
Machine Learning, 25, 71-110 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On-line Prediction and Conversion Strategies

NICOLO CESA-BIANCHI

DSL Univers&'z di Milano, Via Comelico 39,

20135 Milano, Italy.

cesabian @ dsi .unimi.it

YOAV FREUND

AT& T Bell Laboratories, 600 Mountain Avenue, Room 2B-428,

Murray Hill, NJ 07974-0636, USA.

yoav @research.att.com

DAVID P. HELMBOLD

MANFRED K. WAItMUTH

Computer Science Department, Universio, of California,

Santa Cruz, CA 95064, USA.

dph@cse.ucsc.edu

manfred @cse.ucsc.edu

Editor: Leonard Pitt

Abstract. We study the problem of deterministically predicting boolean values by combining the boolean
predictions of several experts. Previous on-line algorithms for this problem predict with the weighted majority of
the experts' predictions. These algorithms give each expert an exponential weight tim where fl is a constant in
[0, 1) and ra is the number of rnistakes made by the expert in the past. We show that it is better to use sums of
binomials as weights. In particular, we present a deterministic algorithm using binomial weights that has a better
worst case mistake bound than the best deterministic algorithm using exponential weights. The binomial weights
naturally arise from a version space argument. We also show how both exponential and binomial weighting
schemes can be used to make prediction algorithms robust against noise.

Keywords: On-line learning, conversion strategies, noise robustness, binomial weights, exponential weights,
weighted majority algorithm, expert advice, mistake bounds, Ulam's game.

1. Introduct ion

This paper studies a s imple on-l ine mode l where predict ions are made in a series o f trials.

At each trial t the prediction algori thm receives the tth observat ion x t and produces a

boolean predict ion ~)t. It then receives the correct ou tcome Yt as feedback. A mistake

occurs i f predict ion ~)t and outcome Yt disagree. Fo l lowing Lit t lestone (Littlestone, 1988),

we seek predict ion algori thms that min imize the number of mistakes over a worst case

sequence of x t and Yr. Of course in the unconstrained worst case a mistake can occur

in every trial. In order to make good predictions the predictor needs to have some prior

knowledge that enables it to makes predictions about the future based on the past. In a

Bayesian regression framework, one can encode this knowledge using a prior distribution

over the set o f sequences or over a set o f sequence models . In this work we are interested

in per formance bounds that make no probabil ist ic assumptions, and so we define the prior

knowledge somewhat differently.

We assume that there are N experts each of which is a predict ion strategy. Our goal

is to design an algori thm, which we shall call the "master a lgor i thm", that combines the

72 N. CESA-BIANCHI, ET AL.

predictions of the experts in the following way. At the beginning of trial t, the master

algorithm feeds the given observation, xt, to all experts. The master then uses some

function of the N predictions produced by the experts to form its own prediction, ?)t. At

the end of the trial the feedback, y t , is shared with all experts. We prove worst-case bounds

on the number of mistakes made by the master when the number of mistakes made by the

best expert is bounded.

Generalizations of the above model, where the predictions of the experts and/or of

the master algorithm may be in the continuous range [0, 1], have been studied by Vovk

(Vovk, 1990), Littlestone and Warmuth (Littlestone & Warmuth, 1994), Cesa-Bianchi et

al. (Cesa-Bianchi, et al., 1995), and Kivinen and Warmuth (Kivinen & Warmuth, 1994). In

this paper we return to the simplest setting where all predictions and outcomes are boolean.

This is the problem solved by the basic Weighted Majority (WM) algorithm (Littleston &

Warmuth, 1994). Here we study the boolean case in more depth and devise a better al-

gorithm that we call the "Binomial Weighting" algorithm or BW. The worst case number

of mistakes that BW makes is smaller than the number of mistakes made by previously

known algorithms. In fact, if the number of experts is large enough and all predictions are

deterministic and boolean, then we show that BW has the smallest possible worst-case mis-

take bound among all master algorithms. In our analysis of BW we explore some elegant

combinatorial structures that might be applicable elsewhere.

The Weighted Majority algorithms cited above attempt to minimize the number of mis-

takes made as a function of the number of mistakes made by the best expert. They assign

to each expert a weight of the form/3 m, where/3 is a constant in [0, 1) and m is the total

number of mistakes (or more generally the total loss) incurred by the expert so faP. The es-

sential property is that the experts making many mistakes get their weights rapidly slashed.

The WM algorithm uses the weighted average of the experts' predictions to form its own

prediction: It simply predicts 1 if the weighted average is greater than 1/2, and 0 otherwise.

The new master algorithm BW uses its weights in a similar way to WM for predicting,

however, these weights are not in exponential form. Instead, they are tails of a binomial

sum. A further difference between WM and BW is the following. On each trial WM

predicts 1 if and only if the total current weight of the experts predicting 1 is larger than

the total current weight of the experts predicting 0. BW, instead, predicts 1 if and only if

the total updated weight resulting from the outcome being 1 is larger than the total updated

weight resulting from the outcome being 0.

This binomial weighting scheme is motivated by a version space 2 argument. The mistake

bound of the Weighted Majority algorithm approximates the mistake bound of the BW

algorithm in the same way that Chernoff bounds approximate sums of binomial tails. We

show that the gap between the mistake bounds of the Weighted Majority algorithm and our

new algorithm can be arbitrarily large.

Finally, a perhaps subtler difference between exponential weights and our new scheme

is that each expert's weight in the latter scheme depends not only on the current mistake

count of the expert, but also on the current mistake count of the master.

We show that our algorithm has the best possible worst-case mistake bound when the

number of experts is very large compared to the loss of the best expert. This lower bound

analysis is based on a relation between our prediction problem and Ulam's searching game

ON-LINE PREDICTION AND CONVERSION STRATEGIES 73

with a fixed number of lies (Spencer, 1992, Ulam, 1977). We also present a second lower

bound argument for our prediction model. This second argument uses a probabilistic

construction to prove that both the BW and the tuned Weighted Majority algorithm are

asymptotically optimal. That is, the ratio between the mistake bound of either algorithm

and the best possible worst case mistake bound goes to 1 as the number N of experts or

the loss k of the best expert go to infinity. An equivalent lower bound has been previously

obtained by Vovk (Vovk, 1990) using arguments from coding theory.

We use the ideas behind the BW master algorithm to devise a method (which we call a

conversion strategy) to make prediction algorithms robust against noise. The conversion

strategy feeds different feedbacks to several copies of the same prediction algorithm. If the

noise level is low then one copy will get noiseless data, enabling the conversion strategy

to make good predictions. Our upper bound has slightly better constants than the one

independently obtained by Auer and Long (Auer & Long, to appear), and is close to the

lower bound given by Littlestone and Warmuth (Littlestone & Warmuth, 1994).

It remains open whether binomial weights also lead to improved master prediction algo-

rithms for the case when the prediction of the master is allowed to be in the continuous

interval [0, 1]. In this more general setting mistake bounds are replaced by bounds on the

total absolute loss. There are master prediction algorithms for this problem (Vovk, 1990,

Cesa-Bianchi, et al., 1995) using exponential weights, whose mistake bounds are exactly

half of the corresponding mistake bounds in the boolean case. However, our attempts to

construct a continuous prediction algorithm that achieves half (plus possibly a constant) the

loss of the BW algorithm have so far been unsuccessful.

The paper is organized as follows. In Section 2 we present the new algorithm BW, compare

it against WM, and prove general lower bounds. In Section 3 we introduce two conversion

strategies: one based on binomial weights and one based on exponential weights. Section 4

is devoted to conclusions.

Notation.

The set X represents the set of possible observations and {0,1 } the two possible outcomes.

We use (X x {0, 1 }) + for the set of all finite sequences over (X x {0, 1 }) of nonzero length

and s for a sequence ((xt, Yt))t (of unspecified length)in (X z {0, 1}) + of observations

and outcomes. Let 1~ denote the natural numbers including 0. The notation s '~, for any

n E Pq, represents either a sequence of length n or the length n prefix of a longer sequence

s. The correct interpretation will be clear from the context.

An expert is any function mapping (X z {0, 1 })* x X to {0, 1 }. In this paper we treat ex-

perts in an on-line fashion. On the tth trial, each expert E makes the prediction E (s t - 1, xt)

where zt ~ X is the current observation and s t-1 is the sequence of observation/outcome

pairs from the previous t - 1 trials. At the end of the trial the expert is given the feedback

yt ~ {0, 1} for the current trial (and s t for the next trial is created by appending (xt, yt)

to s t - l) . We say that expert E either is wrong, makes a mistake, or is incorrect when its

prediction at trial t, E (s t - l , xt), is different from Yr.

Also, we use dH(y, z) to denote the Hamming distance between any two boolean

sequences y and z of equal length. For the sum of binomials, we use the notation
(<_k) dee k m = ~ i = o (~) for all integers m and k, using the convention (<k) = 0 when m

74 N. CESA-BIANCHI, ET AL.

or k negative. We conventionally set ('~) = 0 when i > m or when either m or i is

negative. We will often make use of the well-known combinatorial identity

q q - 1 q - 1
(1)

that holds for all nonzero integers q and all integers i. We denote the binary logarithm by

"log" and the natural logarithm by "ln". Furthermore, let H(.) denote the binary entropy

function, H(x) = - x l o g x - (1 - x)log(1 - x), defined for all 0 <_ x < 1 (note that

H(O) = H(1) = 0 and H(½) = 1).

2. Master Algorithms for Combining the Predictions of Experts

In this section we introduce a master algorithm that sequentially predicts boolean sequences

by combining the predictions of a set of experts. Throughout the section, we assume that

a bound k on the number of mistakes made on the sequence by the best expert in the set is

available and known to the master algorithm.

For any expert E and for any sequence s E (X × {0, 1}) + of instances and outcomes

we denote the number of mistakes (i.e. total loss) of expert E on sequence s by LE(a).
Also, if g is a set of experts, we use Ls (s) for the minimum LE (s) over the experts E E g.

We usually make the assumption that LE (s) < k for some constant k known to the master

algorithm. We point out that our master algorithms are domain independent, using the

information provided by the sequence of instances {xt)t only to obtain the predictions of

the experts.

Our goal is to solve the following problem:

Suppose a set g of N experts is available and the task is to predict in an on-line fashion

the bits Yl, Y2,. .- , Ye of some sequence s = (X l, Yl), (X2, Y2), . - . , (Xe, ye) in a set

of sequences E C_ (X × {0, 1}) t. Suppose also that an upper bound k on the loss of

the best expert in C is known, i.e. for each s E E, Le(s) <_ k. How can a master

algorithm combine the experts' predictions so that its worst case number of mistakes is

minimized?

If the master algorithm knew which expert E E $ made only k mistakes, then it could

simply predict the same way that expert E does. However, the "good" expert (or experts)

is not known in advance.

In the fortunate case where k = 0, the master algorithm knows that one of the experts

predicts perfectly on s. In this case the well-known Halving algorithm (Angluin, 1988,

Bardzin & Freivalds, 1972) can be used. On each trial the Halving algorithm predicts the

same way as the majority of those experts that have never made a mistake (the consistent

experts). The number of consistent experts is reduced by at least a factor of two each time

the Halving algorithm makes a mistake, so the master makes at most log N mistakes on

any s where one of the N experts always predicts correctly.

We now present a simple master algorithm called the Version Space algorithm that will

be used to motivate the Binomial Weighting (BW) algorithm. To do this we make the

ON-LINE PREDICTION AND CONVERSION STRATEGIES 75

simplifying assumption that the length of the sequence of instances, g, is known as well.

This assumption will be removed shortly.

Since the master algorithm knows that the best expert makes at most k > 0 mistakes, it

can use the following trick. The master algorithm expands each expert into a set of variants

so that some variant of some expert predicts perfectly, and then uses the Halving algorithm

on the variants. If expert E makes exactly j mistakes on some sequence s of length g then

expert E can be expanded into a collection of (~) variants containing a perfect variant. Each

variant in the collection predicts as E on g - j of the trials and predicts with the opposite

of E ' s predictions on the other j trials. Thus expert E is expanded into a collection of

(~) variants, including one that changes E ' s predictions on exactly those trials where E

predicts incorrectly.

For our problem, the master algorithm knows that at least one of the N experts makes at

most k incorrect predictions, but the master algorithm knows neither which expert is the best

nor the exact number of mistakes made by the best expert. However, the master algorithm

can expand each expert into a collection of (fk) variants. The union of these collections

contains at most N(<ek) variants and is guaranteed to contain at least one variant that

predicts correctly on all g trials. Our Version Space algorithm runs the Halving algorithm

on the union of these collections, and has a worst case mistake bound of log N + log (<e)

(when the bounds g on the number of trials and k on the number of mistakes made by the

best expert are known in advance).

Intuitively, the Version Space algorithm uses all the knowledge it has about the experts

and the sequences, which is that there is one expert that makes at most k mistakes on the

sequence. It does not know which expert will be best, in what trials the best expert will

make its mistakes, or even how many mistakes the best expert will make (other than the

upper bound k). Since the goal of the algorithm is to minimize the number of mistakes

that it makes in the worst case, it has to treat all of the scenarios that are possible under the

assumptions equally.

