
On-line Policy Improvement using 

Monte-Carlo Search 

Gerald Tesauro 
IBM T. J. Watson Research Center 

P. O. Box 704 
Yorktown Heights, NY 10598 

Abstract 

Gregory R. Galperin 
MIT AI Lab 

545 Technology Square 
Cambridge, MA 02139 

We present a Monte-Carlo simulation algorithm for real-time policy 
improvement of an adaptive controller. In the Monte-Carlo sim­
ulation, the long-term expected reward of each possible action is 
statistically measured, using the initial policy to make decisions in 
each step of the simulation. The action maximizing the measured 
expected reward is then taken, resulting in an improved policy. Our 
algorithm is easily parallelizable and has been implemented on the 
IBM SP! and SP2 parallel-RISC supercomputers. 

We have obtained promising initial results in applying this algo­
rithm to the domain of backgammon. Results are reported for a 
wide variety of initial policies, ranging from a random policy to 
TD-Gammon, an extremely strong multi-layer neural network. In 
each case, the Monte-Carlo algorithm gives a substantial reduction, 
by as much as a factor of 5 or more, in the error rate of the base 
players. The algorithm is also potentially useful in many other 
adaptive control applications in which it is possible to simulate the 
environment. 

1 INTRODUCTION 

Policy iteration, a widely used algorithm for solving problems in adaptive con­
trol, consists of repeatedly iterating the following policy improvement computation 
(Bertsekas, 1995): (1) First, a value function is computed that represents the long­
term expected reward that would be obtained by following an initial policy. (This 
may be done in several ways, such as with the standard dynamic programming al­
gorithm.) (2) An improved policy is then defined which is greedy with respect to 
that value function. Policy iteration is known to have rapid and robust convergence 
properties, and for Markov tasks with lookup-table state-space representations, it 
is guaranteed to convergence to the optimal policy. 



On-line Policy Improvement using Monte-Carlo Search 1069 

In typical uses of policy iteration, the policy improvement step is an extensive 
off-line procedure. For example, in dynamic programming, one performs a sweep 
through all states in the state space. Reinforcement learning provides another ap­
proach to policy improvement; recently, several authors have investigated using RL 
in conjunction with nonlinear function approximators to represent the value func­
tions and/or policies (Tesauro, 1992; Crites and Barto, 1996; Zhang and Dietterich, 
1996). These studies are based on following actual state-space trajectories rather 
than sweeps through the full state space, but are still too slow to compute improved 
policies in real time. Such function approximators typically need extensive off-line 
training on many trajectories before they achieve acceptable performance levels. 

In contrast, we propose an on-line algorithm for computing an improved policy in 
real time. We use Monte-Carlo search to estimate Vp(z, a), the expected value of 
performing action a in state z and subsequently executing policy P in all successor 

states. Here, P is some given arbitrary policy, as defined by a "base controller" 
(we do not care how P is defined or was derived; we only need access to its policy 
decisions). In the Monte-Carlo search, many simulated trajectories starting from 
(z, a) are generated following P, and the expected long-term reward is estimated 
by averaging the results from each of the trajectories. (N ote that Monte-Carlo 
sampling is needed only for non-deterministic tasks, because in a deterministic 
task, only one trajectory starting from (z, a) would need to be examined.) Hav­
ing estimated Vp(z, a), the improved policy pI at state z is defined to be the 
action which produced the best estimated value in the Monte-Carlo simulation, i.e., 
PI(z) = argmaxa Vp(z, a). 

1.1 EFFICIENT IMPLEMENTATION 

The proposed Monte-Carlo algorithm could be very CPU-intensive, depending on 
the number of initial actions that need to be simulated, the number of time steps 
per trial needed to obtain a meaningful long-term reward, the amount of CPU per 
time step needed to make a decision with the base controller, and the total number 
of trials needed to make a Monte-Carlo decision. The last factor depends on both 
the variance in expected reward per trial, and on how close the values of competing 
candidate actions are. 

