
Machine Learning, 25, 71-110 (1996) 
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

On-line Prediction and Conversion Strategies 

NICOLO CESA-BIANCHI 

DSL Univers&'z di Milano, Via Comelico 39, 

20135 Milano, Italy. 

cesabian @ dsi .unimi.it 

YOAV FREUND 

AT& T Bell Laboratories, 600 Mountain Avenue, Room 2B-428, 

Murray Hill, NJ 07974-0636, USA. 

yoav @research.att.com 

DAVID P. HELMBOLD 

MANFRED K. WAItMUTH 

Computer Science Department, Universio, of California, 

Santa Cruz, CA 95064, USA. 

dph@cse.ucsc.edu 

manfred @cse.ucsc.edu 

Editor: Leonard Pitt 

Abstract. We study the problem of deterministically predicting boolean values by combining the boolean 
predictions of several experts. Previous on-line algorithms for this problem predict with the weighted majority of 
the experts' predictions. These algorithms give each expert an exponential weight tim where fl is a constant in 
[0, 1) and ra is the number of rnistakes made by the expert in the past. We show that it is better to use sums of 
binomials as weights. In particular, we present a deterministic algorithm using binomial weights that has a better 
worst case mistake bound than the best deterministic algorithm using exponential weights. The binomial weights 
naturally arise from a version space argument. We also show how both exponential and binomial weighting 
schemes can be used to make prediction algorithms robust against noise. 
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1. Introduct ion 

This paper studies a s imple on-l ine mode l  where predict ions are made  in a series o f  trials. 

At each trial t the prediction algori thm receives the tth observat ion x t  and produces  a 

boolean predict ion ~)t. It then receives the correct  ou tcome Yt as feedback. A mistake 

occurs i f  predict ion ~)t and outcome Yt disagree. Fo l lowing  Lit t lestone (Littlestone, 1988), 

we seek predict ion algori thms that min imize  the number  of  mistakes over  a worst  case 

sequence of  x t  and Yr. Of  course in the unconstrained worst  case a mistake can occur  

in every trial. In order to make good predictions the predictor  needs to have some prior 

knowledge  that enables it to makes predictions about the future based on the past. In a 

Bayesian regression framework,  one can encode this knowledge  using a prior distribution 

over  the set o f  sequences  or over  a set o f  sequence models .  In this work  we are interested 

in per formance  bounds that make no probabil ist ic assumptions,  and so we define the prior 

knowledge  somewhat  differently. 

We assume that there are N experts each of  which is a predict ion strategy. Our goal 

is to design an algori thm, which we shall call the "master  a lgor i thm",  that combines  the 
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predictions of the experts in the following way. At the beginning of trial t, the master 

algorithm feeds the given observation, xt, to all experts. The master then uses some 

function of the N predictions produced by the experts to form its own prediction, ?)t. At 

the end of the trial the feedback, y t ,  is shared with all experts. We prove worst-case bounds 

on the number of mistakes made by the master when the number of mistakes made by the 

best expert is bounded. 

Generalizations of the above model, where the predictions of the experts and/or of 

the master algorithm may be in the continuous range [0, 1], have been studied by Vovk 

(Vovk, 1990), Littlestone and Warmuth (Littlestone & Warmuth, 1994), Cesa-Bianchi et  

al. (Cesa-Bianchi, et al., 1995), and Kivinen and Warmuth (Kivinen & Warmuth, 1994). In 

this paper we return to the simplest setting where all predictions and outcomes are boolean. 

This is the problem solved by the basic Weighted Majority (WM) algorithm (Littleston & 

Warmuth, 1994). Here we study the boolean case in more depth and devise a better al- 

gorithm that we call the "Binomial Weighting" algorithm or BW. The worst case number 

of mistakes that BW makes is smaller than the number of mistakes made by previously 

known algorithms. In fact, if the number of experts is large enough and all predictions are 

deterministic and boolean, then we show that BW has the smallest possible worst-case mis- 

take bound among all master algorithms. In our analysis of BW we explore some elegant 

combinatorial structures that might be applicable elsewhere. 

The Weighted Majority algorithms cited above attempt to minimize the number of mis- 

takes made as a function of the number of mistakes made by the best expert. They assign 

to each expert a weight of the form/3 m, where/3 is a constant in [0, 1) and m is the total 

number of mistakes (or more generally the total loss) incurred by the expert so faP. The es- 

sential property is that the experts making many mistakes get their weights rapidly slashed. 

The WM algorithm uses the weighted average of the experts' predictions to form its own 

prediction: It simply predicts 1 if the weighted average is greater than 1/2, and 0 otherwise. 

The new master algorithm BW uses its weights in a similar way to WM for predicting, 

however, these weights are not in exponential form. Instead, they are tails of a binomial 

sum. A further difference between WM and BW is the following. On each trial WM 

predicts 1 if and only if the total current weight of the experts predicting 1 is larger than 

the total current weight of the experts predicting 0. BW, instead, predicts 1 if and only if 

the total updated weight resulting from the outcome being 1 is larger than the total updated 

weight resulting from the outcome being 0. 

This binomial weighting scheme is motivated by a version space 2 argument. The mistake 

bound of the Weighted Majority algorithm approximates the mistake bound of the BW 

algorithm in the same way that Chernoff bounds approximate sums of binomial tails. We 

show that the gap between the mistake bounds of the Weighted Majority algorithm and our 

new algorithm can be arbitrarily large. 

Finally, a perhaps subtler difference between exponential weights and our new scheme 

is that each expert's weight in the latter scheme depends not only on the current mistake 

count of the expert, but also on the current mistake count of the master. 

We show that our algorithm has the best possible worst-case mistake bound when the 

number of experts is very large compared to the loss of the best expert. This lower bound 

analysis is based on a relation between our prediction problem and Ulam's searching game 
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with a fixed number of lies (Spencer, 1992, Ulam, 1977). We also present a second lower 

bound argument for our prediction model. This second argument uses a probabilistic 

construction to prove that both the BW and the tuned Weighted Majority algorithm are 

asymptotically optimal. That is, the ratio between the mistake bound of either algorithm 

and the best possible worst case mistake bound goes to 1 as the number N of experts or 

the loss k of the best expert go to infinity. An equivalent lower bound has been previously 

obtained by Vovk (Vovk, 1990) using arguments from coding theory. 

We use the ideas behind the BW master algorithm to devise a method (which we call a 

conversion strategy) to make prediction algorithms robust against noise. The conversion 

strategy feeds different feedbacks to several copies of the same prediction algorithm. If the 

noise level is low then one copy will get noiseless data, enabling the conversion strategy 

to make good predictions. Our upper bound has slightly better constants than the one 

independently obtained by Auer and Long (Auer & Long, to appear), and is close to the 

lower bound given by Littlestone and Warmuth (Littlestone & Warmuth, 1994). 

It remains open whether binomial weights also lead to improved master prediction algo- 

rithms for the case when the prediction of the master is allowed to be in the continuous 

interval [0, 1]. In this more general setting mistake bounds are replaced by bounds on the 

total absolute loss. There are master prediction algorithms for this problem (Vovk, 1990, 

Cesa-Bianchi, et al., 1995) using exponential weights, whose mistake bounds are exactly 

half of the corresponding mistake bounds in the boolean case. However, our attempts to 

construct a continuous prediction algorithm that achieves half (plus possibly a constant) the 

loss of the BW algorithm have so far been unsuccessful. 

The paper is organized as follows. In Section 2 we present the new algorithm BW, compare 

it against WM, and prove general lower bounds. In Section 3 we introduce two conversion 

strategies: one based on binomial weights and one based on exponential weights. Section 4 

is devoted to conclusions. 