Observe that the version space at the beginning of trial t can be represented by one weight

per expert. The weight of an expert is simply the number of its (<~k) variants that are

consistent with the sequence so far 3. If expert E makes at most k mistakes on the g trials

and has made j mistakes in trials 1 through t, then expert E can make at most k - j more

mistakes in the remaining g - t trials. Thus the weight of E on the t + 1st trial should be

(~ t j) , which is exactly the number of variants created from E that are consistent. (The

initial weight of each expert is (<_ek)).

Thus the Version Space algorithm can be implemented by manipulating binomials repre-

senting the weights (number of consistent variants) of the experts. If expert E has made j
g - t mistakes in the first t trials, then during trial t + 1 expert E votes with weight (<k- j) for

its own prediction and with weight (<_k-(9+1)) for the opposite prediction. Note that these

votes correspond to the number of E ' s variants that are consistent with all t previous trials

and agree (or do not agree, respectively) with the prediction of E. Also, expert E ' s total

(_<k-j_1)
e - t { g - t + l] weight is split between the two choices since + <k-j 1.

This implementation of the Version Space algorithm totals the votes for outcome 0 and

outcome 1 and predicts with the majority. At the end of each trial t, the Version Space

76 N. CESA-BIANCHI, ET AL.

algorithm updates the weights of the experts to reflect the outcome on that trial, yr. In

addition, the value Yt is given to all the experts since their future predictions might depend on

the past sequence. The Version Space algorithm, which runs the Halving algorithm directly

on the N(<~k) variants, and the implementation which manipulates binomial weights for

each expert, clearly make the same predictions.

The Binomial Weighting (BW) algorithm is similar to the Version Space algorithm using

weights, but the BW algorithm uses another trick that removes the requirement that the

algorithm knows g, the length of the sequence. This trick also makes the upper bound

on the number of mistakes made by the BW algorithm independent of g. There are two

versions of the Halving algorithm: one that discards all inconsistent experts in each trial

and one that does this only in trials when the Halving algorithm makes a mistake (such

algorithms are called "conservative" by Littlestone (Littlestone, 1989)). Both versions of

the Halving algorithm have the same worst case mistake bound (log N), so nothing is lost

by making the Version Space algorithm conservative. The Binomial Weighting algorithm

is the implementation of the conservative Version Space algorithm with binomial weights

and is described in Figure 1.

Because the BW algorithm is conservative, we do not need a variant that perfectly pre-

dicts the outcome. It suffices to have only those variants whose mistakes occur when

the BW master algorithm predicts incorrectly. Since the BW algorithm discards vari-

ants only when the master makes a mistake, such a variant will never be discarded.

Thus the BW algorithm considers only (~+1) variants 4 of each expert, where m =

m a x { q E N : q<_logN+log(_<qk)}asinFigure 1. I t i s e a s y t o s h o w t h a t B W m a k e s

at most m mistakes. Assume to the contrary that it makes m + 1 mistakes. Since at least

one of the N experts makes at most k mistakes, at least one of the N (~+1) variants is con-

sistent with the m + 1 outcomes where BW made mistakes. On the other hand, the number

of consistent variants drops by a factor of at least two each time BW makes an incorrect

prediction. Thus the number of consistent variants after BW makes m + 1 mistake is at

least one and at most N (~+1) /2 m+ 1. It follows that i < N (rr~q~l) / 2 m +1 and equivalently

_ io~ mY1 m + 1 < log N + ~, (<k), contradicting the definition of m in Figure 1.

This analysis gives us t-he following theorem:

THEOREM 1 For all k C N, all nonempty sets g of experts, and all sequences s E

(X x {0, 1})+; / fLE (s) < k, then the total number of mistakes of BW(k) on s is at most

max qE1N : q _ < l o g N + l o g < k '

where N > 0 is the number of experts in g.

We now describe a variant of algorithm BW, called BW' (see Figure 2), that has the

same worst-case mistake bound proven in Theorem 1. However, for many sequences of

examples the new algorithm BW' makes fewer mistakes than the original algorithm. The
{ rr t+l '1 current weight of an expert E is now ~_<k-jJ' where j is the number of mistakes of E in

all previous trials and not just in the trials in which the master made mistakes as well. The

value of m is recomputed at the beginning of each trial. This value will decrease by at least

ON-LINE P R E D I C T I O N AND CONVERSION STRATEGIES 77

Master Algorithm BW

Input: A set of N experts £ and a nonnegative integer k.

1. Let m := m a x{q C N : q < logN + log (<qk)}"

(~,+a) and set m', the number of mistakes made 2. Set the initial weight of each expert to ~ <k J,

by the master, to 0.

3. For each trial t = 1, 2 , . . .

(A) For each expert E c £:

Let j be the number of previous trials where both E and the master made incor-
{ra+l-m']

rect predictions. Then expert E has current weight ~ <_k-j J and votes for its
7) 2 - - T t l ! T t2 - - 7?~ t

own prediction with weight (<k_j) and with weight (<_k-j-1) for the opposite

prediction.

(B) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case

of a tie).

(C) Get the correct prediction Yr.

(D) If a mistake occurred, then increment m' and update the weight of each expert to

the weight with which it voted for correct bit Yr.

Figure 1. The Binomial Weighting algorithm,

one after all trials in which the master made a mistake, because the total weight after such a

trial is at most half of what it was before the trial (decreasing m by at least one corresponds

to increasing rrd in BW). The value of m can never increase but it might also decrease

after trials in which the master made no mistakes. Again it can be shown by induction that

the number of mistakes from any trial onward is at most the value of m computed at the

beginning of that trial.

2.1. Comparison with Weighted Majority

In this section we compare the performances of the BW and Weighted Majority (WM)

algorithms. The WM algorithm has a parameter/3 E [0, 1). An expert E votes for its own

prediction with weight/3J, where j is the number of mistakes made by expert E in the past,

and for the opposite prediction 5 with weight/3j+1.

Both master algorithms predict 1 if and only if the experts predicting 1 outweigh 6 the

experts predicting 0. The weights used by the BW algorithm are binomial tails whereas the

WM algorithm uses exponential weights of the form/3 j. We often refer to/3 as the "update

factor" of the WM algorithm because an expert's weight gets multiplied by/3 when the

expert predicts incorrectly. As one would expect, the choice of 13 greatly affects how the

WM algorithm performs.

78 N. CESA-BIANCHI, ET AL.

Master Algorithm BW ~

Input: A set of N experts g and a nonnegative integer k.

1. For each expert E E g set the mistake budget kE equal to k.

2. For each trial t = 1, 2 , . . .

(A) L e t m : = m a x { q E H : q < log (~ e ~ (_<~¢~))}.

(B) For each expert E E g':
(m+v~

Expert E has current weight ~_<k~J and votes for its own prediction with weight

(<kin) and with weight (<k~-l) for the opposite prediction.

(C) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case

of a tie).

(D) Get the correct prediction Yr.

(E) Decrease the mistake budget, kE, of all experts that predicted incorrectly in this

trial by 1.

Figure 2. The Modified Binomial Weighting algorithm.

In our setting the master algorithms are given two parameters: N, the number of experts

and a bound k on the number of mistakes made by the best expert. We are interested in

worst case bounds on the algorithm's performance as functions of N and k.

For any master algorithm A, define the worst case number of mistakes WCA (N, k) as:

W C A (N , k) def = max max [number of mistakes of A(£, k) on s].
£ of N experts 8:L~ (8)<k

Furthermore, denote the performance of the best master algorithm by WC(N, k), so

WC(N,k) clef min WCA(N,k).
algorithms A

We will show in Subsection 2.3 that if the number of experts is large enough then the BW

algorithm is (essentially) optimal. That is, for any k > 0, there exists Nk such that for all

N>N~

WCBw(N, k) < WC(N, k) + 1.

We can only prove the above for Nk = f2(22k). However we show in Subsection 2.2 that

BW is asymptotically optimal, i.e. the ratio WCBw(N, k)/WC(N, k) goes to 1 when N

or k goes to infinity (see Theorem 3).

Comparing the BW and WM algorithms is complicated by the fact that WM's mistake

bound depends on how the update factor/3 is chosen (as a function of N and k). For

/3 E [0, 1), let WM ~ denote the WM algorithm that chooses the update factor/3. From

ON-LINE PREDICTION AND CONVERSION STRATEGIES 79

Littlestone and Warmuth (Littlestone & Warmuth, 1994) we have the following mistake

bound for the WM algorithm

log N + k log
WCwM~(N, k) < (3)

- l o g 2
l+fl

Since we will be frequently using this upper bound on WCwM, (N, k), we define

up(N, k,/3) a~, log N + k log -~
= (4) 2

log lq-fl

Let fl* be the value of fl (as a function of N and k) that minimizes up(N, k, fl). Vovk

(Vovk, 1990) gives an implicit formula for fl*. An explicit approximation to/3* is given

in Cesa-Bianchi el al. (Cesa-Bianchi, et al., 1995). With/3 set to this approximation, they

show that up(N, k, r) <: 2k + 2v/k in N + log N. We show that up(N, k,/3") ~ WC (N, k)

whenever N or k goes to infinity (see Theorem 3).

Although both up(N, k,/3*) and WCBw(N, k) have the same leading term when N

and/or k is large, there can be significant differences between them. We show below that

our bound on the BW algorithm is always at least as good as the known bounds on the

WM algorithm, i.e. that WCBw(N, k) < up(N, k,/3*) for all choices of N and k (see

Theorem 2). However, as we shall discuss below, at least for small values of N, the upper

bound on the WM algorithm, up(N, k,/3"), is weak and misleading.

Let WM* be the WM algorithm that uses update factor/3* and WM + be the WM algorithm

that chooses/3 as a function of N and k so that WCwM,(N,k) is minimized. Unfortunately,

we don't know how to efficiently compute the value of/3 used by WM +. The value of

WCwM+ (N, k) is much smaller than WCwM- (N, k) for some choices of N and k. It is

even conceivable that WCwM+ (N, k) is smaller than WCBw(N, k) for some N, k pairs,

although this disagrees with our intuition.

To make the weakness of inequality (3) concrete, consider the case when there are three

experts (N = 3). It is easy to see that BW(3, k) = 2k + 1, which is the best possible. Also

WCwM:~(N,k) = 2k + 1 whenever 0 </3 < 1/2. However, the value of/3 that minimizes

up(3, k,/3) approaches 1 when N = 3 and k becomes large. In fact, up(3, k, fl*) grows as

2k + f~(,~fk). Thus the bound up(3, k,/5") overestimates the number of mistakes made by

WM + by an (additive) f~(v/-k) term. Intuitively, a reason for this is that when/3 is large

then two poorly performing experts can outweigh the good expert and cause the master to

make unnecessary mistakes.

The main difference between the WM and BW algorithms is how the weights are updated.

The WM algorithm uses a fixed update factor throughout the entire learning process, The

update factor fl can be written as e -'7, where r/ > 0 has the natural interpretation as a

learning rate. When r/is small,/3 is large, and the WM algorithm learns slowly. When r/is

large, fl is small and the WM algorithm rapidly slashes the weights of poorly performing

experts. The disadvantage of a high learning rate is that the algorithm might discount

experts too quickly, causing its predictions to be dominated by only a few experts.
{ m - m ' + l] m- re '

When the BW algorithm changes an expert's weight from t _<k-j J to (< k - j - l) then

this can be seen as multiplying the expert's weight by an update factor that depends on m',

80 N. CESA-BIANCHI, ET AL.

the number of mistakes made so far by the master algorithm (as well as j , the number of

mistakes made by the expert, N, and k). These update factors used by BW become less

drastic as the number of mistakes made by the master increases (and the upper index of the

binomial coefficients decreases). This represents a kind of annealing schedule performed

on the learning rate (see e.g. (Aarts & Korst, 1989) for examples of annealing): when the

master knows nothing the learning rate is relatively high and as the master learns the learning

rate decreases in order to preserve the previously acquired knowledge. Although one could

use any of a number of ad hoc heuristics for "cooling down" the learning rate, we have seen

that the binomial weights are theoretically justified by the version space argument.

Our belief is that the single update factor used by WM* (N, k) attempts to approximate

the sequence of update factors used by BW(N, k). In addition to the update relationships

between the two algorithms, our proof techniques provide further evidence for this belief.

Both the optimization of WM's update factor/3 as a function of N and k (Lemma 1) and the

proof that the bound for WM* is always worse than the BW bound (Theorem 2) use tech-

niques similar to those used to prove Chernoff bounds for binomial tails (Chernoff, 1952).

We now proceed to compare the bounds on the WM and BW algorithms, beginning with

an examination of the 3" minimizing up(N, k, 3). Here we re-derive the implicit form of

3* given by Vovk (Vovk, 1990). Recall that H denotes the binary entropy.