We propose two methods to address the potentially large CPU requirements of this 
approach. First, the power of parallelism can be exploited very effectively. The 
algorithm is easily parallelized with high efficiency: the individual Monte-Carlo 
trials can be performed independently, and the combining of results from different 
trials is a simple averaging operation. Hence there is relatively little communication 
between processors required in a parallel implementation. 

The second technique is to continually monitor the accumulated Monte-Carlo sta­
tistics during the simulation, and to prune away both candidate actions that are 
sufficiently unlikely (outside some user-specified confidence bound) to be selected 
as the best action, as well as candidates whose values are sufficiently close to the 
value of the current best estimate that they are considered equivalent (i.e., choos­
ing either would not make a significant difference). This technique requires more 
communication in a parallel implementation, but offers potentially large savings in 
the number of trials needed to make a decision. 

2 APPLICATION TO BACKGAMMON 

We have initially applied the Monte-Carlo algorithm to making move decisions in 
the game of backgammon. This is an absorbing Markov process with perfect state-



1070 G. Tesauro and G. R. Galperin 

space information, and one has a perfect model of the nondeterminism in the system, 
as well as the mapping from actions to resulting states. 

In backgammon parlance, the expected value of a position is known as the "equity" 
of the position, and estimating the equity by Monte-Carlo sampling is known as 
performing a "rollout." This involves playing the position out to completion many 

times with different random dice sequences, using a fixed policy P to make move 
decisions for both sides. The sequences are terminated at the end of the game (when 
one side has borne off all 15 checkers), and at that time a signed outcome value 

(called "points") is recorded. The outcome value is positive if one side wins and 
negative if the other side wins, and the magnitude of the value can be either 1, 2, or 

3, depending on whether the win was normal, a gammon, or a backgammon. With 

normal human play, games typically last on the order of 50-60 time steps. Hence 
if one is using the Monte-Carlo player to play out actual games, the Monte-Carlo 

trials will on average start out somewhere in the middle of a game, and take about 
25-30 time steps to reach completion. 

In backgammon there are on average about 20 legal moves to consider in a typical 
decision. The candidate plays frequently differ in expected value by on the order of 
.01. Thus in order to resolve the best play by Monte-Carlo sampling, one would need 
on the order of 10K or more trials per candidate, or a total of hundreds of thousands 
of Monte-Carlo trials to make one move decision. With extensive statistical pruning 

as discussed previously, this can be reduced to several tens of thousands of trials. 
Multiplying this by 25-30 decisions per trial with the base player, we find that 

about a million base-player decisions have to be made in order to make one Monte­

Carlo decision. With typical human tournament players taking about 10 seconds 
per move, we need to parallelize to the point that we can achieve at least lOOK 
base-player decisions per second. 

Our Monte-Carlo simulations were performed on the IBM SP! and SP2 parallel­
RISC supercomputers at IBM Watson and at Argonne National Laboratories. Each 

SP node is equivalent to a fast RSj6000, with floating-point capability on the order 
of 100 Mflops. Typical runs were on configurations of 16-32 SP nodes, with parallel 

speedup efficiencies on the order of 90%. 

We have used a variety of base players in our Monte-Carlo simulations, with widely 
varying playing abilities and CPU requirements. The weakest (and fastest) of these 
is a purely random player. We have also used a few single-layer networks (i.e., no 
hidden units) with simple encodings of the board state, that were trained by back­
propagation on an expert data set (Tesauro, 1989). These simple networks also make 
fast move decisions, and are much stronger than a random player, but in human 
terms are only at a beginner-to-intermediate level. Finally, we used some multi-layer 
nets with a rich input representation, encoding both the raw board state and many 

hand-crafted features, trained on self-play using the TD(>.) algorithm (Sutton, 1988; 
Tesauro, 1992). Such networks play at an advanced level, but are too slow to make 
Monte-Carlo decisions in real time based on full rollouts to completion. Results for 

all these players are presented in the following two sections. 