Notation. 

The set X represents the set of  possible observations and {0,1 } the two possible outcomes. 

We use (X  x {0, 1 }) + for the set of all finite sequences over (X  x {0, 1 }) of  nonzero length 

and s for a sequence ((xt, Yt))t (of unspecified length)in (X z {0, 1}) + of observations 

and outcomes. Let 1~ denote the natural numbers including 0. The notation s '~, for any 

n E Pq, represents either a sequence of length n or the length n prefix of a longer sequence 

s. The correct interpretation will be clear from the context. 

An expert is any function mapping (X  z {0, 1 })* x X to {0, 1 }. In this paper we treat ex- 

perts in an on-line fashion. On the tth trial, each expert E makes the prediction E ( s  t -  1, xt) 

where zt  ~ X is the current observation and s t-1 is the sequence of observation/outcome 

pairs from the previous t - 1 trials. At the end of the trial the expert is given the feedback 

yt ~ {0, 1} for the current trial (and s t for the next trial is created by appending (xt, yt) 

to s t - l ) .  We say that expert E either is wrong, makes a mistake, or is incorrect when its 

prediction at trial t, E ( s  t - l ,  xt), is different from Yr. 

Also, we use dH(y,  z) to denote the Hamming distance between any two boolean 

sequences y and z of equal length. For the sum of binomials, we use the notation 
(<_k) dee k m = ~ i = o  (~)  for all integers m and k, using the convention (<k) = 0 when m 
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or k negative. We conventionally set ('~) = 0 when i > m or when either m or i is 

negative. We will often make use of the well-known combinatorial identity 

q q - 1  q - 1  
(1) 

that holds for all nonzero integers q and all integers i. We denote the binary logarithm by 

"log" and the natural logarithm by "ln". Furthermore, let H(.)  denote the binary entropy 

function, H(x) = - x l o g x  - (1 - x)log(1 - x), defined for all 0 <_ x < 1 (note that 

H(O) = H(1) = 0 and H(½) = 1). 

2. Master Algorithms for Combining the Predictions of Experts 

In this section we introduce a master algorithm that sequentially predicts boolean sequences 

by combining the predictions of a set of experts. Throughout the section, we assume that 

a bound k on the number of mistakes made on the sequence by the best expert in the set is 

available and known to the master algorithm. 

For any expert E and for any sequence s E (X × {0, 1}) + of instances and outcomes 

we denote the number of mistakes (i.e. total loss) of expert E on sequence s by LE(a). 
Also, if g is a set of experts, we use Ls  (s) for the minimum LE (s) over the experts E E g. 

We usually make the assumption that LE (s) < k for some constant k known to the master 

algorithm. We point out that our master algorithms are domain independent, using the 

information provided by the sequence of instances {xt)t only to obtain the predictions of 

the experts. 

Our goal is to solve the following problem: 

Suppose a set g of N experts is available and the task is to predict in an on-line fashion 

the bits Yl, Y2,. .- ,  Ye of some sequence s = (X l, Yl), (X2, Y2), . - . ,  (Xe, ye) in a set 

of sequences E C_ (X × {0, 1}) t. Suppose also that an upper bound k on the loss of 

the best expert in C is known, i.e. for each s E E, Le(s) <_ k. How can a master 

algorithm combine the experts' predictions so that its worst case number of mistakes is 

minimized? 

If the master algorithm knew which expert E E $ made only k mistakes, then it could 

simply predict the same way that expert E does. However, the "good" expert (or experts) 

is not known in advance. 

In the fortunate case where k = 0, the master algorithm knows that one of the experts 

predicts perfectly on s. In this case the well-known Halving algorithm (Angluin, 1988, 

Bardzin & Freivalds, 1972) can be used. On each trial the Halving algorithm predicts the 

same way as the majority of those experts that have never made a mistake (the consistent 

experts). The number of consistent experts is reduced by at least a factor of two each time 

the Halving algorithm makes a mistake, so the master makes at most log N mistakes on 

any s where one of the N experts always predicts correctly. 

We now present a simple master algorithm called the Version Space algorithm that will 

be used to motivate the Binomial Weighting (BW) algorithm. To do this we make the 
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simplifying assumption that the length of the sequence of instances, g, is known as well. 

This assumption will be removed shortly. 

Since the master algorithm knows that the best expert makes at most k > 0 mistakes, it 

can use the following trick. The master algorithm expands each expert into a set of variants 

so that some variant of some expert predicts perfectly, and then uses the Halving algorithm 

on the variants. If expert E makes exactly j mistakes on some sequence s of length g then 

expert E can be expanded into a collection of (~) variants containing a perfect variant. Each 

variant in the collection predicts as E on g - j of the trials and predicts with the opposite 

of E ' s  predictions on the other j trials. Thus expert E is expanded into a collection of 

(~) variants, including one that changes E ' s  predictions on exactly those trials where E 

predicts incorrectly. 

For our problem, the master algorithm knows that at least one of the N experts makes at 

most k incorrect predictions, but the master algorithm knows neither which expert is the best 

nor the exact number of mistakes made by the best expert. However, the master algorithm 

can expand each expert into a collection of (fk)  variants. The union of these collections 

contains at most N(<ek) variants and is guaranteed to contain at least one variant that 

predicts correctly on all g trials. Our Version Space algorithm runs the Halving algorithm 

on the union of these collections, and has a worst case mistake bound of log N + log (<e) 

(when the bounds g on the number of trials and k on the number of mistakes made by the 

best expert are known in advance). 

Intuitively, the Version Space algorithm uses all the knowledge it has about the experts 

and the sequences, which is that there is one expert that makes at most k mistakes on the 

sequence. It does not know which expert will be best, in what trials the best expert will 

make its mistakes, or even how many mistakes the best expert will make (other than the 

upper bound k). Since the goal of the algorithm is to minimize the number of mistakes 

that it makes in the worst case, it has to treat all of the scenarios that are possible under the 

assumptions equally. 

Observe that the version space at the beginning of trial t can be represented by one weight 

per expert. The weight of an expert is simply the number of its (<~k) variants that are 

consistent with the sequence so far 3. If expert E makes at most k mistakes on the g trials 

and has made j mistakes in trials 1 through t, then expert E can make at most k - j more 

mistakes in the remaining g - t trials. Thus the weight of E on the t + 1st trial should be 

(~ t j ) ,  which is exactly the number of variants created from E that are consistent. (The 

initial weight of each expert is (<_ek)). 

Thus the Version Space algorithm can be implemented by manipulating binomials repre- 

senting the weights (number of consistent variants) of the experts. If  expert E has made j 
g - t  mistakes in the first t trials, then during trial t + 1 expert E votes with weight (<k- j )  for 

its own prediction and with weight (<_k-(9+1)) for the opposite prediction. Note that these 

votes correspond to the number of E ' s  variants that are consistent with all t previous trials 

and agree (or do not agree, respectively) with the prediction of E. Also, expert E ' s  total 

(_<k-j_1) 
e - t  { g - t + l ]  weight is split between the two choices since + <k-j 1. 

This implementation of the Version Space algorithm totals the votes for outcome 0 and 

outcome 1 and predicts with the majority. At the end of each trial t, the Version Space 
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algorithm updates the weights of the experts to reflect the outcome on that trial, yr. In 

addition, the value Yt is given to all the experts since their future predictions might depend on 

the past sequence. The Version Space algorithm, which runs the Halving algorithm directly 

on the N(<~k) variants, and the implementation which manipulates binomial weights for 

each expert, clearly make the same predictions. 