LEMMA 1 (SEE ALSO (VOVK, 1990)) For all N >_ 2, for all k >_ O, and for all 3 E

[0,1); if m = k(1 + 3) / 3 (so that rn > 2k and 3 = k -~-~-k), then the following are

equivalent:

0up(N, k, 3)
a. 0 ,

03

k
b. 3_~

up(N, k, 3) - k'

c. m>_up N,k , ,and

d. m > logN + m H (~) ,

where the function up is defined in (4). Also, there is exactly one m* > 2k for which the last

inequality is an equality and the corresponding 3* is the unique minimum of up(N, k, 3).

The proof of this Lemma is shown in Appendix B.

Lemma 1 shows that, when N and k are fixed, the unique solution m* to m = log N +

m H (~) is the minimum value of up(N, k, ~). Although rn* (and 3* = ~k_k)is a function

of N and k, we suppress this dependence to simplify our notation. Also i fm > m* and 3 =

k then m is an upper bound on up(N, k, ~) > WCwM~ (N, k). Since we are computing rn-k
integer-valued mistake bounds, it suffices to find any rn t E IR such that [rn ~] = [rn*J. Note

that m > logN + r n H (~) when m > rn* and rn < logN + r n H (~) when rn < rn*.

Therefore we can find an appropriate rn ~ by doing binary search. Since WC(N, k) >

2k + [log NJ (as proven by Littlestone and Warmuth (Littlestone & Warmuth, 1994)) and

ON-LINE P R E D I C T I O N AND CONVERSION STRATEGIES 81

m* <_ 2 k + 2 ~ + l o g N as shown by Cesa-Bianchi etal. (Cesa-Bianchi, et al., 1995),

the search can be limited to the range [2k + [log N J, 2k + 2 k,,/-~-~N + log N]. Thus the

binary search takes at most O(log k + log log N) time.

Our experience indicates that m* tends to be close to the right edge of this range. For

N = 3, rn* is within 1 of 2k + 2 v / k l n N + logN. For arbitrary N the right boundary

seems to be at most log N greater than m*. However these considerations are based on

numerical plots and have not been verified analytically.

We now show that BW beats the bound obtained by minimizing the upper bound for

WM 3. We need a preliminary lemma that is easily derived from the Binomial Theorem.

LEMMA 2 For all 'm, k E ~ and all O < /3 < 1, if k <_ m then

(~) < (1 + 9) m

_< k - /3k (5)

Recall that m* = up(N, k,/3*) for/3* k is the minimum of up(N, k,/3) over all
- - TD.* - - k

/3 E [0, 1). Similarly, let q* be the largest integer q such that q < log N + log (<qk)" While

m* is the upper bound on Weighted Majority derived from inequality (3), q* is the upper

bound on the Binomial Weighting algorithm in Theorem 1 (q*, like ra*, implicitly depends

on N and k).

THEOREIVI 2 For all nonnegative integers k and positive integers N, if q* is the largest

integer q such that q <_ log N + log (_<qk)' then WC•w (N, k) < q* and q* < up(N, k,/3)

for all/3 E [0, 1).

Proof: The fact that WCBw(N, k) _< q* follows from Theorem 1. Let ;3 be any real in

[0, 1). By Lemma 2 the solution to q = logN + log (~k) is never larger than the solution

rn~ to m = log N + m log(1 +/3) - k log/3. Since solving for rn~ yields

1 log N + k log
2 = up(N, k,/3),

ra;~ = log i:-~

this proves the theorem.

As mentioned above, when N = 3 the worst case performance of WM + (which uses the

best choice of/3, rather than the ,3" minimizing the bound) equals q*, Furthermore, the gap

between these two and m* grows as f~(v~). If N is large compared to k, we believe that

the upper bound rn* is much closer to WCwM+ (N, k). However, even when N is large,

q* can be significantly less than m*.

Pick any k >_ 1. If N satisfies 7

24k 24k+1

- - < N < - -
4k -- (4k+1'~

(_<k) , <kJ

then q* = 4k. With a bit of algebra (and Stirling's approximation) it can be shown that

9 4k / t" 4k] the mistake log(ak)-I In other words, when N is about _ / t<kj , rn* is at least 4k + 2

82 N. CESA-BIANCHI. ET AL.

bound on BW of Theorem 1 is at least log(ak)- 1 better than the best known bound for the 2
Weighted Majority algorithm. Although our bounds on the BW algorithm are better than

the up(N, k, ~*) bounds on the WM algorithm, asymptotically the two bounds have the

same leading term. This is shown in the following section.

2.2. Asymptotic performance of the algorithms

This subsection shows that both BW and WM* are asymptotically optimal in the worst case.

The proof uses a probabilistic argument to show the existence of "hard" sets of experts.

Using these hard sets of experts, an adversary can force any prediction algorithm to make

a mistake on each trial proving the desired lower bound. We use the notation fi ~ gi when

limi-.o~ f~/gi = 1. We define the following functions to serve as lower bounds

{ () (l ow(N,k) def q -- log 1 + in < k = max q ~ N : q _ _ _ l o g N + l o g < k _ '

Low(N, k) def max(low(N, k), 2k q- log N) .

We now state the two results of this section.

THEOREM 3 For any integers N > 2 and k > O, there exists a set g of N experts such

that the following holds for any deterministic master algorithm A: there exists a sequence

s of trials such that LE (s) < k and A makes at least Low(N, k) mistakes on s.

The above lower bound is then used to show that BW and WM* are both asymptotically

optimal.

THEOREM 4 For an), sequence { (Ni, ki)}ic N of pairs of positive integers, if Ni >_ 2for

all i and l i m i ~ Ni = oc or l imi-- .~ ki = oe, then as i --~ oe,

Low(Ni, ki) ~ W C B w (N i , ki) ~ WCwM* (Ni, ki) ~ up(N/, ki, ill) ,

ki
where ~* = up(N./, ki, ~[) - k~"

Before proving Theorem 3, we need some definitions and lemmas. The first lemma is

from Littlestone and Warmuth.

LEMMA 3 ((LITTLESTONE • WARMUTH, 1994)) For any integers N >_ 2andk >_ O,

there exists a set g of N experts such that the following holds for any deterministic master

algorithm A: there exists a sequence s of trials such that LE(s) <_ k and A makes at least

2k + log N mistakes.

The above lemma proves the first lower bound used in the definition of Low. The second

lower bound is proven using a covering argument. For any positive integer q and any

nonnegative integer k <_ q, a k-covering of the q-dimensional boolean hypercube is a

subset/3 of {0, 1} q such that for any v E {0, 1} q there is a p E /3 such that dH(p, v) <_ k.

If in the on-line prediction setting the experts' predictions are solely a function of the trial

O N - L I N E P R E D I C T I O N A N D C O N V E R S I O N S T R A T E G I E S 83

number, then each expert can be viewed as a sequence of bits. Furthermore, a set £ of such

experts is a k-covering for some subset {t a, t2, •. •, tq } of trials if the set of the sequences of

length q representing the predictions of the experts in the trials t l , t2, . . . , tq is a k-covering

of {0, 1} q.

N o w we give a technical lemma showing that some coverings are not too large. We

adapt a nonconstructive argument of Alon and Spencer from (Alon, Spencer & ErdSs, 1992,

Theorem 2.2, page 6).

LEMMA 4 For all N > I and for all k >_ 0, t f m = low(N, k), then there is a k-covering

of{O, 1} m of size at most N.

P r o o f : We prove the lemma using a probabilistic argument. Let R C {0, 1} "~ be chosen

randomly so that the event v E R occurs with probability p > 0 (to be specified later)

independently for any v E {0, 1} m. Let R ' be the subset of {0, 1} "~ containing all points

not k-covered by R. Clearly R U R ~ is a k-covering of {0, 1}m. Observe that any z belongs

to R ' if and only if for any v E R, dH(z , v) > k. This implies P r (z C R ') = (1 _ p)(4';,)

since there are (<k) corners of the m-dimensional boolean hypercube with Hamming

distance at most ~7 from z (z itself included). From the above it is easy to compute the

expectation of the random variable IR] +]R'].

E[IRI + JR'p] = 2 % + 2 (1 -

N o w set p = (~,~) . T h e n

E [I R I + I R ' I] = 2 m +

_ ~ + e x p - l n < k

4- In (~)
= 2 m

G)

where inequality (6) holds since 1 - :c < e -x for all :c > 0. Thus, i f N > 2 m 1+In (_~) _ _ (<~) then

the m-dimensional boolean cube is k-covered by a set of size N. Solving this ine(tuality for

m yields that m _< log N + log (<k) - l o g 0 + I n (~)) , or equivalently that m _< low(N, k)

ensures that the m-dimensional Boolean cube has-a k-covering of size N. •

P r o o f o f T h e o r e m 3: In view of the lower bound stated in Lemma 3 it suffices to prove

a second lower bound of low(N, k) mistakes. We use Lemma 4 to do this. Choose a

sequence {zi}iE N of distinct observations. Choose integers N > 2 and k > 0. Let

m = low(N, k). By Lemma 4, there exists a set £ of N experts, whose predictions depend

only on the trial number, such that $ is a k-covering for the first m prediction trials. N o w

84 N. CESA-BIANCHI. ET AL.

notice that, if £ is a k-covering for the first m trials, an adversary can force m mistakes

on any deterministic prediction algorithm. The adversary simply chooses the sequence

y of outcomes, of length m, such that Yt is the opposite of the algorithm's prediction on

the tth trial. Since g is a k-covering of {0, 1} ~, for any such sequence y of outcomes

there is some expert in g which makes at most k mistakes on (Xl, Yl) , . . - , (xm, Ym).

Proof of Theorem 4: By Theorem 3 we know that Low(N, k) is a lower bound on the

number of mistakes for any deterministic master algorithm.

Let ~ = {(Ni, k~)}ie N be a sequence as in the statement of the theorem. Since by

Lemma 1 and Theorem 2

Low(Ni, ki) _< WCBw(N/, hi) < up(Ni, ki,/3~)

and

Low(N/, ki) <_ WCwM- (N/, ki) <_ up(N/, ki, 13~)

it is sufficient to show that

lim Low(Ni, ki) - 1 .
up(N/, 9;)

The proof of (7) is shown in Appendix C.

(7)

2.3. Lower bounds based on Ulam's game

In this section we give lower bounds on the performance of prediction strategies. We show

that for any fixed number of mistakes k of the best expert and for any prediction algorithm,

there exists a set g of experts and a sequence s such that k = LE(s) for which the number

of mistakes made by the prediction algorithm is at least as large as the number of mistakes

made by BW.

We start by introducing some notation that lets us give a precise statement of our lower

bound. We then describe Ulam's game with lies and its relation to our prediction problem.

Finally, we show how Spencer's results (Spencer, 1992) can be used to prove our lower

bound.

In all of the following discussion we shall think of k, the upper bound on the number of

mistakes made by the best expert, as being fixed. Let J(k, q) be the following sequence of

numbers indexed by q:

It is easy to check that J(k, q + 1) >_ (5/4)J(k, q), for any q > 3k + 2, thus the sequence

J(k, q) increases (at least) exponentially.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 85

THEOREM 5 For every nonnegative integer k there exists an integer Nk such that for all

N > Nk the following holds:

If q is the integer such that J(k, q) <_ N < J(k, q + 1), then

1. WCBw(N,k) _< WC(N, k) + 1.

2. l f J (k , q) + 2 k _< N, WCBw(N, k) = WC(N, k).

Observe that the upper bound on algorithm BW is always guaranteed to be within one

mistake of the optimal algorithm when N is large enough. Also, since the size of the segment

[J(k, q), J(k, q + 1)] increases exponentially with q, as q increases the set of values for N

where the second case holds (i.e. the lower bound is off by one from BW's upper bound)

becomes an insignificantly small fraction of the possible values for N. This shows that BW

is very close to optimal for large values of N. The gap of one when N < J(k, q) + 2 k

arises from complicated number-theoretic considerations. In Appendix A we show how

algorithm BW can be modified so that it is completely optimal for large N. The weakness

of this lower bound construction is that the threshold N~ above which the lower bound

holds is rather large, on the order of 22k. This double-exponential dependence on k arises

from our use of Spencer's results (Spencer, 1992).

Before we give the proof of Theorem 5, we briefly describe Ulam's game with a fixed

number of lies and show how this game relates to chip games and to the problem of

combining the predictions of experts.

In the searching game introduced by Ulam (see (Ulam, 1977)) there are two players: a

chooser (also called Carol) and a partitioner (also called Paul). A game is defined by three

nonnegative integers N, k, and q that are known to both players. Carol is assumed to select

a secret number x from the set {1 , . . . , N}. Paul's goal is to find out what this number is

by asking Carol questions of the form "Is x in S?", where S is any subset of {1 , . . . , N}.

Carol is required to answer either "yes" or "no". However, she is allowed to lie (i.e. give

the incorrect answer to Paul's question) up to k times, s We say that Paul wins the (N, k, q)

game if and only if he can always identify Carol's secret number after at most q questions,

regardless of Carol's strategy.

