of a state-based plan-

ner: it maintains a totally specified logical state and uses
regression to branch on applicable actions. However, it
also branches on partial orders introduced to resolve re-
source contention between actions in plans for different jobs.
Therefore, our planner can be seen as a combination of both
state-space regression and partial-order planning. This hy-
brid behavior is also reflected in the plan representation.
While the plan for a single job is a total-ordered sequence of
actions, there are partial orders between actions that belong
to plans of different jobs. Due to these partial orderings, the
starting times of all actions in the plans that belong to jobs
not yet sent to the plant (jobs 3–5 in Figure 3) are not fixed
but merely constrained by the lower and upper bounds in the
temporal database.

The actions in a plan for a single job are sequential and
abut each other in time. Figure 7 illustrates some of the rel-
evant time points. In this figure, planning start time refers
to the real-world clock time at which the planning process
started, earliest-start-time = current wall time + predicted
planning time is the estimated time at which we will find a
plan for the current job and thus is the earliest time that any
action can be scheduled to begin. A plan is constrained to
end after those for previous jobs in the same batch (t6 in the
figure), but is not necessarily constrained to start after or be-
fore plans for previous jobs. The start time of an action (t4,
for example) is constrained (step 12 in Figure 6) to occur
before the end time (t5), according to the action’s duration,
and after the time we are predicted to be done planning this
job (t2).

The remaining component Bindings of the regressed state
is updated with the variable bindings necessary for the in-
stantiation of a to match with the regressed logical state L.

At every branch in the planner’s search space, we either
modify the logical state differently or introduce different
temporal constraints in order to resolve resource contention.
Because each branch results in a different irrevocable choice
that is reflected in the final plan, the state at each node in the
planner’s search tree is unique. Therefore, we do not need
to consider the problem of duplicating search effort due to
reaching the same state by two different search paths.

Objective function Our overall objective function is to
minimize the earliest possible end time of the plan for the
current job. Because it is constrained to end after the com-

pletion time of all the other jobs in the same batch, the ob-
jective function is essentially minimizing the end time of the
batch of jobs involving the current job. To support this ob-
jective function, the primary criterion evaluating the promise
of a partial plan (step 8 in Figure 6) is the estimate of the ear-
liest possible end time of the partial plan’s best completion.

To improve our estimates of this quantity, we compute
a simple lower bound on the additional makespan required
to complete the current plan. We use a scheme similar to
the h1

T heuristic of Haslum and Geffner (2001) by building
the bi-level temporal planning graph Smith and Weld (1999)
without mutex and resource contention constraints that esti-
mates the fastest way to achieve the logical state L. Starting
from the initial state (and background knowledge), we apply
all applicable actions, labeling each resulting literal that was
not previously known with the end time of the action used
to produce it. The new literals may help enable new ac-
tions, which are then applied, possibly producing yet further
new literals. This process continues until either all literals
in L = 〈Lt, Lf 〉 have been produced or no new literals can
be made. Our lower bound is then the maximum over the
times taken to produce the individual literal in L (infinity if
a literal cannot be produced).

This heuristic value is indicated in Figure 7 by estimated
remaining makespan. It is inserted before the first action
in the current plan (t4) and after the earliest plan’s start time
(t2). By adding the constraint t2 < t3, the insertion may thus
change the end time of the plan. It may also introduce an
inconsistency in the temporal database, in which case we can
safely abandon the plan. Given that the current plan should
end after the end time of all previous jobs in the same batch
(t6 < t7), our objective function is to minimize t7 without
causing any inconsistency in the temporal database. Any
remaining ties between search nodes after considering end
time t7 are broken in favor of nodes having smaller predicted
makespan values (t7 − t3). In case there are still ties, they
are broken in favor of the node that has the larger currently
realized makespan (t7 − t4). This is analogous to the usual
practice of breaking ties on f(n) in A* search in favor of
larger g(n), and encourages further extension of plans nearer
to a goal. Because our heuristic is admissible, the plan found
is optimal according to our objective function.

