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Abstract— Service robots which directly interact with hu-  [3]-[5]. More recent approaches also consider adaptive rea
mans in highly unstructured, unpredictable and dynamic envi-  time trajectory planning, which allow a manipulator to adap
ronments must be able to flexibly adapt their motion in reaction its motion to the current situation [6], [7]. While Kger et

to unforeseen events or obstacles and they must provide a new L 171 devel d i bl thod t te ti
feasible trajectory in real-time. Hence, algorithms come into al. [7] developed an online capable method to compute time-

focus which replan the motion path and its time evolution from  Optimal trapezoidal velocity profiles from arbitrary irmiki
arbitrary initial conditions within milliseconds. We present a  conditions, Herrera and Sidobre [6] presented an approach

real-time algorithm to generate synchronised and time-optimal to compute jerk-limited trajectories, but only zero inlitia
third-order manipulator trajectories complying maximal mo- -~ 4cceleration conditions could be handled. To the best of
tion limits on velocity, acceleration and jerk. Experimental . . . )
results carried out on a Mitsubishi PA10-7C arm are presented. qu knOWIedge_" a umversf"l SOIUF'On to_ CP_mpUte t'_me'Oplt'ma
third-order trajectories with arbitrary initial conditie was
not available till now, because the lack of symmetric zero
|. INTRODUCTION boundary conditions enormously complicates the problem.
The present paper solves this issue presentingrdine-

In the past, robot motion control has been focused mainkyind realtime-capableapproach to plan time-optimal, syn-
on industrial applications which require fast and accuratehronised trajectories in afV-dimensional space (joint or
motion execution, but allow rather long preparation times tCartesian) subject to limit conditions for maximal velggit
compute the "optimal” trajectory in space and time. All thes acceleration, and jerk. The trajectory planner can handle
applications are confined to well-structured and safe envir arbitrary initial values for position, velocity, and aceedtion
ments and well-defined tasks. However, the advent of servie@éd it can handle changes of the limit conditions, which
robots calls for more dynamic approaches to motion contrciliows a replanning at any time — even within full motion.
These robots shall act in the direct vicinity of humansThe generated trajectory achieves a smooth blending from
typically even cooperate with them in highly unstructuredhe previous to the current target. The final velocity and
spaces. This calls for fast, online modifications of plannegcceleration are supposed to be zero throughout the paper.
trajectories in case of unforeseen obstacles, e.g. the muma we follow a modular approach and first present an al-
himself. Hence we need motion planning algorithms whiclgorithm to plan second-order trajectories generated from
are able to handle arbitrary initial conditions and provade rectangular acceleration pulses in sec. Il. Planning third
feasible solution in real-time. This solution doesn't neéed order trajectories draws on these results and is presented i
be optimal in the first place, but can be successively imgtovesec. IIl. Finally, in sec. IV simulation results demonstrtite
later. This approach of any-time availability is frequgntl operational efficiency of the presented algorithm.
followed by modern path planning algorithms [1], [2].

The problem of robot motion planning has been divided
into three hierarchical subproblems: (i) the specificatdén  Initially, we neglect the jerk limit and consider only
the geometric path avoiding obstaclgmath planning) (i)  bounds on velocity and acceleration. In this case a time-
the specification of the time evolution along this geometrioptimal trajectory can be generated from three phases: an
path (trajectory planning) and (iii) the low-level control acceleration phase to reach the maximal velocity, a crisin
loops (path tracking) The objective of trajectory planning, phase evolving atonstant speedand finally a deceleration
which is focused in the present paper, is two-fold: On the onghase to halt. Both acceleration and deceleration phase run
hand, tracking accuracy shall be improved and manipulat@t maximum acceleration of opposite sign resulting in the
wear reduced by providing smooth set points to the servéectangular-shaped acceleration profile shown in fig. 1. &hil
motor controllers. On the other hand, the motion itself shathe velocity profile is trapezoidal, the time evolution of
be confined to certain limit conditions given by maximalpositionz(t) can be described by second-order polynomials:
velocity, acceleration, jerk, or forces of the end effedtor
Cartesian space. The handling of a full cup, for example,
requires very gentle movements to avoid spilling its contenwherez, vg, anda denote the initial position, velocity, and