The Binomial Weighting (BW) algorithm is similar to the Version Space algorithm using 

weights, but the BW algorithm uses another trick that removes the requirement that the 

algorithm knows g, the length of the sequence. This trick also makes the upper bound 

on the number of mistakes made by the BW algorithm independent of g. There are two 

versions of the Halving algorithm: one that discards all inconsistent experts in each trial 

and one that does this only in trials when the Halving algorithm makes a mistake (such 

algorithms are called "conservative" by Littlestone (Littlestone, 1989)). Both versions of 

the Halving algorithm have the same worst case mistake bound (log N), so nothing is lost 

by making the Version Space algorithm conservative. The Binomial Weighting algorithm 

is the implementation of the conservative Version Space algorithm with binomial weights 

and is described in Figure 1. 

Because the BW algorithm is conservative, we do not need a variant that perfectly pre- 

dicts the outcome. It suffices to have only those variants whose mistakes occur when 

the BW master algorithm predicts incorrectly. Since the BW algorithm discards vari- 

ants only when the master makes a mistake, such a variant will never be discarded. 

Thus the BW algorithm considers only (~+1) variants 4 of each expert, where m = 

m a x { q E N  : q<_logN+log(_<qk)}asinFigure 1. I t i s e a s y t o s h o w t h a t B W m a k e s  

at most m mistakes. Assume to the contrary that it makes m + 1 mistakes. Since at least 

one of the N experts makes at most k mistakes, at least one of the N (~+1) variants is con- 

sistent with the m + 1 outcomes where BW made mistakes. On the other hand, the number 

of consistent variants drops by a factor of at least two each time BW makes an incorrect 

prediction. Thus the number of consistent variants after BW makes m + 1 mistake is at 

least one and at most N (~+1) /2  m+ 1. It follows that i < N (rr~q~l) / 2 m +1 and equivalently 

_ io~ mY1 m + 1 < log N + ~, ( <k ), contradicting the definition of m in Figure 1. 

This analysis gives us t-he following theorem: 

THEOREM 1 For all k C N, all nonempty sets g of experts, and all sequences s E 

(X x {0, 1})+; / fLE (s) < k, then the total number of mistakes of BW( k ) on s is at most 

max qE1N : q _ < l o g N + l o g  < k  ' 

where N > 0 is the number of experts in g. 

We now describe a variant of algorithm BW, called BW' (see Figure 2), that has the 

same worst-case mistake bound proven in Theorem 1. However, for many sequences of 

examples the new algorithm BW' makes fewer mistakes than the original algorithm. The 
{ rr t+l  '1 current weight of an expert E is now ~_<k-jJ' where j is the number of mistakes of E in 

all previous trials and not just in the trials in which the master made mistakes as well. The 

value of m is recomputed at the beginning of each trial. This value will decrease by at least 
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Master Algorithm BW 

Input: A set of N experts £ and a nonnegative integer k. 

1. Let m := m a x{q  C N : q  < logN + log (<qk)}" 

(~,+a) and set m', the number of mistakes made 2. Set the initial weight of each expert to ~ <k J, 

by the master, to 0. 

3. For each trial t = 1, 2 , . . .  

(A) For each expert E c £: 

Let j be the number of previous trials where both E and the master made incor- 
{ra+l-m'] 

rect predictions. Then expert E has current weight ~ <_k-j J and votes for its 
7 ) 2 - -  T t l  ! T t2  - -  7?~ t 

own prediction with weight (<k_j )  and with weight (<_k-j-1) for the opposite 

prediction. 

(B) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case 

of a tie). 

(C) Get the correct prediction Yr. 

(D) If a mistake occurred, then increment m' and update the weight of each expert to 

the weight with which it voted for correct bit Yr. 

Figure 1. The Binomial Weighting algorithm, 

one after all trials in which the master made a mistake, because the total weight after such a 

trial is at most half of what it was before the trial (decreasing m by at least one corresponds 

to increasing rrd in BW). The value of m can never increase but it might also decrease 

after trials in which the master made no mistakes. Again it can be shown by induction that 

the number of mistakes from any trial onward is at most the value of m computed at the 

beginning of that trial. 

2.1. Comparison with Weighted Majority 

In this section we compare the performances of the BW and Weighted Majority (WM) 

algorithms. The WM algorithm has a parameter/3 E [0, 1). An expert E votes for its own 

prediction with weight/3J, where j is the number of mistakes made by expert E in the past, 

and for the opposite prediction 5 with weight/3j+1. 

Both master algorithms predict 1 if and only if the experts predicting 1 outweigh 6 the 

experts predicting 0. The weights used by the BW algorithm are binomial tails whereas the 

WM algorithm uses exponential weights of the form/3 j. We often refer to/3 as the "update 

factor" of the WM algorithm because an expert's weight gets multiplied by/3 when the 

expert predicts incorrectly. As one would expect, the choice of 13 greatly affects how the 

WM algorithm performs. 
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Master Algorithm BW ~ 

Input: A set of N experts g and a nonnegative integer k. 

1. For each expert E E g set the mistake budget kE equal to k. 

2. For each trial t = 1, 2 , . . .  

(A) L e t m : = m a x { q E H  : q < log ( ~ e ~  (_<~¢~))}. 

(B) For each expert E E g': 
(m+v~ 

Expert E has current weight ~_<k~J and votes for its own prediction with weight 

(<kin) and with weight (<k~-l) for the opposite prediction. 

(C) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case 

of a tie). 

(D) Get the correct prediction Yr. 

(E) Decrease the mistake budget, kE, of all experts that predicted incorrectly in this 

trial by 1. 

Figure 2. The Modified Binomial Weighting algorithm. 

In our setting the master algorithms are given two parameters: N, the number of experts 

and a bound k on the number of mistakes made by the best expert. We are interested in 

worst case bounds on the algorithm's performance as functions of N and k. 

For any master algorithm A, define the worst case number of mistakes WCA (N, k) as: 

W C A ( N ,  k) def = max max [number of mistakes of A(£, k) on s]. 
£ of N experts 8:L~ (8)<k 

Furthermore, denote the performance of the best master algorithm by WC(N, k), so 

WC(N,k)  clef min WCA(N,k). 
algorithms A 

We will show in Subsection 2.3 that if the number of experts is large enough then the BW 

algorithm is (essentially) optimal. That is, for any k > 0, there exists Nk such that for all 

N>N~ 

WCBw(N, k) < WC(N, k) + 1. 

We can only prove the above for Nk = f2(22k). However we show in Subsection 2.2 that 

BW is asymptotically optimal, i.e. the ratio WCBw(N, k)/WC(N, k) goes to 1 when N 

or k goes to infinity (see Theorem 3). 

Comparing the BW and WM algorithms is complicated by the fact that WM's mistake 

bound depends on how the update factor/3 is chosen (as a function of N and k). For 

/3 E [0, 1), let WM ~ denote the WM algorithm that chooses the update factor/3. From 
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Littlestone and Warmuth (Littlestone & Warmuth, 1994) we have the following mistake 

bound for the WM algorithm 

log N + k log 
WCwM~(N, k) < (3) 

- l o g  2 
l+fl 

Since we will be frequently using this upper bound on WCwM, (N, k), we define 

up(N, k,/3) a~, log N + k log -~ 
= (4) 2 

log lq-fl 

Let fl* be the value of fl (as a function of N and k) that minimizes up(N, k, fl). Vovk 

(Vovk, 1990) gives an implicit formula for fl*. An explicit approximation to/3* is given 

in Cesa-Bianchi el al. (Cesa-Bianchi, et al., 1995). With/3 set to this approximation, they 

show that up(N, k, r )  <: 2k + 2v/k in N + log N. We show that up(N, k,/3") ~ WC (N, k) 

whenever N or k goes to infinity (see Theorem 3). 

