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Abstract— Service robots which directly interact with hu-
mans in highly unstructured, unpredictable and dynamic envi-
ronments must be able to flexibly adapt their motion in reaction
to unforeseen events or obstacles and they must provide a new
feasible trajectory in real-time. Hence, algorithms come into
focus which replan the motion path and its time evolution from
arbitrary initial conditions within milliseconds. We present a
real-time algorithm to generate synchronised and time-optimal
third-order manipulator trajectories complying maximal mo-
tion limits on velocity, acceleration and jerk. Experimental
results carried out on a Mitsubishi PA10-7C arm are presented.

I. I NTRODUCTION

In the past, robot motion control has been focused mainly
on industrial applications which require fast and accurate
motion execution, but allow rather long preparation times to
compute the ”optimal” trajectory in space and time. All these
applications are confined to well-structured and safe environ-
ments and well-defined tasks. However, the advent of service
robots calls for more dynamic approaches to motion control.
These robots shall act in the direct vicinity of humans,
typically even cooperate with them in highly unstructured
spaces. This calls for fast, online modifications of planned
trajectories in case of unforeseen obstacles, e.g. the human
himself. Hence we need motion planning algorithms which
are able to handle arbitrary initial conditions and providea
feasible solution in real-time. This solution doesn’t needto
be optimal in the first place, but can be successively improved
later. This approach of any-time availability is frequently
followed by modern path planning algorithms [1], [2].

The problem of robot motion planning has been divided
into three hierarchical subproblems: (i) the specificationof
the geometric path avoiding obstacles(path planning), (ii)
the specification of the time evolution along this geometric
path (trajectory planning), and (iii) the low-level control
loops (path tracking). The objective of trajectory planning,
which is focused in the present paper, is two-fold: On the one
hand, tracking accuracy shall be improved and manipulator
wear reduced by providing smooth set points to the servo-
motor controllers. On the other hand, the motion itself shall
be confined to certain limit conditions given by maximal
velocity, acceleration, jerk, or forces of the end effectorin
Cartesian space. The handling of a full cup, for example,
requires very gentle movements to avoid spilling its content.

To realise smooth motion several off-line approaches have
been presented providing time-optimal solutions by concate-
nation of cubic splines generating motion at limit conditions

[3]–[5]. More recent approaches also consider adaptive real-
time trajectory planning, which allow a manipulator to adapt
its motion to the current situation [6], [7]. While Kröger et
al. [7] developed an online capable method to compute time-
optimal trapezoidal velocity profiles from arbitrary initial
conditions, Herrera and Sidobre [6] presented an approach
to compute jerk-limited trajectories, but only zero initial
acceleration conditions could be handled. To the best of
our knowledge, a universal solution to compute time-optimal
third-order trajectories with arbitrary initial conditions was
not available till now, because the lack of symmetric zero
boundary conditions enormously complicates the problem.

The present paper solves this issue presenting anonline-
and realtime-capableapproach to plan time-optimal, syn-
chronised trajectories in anN -dimensional space (joint or
Cartesian) subject to limit conditions for maximal velocity,
acceleration, and jerk. The trajectory planner can handle
arbitrary initial values for position, velocity, and acceleration
and it can handle changes of the limit conditions, which
allows a replanning at any time – even within full motion.
The generated trajectory achieves a smooth blending from
the previous to the current target. The final velocity and
acceleration are supposed to be zero throughout the paper.

We follow a modular approach and first present an al-
gorithm to plan second-order trajectories generated from
rectangular acceleration pulses in sec. II. Planning third-
order trajectories draws on these results and is presented in
sec. III. Finally, in sec. IV simulation results demonstrate the
operational efficiency of the presented algorithm.