2.1 RESULTS FOR SINGLE-LAYER NETWORKS 

We measured the game-playing strength of three single-layer base players, and of 
the corresponding Monte-Carlo players, by playing several thousand games against 
a common benchmark opponent. The benchmark opponent was TD-Gammon 2.1 

(Tesauro, 1995), playing on its most basic playing level (I-ply search, i.e., no looka­
head). Table 1 shows the results. Lin-1 is a single-layer neural net with only the 
raw board description (number of White and Black checkers at each location) as 



On-line Policy Improvement using Monte-Carlo Search 1071 

Network Base player Monte-Carlo player Monte-Carlo CPU 

Lin-1 -0.52 ppg -0.01 ppg 5 sec/move 
Lin-2 -0.65 ppg -0.02 ppg 5 sec/move 
Lin-3 -0.32 ppg +0.04 ppg 10 sec/move 

Table 1: Performance of three simple linear evaluators, for both initial base players 

and corresponding Monte-Carlo players. Performance is measured in terms of ex­
pected points per game (ppg) vs. TO-Gammon 2.11-ply. Positive numbers indicate 

that the player here is better than TO-Gammon. Base player stats are the results 

of 30K trials (std. dev. about .005), and Monte-Carlo stats are the results of 5K 
trials (std. dev. about .02). CPU times are for the Monte-Carlo player running on 

32 SP 1 nodes. 

input. Lin-2 uses the same network structure and weights as Lin-l, plus a signif­
icant amount of random noise was added to the evaluation function, in order to 

deliberately weaken its playing ability. These networks were highly optimized for 
speed, and are capable of making a move decision in about 0.2 msec on a single SP1 

node. Lin-3 uses the same raw board input as the other two players, plus it has a 
few additional hand-crafted features related to the probability of a checker being 

hit; there is no noise added. This network is a significantly stronger player, but is 
about twice as slow in making move decisions. 

We can see in Table 1 that the Monte-Carlo technique produces dramatic improve­
ment in playing ability for these weak initial players. As base players, Lin-1 should 
be regarded as a bad intermediate player, while Lin-2 is substantially worse and is 
probably about equal to a human beginner. Both of these networks get trounced 
by TO-Gammon, which on its 1-ply level plays at strong advanced level. Yet the 
resulting Monte-Carlo players from these networks appear to play about equal to 
TO-Gammon l-ply. Lin-3 is a significantly stronger player, and the resulting Monte­

Carlo player appears to be clearly better than TO-Gammon l-ply. It is estimated 
to be about equivalent to TO-Gammon on its 2-ply level, which plays at a strong 

expert level. 

The Monte-Carlo benchmarks reported in Table 1 involved substantial amounts of 
CPU time. At 10 seconds per move decision, and 25 mOve decisions per game, 

playing 5000 games against TO-Gammon required about 350 hours of 32-node SP 
machine time. We have also developed an alternative testing procedure, which 
is much less expensive in CPU time, but still seems to give a reasonably accurate 
measure of performance strength. We measure the average equity loss of the Monte­
Carlo player on a suite of test positions. We have a collection of about 800 test 
positions, in which every legal play has been extensively rolled out by TO-Gammon 
2.11-ply. We then use the TO-Gammon rollout data to grade the quality of a given 
player's move decisions. 

Test set results for the three linear evaluators, and for a random evaluator, are 
displayed in Table 2. It is interesting to note for comparison that the TO-Gammon 
l-ply base player scores 0.0120 on this test set measure, comparable to the Lin-1 

Monte-Carlo player, while TO-Gammon 2-ply base player scores 0.00843, compa­
rable to the Lin-3 Monte-Carlo player. These results are exactly in line with what 
we measured in Table 1 using full-game benchmarking, and thus indicate that the 

test-set methodology is in fact reasonably accurate. We also note that in each case, 

there is a huge error reduction of potentially a factor of 4 or more in using the 
Monte-Carlo technique. In fact, the rollouts summarized in Table 2 were done us­

ing fairly aggressive statistical pruning; we expect that rolling out decisions more 



1072 G. Tesauro and G. R. Galperin 

Evaluator Base loss Monte-Carlo loss Ratio 

Random 0.330 0.131 2.5 
Lin-1 0.040 0.0124 3.2 
Lin-2 0.0665 0.0175 3.8 
Lin-3 0.0291 0.00749 3.9 

Table 2: Average equity loss per move decision on an 800-position test set, for both 
initial base players and corresponding Monte-Carlo players. Units are ppgj smaller 
loss values are better. Also computed is ratio of base player loss to Monte-Carlo 
loss. 

extensively would give error reduction ratios closer to factor of 5, albeit at a cost 
of increased CPU time. 