A plan is considered complete if its literals unify with the
desired initial state (step 9 in Figure 6). After the optimal
plan for a job is found, the variable bindings and temporal
database used for the plan are passed back to the outer loop
in Figure 6 and become the basis for planning the next job.
Because feasible windows are maintained around the time
points in a plan until the plan is released to the plant, sub-
sequent plans are allowed to make earlier allocations on the
same resources and push actions in earlier plans later. If
such an ordering leads to an earlier end time for the newer
goal, it will be selected. This provides a way for a complex
job that is submitted after a simple job to start its execution
in the plant earlier. Out of order starts are allowed as long
as all jobs in each batch finish in the correct order. This can
often provide important productivity gains.

Additional Features
Our implementation elaborates on the basic algorithm pre-
sented above in certain ways. It includes full support for
unbound variables, which are tolerated during planning but
are unacceptable in a complete plan. In this sense, it
is a lifted planner like SNLP (McAllester and Rosenblitt,
1991). This capability is used, for example, in ensuring
that subsequent jobs in the same batch end at the same des-
tination. The destination actions each have an effect like
Dest(D1). All jobs in the same batch include in their
goal the atom Dest(?batch23dest) where the vari-
able ?batch23dest is shared among all the jobs. This
variable will be bound by the first job to be planned, and
will constrain the subsequent jobs. The job specification
is elaborated by including non-codesignation constraints on
?batch23dest that prevent it from codesignating with
variables representing destinations of other current batches.
(The planner is notified after the last job in a batch, allow-
ing it to free the batch’s destination for use by a new batch.
We assume that the job source does not submit more active
batches than the plant has destinations.)

Our planner also checks for messages from the plant con-
troller during the search process. These can be of two types:
domain model updates or execution failures. In either case,
the current search is aborted. This allows us to assume that
the planning domain remains constant during the planning of
individual jobs. Domain updates are straightforward modi-
fications of the set of possible actions. Currently, we make
several assumptions to simplify the handling of execution
failures. We assume that the transports remain reliable, that
the job continues on its planned course, and that a diverter
is present at each destination that, when commanded by the
planner, can divert the faulty job for disposal. The planner’s
job is thus reduced to diverting the botched job and any sub-
sequent jobs in the same batch that have already been re-
leased to the plant. The diverted jobs are then replanned
from scratch.

In addition to unit-capacity resource constraints, we have
found that some actions require state constraints, in which
two allocations for the same resource may overlap only if
they both request that the resource be in the same state.

Experience in Practice
In collaboration with our industrial client, we have deployed
the planner to control two physical prototype plants. These
deployments have been successful, and our client currently
anticipates development of a new line of products spanning
multiple markets that crucially depends on this technology.
(Precompiled plans are unacceptable and high plant through-
put is essential.) The planner is written in Objective Caml, a
dialect of ML, and communicates with the job submitter and
the plant controller using ASCII text over sockets. To give a
sense of the performance of our implementation, we present
simulation results on a variety of plants. Figure 8 shows the
time taken to plan each job in a large batch (in seconds on
a 2.4Ghz P4). The plant model used in this example yields
a domain with 19 action schemata. Plans for individual jobs
typically use three to five actions. Two versions are shown,

Pl
an

ni
ng

 T
im

e
(i

n
se

co
nd

s) 4

2

0

Job Number
10080604020

IDPC
AC-3

Figure 8: Simple arc consistency is faster than incremental
directed path consistency.

differing in the algorithms they use to manage the temporal
constraints. One uses an incremental directed path consis-
tency (IDPC) algorithm (Chleq, 1995), which may change
the values on edges in the constraint graph as well as intro-
duce new edges but requires only linear time to find the min-
imum and maximum interval between any two time points in
the database. The other uses arc consistency (Cervoni et al.,
1994) and maintains for each point its minimum and maxi-
mum time from t0, the reference time point. One cannot eas-
ily obtain the exact relations between arbitrary time points,
but this is rarely needed during planning. New arcs are never
added to the network during propagation and existing ones
are not modified, which means that copying the network for
a new search node does not entail copying all the arcs. As
the figure attests, this results in dramatic time savings. Plan-
ning time in the faster implementation was never longer than
50 milliseconds. In this domain, the planner quickly out-
paced the plant—the plan for job 4 was released to the plant
just before planning began on job 100. Note that this means
the planner could consider interleaving actions in the new
plan with the actions in 96 previous plans. All of their time
points and actions must be maintained in the STN and the
plan manager and then consulted during the planning of a
new job. However, these jobs all belong to the same batch,
so the constraint on end time ordering, combined with goal
regression, quickly eliminates most interleavings.