The interesting fact is that there is a common abstraction of Ulam's game with lies and

of our problem. The abstraction can be seen as the following chip game (for more work on

chip games, see (Aslam & Dhagat, 1991)). We think of each number in the set {1 , . . . , N}

as a "chip" and consider k + 1 (disjoint) subsets of these chips, which we call "bins",

and denote by Bo, . . . , /3k . At each point of the game, the bin Bj contains all the chips

that correspond to a number x E {1 , . . . , N} with the property that if x is the number

chosen by Carol, then j of the answers that Carol gave so far have been lies. Thus the

union of all the bins contain those choices of x that are consistent with the bound k on the

number of lies that Carol is allowed to make. Essentially, it is sufficient to describe each

configuration reached during the game by the number of chips in each bin. We denote by

I j = (I~ , . . . , 1~) the configuration of the chip game after at the jth trial, where I j is a

natural number denoting the number of chips in/3~. For example, the initial configuration

is always I ° = (N,O, . . . ,O) .

When Paul asks "Is x in S ?", his question partitions the chips into two sets, those in S

versus those outside S. If Carol answers "no" her answer constitutes a lie with respect to

86 N. CESA-BIANCHI, ET AL.

the numbers in S. This translates to advancing each chip corresponding to a number in S

from its current bin to the next bin (e.g. from bin Bj to Bj+I). If a chip corresponding to

a number in S is already in the last bin Bk, it is discarded as there is no bin Bk+l. If Carol

answers "yes", then those chips corresponding to numbers not in S are advanced.

Clearly Paul cannot know which number Carol has chosen as long as the union of the bins

contains at least two chips. Thus Carol's goal is to keep two chips in the union of the bins

for as long as possible. Paul wins the (N, k, q) iff there is a strategy for choosing partitions

guaranteeing that after q steps there is at most one chip remaining in the union of the bins.

We can think of the prediction problem as a "prediction game" where the predictor is

playing against an adversary that picks both the predictions generated by the experts, and

the outcomes .9 We restrict our attention to those adversary strategies that force the prediction

algorithm to make a mistake on each and every trial for as long as possible. This means

until one expert has made k mistakes and every other expert has made more than k mistakes,

the adversary chooses the feedback so that the prediction algorithm makes a mistake on

every trial. From this point on, the predictions of the single best expert are guaranteed to be

without mistakes, and by copying the predictions of this expert the master algorithm will

correctly predict the remainder of the sequence. This restriction is helpful to map to the

prediction game into a chip game, and restricting the adversary in this way does not reduce

its power since we are able to obtain a lower bound that essentially matches the upper bound

of the BW algorithm.

We can easily relate this "prediction game" to a chip game. Each chip corresponds to

an expert and the bin Bj, for 0 _< j _< k, contains those chips corresponding to experts

that have made exactly j mistakes on previous trials. Each iteration of the game starts

with the adversary partitioning the chips to two sets according to the predictions given

by the corresponding experts. The prediction algorithm then chooses its prediction, and

the adversary forces a mistake by generating an outcome opposite to the prediction. This

causes those chips corresponding to experts whose predictions were mistaken to advance

one bin. Thus the prediction algorithm (indirectly) chooses which subset of the chips gets

advanced, so the prediction algorithm corresponds to Carol and the adversary corresponds

to Paul. The game ends when the configuration (0, 0 , . . . , 1) is reached, we shall refer to this

configuration as the terminal configuration. This is a slight difference from the chip game

that corresponds to Ulam's game with k lies. Another, much more significant difference, is

that the goals of the opponents have been reversed. In the chip game corresponding to the

prediction problem, Carol (the prediction algorithm) wants to shorten the game as much as

possible since the length of the game measures the number of mistakes that the prediction

algorithm is forced to make.

As the goals of Carol and Paul have been reversed, it would seem that their strategies for

playing the two games would be very different. Surprisingly, it turns out that the optimal

strategy for Paul is the same in the two games when the different ending condition is ignored.

If N >_ Nk then this optimal strategy Paul can force both games to have the same length,

regardless of the actions taken by Carol. In other words, if Paul uses this strategy then Carol

is unable to make the game neither longer nor shorter.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 87

This strategy for Paul has been developed by Spencer (Spencer, 1992), and is the basis of

the proof of Theorem 5. We shall briefly describe the strategy, give Spencer's result, and

then use it to prove Theorem 5.

Spencer identifies the same binomial weights that are used in the BW algorithm as the

central quantities on which the strategies of both Carol and Paul are based. We shall denote

by 1,t% (I) the weight associated with the configuration I and the integer q, i.e.

k

i=0 <_ k - i

Spencer gives a strategy for Carol. Under this strategy Carol advances those chips that keep

the future configurations as heavy as possible. The exact opposite choice is made by the

BW algorithm, which advances the heavier chips, resulting in a lighter configuration. This

makes intuitive sense, because Carol has opposite goals in the two games.

The main result of Spencer's paper (Spencer, 1992) is the identification of a class of

"good" configurations. For each configuration in this class there exists a partition such

that both future configuration have equal weight, equal to half the weight of the current

configuration, and both configurations are either good or consist of a single chip. Thus,

starting from a good configuration, Paul can repeatedly partition the chips in such a way that

in each step the weight is halved until only a single chip remains. It is clear that, by choosing

these partitions, Paul can completely neutralize Carol once one of the good configurations

is reached. The definition of the good configurations rests on the observation that the

weight associated with the chips in bin/3k is always l, because (_<q0) = 1. These chips

are appropriately referred to as "pennies". It is clear that if a configuration has a sufficient

number of pennies, and the total weight is even, then by moving pennies from one set of the

partition to the other one can equalize the weight of the two successor configurations. Paul's

strategy is to choose a partition whose two successor configurations are almost balanced

and then use pennies to balance them completely. The main theorem in Spencer's paper

shows that if the initial configuration has a sufficient number of pennies, Paul can use this

technique repeatedly, without running out of pennies until a configuration with a single chip

is reached.

We now give the main result from Spencer's paper in a form that fits our needs.

THEOREM 6 (SPENCER, 1992) For any number k > 0 o f bins, there exist finite integers

c(k) and qo(k) such that the following holds for all q > qo(k): if I ° = (I°o, . . . , I °) is an

initial configuration such that I ° > c(k)q k and Wq(/°) = 2 q, then there exists a strategy

for Paul such that, independent o f the choices made by Carol, a configuration I TM is reached

such that E~:0 I~" = 1 and Wq_,~(I TM) = 2 q-'~.

In other words, Paul can guarantee that the total weight is exactly halved at each step,

until only a single chip is left.

Proof of Theorem 5: The proof is divided into two parts, we first show that if N is large

enough then from the initial configuration I ° = (N, 0, . . . , 0) Paul can reach, in k steps, a

configuration that meets the conditions of Theorem 6. In the second part we show that the

final configuration reached in Theorem 6 guarantees the bound given in the theorem.

88 N. CESA-BIANCHI. ET AL.

In the proof we make use of the idea that Paul "marks" chips as useless. If a chip is marked

on some particular trial, then this chip is placed arbitrarily in the partitions generated by Paul

on subsequent trials. We shall prove that Paul can delay reaching a terminal configuration

even when only the unmarked chips are considered. It is clear that if the marked chips were

also considered, then reaching the terminal configuration would be delayed for at least as

long, which proves the lower bound on the number of trials.

Initially, all N chips are in bin B0. It takes at least k steps to get chips to bin Bk and thus

make them into pennies. We shall devise a strategy for the first k trials that is guaranteed

to give rise to a sufficient number of pennies at the kth trial. First, Paul marks some chips

so as to make the number of unmarked chips divisible by 2 k. Clearly, less than 2 k chips

need to be marked. Ignoring the marked chips Paul generates the following partitions. The

(unmarked) chips in each bin are divided into two equal parts, one part from each bin is

placed in the first set of the partition, and the other part is placed in the second. It is easy

to check that, independently of Carol 's actions, such partitioning of the unmarked chips is

possible for k steps. It is also simple to see that after k trials exactly a fraction of 2 -k of

the unmarked chips reach bin Bk and become pennies.

Let q be the integer such that J(k , q) < N < J (k , q + 1). From (1) it is clear that the

weight that is associated with the unmarked chips is divided by two at each step. Thus,

independently of Carol 's choices, the weight of the configuration after k steps satisfies

W q - k (I k) > 2 - k (X -- 2k) < k "

To apply Theorem 6 we need that the remaining weight (after k steps) of the unmarked

chips is a power of two. We first find an appropriate c] such that WO(I k) > 2 0.

By the definition of q, J (k, q) <_ N <_ J (k, q + 1). If N is large enough then J (k, q) -

J (k , q - 1) >_ 2 k and thus N >_ J(k , q - 1) + 2 k. This implies that (N - 2 k) (q_<k 1) > 2 q-1

and thus by inequality (8), W q _ k _ l (I k) > 2 q-k-1. It follows that if N is large enough

then we can always choose c] = q - k - 1. However if N >_ J (k , q) + 2 k, then by the same

derivation we get W q _ k (I k) > 2 q-k and we can set c] = q - k .

We now wish to apply the results of Theorem 6 to the configuration I k, whose weight

satisfies W 0 > 2 ~. However, in order to obey the conditions of the theorem we have to mark

some more chips in order to make the weight of the configuration satisfy WO(I k) = 2 0.

We do this marking carefully, so that afterwards we still have enough unmarked pennies

to apply the theorem. We mark chips using the following simple procedure: we mark

nonpenny chips until we cannot mark a nonpenny chip without reducing WO(I) below 2 0.

We then mark enough pennies to reduce the weight to 2 0 . As the heaviest chips (those in

Bo) weigh (~k) <- (3q) k' we need to mark at most (30) k pennies. Taking into account both

the initial marking of less than 2 k chips and this additional marking phase, we get that the

number of unmarked pennies is at least ~2 -k (N - 2 k + 1)J - (3~) k _> 2 - k N - (3~) k - 2.

On the other hand, in order to apply Theorem 6 we need at least c(k)O k unmarked pennies.

This is satisfied if 2 - k N - (30) k - 2 > c(k)O k. As for any fixed value of k, q and thus

is O(log N) , the last condition is satisfied for every N > Nk for a large enough Nk.

We can thus apply Theorem 6 with the initial configuration being the unmarked chips in

the kth configuration, that we denote by I k. The weight of this configuration is WO(I k) =

ON-LINE PREDICTION AND CONVERSION STRATEGIES 89

2q. The theorem guarantees that Paul can find partitions so that after some rn steps a

configuration I k+'~ is reached such that ~ : 0 I~ +'~ = 1 and Wq_~n(I m) = 2 q-'~. Thus

only a single chip will be left. It is easy to verify that as the weight of the chip is 2 ~-'~ it

must be in bin B k - (q - , 0 . After another ~ - nz steps the single chip will be in the last bin

and the game is over.

Finally, we sum up the number of trials, or mistakes, that Paul can force on Carol. We have

k trials before getting the pennies, rn trials using the Spencer's strategy, and ~ - rn mistakes

at the end. Summing these terms and using the definition of ~ we get that Paul can always

force at least q - 1 mistakes and if N > J (k , q) + 2 k then Paul can force at least q mistakes.

3. Conversion strategies

In this section we show how the ideas behind the BW algorithm can be used to modify

prediction algorithms so that they can tolerate malicious noise. Assume we are given a

prediction algorithm A that makes at most k mistakes on any sequence in some set E C

(X x {0, 1})*. We assume that algorithm A makes at most k mistakes even if it is presented

with a subsequence of any sequence in E. Formally, we require that E is subsequence closed.

Any deterministic prediction algorithm can be converted to an algorithm that changes its

state only when its prediction is incorrect. This is achieved by resetting the state of A after

each trial in which A predicts correctly to the state of A before the trial. This conversion

does not increase the worst case number of mistakes on the subsequence closed set E. The

converted algorithm is called conservative (Littlestone, 1989). For the rest of this section we

shall always assume that the set of sequences is subsequence closed and that the prediction

algorithm is conservative.

Algorithm A is allowed to perform arbitrarily badly if given an instance/outcome sequence

that is not in E. For example, i f E = (X x {0})* U (X x {1})* (i.e. all sequences where

the outcome is held constant) then the algorithm A which always predicts with the first

outcome seen makes at most one mistake when given a sequence in E. However, if the first

label is corrupted by malicious noise then all subsequent predictions made by algorithm A

will be incorrect.

Here we show how to convert A into another algorithm that performs well on sequences

in E that are corrupted by noise. In particular, for any r we can build an algorithm that

performs well on those sequences which can be created from a sequence in E by arbitrarily

changing up to r examples. We use E ' to denote this set of noisy sequences. As the above

example indicates, algorithm A may make arbitrarily many mistakes on sequences in E'.

Furthermore, the sequences in E ' might have different outcomes for the same instance and

algorithm A might not even be defined on this larger set of sequences. In that case we extend

the definition of A by assigning it the default prediction 0 and restarting it at its initial state.

Thus we assume throughout that A 's prediction and successor state are always defined.

In this section we use the methods developed in Section 2 to construct master algorithms,

called conversion strategies, whose mistake bounds increase slowly as a function of r.