To realise smooth motion several off-line approaches hawaeceleration of a phase. These polynomials are concatenate
been presented providing time-optimal solutions by casmcatat certain switching times,, t2,t3 to compose the overall
nation of cubic splines generating motion at limit condiso trajectory:

II. PLANNING TRAPEZOIDAL VELOCITY PROFILES

a(t) = p*(t, xo, vo, @) Zxo+vo-t+%a-t2 1)
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a., needed to reach cruising velocity=d v, and to halt:
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Fig. 1. Canonical second-order profile comprising three ghas 2 v ’

If this duration is positive, @rapezoidal profilewith overall

« acceleration phase (linearly increasing velocity): durationt; — At; + Aty + Aty results. Otherwise the peak

— n2

z(t) =p (’;]_ 0,20, o, Gace) ocitv): for0<t <t yelocity Ju| and the overall duration; of the wedge-shaped
s cruising 2p ase (constant velocity): profile have to be calculated from eqgs. 3-5 settifvg, = 0:

I(t):p (t—t1,x1,d-vmax,0) fort;1 <t <ty
« deceleration phase (linearly decreasing velocity): lv| = \/d max * (Tgoa — To) + 3v2

fL(t) :pz(t—tg,.’bg,’UQ,adec) for ¢ <t<ts d| |7 d‘ |
. target reached: g = U7V o 29

a:(t) = Zgoal for t3 <t Gacc Qdec

Here, the variables;; and v; define the initial conditions B- Multi-dimensional Case
for each phase and are equal to the final conditions of the Commonly several DOFs have to be controlled and typi-
previous phase. The switching timgst,, t3 between phases cally they shall finish their movements simultaneously,ahihi

completely determine the whole trajectory profile. requires to adjust the trajectory profiles of all motion di-
mensions to a new duratidh given by the slowest DOF.
A. One-dimensional Case This adjustment can be done in several, very different ways.

) . , Considering zero initial velocities, the simplest applo@
To compute the time-optimal trajectory to a targgba, 1 rescale the whole time evolution:
we need to determine these switching times subject to linitia

parameters;, andwy, final conditionsi(ts) = 0, &(t3) = 0, z(t) =x(s-t) wheres = t3/T . (6)
and motion limitSvy,ay, amax. We solve this optimisation
problem analytically ensuring real-time performance.
First, we determine the directiod € {—1,1} of the
cruising phase, which automatically determines the (dgfau
sign of acceleration and deceleratiany.. = d- amax and

Gdec = —d- amax. 1T the initial velocity equals zerod can N-dimensional configuration space, e.g. in Cartesian space
be simply determined byl = si — . However, - . P .
o Y = sign(tgoa — o) which can be guaranteed if all DOFs evolve according to

considering arbitrary initial velocities, we may overshoot . tically shaned velocit fil Thi its f th
the target even at immediate slow down to zero velocity (du'{gen cally shaped velocily profiies. This resulls from the
act, that a straight line is only achieved withcammon

to limited deceleration). Denoting the position reachedraf . . i
full stop asxsip, We can easily compute the sign of cruising:tlme evolutionr (¢) € [0.-1] for all DOFs:

which effectively decreases both maximal velocity and kcce
eration. Nevertheless, this approach is not feasible argymo
for non-zero initial velocities, because the rescaling qpf @
leads to a discontinuous velocity jump from to s - vg.

A common objective is to achievestraight-linemotion in

d= Sign(xgoal - ﬂ?stop) (2 x(t) To+7l0) (mgoal 350)
Allowing arbitrary initial velocities may result in diffently

Because we want to allow arbitrary changes of the motioshaped velocity profiles, e.g. some DOFs might need an
constraints, the initial velocity, might be larger in mag- acceleration phase while others might not. Obviously, Thsu
nitude than the (newly set) maximum velocity,... In this cases a straight-line motion cannot be achieved anymore.
case, the velocity has to be reduced in two steps: initiglly t The best approximation to a straight-line motion is
reachd vmax and finally to reach zero. Hence, the sign ofachieved if the overlap between the three phases of all DOFs
acceleration during first phase switches its sign, resultin is as large as possible, because during these intervals all
a double deceleratiomprofile. DOFs evolve homogeneously. An analytical solution to this