Although both up(N, k,/3*) and WCBw(N, k) have the same leading term when N 

and/or k is large, there can be significant differences between them. We show below that 

our bound on the BW algorithm is always at least as good as the known bounds on the 

WM algorithm, i.e. that WCBw(N, k) < up(N, k,/3*) for all choices of N and k (see 

Theorem 2). However, as we shall discuss below, at least for small values of N, the upper 

bound on the WM algorithm, up(N, k,/3"), is weak and misleading. 

Let WM* be the WM algorithm that uses update factor/3* and WM + be the WM algorithm 

that chooses/3 as a function of N and k so that WCwM,(N,k) is minimized. Unfortunately, 

we don't know how to efficiently compute the value of/3 used by WM +. The value of 

WCwM+ (N, k) is much smaller than WCwM- (N, k) for some choices of N and k. It is 

even conceivable that WCwM+ (N, k) is smaller than WCBw(N, k) for some N, k pairs, 

although this disagrees with our intuition. 

To make the weakness of inequality (3) concrete, consider the case when there are three 

experts (N = 3). It is easy to see that BW(3, k) = 2k + 1, which is the best possible. Also 

WCwM:~(N,k ) = 2k + 1 whenever 0 </3  < 1/2. However, the value of/3 that minimizes 

up(3, k,/3) approaches 1 when N = 3 and k becomes large. In fact, up(3, k, fl*) grows as 

2k + f~(,~fk). Thus the bound up(3, k,/5") overestimates the number of mistakes made by 

WM + by an (additive) f~(v/-k) term. Intuitively, a reason for this is that when/3 is large 

then two poorly performing experts can outweigh the good expert and cause the master to 

make unnecessary mistakes. 

The main difference between the WM and BW algorithms is how the weights are updated. 

The WM algorithm uses a fixed update factor throughout the entire learning process, The 

update factor fl can be written as e -'7, where r/ > 0 has the natural interpretation as a 

learning rate. When r/is small,/3 is large, and the WM algorithm learns slowly. When r/is 

large, fl is small and the WM algorithm rapidly slashes the weights of poorly performing 

experts. The disadvantage of a high learning rate is that the algorithm might discount 

experts too quickly, causing its predictions to be dominated by only a few experts. 
{ m - m ' + l ]  m- re '  

When the BW algorithm changes an expert's weight from t _<k-j J to ( < k - j - l )  then 

this can be seen as multiplying the expert's weight by an update factor that depends on m', 
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the number of mistakes made so far by the master algorithm (as well as j ,  the number of 

mistakes made by the expert, N, and k). These update factors used by BW become less 

drastic as the number of mistakes made by the master increases (and the upper index of the 

binomial coefficients decreases). This represents a kind of annealing schedule performed 

on the learning rate (see e.g. (Aarts & Korst, 1989) for examples of annealing): when the 

master knows nothing the learning rate is relatively high and as the master learns the learning 

rate decreases in order to preserve the previously acquired knowledge. Although one could 

use any of a number of ad hoc heuristics for "cooling down" the learning rate, we have seen 

that the binomial weights are theoretically justified by the version space argument. 

Our belief is that the single update factor used by WM* (N, k) attempts to approximate 

the sequence of update factors used by BW(N,  k). In addition to the update relationships 

between the two algorithms, our proof techniques provide further evidence for this belief. 

Both the optimization of WM's update factor/3 as a function of N and k (Lemma 1) and the 

proof that the bound for WM* is always worse than the BW bound (Theorem 2) use tech- 

niques similar to those used to prove Chernoff bounds for binomial tails (Chernoff, 1952). 

We now proceed to compare the bounds on the WM and BW algorithms, beginning with 

an examination of the 3" minimizing up(N, k, 3). Here we re-derive the implicit form of 

3* given by Vovk (Vovk, 1990). Recall that H denotes the binary entropy. 

LEMMA 1 (SEE ALSO (VOVK, 1990)) For all N >_ 2, for all k >_ O, and for all 3 E 

[0,1); if m = k(1 + 3 ) / 3  (so that rn > 2k and 3 = k -~-~-k), then the following are 

equivalent: 

0up(N, k, 3) 
a. 0 ,  

03 

k 
b. 3_~ 

up(N, k, 3) - k' 

c. m>_up N,k ,  ,and 

d. m > logN + m H  ( ~ ) ,  

where the function up is defined in (4). Also, there is exactly one m* > 2k for which the last 

inequality is an equality and the corresponding 3* is the unique minimum of up(N, k, 3). 

The proof of this Lemma is shown in Appendix B. 

Lemma 1 shows that, when N and k are fixed, the unique solution m* to m = log N + 

m H ( ~ )  is the minimum value of up(N, k, ~). Although rn* (and 3* = ~k_k)is  a function 

of N and k, we suppress this dependence to simplify our notation. Also i fm > m* and 3 = 

k then m is an upper bound on up(N, k, ~) > WCwM~ (N, k). Since we are computing rn-k 
integer-valued mistake bounds, it suffices to find any rn t E IR such that [rn ~] = [rn*J. Note 

that m > logN + r n H ( ~ )  when m > rn* and rn < logN + r n H ( ~ )  when rn < rn*. 

Therefore we can find an appropriate rn ~ by doing binary search. Since WC(N, k) > 

2k + [log NJ (as proven by Littlestone and Warmuth (Littlestone & Warmuth, 1994)) and 
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m* <_ 2 k + 2 ~ + l o g  N as shown by Cesa-Bianchi etal. (Cesa-Bianchi, et al., 1995), 

the search can be limited to the range [2k + [log N J, 2k + 2 k,,/-~-~N + log N]. Thus the 

binary search takes at most O(log k + log log N) time. 

Our experience indicates that m* tends to be close to the right edge of this range. For 

N = 3, rn* is within 1 of 2k + 2 v / k l n N  + logN. For arbitrary N the right boundary 

seems to be at most log N greater than m*. However these considerations are based on 

numerical plots and have not been verified analytically. 

We now show that BW beats the bound obtained by minimizing the upper bound for 

WM 3. We need a preliminary lemma that is easily derived from the Binomial Theorem. 

LEMMA 2 For all 'm, k E ~ and all O < /3 < 1, if k <_ m then 

( ~ )  < ( 1 + 9 )  m 

_< k - /3k (5) 

Recall that m* = up(N, k,/3*) for/3* k is the minimum of up(N, k,/3) over all 
- -  TD.* - - k  

/3 E [0, 1). Similarly, let q* be the largest integer q such that q < log N + log (<qk)" While 

m* is the upper bound on Weighted Majority derived from inequality (3), q* is the upper 

bound on the Binomial Weighting algorithm in Theorem 1 (q*, like ra*, implicitly depends 

on N and k). 

THEOREIVI 2 For all nonnegative integers k and positive integers N, if q* is the largest 

integer q such that q <_ log N + log (_<qk)' then WC•w ( N, k) < q* and q* < up(N, k,/3) 

for all/3 E [0, 1). 

Proof: The fact that WCBw(N, k) _< q* follows from Theorem 1. Let ;3 be any real in 

[0, 1). By Lemma 2 the solution to q = logN + log (~k) is never larger than the solution 

rn~ to m = log N + m log(1 +/3) - k log/3. Since solving for rn~ yields 

1 log N + k log 
2 = up(N, k,/3), 

ra;~ = log i:-~ 

this proves the theorem. 