II. PLANNING TRAPEZOIDAL VELOCITY PROFILES

Initially, we neglect the jerk limit and consider only
bounds on velocity and acceleration. In this case a time-
optimal trajectory can be generated from three phases: an
acceleration phase to reach the maximal velocity, a cruising
phase evolving atconstant speed, and finally a deceleration
phase to halt. Both acceleration and deceleration phase run
at maximum acceleration of opposite sign resulting in the
rectangular-shaped acceleration profile shown in fig. 1. While
the velocity profile is trapezoidal, the time evolution of
positionx(t) can be described by second-order polynomials:

x(t) = p2(t, x0, v0, a) = x0 + v0 · t + 1

2
a · t2 (1)

wherex0, v0, anda denote the initial position, velocity, and
acceleration of a phase. These polynomials are concatenated
at certain switching timest1, t2, t3 to compose the overall
trajectory:
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Fig. 1. Canonical second-order profile comprising three phases.

• acceleration phase (linearly increasing velocity):
x(t) = p2(t − 0, x0, v0, aacc) for 0 ≤ t < t1

• cruising phase (constant velocity):
x(t) = p2(t − t1, x1, d · vmax, 0) for t1 ≤ t < t2

• deceleration phase (linearly decreasing velocity):
x(t) = p2(t − t2, x2, v2, adec) for t2 ≤ t < t3

• target reached:
x(t) = xgoal for t3 ≤ t

Here, the variablesxi and vi define the initial conditions
for each phase and are equal to the final conditions of the
previous phase. The switching timest1, t2, t3 between phases
completely determine the whole trajectory profile.

A. One-dimensional Case

To compute the time-optimal trajectory to a targetxgoal,
we need to determine these switching times subject to initial
parametersx0 andv0, final conditionsẋ(t3) = 0, ẍ(t3) = 0,
and motion limitsvmax, amax. We solve this optimisation
problem analytically ensuring real-time performance.

First, we determine the directiond ∈ {−1, 1} of the
cruising phase, which automatically determines the (default)
sign of acceleration and deceleration:aacc = d · amax and
adec = −d ·amax. If the initial velocity equals zero,d can
be simply determined byd = sign(xgoal − x0). However,
considering arbitrary initial velocitiesv0 we may overshoot
the target even at immediate slow down to zero velocity (due
to limited deceleration). Denoting the position reached after
full stop asxstop, we can easily compute the sign of cruising:

d = sign(xgoal− xstop) (2)

Because we want to allow arbitrary changes of the motion
constraints, the initial velocityv0 might be larger in mag-
nitude than the (newly set) maximum velocityvmax. In this
case, the velocity has to be reduced in two steps: initially to
reachd vmax and finally to reach zero. Hence, the sign of
acceleration during first phase switches its sign, resulting in
a double decelerationprofile.

Having determined the direction of motion within all
phases, we have to distinguish two cases: If reaching the
maximal cruising speed already overshoots the target, a
wedge-shaped velocity profile with reduced peak velocity
has to be planned. Otherwise a full trapezoidal profile can
be planned inserting a cruising phase of appropriate duration.
The displacements∆x1, ∆x3 within first resp. third phase
can be easily computed from the durations∆t1 and ∆t3

needed to reach cruising velocityv=d vmax and to halt:

∆t1 =
v − v0

aacc
∆x1 = p2(∆t1, 0, v0, aacc) (3)

∆t3 =
v

adec
∆x3 = p2(∆t3, 0, v, adec) (4)

Now we can compute the duration∆t2 of the cruising phase:

∆t2 =
xgoal− (x0 + ∆x1 + ∆x3)

v
. (5)

If this duration is positive, atrapezoidal profilewith overall
durationt3 = ∆t1 + ∆t2 + ∆t3 results. Otherwise the peak
velocity |v| and the overall durationt3 of the wedge-shaped
profile have to be calculated from eqs. 3-5 setting∆t2 ≡ 0:

|v| =
√

d amax · (xgoal− x0) + 1

2
v2

0

t3 =
d |v| − v0

aacc
+ 0 +

d |v|

adec

B. Multi-dimensional Case

Commonly several DOFs have to be controlled and typi-
cally they shall finish their movements simultaneously, which
requires to adjust the trajectory profiles of all motion di-
mensions to a new durationT given by the slowest DOF.
This adjustment can be done in several, very different ways.
Considering zero initial velocities, the simplest approach is
to rescale the whole time evolution:

x̃(t) = x(s · t) wheres = t3/T . (6)

which effectively decreases both maximal velocity and accel-
eration. Nevertheless, this approach is not feasible anymore
for non-zero initial velocities, because the rescaling of eq. 6
leads to a discontinuous velocity jump fromv0 to s · v0.