Having determined the direction of motion within all optimisation problem is not feasible anymore, because the
phases, we have to distinguish two cases: If reaching tlsearch space splits up into a multitude of regions obeying
maximal cruising speed already overshoots the target, different laws. Instead of finding the global optimum, in the
wedge-shaped velocity profile with reduced peak velocitpresent paper we consider the special case of maximising the
has to be planned. Otherwise a full trapezoidal profile caoverlap within the cruising phase only.
be planned inserting a cruising phase of appropriate durati  To this end we shorten both the acceleration and decelera-
The displacementa\z;, Az within first resp. third phase tion phase by some amouit This decreases the magnitude
can be easily computed from the duratioA$; and At3  of the cruising velocity and thus prolongs the duratian,



05 | velocity within these profiles is determined by the second-
| | order profiles considered in sec. Il. Hence, we will draw on
0 these results to plan time-optimal velocity profiles: fitst,

[l
I
! reach maximal cruising velocity,,. (in acceleration phases
0 05 1 15 2 25 s 35 1-3), and second, to slow down to zero speed (in deceleration

phases 5-7).
o6 While there are only two major cases to be distinguished
Zz (1] for second-order trajectories, i.e. acceleration and ldese
R tion phase having equal or different signs, we now have to
02 2 consider some more cases: The acceleration profiles of both,
0 0s 1 15 2 25 5 a5 the acceleration and deceleration phase, might be wedge-

! ) ) ) ) shaped (W) or trapezoidal (T), and every combination (TT,
Fig. 2. Non-synchronised and synchronised velocity prefdé second- T™W. WT WW . diff ¢ t of ti
order trajectories for three DOFs. While maintaining maximal iarot ' , or ) requires a diferent set of equations

conditions within the acceleration and deceleration phasiee cruising to be solved. Additionally, the profile within acceleration

velocity is reduced to adjust to the new motion duration. Ferfirst DOF phases 1-3 becomes a double deceleration profile if thaliniti

this leads to a double deceleration profile. . - . - .
acceleratior, exceeds the limit,,,, in magnitude. Finally,

of the central cruising phase. Frofa we can calculate the the peak accelerations during acceleration and decelgrati

new switching times’: phase (i.e.a(t2) = a(ts) and a(ts) = a(ts) respectively)
might have identical signs, resulting in a canonical profile

A A? lvg or different signs, resulting in double deceleratianin the
A= D) + 4 +(T - t3)m latter case, the velocity is decreased from the initial @alu

_ to zero in two steps again as shown in fig. 7. Totally, we
) where ) A=T—(ts — Ab) ) distinguish eight major cases. In the following, we conside
ti=ti—A  t=T—-(At3—A) t3=T the one- and multi-dimensional case separately again.

If the duration At; of the acceleration phase is smalle
than A (it will be zero, if the DOF simply continues
cruising), the first phase has to be turned into a deceleratio Before we outline the structure of the proposed algorithm,
phase to reach a lower cruise velocity (fig. 2). In this cas&e have to consider the handling of initial valuesanda,
we use the immediate-stop proﬁ|e and Sp"t it, inserting gxceeding their maxima in magnitude. If both values exceed
cruising phase at some reduced velogityThis leads to the their limits and differ in sign, one can freely choose to

'A. One-dimensional Case

following equations: decrease either of them with higher priority: Delaying the
acceleration decrease and continuing with(at zero jerk)

_ Tgoal T Tstop \\hare tstop = ol results in a faster decay of velocity. Conversely, applying

T —tstop Gmax maximal jerk, acceleration decreases as fast as possilile, b

. [v — o th =T — (tsop— t)) T slows down velocity decrease. Choosing intermediate jerk

D7 max 2 stop™ "1 3 values, it is possible to trade off between both extremes.