As mentioned above, when N = 3 the worst case performance of WM + (which uses the 

best choice of/3, rather than the ,3" minimizing the bound) equals q*, Furthermore, the gap 

between these two and m* grows as f~(v~). If N is large compared to k, we believe that 

the upper bound rn* is much closer to WCwM+ (N, k). However, even when N is large, 

q* can be significantly less than m*. 

Pick any k >_ 1. If N satisfies 7 

24k 24k+1 

- - < N < - -  
4k -- (4k+1'~ 

(_<k) , <kJ  

then q* = 4k. With a bit of algebra (and Stirling's approximation) it can be shown that 

9 4k / t" 4k ] the mistake log(ak)-I In other words, when N is about _ / t<kj ,  rn* is at least 4k + 2 
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bound on BW of Theorem 1 is at least log(ak)- 1 better than the best known bound for the 2 
Weighted Majority algorithm. Although our bounds on the BW algorithm are better than 

the up(N,  k, ~*) bounds on the WM algorithm, asymptotically the two bounds have the 

same leading term. This is shown in the following section. 

2.2. Asymptotic performance of  the algorithms 

This subsection shows that both BW and WM* are asymptotically optimal in the worst case. 

The proof uses a probabilistic argument to show the existence of "hard" sets of experts. 

Using these hard sets of experts, an adversary can force any prediction algorithm to make 

a mistake on each trial proving the desired lower bound. We use the notation fi  ~ gi when 

limi-.o~ f~/gi = 1. We define the following functions to serve as lower bounds 

{ ( )  ( l ow(N,k )  def q -- log 1 + in < k = max  q ~ N  : q _ _ _ l o g N + l o g  < k  _ ' 

Low(N,  k) def max(low(N, k), 2k q- log N) .  

We now state the two results of this section. 

THEOREM 3 For any integers N > 2 and k > O, there exists a set g of N experts such 

that the following holds for any deterministic master algorithm A: there exists a sequence 

s of trials such that LE (s) < k and A makes at least Low(N,  k) mistakes on s. 

The above lower bound is then used to show that BW and WM* are both asymptotically 

optimal. 

THEOREM 4 For an), sequence { ( Ni, ki)}ic N of pairs of positive integers, if Ni >_ 2for 

all i and l i m i ~  Ni = oc or l imi-- .~ ki = oe, then as i --~ oe, 

Low(Ni,  ki) ~ W C B w ( N i ,  ki) ~ WCwM* (Ni, ki) ~ up(N/,  ki, ill) , 

ki 
where ~* = up(N./, ki, ~[)  - k~" 

Before proving Theorem 3, we need some definitions and lemmas. The first lemma is 

from Littlestone and Warmuth. 

LEMMA 3 ((LITTLESTONE • WARMUTH, 1994))  For any integers N >_ 2andk >_ O, 

there exists a set g of N experts such that the following holds for any deterministic master 

algorithm A: there exists a sequence s of trials such that LE(s) <_ k and A makes at least 

2k + log N mistakes. 

The above lemma proves the first lower bound used in the definition of Low. The second 

lower bound is proven using a covering argument. For any positive integer q and any 

nonnegative integer k <_ q, a k-covering of the q-dimensional boolean hypercube is a 

subset/3 of {0, 1} q such that for any v E {0, 1} q there is a p  E /3  such that dH(p, v) <_ k. 

If  in the on-line prediction setting the experts' predictions are solely a function of the trial 
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number, then each expert can be viewed as a sequence of bits. Furthermore, a set £ of such 

experts is a k-covering for some subset {t a, t2, •. •, tq } of trials if the set of the sequences of 

length q representing the predictions of  the experts in the trials t l ,  t2, . . . ,  tq is a k-covering 

of {0, 1} q. 

N o w  we give a technical lemma showing that some coverings are not too large. We 

adapt a nonconstructive argument of Alon and Spencer from (Alon, Spencer & ErdSs, 1992, 

Theorem 2.2, page 6). 

LEMMA 4 For all N > I and for all k >_ 0, t f m  = low(N, k ), then there is a k-covering 

of{O, 1} m of size at most N. 

P r o o f :  We prove the lemma using a probabilistic argument. Let R C {0, 1} "~ be chosen 

randomly so that the event v E R occurs with probability p > 0 (to be specified later) 

independently for any v E {0, 1} m. Let R '  be the subset of {0, 1} "~ containing all points 

not k-covered by R. Clearly R U R ~ is a k-covering of {0, 1}m. Observe that any z belongs 

to R '  if and only if for any v E R, dH(z ,  v) > k. This implies P r ( z  C R ' )  = (1 _ p)(4';,) 

since there are (<k) corners of the m-dimensional boolean hypercube with Hamming 

distance at most ~7 from z (z itself included). From the above it is easy to compute the 

expectation of the random variable IR] + ]R']. 

E[IRI  + JR'p] = 2 %  + 2 (1 - 

N o w  set p = (~,~) . T h e n  

E [ I R I + I R ' I ]  = 2 m + 

_ ~ + e x p  - l n  < k  

4- In ( ~ )  
= 2 m 

G) 

where inequality (6) holds since 1 - :c < e -x  for all :c > 0. Thus, i f N  > 2 m 1+In (_~) _ _ (<~) then 

the m-dimensional boolean cube is k-covered by a set of  size N.  Solving this ine(tuality for 

m yields that m _< log N + log  (<k) - l o g 0  + I n  ( ~ ) ) ,  or equivalently that m _< low(N, k) 

ensures that the m-dimensional Boolean cube has-a k-covering of size N.  • 

P r o o f  o f  T h e o r e m  3: In view of the lower bound stated in Lemma 3 it suffices to prove 

a second lower bound of low(N, k) mistakes. We use Lemma 4 to do this. Choose a 

sequence {zi}iE N of distinct observations. Choose integers N > 2 and k > 0. Let 

m = low(N, k). By Lemma 4, there exists a set £ of N experts, whose predictions depend 

only on the trial number, such that $ is a k-covering for the first m prediction trials. N o w  
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notice that, if £ is a k-covering for the first m trials, an adversary can force m mistakes 

on any deterministic prediction algorithm. The adversary simply chooses the sequence 

y of outcomes, of length m, such that Yt is the opposite of the algorithm's prediction on 

the tth trial. Since g is a k-covering of {0, 1} ~,  for any such sequence y of outcomes 

there is some expert in g which makes at most k mistakes on (Xl, Yl ) , . . - ,  (xm, Ym). 

Proof of  Theorem 4: By Theorem 3 we know that Low(N, k) is a lower bound on the 

number of mistakes for any deterministic master algorithm. 

Let ~ = {(Ni, k~)}ie N be a sequence as in the statement of the theorem. Since by 

Lemma 1 and Theorem 2 

Low(Ni, ki) _< WCBw(N/,  hi) < up(Ni, ki,/3~) 

and 

Low(N/, ki) <_ WCwM- (N/, ki) <_ up(N/, ki, 13~) 

it is sufficient to show that 

lim Low(Ni, ki) - 1 . 
up(N/, 9;) 

The proof of (7) is shown in Appendix C. 

(7) 

2.3. Lower bounds based on Ulam's game 

In this section we give lower bounds on the performance of prediction strategies. We show 

that for any fixed number of mistakes k of the best expert and for any prediction algorithm, 

there exists a set g of experts and a sequence s such that k = LE(s) for which the number 

of mistakes made by the prediction algorithm is at least as large as the number of mistakes 

made by BW. 

We start by introducing some notation that lets us give a precise statement of our lower 

bound. We then describe Ulam's game with lies and its relation to our prediction problem. 