90 N. CESA-BIANCHI. ET AL.

As in Section 2, we use a version space argument and expand A into a set of variants so

that at least one variant will be correct on all trials where the conversion strategy makes

a mistake. However, here the elements of the version space are somewhat dynamic as

they represent computations of A on sequences in E. In addition to discarding irrelevant

computations from the version space, the conversion strategy will also need to extend certain

computations by simulating A on the current trial. Since the members of the version space

managed by the conversion strategy are somewhat dynamic, it may be a slight misnomer to

call it a version space. However "version space" does convey the proper intuition.

Since our conversion strategies are conservative we can concentrate on those trials where

the conversion strategy itself makes mistakes. Here we use m for a bound on the number

of mistakes made by the conversion strategy, k to denote the mistake bound of algorithm

A on sequences in E, and r as the number of examples corrupted by noise.

We first outline the Chin conversion strategy that is based on binomial weights, and later

describe a second conversion strategy, Cexp, based on exponential weights. These strategies

are described in more detail in Sections 3.1 and 3.2 respectively.

A major difference between the conversion problem discussed here and the one addressed

in Section 2 is that with experts there were only two possibilities for each trial - - the expert

was either correct or incorrect. Here we consider three different cases. The first case is

when algorithm A correctly predicts the outcome. In the other two cases the prediction

is incorrect. In the second case the wrong prediction is due to the fact that the example

is corrupted by noise and in the third case the example is unchanged but the algorithm

makes a mistake in predicting the label. Therefore, instead of associating a bit string to

each member of the version space, the Cbin strategy attaches a string of "trits" from the

set {0, noise, mstk }. Each member of the version space is a stored state of algorithm

A together with a string 7. = (7-1,... , 7"m) E {0, noise, mstk }'n. These strings have an

interpretation like the bit strings of Section 2. If a (state, 7") pair is in the version space

when the conversion strategy Cbin makes its ith mistake, then the value of ~-~ represents the

following possibilities. The value 0 represents the possibility that A predicted the label of

the example correctly. The values noise and mstk represent the possibility that A predicted

incorrectly, where the cause for the incorrect prediction is attributed to noise or to a mistake

by A respectively.

Since algorithm A makes at most k mistakes, each string T contains mstk at most k times.

Similarly, since we assume that at most r of the trials are corrupted by noise, noise appears

at most r times in each string. Therefore only some of the 3 m strings in {0, noise, mstk }~

are legitimate. In particular, if there are j nonzero elements in a string, j will be between

0 and r + k. Furthermore, at most r and at least j - k of the elements in the string will be

noise. This gives us

[(j) ()]
j=o _ r < _ j - k - 1

strings that must be considered. An examination of the term in brackets shows that SIZE is

symmetric in r and k, as expected. Furthermore, STZE(r, k, m) = O(ra"+k(r + k)min(~'k)).

The Cbin conversion strategy starts with a version space containing SIZE elements, each

with the initial state of algorithm A and a different legitimate string 7". The conversion

ON-LINE PREDICTION AND CONVERSION STRATEGIES 91

strategy manages the version space by predicting with the halving algorithm. However, it

is no longer quite so clear what this means.

Consider the situation after the conversion strategy Cbin has made i - 1 mistakes and

sees instance :c ¢ X. In this case each element of the version space, (state, T) will be

using its T~ to see if its variant of A is correct, has a noisy trial, or makes a mistake. Each

variant will see how A (in state state) predicts. If its ~ is 0 then the variant predicts the

same way, otherwise the variant predicts with the opposite value. Conversion strategy Cbi n

may update the version space after getting the outcome. If the conversion strategy Cbin

predicted correctly then all variants are kept unchanged. If Cbin predicted incorrectly then

those variants also predicting incorrectly are discarded. In addition, when Chin predicts

incorrectly those variants predicting correctly may be updated based on their ~'i values.

There are three cases, according to the value of T~.

1. Case ~i = 0: This means that the variant predicted the outcome correctly. Since A is

conservative, Chin leaves the state of the algorithm A for this variant unchanged.

2. Case ~-i = noise: This means that the prediction of A is incorrect but would have been

correct if the example was not corrupted by noise. As in the previous case, Chin leaves

the state of the algorithm A unchanged.

3. Case -ci = mstk: This means that the prediction of A is incorrect because A has made

one of its k allowed mistakes and that the example is not corrupted by noise. In this

case Chin updates the state of A. This is done by simulating A, starting from the old

state, on the example received in the current trial. The resulting state of A replaces the

old state in the variant.

We show in Lemma 5 that:

I. On each trial where Cbin makes a mistake, the size of the version space drops by a

factor of at least 2.

2. For any sequence in E t at least one variant is never removed from the version space

during the run of the master algorithm.

We need a few definitions before we can precisely state our hounds on the Cbin con-

version strategy. For all n ¢ H and for all pairs s = ((x l , y l) , . . . , (z,~,y,,)) and

u = ((z] , y [) , . . . , (x~, y~)) of sequences in (X x {0, 1}) ~, wesaythatsisanr-corrupted
version of u if and only if (xi, Yi) ¢ (x~i, Y~) for at most r indices i, where 1 < i < n.

We shall also use the notation de(s, u) = r to indicate that s is an r-corrupted, but not an

(r - 1)-corrupted, version of u. Thus

d c (s , u) ~ f min{r E 1~ : s is an r-corrupted version o f u } .

We define dc(s, u) = oc if the sequences differ in length or if they have an infinite number

of disagreements, and say s is a corrupted version of u if dc (s, u) is finite.

We will show in Section 3.1 that the conversion strategy Chin achieves the following

bound.

92 N. CESA-BIANCHI, ET AL.

THEOREM 7 For all conservative, deterministic algorithms A, for all subsequence-closed

sets of sequences E C (X x {0, 1})*, andall s E (X x {0, 1}) +, if

• k >_ max{LA(U) : u E E} and

• s is an r-corrupted version of some sequence in E,

then the number of mistakes made by Chin(r, k, A) on the sequence s is at most

m a x {q E 1~ : q _< log(SiZE(r, k, q))} . (9)

In Theorem 9 we will show that the bound in (9) is O(r + k). Note also that the Cbi n

strategy needs to know the upper bounds k and r.

In Section 3.2 we describe a second conversion strategy that we call the Cexp strategy.

The Ce×v strategy uses exponential weights (as used in the Weighted Majority algorithm)

and does not require advance knowledge of r and k. However one cannot optimize the

mistake bounds of Cexp without knowing these parameters. The following theorem gives

the mistake bound we prove for the conversion strategy Ce×p.

THEOREM 8 For all conservative, deterministic algorithms A, for all subsequence-closed

sets of sequences E C_ (X x {0, 1})*, andall s E (X x {0, 1}) +, if

• ~ and/3 are nonnegative real numbers such that a + 3 < 1, and

• s is a corrupted version of some u E E,

then the number of mistakes made by Cexp(a , /3 , A) on sequence s is at most

[dc(s'u) l°g ! + LA(')l°g 1
rain m a x ~ (10)

Lug2 u ' c u log 2 ,
- l + a + 3

where u' C_ u means that u ' is any subsequence of u.

It is easy to verify numerically that by choosing a = fl = 0.147, the upper bound for

Cexp displayed in (10) is at most

min m a x 4 .4035(dc(s , u) + LA(U')).
"/-tEE ~'E_U

Thus we get a reasonable bound that holds for all values of dc(s , u) and LA(U').

However, if one wants to set a and /3 so that the mistake bound of C, xp is optimized

then one needs to know upper bounds k and r on dc(s , u) and LA(U'), respectively. The

case when r or k is 0 is degenerate. Thus we assume that rain(r, k) _> 1. The following

inequality was numerically checked using MAPLE TM, a software package for symbolic

computation,

r log ± + k log -~

2 log 1+~+~

ON-LINE PREDICTION AND CONVERSION STRATEGIES 93

" and ~3 k where for c ~ - f<,k)-~-k -- I(r.k)-~-k'

f (r , k) de=f 2(r + k) + 2x/rk ln(e - 1 + max(r, k)/rain(r, k)) + 2.807x/-~.

If r _> k, then by dividing the inequality by k, we are left with an inequality in r/k , where

r /k E [1, c~). We plotted the difference between the left-hand side and right-hand side of

the latter inequality as a function of r /k and checked the values of the difference and its

derivatives with respect to r / k at the end points 1 and oc.

One can also show that there is no constant c independent o f r and k such that the mistake

bound of Ce×v (with c~ and/3 optimized) is at most 2(r + k) + cx/-~.

Notice however that Cexp has a worst-case mistake bound larger than Cbin: In much

the same way we proved Theorem 2 in Section 2.1 we can also prove the following (see

Section 3.2).

THEOREM 9 For all k, r c 1~ and all c~, /3 E [0, 1), if c~ +/3 < 1, then

l 1 m a x { q C N : q<log(SlZE(r ,k ,q))} < r l o g K + k l o g
- - l o g 2 •

l+~+fl

(11)

To show an immediate application of Theorems 7 and 8 consider the special case when the

set E C (X x {0, 1})* of uncorrupted sequences is the set of all sequences consistent with

some family 5 t" of {0, 1}-valued functions f on X. That is

= ~ = { ((x t , f (x t))) t ; f E f A (Xt) t E X + } .

This more restricted setting was studied by Littlestone (Littlestone, 1989) and Littlestone

and Warmuth (Littlestone & Warmuth, 1994) where they define the quantities Opt (f , 0),

i.e. the optimal worst-case number of mistakes over all sequences from ET, and Opt (f , r),

i.e. the optimal worst-case number of mistakes over all r-corrupted sequences from Zy.

Littlestone and Warmuth (Littlestone & Warmuth, 1994) show that Opt (f , r) > 2r +

Opt(F, 0), but the problem of finding an equivalent upper bound is left open. By ap-

plying Theorem 7 (or the weaker Theorem 8) when E = Ey- and the sub-algorithm A

is optimal, we obtain the upper bound Opt (f , r) <_ 4.4035@ + Opt(f , 0)), showing

Opt (f , r) = @(r + Opt (f , 0)). Auer and Long (Auer & Long, to appear) independently

developed an algorithm essentially equivalent to our Cexp strategy, lO

All of our conversion schemes use deterministic prediction algorithms. This means that

the algorithm's prediction depends only on its current state and the observation. After

making its prediction, the algorithm enters a new state based on the observation and the

outcome. We denote the initial state of the prediction algorithm by Si,~it and use As to

denote prediction algorithm A in state S. When the observation is fixed, the next state

entered by algorithm A depends only on the outcome. We use S z° (and S x,1) to denote the

(possibly identical) next state entered by As after As receives observation x and outcome

0 (or outcome 1 respectively). In the rest of this section we state and prove the mistake

bounds for Cbi n and Ce×p.

94 N. CESA-BIANCHI, ET AL.

3.1. The conversion strategy C b i n

In this section we formally describe the Cbi n strategy and prove its mistake bound.

The Cbi n strategy uses a concise representation of the version space in much the same way

that the B W algorithm keeps a single binomial weight for each expert. In order to avoid

confusion with the states of the algorithm being converted, we call the states of the Cbin

algorithm configurations. Each configuration encodes the appropriate version space as well

as a value (which we usually denote d) indicating an upper bound on the number of mistakes

yet to be made by the conversion strategy. The Cbi n algorithm changes configurations only

when it makes a mistake.

The version space is encoded in a configuration as a (multi-)set of triples representing com-

putations of algorithm A on corrupted versions of subsequences of the past trials. More pre-

cisely, the version space is represented by a collection of triples (S, r ~, k ') , where S is apossi-

ble state of algorithm A and the other two components are integers. Intuitively, r ~ represents

the maximum number of future examples that can be corrupted by noise and k r represents the

maximum number of mistakes made by algorithm A in the remaining trials. Thus if c ~ is the

upper bound on the number of mistakes yet to be made by the conversion strategy, the single

triple

(S, r', k ~) represents

/,=0

different elements in the version space (or (S, ~-) pairs for r E {0, noise, mstk }c'). It is

important to understand that the values r t, k' , and c ~ all start at the upper bounds r, k, and

m, respectively, and count down.

The initial configuration of the Cbi n conversion strategy contains the single triple,

(Sinit, r, k) where Sinit is the initial state of algorithm A, r is the bound on the number of

noisy trials, and k is the mistake bound of A on sequences in ~2. The initial configuration

of Cbin also contains the mistake budget 11 c ~ = m + 1, 1 greater than the mistake bound

o f C~bin .

An important concept is the successors of a configuration. For any possible state S of

algorithm A and any z E X we use S :~,° and S x,1 to denote the states entered by A from

state S after processing the single observation-outcome pair (z, 0) or (z, 1), respectively.

Given a configuration C with mistake budget c ~, we define the successors, C ~'° and C x'l , of

configuration Ct with respect to observation z in the following way.

Both successor configurations have mistake budget c' - 1. For each triple (S, r ~, k ~)

in Ct, consider the prediction of As on observation z.

If As predicts 1, then

• configuration C x,1 contains the single triple (S, r ~, k~), and

• configuration C ~'° contains the triples (S ~'°, r', k' - 1) and (S, r' - 1, k')

representing the possibilities of a incorrect prediction by A and a noisy trial

respectively.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 95

Similarly, if A s predicts 0 on observation z then

• configuration C z'° contains the triple (S, r', k'), and

• configuration C x,1 contains the triples (S ~'1, r', k' - 1) and (S, r ' - 1, k').