2.2 RESULTS FOR MULTI-LAYER NETWORKS 

Using large multi-layer networks to do full rollouts is not feasible for real-time 
move decisions, since the large networks are at least a factor of 100 slower than the 
linear evaluators described previously. We have therefore investigated an alternative 
Monte-Carlo algorithm, using so-called "truncated rollouts.» In this technique trials 
are not played out to completion, but instead only a few steps in the simulation 
are taken, and the neural net's equity estimate of the final position reached is used 
instead of the actual outcome. The truncated rollout algorithm requires much less 
CPU time, due to two factors: First, there are potentially many fewer steps per 
trial. Second, there is much less variance per trial, since only a few random steps 
are taken and a real-valued estimate is recorded, rather than many random steps 
and an integer final outcome. These two factors combine to give at least an order 
of magnitude speed-up compared to full rollouts, while still giving a large error 
reduction relative to the base player. 

Table 3 shows truncated rollout results for two multi-layer networks: TD-Gammon 
2.1 1-ply, which has 80 hidden units, and a substantially smaller network with 
the same input features but only 10 hidden units. The first line of data for each 
network reflects very extensive rollouts and shows quite large error reduction ratios, 
although the CPU times are somewhat slower than acceptable for real-time play. 
(Also we should be somewhat suspicious of the 80 hidden unit result, since this was 
the same network that generated the data being used to grade the Monte-Carlo 
players.) The second line of data shows what h~ppens when the rollout trials are 
cut off more aggressively. This yields significantly faster run-times, at the price of 
only slightly worse move decisions. 

The quality of play of the truncated rollout players shown in Table 3 is substantially 
better than TD-Gammon I-ply or 2-ply, and it is also substantially better than 
the full-rollout Monte-Carlo players described in the previous section. In fact, we 
estimate that the world's best human players would score in the range of 0.005 to 
0.006 on this test set, so the truncated rollout players may actually be exhibiting 
superhuman playing ability, in reasonable amounts of SP machine time. 

3 DISCUSSION 

On-line search may provide a useful methodology for overcoming some of the limi­
tations of training nonlinear function approximators on difficult control tasks. The 
idea of using search to improve in real time the performance of a heuristic controller 



On-line Policy Improvement using Monte-Carlo Search 1073 

Hidden Units Base loss Truncated Monte-Carlo loss Ratio M-C CPU 

10 0.0152 0.00318 \ ll-step, thoroug~) 4.8 25 sec/move 
0.00433 (ll-step, optimistic) 3.5 9 sec/move 

80 0.0120 0.00181 \!-step, thoroug~) 6.6 65 sec(move 
0.00269 (7-step, optimistic) 4.5 18 sec/move 

Table 3: Truncated rollout results for two multi-layer networks, with number of 

hidden units and rollout steps as indicated. Average equity loss per move decision on 

an 800-position test set, for both initial base players and corresponding Monte-Carlo 
players. Again, units are ppg, and smaller loss values are better. Also computed is 

ratio of base player loss to Monte-Carlo loss. CPU times are for the Monte-Carlo 
player running on 32 SP1 nodes. 

is an old one, going back at least to (Shannon, 1950). Full-width search algorithms 
have been extensively studied since the time of Shannon, and have produced tremen­

dous success in computer games such as chess, checkers and Othello. Their main 
drawback is that the re~uired CPU time increases exponentially with the depth of 
the search, i.e., T '" B ,where B is the effective branching factor and D is the 
search depth. In contrast, Monte-Carlo search provides a tractable alternative for 
doing very deep searches, since the CPU time for a full Monte-Carlo decision only 
scales as T", N· B . D, where N is the number of trials in the simulation. 