Finally, we show how Spencer's results (Spencer, 1992) can be used to prove our lower 

bound. 

In all of the following discussion we shall think of k, the upper bound on the number of 

mistakes made by the best expert, as being fixed. Let J(k, q) be the following sequence of 

numbers indexed by q: 

It is easy to check that J(k, q + 1) >_ (5/4)J(k, q), for any q > 3k + 2, thus the sequence 

J(k, q) increases (at least) exponentially. 
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THEOREM 5 For every nonnegative integer k there exists an integer Nk such that for all 

N > Nk the following holds: 

If  q is the integer such that J(k,  q) <_ N < J(k,  q + 1), then 

1. WCBw(N,k )  _< WC(N,  k) + 1. 

2. l f J ( k ,  q) + 2 k _< N, WCBw(N,  k) = WC(N,  k). 

Observe that the upper bound on algorithm BW is always guaranteed to be within one 

mistake of the optimal algorithm when N is large enough. Also, since the size of the segment 

[J(k, q), J(k,  q + 1)] increases exponentially with q, as q increases the set of values for N 

where the second case holds (i.e. the lower bound is off by one from BW's upper bound) 

becomes an insignificantly small fraction of the possible values for N. This shows that BW 

is very close to optimal for large values of N. The gap of one when N < J(k, q) + 2 k 

arises from complicated number-theoretic considerations. In Appendix A we show how 

algorithm BW can be modified so that it is completely optimal for large N. The weakness 

of this lower bound construction is that the threshold N~ above which the lower bound 

holds is rather large, on the order of 22k. This double-exponential dependence on k arises 

from our use of Spencer's results (Spencer, 1992). 

Before we give the proof of Theorem 5, we briefly describe Ulam's game with a fixed 

number of lies and show how this game relates to chip games and to the problem of 

combining the predictions of experts. 

In the searching game introduced by Ulam (see (Ulam, 1977)) there are two players: a 

chooser (also called Carol) and a partitioner (also called Paul). A game is defined by three 

nonnegative integers N, k, and q that are known to both players. Carol is assumed to select 

a secret number x from the set {1 , . . . ,  N}. Paul's goal is to find out what this number is 

by asking Carol questions of the form "Is x in S?", where S is any subset of {1 , . . . ,  N}. 

Carol is required to answer either "yes" or "no". However, she is allowed to lie (i.e. give 

the incorrect answer to Paul's question) up to k times, s We say that Paul wins the (N, k, q) 

game if and only if he can always identify Carol's secret number after at most q questions, 

regardless of Carol's strategy. 

The interesting fact is that there is a common abstraction of Ulam's game with lies and 

of our problem. The abstraction can be seen as the following chip game (for more work on 

chip games, see (Aslam & Dhagat, 1991)). We think of each number in the set {1 , . . . ,  N} 

as a "chip" and consider k + 1 (disjoint) subsets of these chips, which we call "bins", 

and denote by Bo, . . . , /3k .  At each point of the game, the bin Bj contains all the chips 

that correspond to a number x E {1 , . . . ,  N} with the property that if x is the number 

chosen by Carol, then j of the answers that Carol gave so far have been lies. Thus the 

union of all the bins contain those choices of x that are consistent with the bound k on the 

number of lies that Carol is allowed to make. Essentially, it is sufficient to describe each 

configuration reached during the game by the number of chips in each bin. We denote by 

I j = ( I~ , . . . ,  1~) the configuration of the chip game after at the jth trial, where I j  is a 

natural number denoting the number of chips in/3~. For example, the initial configuration 

is always I ° = (N,O, . . . ,O) .  

When Paul asks "Is x in S ?", his question partitions the chips into two sets, those in S 

versus those outside S. If Carol answers "no" her answer constitutes a lie with respect to 
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the numbers in S. This translates to advancing each chip corresponding to a number in S 

from its current bin to the next bin (e.g. from bin Bj to Bj+I).  If  a chip corresponding to 

a number in S is already in the last bin Bk, it is discarded as there is no bin Bk+l. If Carol 

answers "yes", then those chips corresponding to numbers not in S are advanced. 

Clearly Paul cannot know which number Carol has chosen as long as the union of the bins 

contains at least two chips. Thus Carol's goal is to keep two chips in the union of the bins 

for as long as possible. Paul wins the (N, k, q) iff there is a strategy for choosing partitions 

guaranteeing that after q steps there is at most one chip remaining in the union of the bins. 

We can think of the prediction problem as a "prediction game" where the predictor is 

playing against an adversary that picks both the predictions generated by the experts, and 

the outcomes .9 We restrict our attention to those adversary strategies that force the prediction 

algorithm to make a mistake on each and every trial for as long as possible. This means 

until one expert has made k mistakes and every other expert has made more than k mistakes, 

the adversary chooses the feedback so that the prediction algorithm makes a mistake on 

every trial. From this point on, the predictions of the single best expert are guaranteed to be 

without mistakes, and by copying the predictions of this expert the master algorithm will 

correctly predict the remainder of the sequence. This restriction is helpful to map to the 

prediction game into a chip game, and restricting the adversary in this way does not reduce 

its power since we are able to obtain a lower bound that essentially matches the upper bound 

of the BW algorithm. 

We can easily relate this "prediction game" to a chip game. Each chip corresponds to 

an expert and the bin Bj, for 0 _< j _< k, contains those chips corresponding to experts 

that have made exactly j mistakes on previous trials. Each iteration of the game starts 

with the adversary partitioning the chips to two sets according to the predictions given 

by the corresponding experts. The prediction algorithm then chooses its prediction, and 

the adversary forces a mistake by generating an outcome opposite to the prediction. This 

causes those chips corresponding to experts whose predictions were mistaken to advance 

one bin. Thus the prediction algorithm (indirectly) chooses which subset of the chips gets 

advanced, so the prediction algorithm corresponds to Carol and the adversary corresponds 

to Paul. The game ends when the configuration (0, 0 , . . . ,  1) is reached, we shall refer to this 

configuration as the terminal configuration. This is a slight difference from the chip game 

that corresponds to Ulam's game with k lies. Another, much more significant difference, is 

that the goals of the opponents have been reversed. In the chip game corresponding to the 

prediction problem, Carol (the prediction algorithm) wants to shorten the game as much as 

possible since the length of the game measures the number of mistakes that the prediction 

algorithm is forced to make. 

As the goals of Carol and Paul have been reversed, it would seem that their strategies for 

playing the two games would be very different. Surprisingly, it turns out that the optimal 

strategy for Paul is the same in the two games when the different ending condition is ignored. 

If N >_ Nk then this optimal strategy Paul can force both games to have the same length, 

regardless of the actions taken by Carol. In other words, if Paul uses this strategy then Carol 

is unable to make the game neither longer nor shorter. 
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This strategy for Paul has been developed by Spencer (Spencer, 1992), and is the basis of 

the proof of Theorem 5. We shall briefly describe the strategy, give Spencer's result, and 

then use it to prove Theorem 5. 

Spencer identifies the same binomial weights that are used in the BW algorithm as the 

central quantities on which the strategies of both Carol and Paul are based. We shall denote 

by 1,t% (I)  the weight associated with the configuration I and the integer q, i.e. 

k 

i=0 <_ k - i 

Spencer gives a strategy for Carol. Under this strategy Carol advances those chips that keep 

the future configurations as heavy as possible. The exact opposite choice is made by the 

BW algorithm, which advances the heavier chips, resulting in a lighter configuration. This 

makes intuitive sense, because Carol has opposite goals in the two games. 