A common objective is to achieve astraight-linemotion in
N-dimensional configuration space, e.g. in Cartesian space,
which can be guaranteed if all DOFs evolve according to
identically shaped velocity profiles. This results from the
fact, that a straight line is only achieved with acommon
time evolutionτ(t) ∈ [0..1] for all DOFs:

~x(t) = ~x0 + τ(t) · (~xgoal− ~x0)

Allowing arbitrary initial velocities may result in differently
shaped velocity profiles, e.g. some DOFs might need an
acceleration phase while others might not. Obviously, in such
cases a straight-line motion cannot be achieved anymore.

The best approximation to a straight-line motion is
achieved if the overlap between the three phases of all DOFs
is as large as possible, because during these intervals all
DOFs evolve homogeneously. An analytical solution to this
optimisation problem is not feasible anymore, because the
search space splits up into a multitude of regions obeying
different laws. Instead of finding the global optimum, in the
present paper we consider the special case of maximising the
overlap within the cruising phase only.

To this end we shorten both the acceleration and decelera-
tion phase by some amount∆. This decreases the magnitude
of the cruising velocity and thus prolongs the duration∆t2
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Fig. 2. Non-synchronised and synchronised velocity profiles of second-
order trajectories for three DOFs. While maintaining maximal motion
conditions within the acceleration and deceleration phases, the cruising
velocity is reduced to adjust to the new motion duration. For the first DOF
this leads to a double deceleration profile.

of the central cruising phase. From∆ we can calculate the
new switching timest′

i
:

∆ = −
A

2
+

√

A2

4
+ (T − t3)

|vc
0
|

amax

where A = T − (t3 − ∆t2)

t′
1

= t1 − ∆ t′
2

= T − (∆t3 − ∆) t′
3

= T

If the duration∆t1 of the acceleration phase is smaller
than ∆ (it will be zero, if the DOF simply continues
cruising), the first phase has to be turned into a deceleration
phase to reach a lower cruise velocity (fig. 2). In this case
we use the immediate-stop profile and split it, inserting a
cruising phase at some reduced velocityv. This leads to the
following equations:

v =
xgoal− xstop

T − tstop
where tstop =

|v0|

amax

t′
1

=
|v − v0|

amax

t′
2

= T − (tstop− t′
1
) t′

3
= T

The same equations also apply to the double deceleration
case obtained if the initial velocity exceeds the maximal one.

III. PLANNING THIRD-ORDER TRAJECTORIES

So far we have neglected the jerk limit and allowed dis-
continuous jumps within the acceleration profile. To increase
smoothness of trajectories even further, we now consider
third-order trajectories resulting in continuous acceleration
profiles generated from seven motion phases (see fig. 3).
Within each phase the motion evolves at limit conditions
again, i.e. eitherjmax, amax, or vmax are reached within
each phase, and the time evolution of position is described
by a third-order polynomial:

x(t) = p3(t, x0, v0, a0, j) = x0 + v0 · t + 1

2
a0 · t

2 + 1

6
j · t3

Compared to the second-order profile of fig. 1, the acceler-
ation and deceleration phases now split into three separate
phases: reach maximal acceleration, proceed at this level and
go back to zero acceleration. Thetime-optimal evolution of

velocity within these profiles is determined by the second-
order profiles considered in sec. II. Hence, we will draw on
these results to plan time-optimal velocity profiles: first,to
reach maximal cruising velocityvmax (in acceleration phases
1-3), and second, to slow down to zero speed (in deceleration
phases 5-7).