The same equations also apply to the double deceleratigflile the correct weighting is application-dependent, we

case obtained if the initial velocity exceeds the maxima.on N@ve chosen to prioritise acceleration to simplify matters
In principle, the third-order algorithm follows the same

route as outlined in sec. Il. To calculate the switching 8me
I1l. PLANNING THIRD-ORDER TRAJECTORIES between the seven phases, we first determine the direction of

So far we have neglected the jerk limit and allowed disthe cruising phase based on the distance between immediate

continuous jumps within the acceleration profile. To inseea S0P and target position (eq. 2). The stop positie, can
smoothness of trajectories even further, we now considBf €asily computed by planning the time-optimal velocity
third-order trajectories resulting in continuous accatien profile to reach zero speed using the results of sec. Il and
profiles generated from seven motion phases (see fig. 3} PN
Within each phase the motion evolves at limit conditions ™ <
again, i.e. eitherax, @max, OF Umax are reached within i

each phase, and the time evolution of position is described, 3 2o Ead I
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Compared to the second-order profile of fig. 1, the acceler-"° 2% 4 2% & 8% L 4%
ation and decelera_“on phases n_OW split into threg separ@.is_ 3. Canonical third-order trajectory profile consigtiof seven phases:
phases: reach maximal acceleration, proceed at this ladel anree acceleration, one cruising, and three deceleratiangs. Due to equal
go back to zero acceleration. Thiene-optimal evolution of initial and final conditions the profile is highly symmetric.



accumulating the position changes within each of the three Solving these equations yields a fourth-order polynomial
resulting phases. Subsequently we compute a profile targgiving four complex solutions. Nevertheless, if the cotrec

ing at maximal cruising speed=d-v,,,, and immediately

profile type was chosen a real-valued solution with non-

slowing down to zero speed afterwards. We call this profilaegative duration timeat¢,; will be found.
zero-cruise profilebecause it has a cruising phase of zero It remains toqualitatively decide about therofile typeat

duration. From this profile, we compute the distanfes,.

hand. Our starting point is the previously computed, well-

and Azgec traversed during acceleration and deceleratiodefined zero-cruise profile. Although this profile already

phases respectively. If there still remains a (positivg) ta

defines the correct sigd of vz, it overshoots the target.

the target, an appropriate cruising phase running at maximaence, the magnitude aof; has to be reduced in order to

speed is inserted:

Aby — Lgoal — (w0 + AZacc + AT dec)
ty = .
v

hit the target. This reduction can be achieved by decreasing
the integral ofa(t) during the first three phases, i.e. by
decreasing the area below the piecewise linear acceleratio

If At, is negative, the reached position already overshoo!'ve as shown in fig. 4. This area exactly represents the
the target and the cruising phase has to be omitted. Simuli¢locity increase achieved during those phases. To comply
neously the velocity; =v(t;) reached after the accelerationWith €gs. (8, 9), an identical amount of area also has to be

phase becomes a new unknown variable replagingwhich

removed from the last three phases as indicated by the shaded

has to be zero. In contrast to the second-order case \®Eeas in fig. 4.

cannot directly set up the equations to solve the problem, Hence, the idea to identify the correct profile type, is
because first we have to decide which set of equationsta successivelyprune the acceleration profile by removing
corresponding to the different cases TT, TW, WT, or wwidentically sized areas from the first and last three phases,

— we have to use. Provided that wpialitatively know

thus arriving at the next shorter profile type. Using this

the profile type of the time-optimal solution, we can easilyrofile, the finally reached positior; is computed again. If
formulate the following set of polynomial equations whichit still overshoots the target, the pruning process comsnu

have to be solved for the phase duratiahs to obtain the
guantitativelycorrect solution:
acceleration and velocity variables:
a; = a;_1 + jiAt; i=1...7

(] :Ui,1+ai,1Ati+%jiAt3 1=1...7

()
(8)

reaching final acceleration, velocity, and target position

a7 = 0 U7 = 0 (9)
7
T7 = To + ZPS(Atiaviflvaifla]ﬁ = Zgoa  (10)
=1
no cruising, zero intermediate acceleration:
At4 =0 a3z = Q4 — 0 (11)

Here, the variables;, v;, and z; denote the acceleration,

velocity, and positionreached afterphasei respectively.
The jerksj; applied within phase are determined from the
profile type as follows:

j=1[£0,—,0,—,0,+]-d- jmax canonical profile

7=17,0,4+,0,—,0,4]-d- jmax double deceleration

The double sign for the jerf of the first phase shall indicate
that j; switches its canonical sign, if the initial acceleratio
exceeds its limit — resulting in a double deceleration psiéofildouble deceleration one as shown in fig. 5.
within phases 1-3. The second constraint of eq. (11) guaraf;

tees that acceleration drops to zero between acceleratibn

Otherwise, the previous profile already was the correct one
and can be used to find the duratiods; solving the
corresponding set of equations (7-15). Summarising, we can
formulate the following algorithm:

Algorithm: Select correct (canonical) profile type.