The main result of Spencer's paper (Spencer, 1992) is the identification of a class of 

"good" configurations. For each configuration in this class there exists a partition such 

that both future configuration have equal weight, equal to half the weight of the current 

configuration, and both configurations are either good or consist of a single chip. Thus, 

starting from a good configuration, Paul can repeatedly partition the chips in such a way that 

in each step the weight is halved until only a single chip remains. It is clear that, by choosing 

these partitions, Paul can completely neutralize Carol once one of the good configurations 

is reached. The definition of the good configurations rests on the observation that the 

weight associated with the chips in bin/3k is always l, because (_<q0) = 1. These chips 

are appropriately referred to as "pennies". It is clear that if a configuration has a sufficient 

number of pennies, and the total weight is even, then by moving pennies from one set of the 

partition to the other one can equalize the weight of the two successor configurations. Paul's 

strategy is to choose a partition whose two successor configurations are almost balanced 

and then use pennies to balance them completely. The main theorem in Spencer's paper 

shows that if the initial configuration has a sufficient number of pennies, Paul can use this 

technique repeatedly, without running out of pennies until a configuration with a single chip 

is reached. 

We now give the main result from Spencer's paper in a form that fits our needs. 

THEOREM 6 (SPENCER, 1992) For any number k > 0 o f  bins, there exist finite integers 

c(k) and qo(k) such that the following holds for  all q > qo(k): if I ° = (I°o, . . . , I °)  is an 

initial configuration such that I ° > c(k)q k and Wq(/°) = 2 q, then there exists a strategy 

for  Paul such that, independent o f  the choices made by Carol, a configuration I TM is reached 

such that E~:0  I~" = 1 and Wq_,~(I  TM) = 2 q-'~. 

In other words, Paul can guarantee that the total weight is exactly halved at each step, 

until only a single chip is left. 

Proof of Theorem 5: The proof is divided into two parts, we first show that if N is large 

enough then from the initial configuration I ° = (N, 0, . . . ,  0) Paul can reach, in k steps, a 

configuration that meets the conditions of Theorem 6. In the second part we show that the 

final configuration reached in Theorem 6 guarantees the bound given in the theorem. 
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In the proof we make use of the idea that Paul "marks" chips as useless. If  a chip is marked 

on some particular trial, then this chip is placed arbitrarily in the partitions generated by Paul 

on subsequent trials. We shall prove that Paul can delay reaching a terminal configuration 

even when only the unmarked chips are considered. It is clear that if the marked chips were 

also considered, then reaching the terminal configuration would be delayed for at least as 

long, which proves the lower bound on the number of  trials. 

Initially, all N chips are in bin B0. It takes at least k steps to get chips to bin Bk and thus 

make them into pennies. We shall devise a strategy for the first k trials that is guaranteed 

to give rise to a sufficient number of pennies at the kth trial. First, Paul marks some chips 

so as to make the number of unmarked chips divisible by 2 k. Clearly, less than 2 k chips 

need to be marked. Ignoring the marked chips Paul generates the following partitions. The 

(unmarked) chips in each bin are divided into two equal parts, one part from each bin is 

placed in the first set of the partition, and the other part is placed in the second. It is easy 

to check that, independently of Carol 's actions, such partitioning of the unmarked chips is 

possible for k steps. It is also simple to see that after k trials exactly a fraction of 2 -k  of 

the unmarked chips reach bin Bk and become pennies. 

Let q be the integer such that J(k ,  q) < N < J (k ,  q + 1). From (1) it is clear that the 

weight that is associated with the unmarked chips is divided by two at each step. Thus, 

independently of  Carol 's choices, the weight of the configuration after k steps satisfies 

W q - k ( I k )  > 2 - k ( X  -- 2k) < k " 

To apply Theorem 6 we need that the remaining weight (after k steps) of the unmarked 

chips is a power of two. We first find an appropriate c] such that WO(I k) > 2 0. 

By the definition of q, J ( k, q) <_ N <_ J ( k, q + 1). If  N is large enough then J ( k, q) - 

J (k ,  q - 1) >_ 2 k and thus N >_ J(k ,  q - 1) + 2 k. This implies that ( N  - 2 k) (q_<k 1) > 2 q-1 

and thus by inequality (8), W q _ k _ l ( I  k) > 2 q-k-1.  It follows that if N is large enough 

then we can always choose c] = q - k - 1. However if N >_ J (k ,  q) + 2 k, then by the same 

derivation we get W q _ k ( I  k) > 2 q-k and we can set c] = q - k .  

We now wish to apply the results of Theorem 6 to the configuration I k, whose weight 

satisfies W 0 > 2 ~. However, in order to obey the conditions of  the theorem we have to mark 

some more chips in order to make the weight of the configuration satisfy WO(I k) = 2 0. 

We do this marking carefully, so that afterwards we still have enough unmarked pennies 

to apply the theorem. We mark chips using the following simple procedure: we mark 

nonpenny chips until we cannot mark a nonpenny chip without reducing WO(I ) below 2 0. 

We then mark enough pennies to reduce the weight to 2 0 . As the heaviest chips (those in 

Bo) weigh (~k) <- (3q) k' we need to mark at most (30) k pennies. Taking into account both 

the initial marking of less than 2 k chips and this additional marking phase, we get that the 

number of unmarked pennies is at least ~2 -k  (N  - 2 k + 1)J - (3~) k _> 2 - k N  - (3~) k - 2. 

On the other hand, in order to apply Theorem 6 we need at least c(k)O k unmarked pennies. 

This is satisfied if 2 - k N  - (30) k - 2 > c(k)O k. As for any fixed value of k, q and thus 

is O(log N) ,  the last condition is satisfied for every N > Nk for a large enough Nk. 

We can thus apply Theorem 6 with the initial configuration being the unmarked chips in 

the kth configuration, that we denote by I k. The weight of this configuration is WO(I k) = 
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2q. The theorem guarantees that Paul can find partitions so that after some rn steps a 

configuration I k+'~ is reached such that ~ : 0  I~ +'~ = 1 and Wq_~n(I m) = 2 q-'~. Thus 

only a single chip will be left. It is easy to verify that as the weight of  the chip is 2 ~-'~ it 

must be in bin B k - ( q - , 0 .  After another ~ - nz steps the single chip will be in the last bin 

and the game is over. 

Finally, we sum up the number of trials, or mistakes, that Paul can force on Carol. We have 

k trials before getting the pennies, rn trials using the Spencer's strategy, and ~ - rn mistakes 

at the end. Summing these terms and using the definition of ~ we get that Paul can always 

force at least q - 1 mistakes and if N > J (k ,  q) + 2 k then Paul can force at least q mistakes. 

3. Conversion strategies 

In this section we show how the ideas behind the BW algorithm can be used to modify 

prediction algorithms so that they can tolerate malicious noise. Assume we are given a 

prediction algorithm A that makes at most k mistakes on any sequence in some set E C 

(X x {0, 1})*. We assume that algorithm A makes at most k mistakes even if it is presented 

with a subsequence of any sequence in E. Formally, we require that E is subsequence closed. 

Any deterministic prediction algorithm can be converted to an algorithm that changes its 

state only when its prediction is incorrect. This is achieved by resetting the state of A after 

each trial in which A predicts correctly to the state of A before the trial. This conversion 

does not increase the worst case number of  mistakes on the subsequence closed set E. The 

converted algorithm is called conservative (Littlestone, 1989). For the rest of this section we 

shall always assume that the set of sequences is subsequence closed and that the prediction 

algorithm is conservative. 