We also evaluated the contribution of the lower bound
computations in guiding the search. Figure 9 shows plan-
ning time in a slightly more complex plant, with 16 ma-
chines and transports, yielding a domain with 73 action
schemata. Plans here typically involve five to ten actions.
The lower bound clearly improves planning time. Although

Pl
an

ni
ng

 T
im

e
(i

n
se

co
nd

s)

0.12

0.09

0.06

0.03

0.0

Job Number
12963

without bound
with bound

Figure 9: Heuristic guidance helps even for a small plant.

the difference between 0.06 and 0.11 seconds may seem ir-
relevant in most planning research, we should emphasize
that in our setting it may determine the system’s feasibility!

Finally, we present in Figure 10 preliminary measure-
ments of planning time using a large simulated plant model
with 104 machines and transports, totaling 728 action
schemata. Plans here typically involve over 30 actions. This
test used simple job requests, so the lower bound estimates
were often very accurate. Planning time rises quickly above
the 0.2 seconds per job which we take as our goal, but does
not explode. We believe that with the extensions discussed
below and further implementation tuning, we should be able
to handle domains of this size reliably.

Relations to Previous Work
There has been much interest in the last 15 years in the
integration of planning and scheduling techniques. HSTS
(Muscettola, 1994) and IxTeT (Ghallab and Laruelle, 1994)
are examples of systems that not only select and order the
actions necessary to reach a goal, but also specify precise ex-
ecution times for the actions. However, these systems are of-
ten demonstrated on complex domains such as spacecraft or
mobile robot control which can be difficult to simulate and
thus make awkward benchmarks. Most popular temporal
planning benchmark domains are off-line in the sense that
the planner’s speed does not affect solution quality. There
remains a need for a simple yet realistic benchmark domain
that combines elements of planning and scheduling, espe-
cially in an on-line setting.

Fromherz, Saraswat, and Bobrow (1999) discuss on-line
constraint-based scheduling methods for controlling physi-
cal machines, although they use precomputed plans and their
formalization cannot model systems such as ours with pos-

Pl
an

ni
ng

 T
im

e
(i

n
se

co
nd

s)

0.8

0.6

0.4

0.2

0.0

Job Number
2015105

Figure 10: Running times increase, but do not necessarily
explode for large plants.

sible cycles in the plant graph and hence an infinite number
of potential plans (see Figure 2).

Our domain formalization lies between partial-order
scheduling and temporal PDDL. Because the optimal ac-
tions needed to fulfill any given job request may vary de-
pending on the other jobs in the plant, the sequence of ac-
tions is not predetermined and classical scheduling formu-
lations such as job-shop scheduling or resource-constrained
project scheduling are not expressive enough. This domain
clearly subsumes job-shop and flow-shop scheduling: prece-
dence constraints can be encoded by unique preconditions
and effects. Open shop scheduling, in which one can choose
the order of a predetermined set of actions for each job, does
not capture the notion of alternative sequences of actions
and is thus also too limited. The positive planning theo-
ries of Palacios and Geffner (2002) allow actions to have
real-valued durations and to allocate resources, but they can-
not delete atoms. This means that they cannot capture even
simple transformations like movement that are fundamen-
tal in our domain. In fact, optimal plans in our domain
may even involve executing the same action multiple times,
something that is always unnecessary in a purely positive
domain. However, the numeric effects and full durative ac-
tion generality of PDDL2.1 are not necessary. Because of
the on-line nature of the task and the unambiguous objective
function, there is an additional trade-off in this domain be-
tween planning time and execution time that is absent from
much prior work in planning and scheduling.

Although we present our system as a temporal planner,
it fits easily into the tradition of constraint-based schedul-
ing (Smith and Cheng, 1993). The main difference is that
actions’ time points and resource allocations are added in-

crementally rather than all being present at the start of the
search process. The central process of identifying temporal
conflicts, posting constraints to resolve them, and comput-
ing bounds to guide the search remains the same. In our
approach, we attempt to maintain a conflict-free schedule
rather than allowing contention to accumulate and then care-
fully choosing which conflicts to resolve first.