1) For both, the acceleration and deceleration part, com-

pute the aread\v,.. and Avg.. Which has to be cut to

transform a T-profile to a W-profile, or a W-profile to

an (empty) full stop profile.

Cutting the smaller area in both parts yields the next

shorter profile of the decision tree shown in fig. 6.

Check whether this profile still leads to an overshoot,

i.€. sign(Zreached— 5Cgoal) ~d=+1

) If so, continue the pruning process at 1)

) Otherwise, the previous profile is qualitatively correct

6) Formulate the corresponding set of equations (7-15)
and solve them numerically.

3)

a1 b

So far, we considered only profile combinations having
different signs within acceleration and deceleration phas
But, if velocity exceeds its limitv,,, (initially or due to
initial acceleration), we have to decelerate in order tchea

Mmaximal cruising speed v,,.«, turning the profile into a

In this case
ie time-optimal profile switches between both decelenatio

&bhases at non-zero acceleration because this maximally de-

deceleration part of the profile. The two remaining equatuor](,iyS slow down ensuring the largest position change within a

are specific to the profile type:

Aty =0 W-? profile (12)
a1 = —sign(js) - amax 1-? profile: a,.x reached (13)
Atg =0 ?-W profile (14)
a5 = —d - Amax ?-T profile: a,,. reached (15)

given time interval (see fig. 5). Shortening the profile iselon
there byshiftingarea from the first to the second deceleration
phase, which again preserves zero final velocity.

Fig. 7 illustrates this shifting process for the most common
deceleration profiles. As can be seen there, the first two
phases of the profile remain fixed. They ensure a fast
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Fig. 4. Large sub figures show the evolution of velocity andifin
corresponding to the four acceleration profil€s) shown below. These are
the most common profile shapes obtained as canonical zere qrofiles
(all figures may be flipped about the x-axis corresponding to &omo
of opposite direction). While the profile within the decetera phase is
always symmetrical, the corresponding shape within the ac#n phase
is determined by the initial velocity and acceleration. Tduee the peak
velocity reached after acceleration phases 1-3, equalddqshaded) areas
have to be cut from both acceleration and deceleration ghBsesuccessive
pruning, an original TT profile is transformed to the corresging full stop
profile, while maintaining zero final conditions (eq. 9). Thgpar and lower
figures differ in the durations of the constant acceleragibases only.

Fig. 5.
speedvmax, the acceleration and deceleration parts of the profile hav
the same sign resulting in a double deceleration profile. &leaist two

possibilities to shorten the original zero-cruise profitaghed). While the
first solution separates both deceleration phases=a6 (left), the second
one switches earlier and arrives faster at the target dueetdélayed decay
of velocity (right).

- TT
™wobowr

~ WW — M — T

T

full stop W 2W

canonical profiles double deceleration

Fig. 6. Decision tree to select the correct profile type. Dejggg on the
decision whether the profile has canonical shape or two eet&n phases,
the right or the left decision tree applies respectively.

Fig. 7. Common double deceleration profiles characterised dguble-
wave velocity decrease. To reach zero speed at a nearet, tdrgenitial
velocity vg > vmax has to be decreased faster. This is accomplished by
shifting area from phase 3 to the second deceleration ph#.dUrations

of the first two phases must be kept fixed. They ensure the fgstesible
decrease of velocity tomax.

slow down to the maximal velocity. Hence, in the double
deceleration case we distinguish only ?W and ?T profiles,
where the question mark is a placeholder for a wedge-
shaped or trapezoidal profile. A zero-cruise profile of type
?W, i.e. with wedge-shaped second part, might turn into ?T-
profile, if sufficiently much area has to be shifted into the
second part in order to lower the velocity. The decision
between these two types is based on the limit case shown
in the second profile of fig. 7 where the wedge-shaped
second part exactly touches the limif,.,. If this profile

still overshoots, a ?T profile has to be used, otherwise the ?W
profile yields the correct solution. The decision tree shown
in fig. 6 summarises all possible transitions.