We define the weight of a configuration to be the size of the version space represented

by that configuration. In particular, the weight 14%, (S, r', U) of the triple (S, r', k') in a

configuration with mistake budget c' is

i 1) 1
i=0

and the weight of a configuration C, tVc, (C), is the sum of the weights of the triples in C.

Triples (S, r', k') where either r ' < 0 or k' < 0 represent sequences disallowed by our

assumptions, and these disallowed triples are given weight O. Deleting disallowed triples

from a configuration has no effect on the strategy's predictions.

On each trial the Cbin conversion strategy in configuration C receives the new instance z

and computes the weights of the two successor states, C z,1 and C z'°. The Cbin conversion

strategy predicts 1 if the weight of C z'l is greater than the weight of C x'° and 0 otherwise.

If the Cbin strategy predicted correctly, it keeps the configuration C. If the Cbin strategy

predicted incorrectly, then it changes its configuration from C to C z'b where b is the outcome

of the current trial.

A sketch of the conversion strategy Cbin is given in Figure 3.1. The algorithm Cbin can

be further improved in the same way that BW' improved BW (See Section 2). However

these changes do not improve the worst-case mistake bounds, and thus we chose not to

include them for the sake of the simplicity of the presentation.

The next result shows some useful properties of sequences of configurations.

LEMMA 5 For all conservative, deterministic prediction algorithms A, all subsequence

closedsets ~ C (X x {0, 1})*, a n d a l l r C ~, i f

• k > m a x { L A (U) : u E E},

• s = ((xt, Yt)) in (X x {0, 1}) + is an r-corruptedversion of a sequence in ~, and

• Co is the configuration with mistake budget Co = 9 containing the single triple (Sinit, r, k)

where Si,~.it is the initial state o f A, and

• Co, C 1 , . . . , Cg is the sequence of distinct configurations generated by a run of Cbm

applied to A on the sequences s,

then

1. for each t =O, 1 , . . . , g - 1 ,

Wct(Ct) = Wct_l(C~ t+l'O) -~- VVcL_I(Ci vL+l'l) ~ ~/~/c,_l(Ct+l)

where ct is the mistake budget o f Ct, and

2. for each t = O, 1 , . . . , g, Wg (Ct) >_ 1;

96 N. CESA-BIANCHI. ET AL.

Strategy Cbi n

Input: Two positive integers r, k, and a prediction algorithm A with initial state Si,m.

1. Let 9 = m + 1, where

.

.

m := max {q E N : q < log(sIzE(r, k, q))} (12)

Initialize configuration Co to have mistake budget Co = 9 and contain the single triple

(S~ni~, r, k).

For each trial t = 1, 2 . . .

(A) Get the tth observation zt.

c'x~'° and C~ ' '1 of the current configuration dr-1. (B) Compute the successors ~t-1

(C) Predict with p E {0, 1} such that

xt,p = (Ct_l)~Wct l _ l (C t _ l) } W c t _ l _ l (C t _ l) m a x { W ~ _ 1_ 1 x~,0 xt,1

(predict arbitrarily in case of a tie.)

(D) Get the outcome Yr.

(E) If p ¢ Yt then decrease the mistake budget and update the current configuration

r~,,v,, if p = yt, then keep the current configuration by setting by setting Ct := ~t-1 ,

Ct := Ct-1.

Figure 3. Pseudo-code for the conversion strategy Cbi n.

The proof of Lemma 5 is given in Appendix D.

Proof of Theorem 7: Choose n, k E N and a sequence s '~ E (X × {0, 1}) n that is an

r-corrupted version of some u E E. Let m be the integer defined by formula (9) and,

assume to the contrary that Chin (r, k, A) makes at least 9 = m + 1 mistakes on s. Let g be

the trial on which Chin(r, k, A) makes its 9th mistake and c ~ the mistake budget after the

gth trial. We will show that

wg(c°) (13)
w~, (Ce) _< 29

< 1. (14)

Let t l , t 2 , . . . , tg be the trials at which algorithm Cbi n makes its first g mistakes and u / be

the associated subsequence of u. Since E is closed under subsequences, u / E E. We apply

Lemma 5 to sequence u ~ and the associated sequence Co, Ctx, • . . , Ct, of configurations

generated by the algorithm. By construction, the algorithm predicts on each trial t (1 <

t _< n) according to the heaviest successor of the current configuration Ct- a. The current

ON-LINE PREDICTION AND CONVERSION STRATEGIES 97

configuration is unchanged if Cbi n predicts correctly. If the algorithm makes a mistake

on trial t, the successor Ct_~'~ ' corresponding to the correct prediction Yt becomes the

new current configuration. Because algorithm Cbi n predicts on each trial according to the

heaviest successor, it fol lows from part 1 o f L e m m a 5 that Wg_ 1 (Ctl) <_ W9 (Co)/2 and that

~/~Tj-l(Ctj+l) ~_ Wcj(Ctj)/2, for 2 _< j < g, where cj (for 1 _< j < g - 1) is the mistake

budget of Ctj. This implies inequality (13). By definition of rn in (9) and the fact that

g - m + 1 we derive inequality (14). N o w part 2 of Lemma 5 shows that Wc~ (Ct,,) >_ 1,
contradicting (14). Thus Cbi n makes at most m = 9 - 1 mistakes on s, concluding the proof.

A good consequence of the fact that Cbin is conservative is that the number of triplets

does not increase on trials where Cbi n predicts correctly. However, it seems that the

number of triples kept by algorithm Cbi n can potentially double each time Chin makes an

incorrect prediction. We now show that this apparent worst-case behavior is not possible,

and that the maximum number of triples in any configuration of Chin(/', k, A) is bounded

by (<mi~r,k}) = O(T7~'min{r'k})' where m is the number of mistakes made by Cbi n before

the configuration is reached.

THEOREM 10 For all conservative, deterministic prediction algorithms A, and all sub-

sequence closedsets E _C (X x {0, 1})*, if

• k >_ m a x { L A (u) : u C E},

• s = ((xt, Yt)) is an r-corrupted version of some sequence in E,

• Co is the configuration with some mistake budget m containing the single triple (Stair, r, k

where Sinit is the initial state of A, and

• Co, C1, . . . , Cm is the sequence of distinct configurations generated by a run of Cbin

applied to A on the sequences s,

then for each I < t < m, configuration Ct contains at most (<mi~{,-,k}) triples with nonzero

weight.

Proof: We prove the theorem when r = rain{r, k}, the other case is similar. For all

t = 0, 1 . . . , m and 0 < i < r let Mr(i) be the number of triples (S , r ' , k ') ~ Ct with

r ' = r - i. Thus Mo(0) = 1 (for the initial configuration), and Mo(i) = 0 for all i > 0.

Note that some triples counted in Mt(r - /) might have 0 weight if their U < 0.

From the definition of successors, Mt+l(i) <_ Mr(i) + Mt(i - 1). The unique function

f = f (t , i) satisfying

f (0 , 0) = 1,

f (0 , i) = 0, f o r l < i < r ,

f (t + l , i) = f (t , i) + f (t , i - 1) , f o r t > 0 a n d l < i < r ,

is the binomial coefficient (ti). Therefore Mt (i) < (~) yielding that the number of triples

(S, r', k') in Ct with 0 _< r t < r is at most

98 N. CESA-BIANCHI, ET AL.

Z : ,
i=0 i=0 ~ r

as desired.

3.2. The conversion strategy Cexp

We now move on to the description of the conversion strategy Ce×p. Where Cbin was based

on binomial weights, Cexp uses exponential weights. The advantage of using exponential

weights is that the conversion strategy does not need to know the bounds r and k that Cbin

requires as inputs. However if one wants to optimize the mistake bound of C~xp so that it

is in the form 2(r + k) plus a square root term, then knowledge of k and r is required for

C~×p as well. Analogously to Cbin, the bound of C~xp does not depend on the length of the

sequence to predict. The weighting scheme used by C~xp has two real parameters, a and

/3, such that 0 < a,/3 < 1.

Here we define a configuration by a set of triples for different computations of algorithm

A. Unlike the description of strategy Chin given before, here a configuration does not

have a mistake count or mistake budget. However, as before each triple is of the form

(S, i, j) where S is a possible state of algorithm A and i, j are both integers. For any fixed

0 < oe,/3 < 1, the weight W,~,~ (S) of the triple (S, i, j) is the product a - i 3 - j . As before,

the weight of a configuration, W~,~(C), is the total weight of the triples in C. The role

played here by the components i and j in each triple is analogous to the role respectively

played by the components r / and U in the triple (S, r', U) defining algorithm Chin-

We use essentially the same definition of successors as the one introduced in Section 3.1

for the strategy Cbin with only two differences. Namely, the mistake count is absent and a

triple is never removed since its weight never drops to 0. Note also that i, j can be negative.

A sketch of the conversion strategy Cexp, using the above weighting scheme, is given in

Figure 4. The next lemma establishes some properties of such weighting schema.

LEMMA 6 For all conservative and deterministic prediction algorithms A, and all subse-

quence closedsets E C (X x {0, 1})*, if

• s = ((xt, Yt)} is an r-corrupted version of some sequence u c E,

• Co, C1, . . . , C~ is the sequence of distinct configurations generated by a run of Cexp

applied to A on the sequence s, and

• c~,3E [0,1),

then Wa,~(Cn) >_ oldc(u'S) 3LA(U), and for each t = 1 , . . . , n

< (1 + a + 3"] Wc~ ~(Ct-1), W~,~(Ct)
- - \ 2] '

The proof of this lemma is an easy generalization of Littlestone and Warmuth's proof of

the worst-case bound for the Weighted Majority algorithm (Littlestone & Warmuth, 1994).

ON-LINE PREDICTION AND CONVERSION STRATEGIES 99

Strategy Cexp 12

Input: Two real numbers a,/3 such that 0 < c~,/3 < 1 and a prediction algorithm A with

initial state Sinu.

1. Initialize configuration Co to contain the single triple (Stair, 0, 0).

2. On each step t = 1, 2 , . . .

(A) Get the tth observation xt.

(B) Compute the successor configurations CtJ '° and C~J'~ of the current configuration

Ct-- 1.

(C) Predict with p C {0, 1} such that

W t P z t ' P " x t 0 = max{W~ Z(C t ' I) .W ,,.,:~.1~ a , / 3 k b t - 1) , - , a , f l kL ' t - ' l)1

(predict arbitrarily in case of a tie.)

(D) Get the outcome Yt.

(E) If p ¢ yt, then update the current configuration by letting Ct := £{J'~; or, if

P = Yt, let Ct := Ct-1.

Figure 4. Pseudo-code for the conversion strategy Cexp.

We now turn to the proof of the worst-case mistake bound for the conversion strategy Cex p.

Proof of Theorem 8: Choose any sequence s = ((xt,yt)) and choose u E E. By

construction, Cexp predicts on each step t according to the heaviest successor of the current

configuration Ct. Ifa mistake occurs, then the successor C{J'~ * , corresponding to the correct

prediction Yt, becomes the new current configuration. Moreover, again by construction

of Cexp, the current configuration is unchanged if the algorithm predicts correctly. We

can therefore apply Lemma 6 to the subsequence s I C s determined by the sequence

t l, t 2 , . . . , tm of the indices of the prediction trials where Cexp makes a mistake. Since E

is subsequence-closed, the subsequence u / of u that corresponds to these trials lies in E.

By applying part 1 of the same lemma, and given that a +/3 < 1, we conclude that the

total weight of the current configuration decreases by a factor of at least 1+2+-----£~ each time

C~xp makes a mistake. Also, dc(s ~, u') < de(s , u) and hence, i fC f~ is the configuration

following the last prediction mistake made by C~×p on s, part 2 of Lemma 6 implies that

a d c (8 , U) LA (U')
w ~ , z (c s i , ~) >>_ Z .

Hence, assuming Cexp(a,/3) makes m mistakes on s and recalling that W~,~(Co) = 1,

(l + a + f l) '~ "~ ~ ~'Va,o(Ct) ~ o~dc(8'U)~LA(U').

100 N. C E S A - B I A N C H I , E T AL.

Solving for m, recalling that m is integer, yields

1 dc(8, u) log l_a + LA(U')log
m <

- l o g 2
1 + ~ + ~

Since s E (X x {0, 1}) + and u E E were chosen arbitrarily, the proof is concluded.

We conclude this section by proving the last of the three theorems stated in Section 3.

We will need a preliminary lemma.

LEMMA 7 For all k, r, m E N and for all a, /3 E [0 , 1) , i f a + ~ < l a n d m > _ r + k t h e n

~ + k (m) (i) < (l + a + C /) m

Z < k - a ~ k
i=O

P r o o f o f Lemma 7: By a double application of the Binomial Theorem we show

(1 + a +/3)m = Z (m) (c~ + ~3)i > ak~3r Z (m) .

i = 0 i = 0 j = O

m

P r o o f o f T h e o r e m 9: We shall upper bound the maximal value of a larger set.