Our current planner uses a hybrid state-space and partial-
order search framework. While maintaining partial order-
ings between actions seems necessary to mitigate our job-at-
a-time greedy strategy, the planning for individual jobs need
not necessarily take the form of state-space regression. We
have considered a forward search strategy, such as employed
by many state-of-the-art planners such as FF (Hoffmann and
Nebel, 2001). Initial investigation and preliminary empiri-
cal comparisons showed that while a progression planner is
easier to implement and is also easier to extend to handle
additional domain complexities, the performance of the re-
gression planner (using the same heuristic) is significantly
better in many problems. This seems to be due mainly to the
temporal constraint enforcing that a given job should end af-
ter the end time of all the previous jobs in the same batch.
This constraint interacts well with searching backward from
the goal, immediately constraining the end time of the plan.
Together with the constraint that actions must abut in time,
many possible orderings for resolving resource contention
are immediately ruled out. For example, the current job can-
not be transported to its destination before the previous job
in the same batch. In addition, some orderings may imme-
diately push the end time of the plan even later, further in-
forming the node evaluation function.

When planning in the forward direction, the planner ben-
efits slightly from avoiding logical states which are unreach-
able from the initial state. However, without a similar tem-
poral constraint for the first action in the plan, few resource
allocation orderings can be pruned and the branching due
to resource contention increases in direct proportion to the
number of plans for previous jobs maintained in the plan
manager. Furthermore, the end time of the plan rarely
changes until far into the planning processes, making the
heuristic less useful. In short, for the first job, the perfor-
mance of forward or backward planners are similar, while
as the number of plans managed by the plan manager in-
creases, the backward planner seems to perform better. We
are already investigating scenarios in our application domain
where there is no constraint on the end time of a job and
where the objective function is not to minimize the end time.
In these cases, we believe forward search may prove more
useful than regression.

In our current on-line setting, even though we plan for
multiple jobs belonging to different batches, we build plans
for a single job at the time. Even if there are several sub-
mitted jobs waiting to be planned, this strategy is reasonable
given that jobs arrived in sequence and, until the arrival of
the last job, we do not know how many jobs are in each
batch and when will the planner receive the individual job
specifications. Our basic approach of coordinating separate
state-space searches via temporal constraints may well be
suitable for other on-line planning domains. By planning

for individual jobs and managing multiple plans at the same
time, our strategy is similar in spirit to planners that parti-
tion goals into subgoals and later merge plans for individual
goals (Wah and Chen, 2003; Koehler and Hoffmann, 2000).
In our framework, even though each job is planned locally,
the plan manager along with the global temporal database
ensures that there are no temporal or resource inconsisten-
cies at any step of the search. It would be interesting to
see if the same strategy could be used to solve partitionable
STRIPS planning problems effectively.

Possible Extensions
While the results we have presented indicate that our
‘optimal-per-job’ strategy seems efficient enough, further
work is needed to assess the drop in quality that would be
experienced by a more greedy strategy, such as always plac-
ing the current job’s resource allocations after those of any
previous job. Similarly, during a lull in job submissions, it
might be beneficial to plan multiple jobs together, backtrack-
ing through the possible plans of the first in order to find
an overall faster plan for the pair together. Jobs that have
been planned but whose plans have not been released to the
plant represent opportunities for reconsideration in light of
the newer jobs submitted more recently.

The most pressing extension concerns the heuristic: we
would like to take some mutex relations into account in
our heuristic using something similar to the H2

T function of
Haslum and Geffner (2001) or the temporal planning graph
of Smith and Weld (1999). Our initial experimental results
in this direction are quite encouraging.

Initial investigations with a grounded version of our plan-
ner have also been promising, taking about half the time per
search node as the current lifted scheme. If our planner is
still too slow for large configurations, we are planning to
investigate non-optimal planning for individual jobs.

Our handling of execution failures currently makes a
number of strong assumptions, and we would like to in-
vestigate on-line replanning of jobs that have already begun
execution. Our implementation also currently deletes infor-
mation on completed jobs from the temporal database only
when the machine is idle—this must be fixed before true
production deployment.