While there are only two major cases to be distinguished
for second-order trajectories, i.e. acceleration and decelera-
tion phase having equal or different signs, we now have to
consider some more cases: The acceleration profiles of both,
the acceleration and deceleration phase, might be wedge-
shaped (W) or trapezoidal (T), and every combination (TT,
TW, WT, or WW) requires a different set of equations
to be solved. Additionally, the profile within acceleration
phases 1-3 becomes a double deceleration profile if the initial
accelerationa0 exceeds the limitamax in magnitude. Finally,
the peak accelerations during acceleration and deceleration
phase (i.e.a(t2) = a(t3) and a(t5) = a(t6) respectively)
might have identical signs, resulting in a canonical profile,
or different signs, resulting in adouble deceleration. In the
latter case, the velocity is decreased from the initial value
to zero in two steps again as shown in fig. 7. Totally, we
distinguish eight major cases. In the following, we consider
the one- and multi-dimensional case separately again.

A. One-dimensional Case

Before we outline the structure of the proposed algorithm,
we have to consider the handling of initial valuesv0 anda0

exceeding their maxima in magnitude. If both values exceed
their limits and differ in sign, one can freely choose to
decrease either of them with higher priority: Delaying the
acceleration decrease and continuing witha0 (at zero jerk)
results in a faster decay of velocity. Conversely, applying
maximal jerk, acceleration decreases as fast as possible, but
slows down velocity decrease. Choosing intermediate jerk
values, it is possible to trade off between both extremes.
While the correct weighting is application-dependent, we
have chosen to prioritise acceleration to simplify matters.

In principle, the third-order algorithm follows the same
route as outlined in sec. II. To calculate the switching times
between the seven phases, we first determine the direction of
the cruising phase based on the distance between immediate
stop and target position (eq. 2). The stop positionxstop can
be easily computed by planning the time-optimal velocity
profile to reach zero speed using the results of sec. II and
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Fig. 3. Canonical third-order trajectory profile consisting of seven phases:
three acceleration, one cruising, and three deceleration phases. Due to equal
initial and final conditions the profile is highly symmetric.



accumulating the position changes within each of the three
resulting phases. Subsequently we compute a profile target-
ing at maximal cruising speedv =d·vmax and immediately
slowing down to zero speed afterwards. We call this profile
zero-cruise profilebecause it has a cruising phase of zero
duration. From this profile, we compute the distances∆xacc

and ∆xdec traversed during acceleration and deceleration
phases respectively. If there still remains a (positive) gap to
the target, an appropriate cruising phase running at maximal
speed is inserted:

∆t4 =
xgoal− (x0 + ∆xacc+ ∆xdec)

v
.

If ∆t4 is negative, the reached position already overshoots
the target and the cruising phase has to be omitted. Simulta-
neously the velocityv3 =v(t3) reached after the acceleration
phase becomes a new unknown variable replacing∆t4 which
has to be zero. In contrast to the second-order case we
cannot directly set up the equations to solve the problem,
because first we have to decide which set of equations –
corresponding to the different cases TT, TW, WT, or WW
– we have to use. Provided that wequalitatively know
the profile type of the time-optimal solution, we can easily
formulate the following set of polynomial equations which
have to be solved for the phase durations∆ti to obtain the
quantitativelycorrect solution:

acceleration and velocity variables:

ai = ai−1 + ji∆ti i = 1 . . . 7 (7)

vi = vi−1 + ai−1∆ti + 1

2
ji∆t2

i
i = 1 . . . 7 (8)

reaching final acceleration, velocity, and target position:

a7 = 0 v7 = 0 (9)

x7 = x0 +

7
∑

i=1

p3(∆ti, vi−1, ai−1, ji) = xgoal (10)

no cruising, zero intermediate acceleration:

∆t4 = 0 a3 = a4 = 0 (11)

Here, the variablesai, vi, and xi denote the acceleration,
velocity, and positionreached afterphasei respectively.
The jerksji applied within phasei are determined from the
profile type as follows:

~j = [±, 0,−, 0 ,−, 0,+] · d · jmax canonical profile
~j = [∓, 0,+, 0 ,−, 0,+] · d · jmax double deceleration

The double sign for the jerkj1 of the first phase shall indicate
that j1 switches its canonical sign, if the initial acceleration
exceeds its limit – resulting in a double deceleration profile
within phases 1-3. The second constraint of eq. (11) guaran-
tees that acceleration drops to zero between acceleration and
deceleration part of the profile. The two remaining equations
are specific to the profile type:

∆t2 = 0 W-? profile (12)

a1 = − sign(j3) · amax T-? profile:amax reached (13)

∆t6 = 0 ?-W profile (14)

a5 = −d · amax ?-T profile:amax reached (15)

Solving these equations yields a fourth-order polynomial
giving four complex solutions. Nevertheless, if the correct
profile type was chosen a real-valued solution with non-
negative duration times∆ti will be found.