{ (q i) () } r l °g 1 + k l ° g ~ .+k i < (15)
q N:q<log ,=0 -L J

It is easy to see that r + k is a lower bound on the number of mistakes of any master

algorithm. The left-hand side of (11) is an upper bound on the number of mistakes made

by Cbin, therefore it is larger than r + k. Thus we can apply Lemma 7 to (15) obtaining

m a x q e l N : q _ _ _ l o g E k = m a x qelS]:2q~ Z k
i = 0 i = 0

_< max {q E N : 2q < (l + ct + /3)q c~r~k

= max q E 1N : q < r log S + k log -}
- l o g 2 O+a+~)

[r log + k log
= io---~ [(~+ ~+_~_ _ _ J"

If we give Cexp an additional input parameter k such that k > rnaxu~E LA(U~), the
strategy can exploit this information in order to minimize the number of states in each

ON-LINE PREDICTION AND CONVERSION STRATEGIES 101

configuration. In particular, Cexp can discard from the current configuration each triple

(S, i,j), such that j >_ k. By using this trick, we can show, analogously to what we did

for Chin in Theorem 10, that the maximum number of triples in each configuration of

Ce,,p (c~,/3, A, k) is bounded by O((~)) , where ~ is the number of mistakes made by Ce×p

up to the current configuration.

Furthermore, as we mentioned above, the knowledge of bounds r or k can be used to

optimize the parameters o~ and ,3.

Note that both the conversion strategy Cbi n and Ce×p are conservative in the sense that they

only update their configuration when they make a mistake. At least one copy of algorithm

A receives only the subsequence of clean examples on which the conversion strategies

makes a mistake. Therefore we require that the mistake bound of algorithm A holds on all

subsequences of sequences in ~. This is the reason we assumed that the set of sequences Z

in Theorems 7 and 8 is subsequence-closed. We would like conversion strategies that do not

require this assumption. It seems that this is possible only for a mistake bound that increases

with the length of the sequence. If we somehow could give A the "correct" feedback in

trials in which the conversion strategy makes no mistake, then we could drop the assumption

and update the configuration in all trials. The simple method of using the prediction of the

conversion strategy as feedback does not work. This is illustrated by the following example.

Assume the original algorithm A predicts 0 in the first trial and afterwards it simply predicts

always with the label of the first example. Now let the sequence of examples be labeled as

(0, 1, 1, 1, . . .) . The conversion strategy will correctly predict 0 in the first trial and feeding

0 to A will "spoil" A. If we want to update in each trial, then we need to simulate noise

and mistakes on all trials and this will lead to increased mistake bounds.

4. Conclusions

We have investigated the problem of on-line boolean prediction from two different view-

points. We first improved known results about strategies that predict deterministically

using the advice from a set of experts. These improvements are obtained using a weighting

scheme that uses Binomial coefficients rather than exponential weights of the form/3m.

These binomial coefficients can be interpreted as counting the members of an appropriate

version space. In the expert setting the mistake bound based on binomial weights is never

larger than the mistake bound based on exponential weights. Furthermore, the advantage of

the binomial weights can be made arbitrarily large. Nevertheless both bounds can be shown

to have the optimum leading term using probabilistic techniques. We also prove that, for

an infinite subset of the possible problem parameters, the bound using binomial weights is

best possible. The proof of this fact relies on a new translation of our prediction problem

to Ulam's game with lies.

Secondly, we introduced a novel approach for making on-line algorithms robust to noise.

We show how to convert an on-line prediction algorithm that is guaranteed to make at most k

mistakes when given an observation-outcome sequence from its domain into an algorithm

that works well when up to r of the outcomes are corrupted by noise. The converted

algorithm has a conjectured mistake bound of

102 N. CESA-BIANCHI! ET AL.

2(r + k) + 2V/rk ln(e - 1 + max(r, k)/min(r, k)) + 2.807v/-~

on any of the corrupted sequences (the conjecture is supported by numerical evidences.)

The best lower bound we know of is 2r + k; tightening the gap between these bounds

remains an open problem.

Based on our experience, binomial weights seem to lead to better mistake bounds than

exponential weights. They have the advantage of being motivated by a version space

argument that leads to a deeper understanding of the on-line learning problem. The ex-

ponential weights seem to approximate the binomial weights and are sometimes easier to

use, especially when the number of mistakes made by the best expert is unknown (although

optimizing their mistake bounds requires knowledge of these parameters as well). Also

exponential weights can be used for designing randomized prediction algorithms. In the

case of exponential weights the worst-case expected number of mistakes of the randomized

algorithm is exactly half of the worst-case number of mistakes of the deterministic algo-

rithm (Littlestone & Warmuth, 1994, Cesa-Bianchi, et al., 1995). We were unable to find a

randomized binomial weighting algorithm that had an expected mistake bound significantly

smaller than the deterministic BW algorithm.

Acknowledgments

David P. Helmbold was supported by NSF grant CCR-9102635. Manfred Warmuth and

Yoav Freund were supported by ONR grant N00014-91-j-1162. Part of this research

was done while Nicol6 Cesa-Bianchi was visiting UC Santa Cruz partially supported

by the "Progetto finalizzato sistemi informatici e calcolo parallelo" of CNR under grant

91.00884.69.115.09672, and the Institute for Theoretical Computer Science at the Graz

University of Technology (Austria).

Appendix A

A prediction algorithm that is strictly optimal for a large number of experts

As was shown in Section 2.3, the number of mistakes that the BW algorithm makes is within

one from optimal when N, the number of experts, is large enough. In fact, we have shown

that, for most values of N, BW obtains strict optimality. In this section we describe a variant

of BW, which we call EBW (Enhanced Binomial Weighting), that achieves optimality in

the worst case for all sufficiently large values of N. This modification and its analysis is a

direct adaptation of a result of Spencer's ((Spencer, 1992), Section 3).

As we have seen in the proof of Theorem 5, the only slack which allows for the gap

between the upper and the lower bounds is in the way the game is played for the first k

trials. In these trials there are no pennies available to Paul and thus he may not be able to

split the chips into two sets of equal weight. When the weights do not split evenly, then

Carol can choose a next configuration whose weight is less than half of the current one.

From some starting configurations Carol can reduce the weight fast enough to "save" a

mistake. However, the value of m chosen by the BW algorithm ignores this possibility of

ON-LINE PREDICTION AND CONVERSION STRATEGIES 103

saving a mistake. Thus, since it is using the "wrong" weights, BW might play suboptimally

and miss the opportunity to save a mistake. The solution is to refine the calculation of m

used by the BW algorithm to account for the savings from when Paul is forced to split

unevenly. We call the resulting algorithm EBW, and (for large enough N) this strategy is

the best possible as there also exists a refined strategy for Paul that can force any algorithm

to make the exact same number of mistakes.

The key observations are that the weight of every configuration is a multiple of the greatest

common divisor (gcd) of the chip weights, and that after t < k trials all of the chips are

in bins 0 through t. Thus, on the first trial, Carol can ensure not only that the weight goes

down by at least a factor of 2, but also that it is divisible by the gcd of the (new) weights of

the first two bins. After the second trial Carol can again reduce the weight by at least half,

in addition to being divisible by the (new) weights of the first three bins, and so forth.

We now describe the EBW algorithm. Recall step 1 in BW (Figure 1), in this step the

bound on the number of mistakes, m, is calculated. Algorithm EBW has an additional step

1 *, between steps 1 and 2 of BW. In this step EBW checks if there will be enough unevenness

in the partitions to guarantee that at most m - 1 mistakes will be made. Specifically, it

computes a new variable, m* that is equal to either m or m - 1. The value of m* is an

improved upper bound on the worst case number of mistakes. The rest of the algorithm

stays almost the same, the only difference being that m* is used instead of m in steps 2 and

3.

We now describe the computation of m* in step 1". First, the algorithm checks if N - 2k _>

[2m / (_~k)] ' If the inequality holds, then it is known from Theorem 5 that the bound cannot

be improved and m* is set to be m. Otherwise, a reduction of one error might be possible.

As observed above, the total weight of any configuration is a multiple of the gcd of the

weights of the chips. The algorithm computes these common divisors for each of the first

k configurations 1 < i < k:

)
• ' - 1 '" ' \ k - i + l } / "

It then calculates the initial weight that corresponds to rn - 1

_<k/

Using these values, the observations given above, and the fact that the algorithm can reduc

the total weight at each step by at least a factor of two, the algorithm calculates an uppe

bound on W~_i(I i) for 1 < i < k:

v/def { Vi--1}
= max j E N : j - = V o m o d A i , and j < 2 "

If Vk <_ 2 m- l -k then the algorithm can guarantee at most m - 1 mistakes, and m* is s(

to m - 1. If the condition does not hold, then m* is set to m.

It remains to be shown that the number of mistakes made by EBW is at most rn* and th~

no other algorithm can make a smaller number of mistakes for large enough values of _~

The proof of both of these claims is based on showing the the upper bounds Vi are tigh

the proof is a direct translation of the proof of the theorem in section 3 of (Spencer, 1992

104 N . C E S A - B I A N C H I , ET AL,

Appendix B

Proof of Lemma 1

Since up(N, k,/3) : (log N + k log {) / l o g 1+~ we have

0up(N, k,/3) k up(N, k,/3)

0/3 /31n 2 + (1 +/3) in ..z
1 + 0

2 Note that In 1-~ > 0 since/3 E [0, 1). So the equivalence between (a.) and (b.) is easily

verified by setting the above derivative to 0, multiplying by/3(1 +/3) in 1--~Z' and solving

for/3. The equivalence between (b.) and (c.) is obtained by substituting/3 = ~ into

(b.) and solving for m. To show equivalence between (c.) and (d.) we multiply (c.) by the

denominator of up(N, k, mk---~_ k).

Using log 2 = 1 + log(1 - ±) we get the inequality
1 + 7,~ k - k m

m >_ log N _ k log k (k) m - k mlog 1 - (B.1)

whose right-hand side equals log N + mH(~).
Note that 2k < logN + 2kH(½), so m _< logN + mH(-~) for m close to 2k. Since

H (~) < 1 for m > 2k, the left-hand side of (B.1) grows faster than the right-hand side

(as a function of m). Thus there will be exactly one m* where m* = log N + m*H(k-~v).
From the equivalences it follows that Oup/0/3 evaluated at/3 =/3* = k is 0, and this

m * - k

/3* is the unique minimizer of up(N, k,/3).

Appendix C

Proof of Equation (7)

Suppose for contradiction that the limit in (7) does not hold.

Since 0 <_ Low(N/, ki)/up(Ni, ki,/3*) < 1, there is a subsequence w' = {(N~, k{)}icN
LOW(N',k'i)

of W such that l i m i ~ up(N;,k',0;') converges to some constant less than 1.

We now consider two cases based on the limiting behavior of k~/log N~ as i ---* oc.

The first case is when {k~/logN~}i~ N has an accumulation point at 0 or infinity.

This means that there is an infinite subsequence w" = {(N~', k~')}ie N of co' such that

l i m i ~ k~'/log N/' = 0 or l i m i ~ k~'/log Y~' = oc. In either case we use the upper

bound on the function "up" proven in (Cesa-Bianchi, et al., 1995),

up(N, k,/3*) <_ logN + 2k + 2v/'kln N (C.1)

to get

lim Low(N", k~')
I I I I . I I

up(N:, &)
> lim

log x [' + 2<'

- logg;' + 2<' +

ON-LINE PREDICTION AND CONVERSION STRATEGIES 105

= lira 1 + 2k~'/log N~' = 1.

~ 1 + 2k~'/logN~' + 2v/k~'/logN~ '

LOW(N/,k'i)
Since ca" is a subsequence ofcJ this contradicts the assumption that up(N;,k', ,~7,) converges

to a constant strictly less than 1.

For the other case we assume that there are positive constants a and b such that

a < k~/log N~ _< b (C.2)

for all i. Thus both Nf and k~ go to infinity. For the remainder of the proof we only deal

with the sequence ca' = {(N[, k~)}~N and thus we can simplify our notation by dropping

the primes.

Let m** denote up(Ni, ki,/3~). Recall from Lemma 1 that m~ > 2k~ and that m~' is the

largest real solution to the equation

x = l o g N ~ + x H (~) .

Similarly, define mi as the largest real solution of the equation

() x - l o g 1 + I n <k~ x = l o g N i + l o g <k~ (c.3)

We will now show that ~ > (2 + ~)k i . Since l i m i ~ ki = oo, for large enough i

we have (2 + ~b)k~ < ki/b + 2k~ - 1 - log(1 + (2k~ - 1) ln2). Using logNi > k~/b
22 ,-1 + and = we obtain (2 + log log 2k~ (1 In (<k,)) for

sufficiently large i. Next we observe that (a) the right-hand side of equation (C.3) increases
x

with x and (b) when x is very large, x is larger than the right-hand side of equation (C.3).