Another direction is to investigate a different objective
entirely: wear and tear. Under this objective, one would
like the different machines in the plant to be used the same
amount over the long term. However, because machines are
often cycled down when idle for a long period and cycling
them up introduces wear, one would like recently-used ma-
chines to be selected again soon in the short term.

Conclusions
We described a real-world manufacturing domain that re-
quires a novel on-line integration of planning and schedul-
ing and we formalized it using a temporal extension of
STRIPS that falls between partial-order scheduling and tem-
poral PDDL. We presented a hybrid planner that uses state-
space regression on a per-job basis, while using a tempo-
ral constraint network to maintain flexibility and resolve re-

source constraints across jobs. No domain-dependent search
control heuristics are necessary to control a plant of 16 ma-
chines in real time, although further work will be necessary
to scale to our ultimate goal of hundreds of machines with
ten or more jobs per second. Our work provides an exam-
ple of how AI planning and scheduling can find real-world
application not just in exotic domains such as spacecraft or
mobile robot control, but also for common down-to-earth
problems such as manufacturing process control.

Acknowledgments
The members of the Embedded Reasoning Area at PARC
provided helpful comments and suggestions. Our industrial
collaborators not only provided domain expertise but were
invaluable in helping us to simplify and frame the applica-
tion in a useful way.

References
Baptiste, Philippe, and Claude Le Pape. 1995. A theoret-

ical and experimental comparison of constraint propaga-
tion techniques for disjunctive scheduling. In Proceedings
of IJCAI-95, 600–606.

Cervoni, Roberto, Amedeo Cesta, and Angelo Oddi. 1994.
Managing dynamic temporal constraint networks. In Pro-
ceedings of AIPS-94, 13–18.

Chleq, Nicolas. 1995. Efficient algorithms for networks
of quantitative temporal constraints. In Proceedings of
Constraints-95, 40–45.

Dechter, Rina, Itay Meiri, and Judea Pearl. 1991. Temporal
constraint networks. Artificial Intelligence 49:61–95.

desJardins, Marie E., Edmund H. Durfee, Charles L. Ortiz,
Jr., and Michael J. Wolverton. 1999. A survey of research
in distributed, continual planning. AI Magazine 20(4):13–
22.

Fox, Maria, and Derek Long. 2003. PDDL2.1: An exten-
sion to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research 20:61–124.

Fromherz, Markus P.J., Vijay A. Saraswat, and Daniel G.
Bobrow. 1999. Model-based computing: Developing
flexible machine control software. Artificial Intelligence
114(1–2):157–202.

Ghallab, Malik, and Hervé Laruelle. 1994. Representation
and control in IxTeT, a temporal planner. In Proceedings
of AIPS-94, 61–67.

Haslum, Patrik, and Héctor Geffner. 2001. Heuristic plan-
ning with time and resources. In Proceedings of ECP-01.

Hoffmann, Jörg, and Bernhard Nebel. 2001. The FF
planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research 14:
253–302.

Koehler, Jana, and Jörg Hoffmann. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.

Le, Tuan C., Chitta Baral, Xin Zhang, and Son Tran. 2004.
Regression with respect to sensing actions and partial
states. In Proceedings of AAAI-04.

McAllester, David, and David Rosenblitt. 1991. Systematic
nonlinear planning. In Proceedings of AAAI-91, 634–639.

Muscettola, Nicola. 1994. HSTS: Integrating planning and
scheduling. In Intelligent scheduling, ed. Monte Zweben
and Mark S. Fox, chap. 6, 169–212. Morgan Kaufmann.

Palacios, Héctor, and Héctor Geffner. 2002. Planning as
branch and bound: A constraint programming implemen-
tation. In Proceedings of CLEI-02.

Smith, David E., and Daniel S. Weld. 1999. Temporal plan-
ning with mutual exclusion reasoning. In Proceedings of
IJCAI-99, 326–333.

Smith, Stephen F., and Cheng-Chung Cheng. 1993. Slack-
based heuristics for constraint satisfaction scheduling. In
Proceedings of AAAI-93, 139–144.

Wah, Benjamin W., and Yixin Chen. 2003. Partitioning of
temporal planning problems in mixed space using the the-
ory of extended saddle points. In IEEE international con-
ference on tools with artificial intelligence.