In the backgammon application, for a wide range of initial policies, our on-line 
Monte-Carlo algorithm, which basically implements a single step of policy iteration, 
was found to give very substantial error reductions. Potentially 80% or more of the 
base player's equity loss can be eliminated, depending on how extensive the Monte­
Carlo trials are. The magnitude of the observed improvement is surprising to us: 

while it is known theoretically that each step of policy iteration produces a strict 
improvement, there are no guarantees on how much improvement one can expect. 
We have also noted a rough trend in the data: as one increases the strength of the 

base player, the ratio of error reduction due to the Monte-Carlo technique appears 
to increase. This could reflect superlinear convergence properties of policy iteration. 

In cases where the base player employs an evaluator that is able to estimate expected 
outcome, the truncated rollout algorithm appears to offer favorable tradeoffs relative 

to doing full rollouts to completion. While the quality of Monte-Carlo decisions is 
not as good using truncated rollouts (presumably because the neural net's estimates 

are biased), the degradation in quality is fairly small in at least some cases, and 

is compensated by a great reduction in CPU time. This allows more sophisticated 
(and thus slower) base players to be used, resulting in decisions which appear to be 
both better and faster. 

The Monte-Carlo backgammon program as implemented on the SP offers the poten­
tial to achieve real-time move decision performance that exceeds human capabilities. 
In future work, we plan to augment the program with a similar Monte-Carlo algo­
rithm for making doubling decisions. It is quite possible that such a program would 
be by far the world's best backgammon player. 

Beyond the backgammon application, we conjecture that on-line Monte-Carlo search 
may prove to be useful in many other applications of reinforcement learning and 

adaptive control. The main requirement is that it should be possible to simulate 

the environment in which the controller operates. Since basically all of the recent 
successful applications of reinforcement learning have been based on training in 
simulators, this doesn't seem to be an undue burden. Thus, for example, Monte-



1074 G. Tesauro and G. R. Galperin 

Carlo search may well improve decision-making in the domains of elevator dispatch 
(Crites and Barto, 1996) and job-shop scheduling (Zhang and Dietterich, 1996). 

We are additionally investigating two techniques for training a controller based 
on the Monte-Carlo estimates. First, one could train each candidate position on 

its computed rollout equity, yielding a procedure similar in spirit to TD(1). We 

expect this to converge to the same policy as other TD(..\) approaches, perhaps 
more efficiently due to the decreased variance in the target values as well as the 
easily parallelizable nature of the algorithm. Alternately, the base position - the 

initial position from which the candidate moves are being made - could be trained 
with the best equity value from among all the candidates (corresponding to the 
move chosen by the rollout player). In contrast, TD(..\) effectively trains the base 
position with the equity of the move chosen by the base controller. Because the 
improved choice of move achieved by the rollout player yields an expectation closer 

to the true (optimal) value, we expect the learned policy to differ from, and possibly 

be closer to optimal than, the original policy. 

Acknowledgments 

We thank Argonne National Laboratories for providing SPI machine time used to 
perform some of the experiments reported here. Gregory Galperin acknowledges 

support under Navy-ONR grant N00014-96-1-0311. 

References 

D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific, 
Belmont, MA (1995). 

R. H. Crites and A. G. Barto, "Improving elevator performance using reinforcement 
learning." In: D. Touretzky et al., eds., Advances in Neural Information Processing 

Systems 8, 1017-1023, MIT Press (1996). 

C. E. Shannon, "Programming a computer for playing chess." Philosophical Mag­

azine 41, 265-275 (1950). 

R. S. Sutton, "Learning to predict by the methods of temporal differences." Machine 
Learning 3, 9-44 (1988). 

G. Tesauro, "Connectionist learning of expert preferences by comparison training." 

In: D. Touretzky, ed., Advances in Neural Information Processing Systems 1, 99-

106, Morgan Kaufmann (1989). 

G. Tesauro, "Practical issues in temporal difference learning." Machine Learning 

8, 257-277 (1992). 

G. Tesauro, "Temporal difference learning and TD-Gammon." Comm. of the ACM, 
38:3, 58-67 (1995). 

W. Zhang and T. G. Dietterich, "High-performance job-shop scheduling with a 
time-delay TD("\) network." In: D. Touretzky et al., eds., Advances in Neural 
Information Processing Systems 8, 1024-1030, MIT Press (1996). 