(Y)) then z < ~i-Applying Therefore, i fy < z < l o g N i + l o g (_ < ~) - l o g l + l n (< k , '

this with y = 2ki and z = (2 + ~)ki proves that

(1)
~7~> 2 + ~ k~, (C.4)

when i is sufficiently large.

Finally, define mi as the maximum of 2ki + log Ni and ~i . Note that rni is within 1 of

Low(N.i, ki). As we are interested in asymptotics, we use mi instead of Low(N/, ki). In

addition,

mi _< mi _< m~' (C.5)

and, by (C.1) and (C.2)

mi<2ki+logNi+2V/~ilnNi<_ki(2+ 1-+2 l x / ~ n 2 a V/~) (C.6)

106 r~. CESA-BIANCHI. ET AL.

Since ki ~ ~z for i --~ ~x~, it follows from (C.4) that mi --+ oc as well. We now examine

the asymptotic behavior of ~ i in more detail.

)

- log Ni + log (<~,)

() [(m i)] s i n c e ~ m~ -o(1) l o g N i + l o g <k~ = l o g N i + l o g <_ki

= (1 - o (1)) l o g N ~ + ~ H ~ . (C.8)

1 log m + O(1), which holds To get (C.8) we use the identity log (~_k) = m g (k / m) - -~

when m goes to infinity and m / 2 k is bounded away from both 0 and 1/2 (Graham, Knuth &

Patashnik, 1989, exercise 9.42). Since ki/~ni is bounded away from both 0 and 1/2 for

large i (see (C.4) and (C.6)), we have that H(k / ra) is at least some constant depending
A

m i only on a and log (<k,) = (1 - o(1))~iH(ki /Cni) .

* T N , * Let f i (x) = log Ni + xH(k~ /x) . From the definition of m* we know that m i = f i (i)-

Equation (C.8) means that for any e > 0 there exists some i, such that for all i > i,,

~ i (1 + e) >_ fi(m~). Recall that ~ < m~ <_ m*. We need to show that m~ ~ m~'.

To do this we first uniformly bound the derivatives of the functions f~ (x) in some ranges.

Notice that f~(x) = log (x / (x - k~)). Thus for all x > 2ki + log N~,

f [(x) < log
2ki + log Ni < log {1 +
k~ + log N~ - \

1)
l + k i / log Ni "

Since k~/log Ni > a we get that f~(x) < 1 - c, for some c > 0 independent of i.

Using the mid-point theorem, we can lower bound f i (mi) in the following way: fi (mi) =

fi(m*i) ~ * * Using the bound on the derivative we - f i (0) (m i - mi) for some mi < 0 < m i .

get that

f i (mi) >_ f~(m'~) - (1 - c)(m~ - m,) = c(m~ - mi) + mi. (C.9)

On the other hand, ff~i (1 + e) > fi (~zi), and f~ (x) < I for all x __ 2ki. As mi _> ~ i >_ 2ki,

(see (C.4)) we get that

f i (mi) < (1 + e)mi. (C.lO)

Combining (C.9) and (C.10) we get that c(m'~ - mi) + mi <_ (1 + e)mi. This implies that

m * / m i <_ (c + c)/c. As we can choose E arbitrarily small, we get that m~ ~ m~'.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 107

Appendix D

Proof of Lemma 5

To prove part 1

successor triples

W c t - 1 (~ , r t, k t)

= Ct --

j=0 J

r~ + k ' - i

j=0

r ' + k ' - i

j=0

ct --

j=O J

r ' + k ' - I

+ X (
j=0

= Ct --

j=0 J

+ ~ '

j = l

j=0

we show, for each triple (S, r ~, U), that the sum of the weights of the

equals the weight of the original. That is, if the example is xt, yt then

+ Wc~_l(SZ~'Y',r ' - 1,k') + Wc,_l(S, rt, U - 1)

1) r / - - - k '

- 1) [(<_Jr ') - (<_ J k ')]
j j -

1) [(J r ,) - (< j _ U _

J - l) + [(j + l ~ _ (j + l ~]
\ <_ r' J \ 5 j - k'JJ

1) [(Jr,)-(<_j_k,_

To prove part 2 choose a sequence u in E and let s = ((xt, Yt)) be a r-corrupted version

of u. Let v be the subsequence of s containing all the pairs (xt, Yt) where Cbi n makes

a mistake by predicting 1 - Yr. Let to be the subsequence of v obtained by deleting the

examples corrupted by noise. Finally, for each t _> 1 let p(t) <_ t be the number of

uncorrupted examples in v t (recall that v t is the length t prefix of v), so t - p(t) is the

number of corrupted examples in v t and top(t) is the sequence obtained from v t by deleting

the corrupted examples.

Let C(v t) be the set of (S, r', k') triples in Cbin'S configuration immediately after Cbin

has seen the sequence v t. Recall that C(v °) = {(Si,~a, r, k)}, and a triple (S, r', k') is

discarded from the configuration if either r ~ < 0 or U < 0.

To prove the statement in part 2 of the lemma it suffices to prove the following claim.

Claim. For each 0 < t < Iv I, there is a triple (S, r', k') C C(v t) such that:

108 N. CESA-BIANCHI, ET AL.

1. S is the state of A(wP(t)),

2. 0 _< k - k ' is the number of mistakes made by A on sequence w p(t), and

3. 0 < r - # < t - p(t) , the number of corrupted trials in v t.

Proof of Cla im: First note that w is a subsequence of u , so A makes at most k mistakes

on w. Furthermore, v is a subsequence of s and s contains at most r noisy examples, so v

contains at most r noisy trials. Therefore both k - k ' and r - r ' are at least 0.

We now prove by induction on t that an appropriate triple is in the configuration C(vt).

For the base case consider t = 0, and recall that p(0) = 0. There is only one triple,

(Sinit,r, k) in C(v°). Since w ° is the empty sequence, A(w °) = Si~it, and A makes no

mistakes on sequence w °. Thus all three conditions are satisfied by this triple.

For the inductive step assume some triple (S, #, k') E C(v t) satisfies the three conditions

of the claim. We now show that either (S, r ' , k ') or one of its successors in C(v t+l) also

satisfies the claim

Case 1: the t + 1st trial is a corrupted trial, so w p(t+l) = w p(t) . If As agrees with the

corrupted outcome, then (S, r ' , k ~) is also in C(vt+l), and the three parts of the claim

continue to hold. If A s disagrees with the corrupted outcome then (S, r ' - 1, k ') is in

C(v t+l) and since v t+l has one more corrupted trial than v t, the three parts of the claim

also holds for C(vt+l).

Case 2: the t + 1st trial is not a corrupted trial, so Vt+l = Wp(t)+l = Wp(t+l). If As
predicts correctly o n W p (t) + l , then the triple (S, r ' , k ') remains in the configuration. Also,

since A is conservative, S = A (w p(t)+l) = A (w p(t+l)) and the claim holds for C(v t+l).

If As predicts incorrectly then so does A(wP(t)). Thus A makes k - k ' + 1 mistakes

on w p(t+l). Let e be the example Wp(t+l) and thus S ~ is the state A(wP(t+l)). In this

situation, the triple (S e, r ' , k ' + 1) is in C(vt+l), satisfying the claim. •

Notes

1. A similar approach can be taken for learning the best combination of experts, although different forms of the

weights are used when the loss of the master is to be close to the loss of the best convex (Littlestone, Long &

Warmuth, 1995) or linear (Cesa-Bianchi, Long & Warmuth, 1993) combination of experts.

2. The notion of "version space" for learning algorithms was originally introduced by Tom Mitchell in (Mitchell,

1977).

3. A weighting scheme based on the sum of binomial coefficients was first introduced bY Berlekamp (1968)-

4. Expanding each expert into (<k) variants instead of (~<+1) variants (where m is defined as in Figure 1)

does not lead to the mistake bound of ra stated in Theorem 1. For example, consider the case where there is

N = 1 expert guaranteed to make at most k = 1 mistake, so m = 1. Assume the expert is expanded into just

(~k) = 2 variants (one predicting as the expert and one predicting the other way), and the expert is correct on

the first trial. The master algorithm would see a tie vote and could predict as the variant and make a mistake.

Now only the (unmodified) expert is consistent, and the master will predict as the expert does. However, this

expert still has a mistake to make, and thus the master might make a total of two mistakes. Although the

number of consistent variants has been reduced to one (the original expert), the surviving variant may still

(m+l"l variants of each expert we guarantee that if only one variant have mistakes to make. By considering \ <k)

is consistent, then the expert producing that variant has already made k mistakes (and thus will be correct on

all future trials).

ON-LINE P R E D I C T I O N AND CONVERSION STRATEGIES 109

5. In the original algorithm expert E simply votes with weight ~qJ for its own prediction. The more complicated

voting scheme given in the text is more similar to the voting scheme of the BW algorithm. Both variants of

the WM algorithm generate the same predictions.

6. The algorithms predict arbitrarily if the weights are tied.

7. These values are chosen to make the algebra tractable, rather than indicating a particular region of interesting

behavior.

8. An important point is that Carol does not have to "commit" to a specific number x ahead of time. The

requirement is only that her choice of answers be such that at all times there exists z E { 1 , . . . , N} that is

consistent with all but at most k of her answers.

9. In this section we completely ignore the instances xt that are given as inputs to the experts. Because we are

dealing with worst case lower bounds, we can assume that for any S C_ g, there is always an observation

x s E X that causes the experts in S to predict l, and the experts not in ,5' to predict 0. Thus the adversary

can control the predictions of the experts by choosing the appropriate observation.

10. In a subsequent paper (Auer & Long, 1994) a randomized variant of their conversion strategy is introduced.

The worst-case expected number of mistake of their randomized strategy is significantly lower than the worst-

case mistake bound of (the deterministic strategy) Cbirt.

11. Recall from footnote D that using c ~ = m can lead to more than m mistakes.

12. An alternative way of arriving at the same prediction is the following. Given an instance x each triple

(S, r I, k ~) votes with weight o:-r '13 - k ' for the prediction of A s on the instance x. The master algorithm

then predicts with the vote that got the larger total weight. When this method of prediction is used the successor

configuration has to be computed only when a mistake occurs.

References

Aarts, E. & Korst, J. (1989). Simulated Annealing and Bohzmann Machines. John Wiley and Sons.

Alon, N., Spencer, J.H. & Erd6s, P. (1992). The Probabilistic Method. John Wiley and Sons.

Angluin, D. (I 988). Queries and concept learning. Machine Learning, 2:319-342.

Aslam, J.A. & Dhagat, A. (1991). Searching in the presence of linearly bounded errors. In Proceedings of the

23rd A CM Symposium on the Theory of Computation, pages 486-493. ACM Press.

Auer, P. & Long, P.M. (to appear). Structural results about on-line learning models with and without queries.

Machine Learning.

Auer, P. & Long, P.M. (1994). Simulating access to hidden information while learning, In Proceedings of the

26th ACM Symposium on the Theory of Computation, pages 263-272. ACM Press.

Bardzin, J.M. & Freivalds, R.V. (1972), On the prediction of general recursive functions. Soviet Math. Dokl,

13:1224--1228.

Berlekamp, E.R. (1968). Error-Correcting Codes. John Wiley and Sons.

Cesa-Bianchi, N., Freund, Y., Helmbold, D.R, Haussler, D., Schapire, R. & Warmuth, M.K. (1995). How to use

expert advice. To appear in Journal of the ACM.

Cesa-Bianchi, N., Long, P.M. & Warmuth, M.K. (1996). Worst-case quadratic loss bounds for a generalization

of the Widrow-Hoff rule. IEEE Transactions on Neural Networks, 7(2): 604-619.

Chernoff, H. (I 952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations.

Annals of Mathematical Statistics, 23:493-507.

Graham, R.L., Knuth, D.E. & Patashnik, O. (1989). Concrete Mathematics. Addison Wesley.

Kivinen, J. & Warmuth, M.K, (1994). Using experts for predicting continuous outcomes. In Computational

Learning Theory: Eurocoh '93. The Institute of Mathematics and its Applications Conference Series, number

53, pages 109-120, Oxford: Oxford University Press.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.

Machine Learning, 2(4):285-318.

Littlestone, N. (1989). Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. Phi) thesis,

University of California at Santa Cruz.

Littlestone, N., Long, P.M. & Warmuth, M .K (1995). On-line learning of linear functions. Computational

Complexity, 5(1): 1-23.

110 N. CESA-BIANCHI, ET AL.

Littlestone, N. & Warmuth, M.K. (1994). The weighted majority algorithm. Information and Computation,

108:212-261.

Mitchell, T.M. (1977). Version spaces: A candidate elimination approach to rule learning. In Proceedings

International Joint ConJerence on Artificial Intelligence, pages 305-310, Cambridge, Mass.
Spencer, J. (1992). Ulam's searching game with a fixed number of lies. Theoretical Computer Science, 95:307-

321.
Ulam, S. (1977). Adventures of a Mathematician. Scribners.
Vovk, V.G. (1990). Aggregating strategies. In Proceedings of the 3rd Annual Workshop on Computational

Learning Theory, pages 372-383.

Received August 30, 1994

Accepted September 19, 1995
Final Manuscript July 15, 1996