B. Multi-dimensional Case

To synchronise several DOFs to the same duration, we
again propose a method to stretch a given time-optimal
profile to a new duratiorf’. To this end, the peak velocity
vg has to be reduced further, either by pruning or shifting
area from the acceleration and deceleration phases in case
of canonical resp. double-deceleration profiles. Starftiogn
the previously computed time-optimal profile satisfying th
final conditions (7-10), we obviously have to maintain this
state while descending the decision tree of fig. 6. Hencer, aft

If initial velocity vo is decreased in magnitude to reach maximaleach pruning step (which maintains zero final acceleration

&nd velocity by construction), the cruising phase has to be
stretched appropriately to reach the target again. Figure 8
outlines the idea of this approach: Shortening the acceler-
ation and deceleration phases leads to an undershooting of
the previously reached target. To balance for this position
difference the cruising phase is prolonged appropriately:
Aty = Ax/vs. Summarising, the profile is first shortened
by pruning and subsequently prolonged by the adjustment of
the cruising phase. The correct profile type is found, if the
newly computed profile has an overall duration exceeding

As in the second-order case, this pruning process may switch
a canonical to a double-deceleration profile as the example
in fig. 9 shows. The final duration&t; can be obtained by
solving a profile-dependent set of equations similar togy.--1
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Fig. 8. Stretching a given profile (left) to a longer durati@ight) is done
by shortening both acceleration and deceleration partsirohy a profile
with reduced peak velocity (left), undershooting the targbsequently
the missing position change is balanced by enlarging theiogiphase as
indicated by the shaded areas in the shown velocity profiles.

N - ‘:7 T
§;§, ‘li‘.
0. 0. WL }}, ,"'"I il
; ‘ ; R 5
Fig. 9. Non-synchronised and synchronised velocity prefiethird-order A‘ 4 * )
trajectories for three DOFs. While maintaining maximal motionditions 0 T Vel —
within the acceleration and deceleration phases, theioguigelocity is \\ \ ’ \\
reduced to adjust to the new motion duration. For the secon@ B

leads to a double deceleration profile.

profile Atg >0 | TT | TW | WT | WW

time [us] 100 220 | 220 | 220 | 360 Fig. 10. Performance of third-order (topmax=0.6) and second-order

TABLE | (bottom) algorithm on position-controlled (PID) MitsubigPA10 robot arm.
Shown are observed position (black), velocity (red), ancblration (blue)
curves of a single joint together with their targets (greeDgrivatives
are obtained numerically with subsequent smoothing. The Rifiraller
can follow the smoother third-order trajectory much better ¥deo see:
IV. RESULTS http://www.techfak.uni-bielefeld.derhaschke/PA10-STP.wmv.

We verified the correctness of the algorithm, i.e. maintaint'rajectory obeys limit conditions on velocity

ing all limit conditions, in a systematic test suite Cheekin ;o \yhich allows its application to delicate manipulatio
all possible profile types and taking different normal aslwe asks, e.g. transport of a filled glass. In contrast to previ-

as extremal numerical conditions into account. This test re) approaches, the algorithm can hanailbitrary initial
vealed, that under extreme conditions, i.e. tiny d|sg)lamw conditionswhich is a prerequisite for modern service robots
between current and target position (of order”), the \hich interactively cooperate with humans and thus need
third-order planner might fail due to numerical prob_lems. I. to adapt a computed trajectory at any time during motion.
these cases we fall back to the second-order profile, whigt,e gigorithm descends a short decision tree based on the
gives stable sqlutlons even under these cqndltlons. As tabl evaluation of simple linear or quadratic expressions terdet
shows, all profile types can be computed in less than 0.5 Mgne the profile type at hand. Subsequently, an associated se

on a Pentium D 3GHz, thus allowing real-time applicationsy¢ ¢qations leading to a fourth-order polynomial is solved
Please note, that typical profiles exhibiting a cruisingseha n merically. Real-time performance is ensured by a small
compute in less than 0.1 ms. The application of the prOpOS%%mputation time of maximally 360s.

algorithm to the control of our Mitsubishi PA10 7-DOF
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