It remains toqualitativelydecide about theprofile typeat
hand. Our starting point is the previously computed, well-
defined zero-cruise profile. Although this profile already
defines the correct signd of v3, it overshoots the target.
Hence, the magnitude ofv3 has to be reduced in order to
hit the target. This reduction can be achieved by decreasing
the integral ofa(t) during the first three phases, i.e. by
decreasing the area below the piecewise linear acceleration
curve as shown in fig. 4. This area exactly represents the
velocity increase achieved during those phases. To comply
with eqs. (8, 9), an identical amount of area also has to be
removed from the last three phases as indicated by the shaded
areas in fig. 4.

Hence, the idea to identify the correct profile type, is
to successivelyprune the acceleration profile by removing
identically sized areas from the first and last three phases,
thus arriving at the next shorter profile type. Using this
profile, the finally reached positionx7 is computed again. If
it still overshoots the target, the pruning process continues.
Otherwise, the previous profile already was the correct one
and can be used to find the durations∆ti solving the
corresponding set of equations (7-15). Summarising, we can
formulate the following algorithm:

Algorithm: Select correct (canonical) profile type.

1) For both, the acceleration and deceleration part, com-
pute the area∆vacc and∆vdec which has to be cut to
transform a T-profile to a W-profile, or a W-profile to
an (empty) full stop profile.

2) Cutting the smaller area in both parts yields the next
shorter profile of the decision tree shown in fig. 6.

3) Check whether this profile still leads to an overshoot,
i.e. sign(xreached− xgoal) · d = +1

4) If so, continue the pruning process at 1)
5) Otherwise, the previous profile is qualitatively correct.
6) Formulate the corresponding set of equations (7-15)

and solve them numerically.

So far, we considered only profile combinations having
different signs within acceleration and deceleration phase.
But, if velocity exceeds its limitvmax (initially or due to
initial acceleration), we have to decelerate in order to reach
maximal cruising speedd vmax, turning the profile into a
double deceleration one as shown in fig. 5. In this case
the time-optimal profile switches between both deceleration
phases at non-zero acceleration because this maximally de-
lays slow down ensuring the largest position change within a
given time interval (see fig. 5). Shortening the profile is done
there byshiftingarea from the first to the second deceleration
phase, which again preserves zero final velocity.

Fig. 7 illustrates this shifting process for the most common
deceleration profiles. As can be seen there, the first two
phases of the profile remain fixed. They ensure a fast
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shifting area from phase 3 to the second deceleration part. The durations
of the first two phases must be kept fixed. They ensure the fastest possible
decrease of velocity tovmax.

slow down to the maximal velocity. Hence, in the double
deceleration case we distinguish only ?W and ?T profiles,
where the question mark is a placeholder for a wedge-
shaped or trapezoidal profile. A zero-cruise profile of type
?W, i.e. with wedge-shaped second part, might turn into ?T-
profile, if sufficiently much area has to be shifted into the
second part in order to lower the velocityv3. The decision
between these two types is based on the limit case shown
in the second profile of fig. 7 where the wedge-shaped
second part exactly touches the limitamax. If this profile
still overshoots, a ?T profile has to be used, otherwise the ?W
profile yields the correct solution. The decision tree shown
in fig. 6 summarises all possible transitions.

B. Multi-dimensional Case

To synchronise several DOFs to the same duration, we
again propose a method to stretch a given time-optimal
profile to a new durationT . To this end, the peak velocity
v3 has to be reduced further, either by pruning or shifting
area from the acceleration and deceleration phases in case
of canonical resp. double-deceleration profiles. Startingfrom
the previously computed time-optimal profile satisfying the
final conditions (7-10), we obviously have to maintain this
state while descending the decision tree of fig. 6. Hence, after
each pruning step (which maintains zero final acceleration
and velocity by construction), the cruising phase has to be
stretched appropriately to reach the target again. Figure 8
outlines the idea of this approach: Shortening the acceler-
ation and deceleration phases leads to an undershooting of
the previously reached target. To balance for this position
difference the cruising phase is prolonged appropriately:
∆t4 = ∆x/v3. Summarising, the profile is first shortened
by pruning and subsequently prolonged by the adjustment of
the cruising phase. The correct profile type is found, if the
newly computed profile has an overall duration exceedingT .
As in the second-order case, this pruning process may switch
a canonical to a double-deceleration profile as the example
in fig. 9 shows. The final durations∆ti can be obtained by
solving a profile-dependent set of equations similar to (7-15).
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Fig. 9. Non-synchronised and synchronised velocity profiles of third-order
trajectories for three DOFs. While maintaining maximal motion conditions
within the acceleration and deceleration phases, the cruising velocity is
reduced to adjust to the new motion duration. For the second DOF this
leads to a double deceleration profile.

profile ∆t4 > 0 TT TW WT WW
time [µs] 100 220 220 220 360

TABLE I

WORST-CASE COMPUTING TIME FOR DIFFERENT PROFILES

IV. RESULTS

We verified the correctness of the algorithm, i.e. maintain-
ing all limit conditions, in a systematic test suite checking
all possible profile types and taking different normal as well
as extremal numerical conditions into account. This test re-
vealed, that under extreme conditions, i.e. tiny displacements
between current and target position (of order10−5), the
third-order planner might fail due to numerical problems. In
these cases we fall back to the second-order profile, which
gives stable solutions even under these conditions. As table I
shows, all profile types can be computed in less than 0.5 ms
on a Pentium D 3GHz, thus allowing real-time applications.
Please note, that typical profiles exhibiting a cruising phase,
compute in less than 0.1 ms. The application of the proposed
algorithm to the control of our Mitsubishi PA10 7-DOF
robot arm can be seen in fig. 10, where four positions
are targeted in sequence (switching points are marked by
vertical lines). The delay of the actual trajectory from the
target trajectory is a result of the PID control. Regarding the
acceleration profile, the controller can follow much betterthe
smooth third-order profile, than the second-order one. Note,
that the velocity and acceleration curves for the real robot
are obtained by numerically computing the derivatives and
subsequent Nadaraya-Watson smoothing.

V. CONCLUSION

We presented an algorithm to calculate time-optimal, third-
order trajectories delivering the parameters of seven cubic
polynomials which can be used to compute smooth set
points for position, velocity, or acceleration along a given
path computed by a higher-level planning process. The
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Fig. 10. Performance of third-order (top,jmax=0.6) and second-order
(bottom) algorithm on position-controlled (PID) Mitsubishi PA10 robot arm.
Shown are observed position (black), velocity (red), and acceleration (blue)
curves of a single joint together with their targets (green). Derivatives
are obtained numerically with subsequent smoothing. The PID controller
can follow the smoother third-order trajectory much better. For video see:
http://www.techfak.uni-bielefeld.de/∼rhaschke/PA10-STP.wmv.

trajectory obeys limit conditions on velocity, acceleration and
jerk, which allows its application to delicate manipulation
tasks, e.g. transport of a filled glass. In contrast to previ-
ous approaches, the algorithm can handlearbitrary initial
conditionswhich is a prerequisite for modern service robots
which interactively cooperate with humans and thus need
to adapt a computed trajectory at any time during motion.
The algorithm descends a short decision tree based on the
evaluation of simple linear or quadratic expressions to deter-
mine the profile type at hand. Subsequently, an associated set
of equations leading to a fourth-order polynomial is solved
numerically. Real-time performance is ensured by a small
computation time of maximally 360µs.
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