Algorithm A is allowed to perform arbitrarily badly if given an instance/outcome sequence 

that is not in E. For example, i f E  = (X x {0})* U (X x {1})* (i.e. all sequences where 

the outcome is held constant) then the algorithm A which always predicts with the first 

outcome seen makes at most one mistake when given a sequence in E. However, if the first 

label is corrupted by malicious noise then all subsequent predictions made by algorithm A 

will be incorrect. 

Here we show how to convert A into another algorithm that performs well on sequences 

in E that are corrupted by noise. In particular, for any r we can build an algorithm that 

performs well on those sequences which can be created from a sequence in E by arbitrarily 

changing up to r examples. We use E '  to denote this set of noisy sequences. As the above 

example indicates, algorithm A may make arbitrarily many mistakes on sequences in E'.  

Furthermore, the sequences in E '  might have different outcomes for the same instance and 

algorithm A might not even be defined on this larger set of sequences. In that case we extend 

the definition of A by assigning it the default prediction 0 and restarting it at its initial state. 

Thus we assume throughout that A 's  prediction and successor state are always defined. 

In this section we use the methods developed in Section 2 to construct master algorithms, 

called conversion strategies, whose mistake bounds increase slowly as a function of  r. 
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As in Section 2, we use a version space argument and expand A into a set of variants so 

that at least one variant will be correct on all trials where the conversion strategy makes 

a mistake. However, here the elements of the version space are somewhat dynamic as 

they represent computations of A on sequences in E. In addition to discarding irrelevant 

computations from the version space, the conversion strategy will also need to extend certain 

computations by simulating A on the current trial. Since the members of the version space 

managed by the conversion strategy are somewhat dynamic, it may be a slight misnomer to 

call it a version space. However "version space" does convey the proper intuition. 

Since our conversion strategies are conservative we can concentrate on those trials where 

the conversion strategy itself makes mistakes. Here we use m for a bound on the number 

of mistakes made by the conversion strategy, k to denote the mistake bound of algorithm 

A on sequences in E, and r as the number of examples corrupted by noise. 

We first outline the Chin conversion strategy that is based on binomial weights, and later 

describe a second conversion strategy, Cexp, based on exponential weights. These strategies 

are described in more detail in Sections 3.1 and 3.2 respectively. 

A major difference between the conversion problem discussed here and the one addressed 

in Section 2 is that with experts there were only two possibilities for each trial - -  the expert 

was either correct or incorrect. Here we consider three different cases. The first case is 

when algorithm A correctly predicts the outcome. In the other two cases the prediction 

is incorrect. In the second case the wrong prediction is due to the fact that the example 

is corrupted by noise and in the third case the example is unchanged but the algorithm 

makes a mistake in predicting the label. Therefore, instead of associating a bit string to 

each member of  the version space, the Cbin strategy attaches a string of "trits" from the 

set {0, noise, mstk }. Each member of the version space is a stored state of algorithm 

A together with a string 7. = (7-1,... , 7"m) E {0, noise, mstk }'n. These strings have an 

interpretation like the bit strings of Section 2. If a (state, 7") pair is in the version space 

when the conversion strategy Cbin makes its ith mistake, then the value of ~-~ represents the 

following possibilities. The value 0 represents the possibility that A predicted the label of 

the example correctly. The values noise and mstk represent the possibility that A predicted 

incorrectly, where the cause for the incorrect prediction is attributed to noise or to a mistake 

by A respectively. 

Since algorithm A makes at most k mistakes, each string T contains mstk at most k times. 

Similarly, since we assume that at most r of the trials are corrupted by noise, noise appears 

at most r times in each string. Therefore only some of the 3 m strings in {0, noise, mstk }~ 

are legitimate. In particular, if there are j nonzero elements in a string, j will be between 

0 and r + k. Furthermore, at most r and at least j - k of the elements in the string will be 

noise. This gives us 

[(j) ( )] 
j=o _ r  < _ j - k - 1  

strings that must be considered. An examination of the term in brackets shows that SIZE is 

symmetric in r and k, as expected. Furthermore, STZE(r, k, m) = O(ra"+k(r + k)min(~'k)). 

The Cbin conversion strategy starts with a version space containing SIZE elements, each 

with the initial state of algorithm A and a different legitimate string 7". The conversion 



ON-LINE PREDICTION AND CONVERSION STRATEGIES 91 

strategy manages the version space by predicting with the halving algorithm. However, it 

is no longer quite so clear what this means. 

Consider the situation after the conversion strategy Cbin has made i - 1 mistakes and 

sees instance :c ¢ X.  In this case each element of the version space, (state, T) will be 

using its T~ to see if its variant of A is correct, has a noisy trial, or makes a mistake. Each 

variant will see how A (in state state) predicts. If its ~ is 0 then the variant predicts the 

same way, otherwise the variant predicts with the opposite value. Conversion strategy Cbi n 

may update the version space after getting the outcome. If the conversion strategy Cbin 

predicted correctly then all variants are kept unchanged. If Cbin predicted incorrectly then 

those variants also predicting incorrectly are discarded. In addition, when Chin predicts 

incorrectly those variants predicting correctly may be updated based on their ~'i values. 

There are three cases, according to the value of T~. 

1. Case ~i = 0: This means that the variant predicted the outcome correctly. Since A is 

conservative, Chin leaves the state of  the algorithm A for this variant unchanged. 

2. Case ~-i = noise: This means that the prediction of A is incorrect but would have been 

correct if the example was not corrupted by noise. As in the previous case, Chin leaves 

the state of the algorithm A unchanged. 

3. Case -ci = mstk: This means that the prediction of  A is incorrect because A has made 

one of its k allowed mistakes and that the example is not corrupted by noise. In this 

case Chin updates the state of A. This is done by simulating A, starting from the old 

state, on the example received in the current trial. The resulting state of A replaces the 

old state in the variant. 

We show in Lemma 5 that: 

I. On each trial where Cbin makes a mistake, the size of the version space drops by a 

factor of  at least 2. 

2. For any sequence in E t at least one variant is never removed from the version space 

during the run of the master algorithm. 

We need a few definitions before we can precisely state our hounds on the Cbin con- 

version strategy. For all n ¢ H and for all pairs s = ( ( x l , y l ) , . . . ,  (z,~,y,,)) and 

u = ((z] ,  y [ ) , . . . ,  (x~, y~)) of sequences in (X x {0, 1}) ~, wesaythatsisanr-corrupted 
version of u if and only if (xi, Yi) ¢ (x~i, Y~) for at most r indices i, where 1 < i < n. 

We shall also use the notation de(s, u) = r to indicate that s is an r-corrupted, but not an 

(r - 1)-corrupted, version of u.  Thus 

d c ( s ,  u)  ~ f  min{r  E 1~ : s is an r-corrupted version o f u  } . 

We define dc(s, u)  = oc if the sequences differ in length or if they have an infinite number 

of disagreements, and say s is a corrupted version of u if dc (s, u)  is finite. 

We will show in Section 3.1 that the conversion strategy Chin achieves the following 

bound. 
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THEOREM 7 For all conservative, deterministic algorithms A, for all subsequence-closed 

sets of sequences E C (X x {0, 1})*, andall s E (X x {0, 1}) +, if 

• k >_ max{LA(U) : u E E} and 

• s is an r-corrupted version of some sequence in E, 

then the number of mistakes made by Chin(r, k, A) on the sequence s is at most 

m a x  {q E 1~ : q _< log(SiZE(r, k, q))} . (9) 

In Theorem 9 we will show that the bound in (9) is O(r + k). Note also that the Cbi n 

strategy needs to know the upper bounds k and r. 

In Section 3.2 we describe a second conversion strategy that we call the Cexp strategy. 

The Ce×v strategy uses exponential weights (as used in the Weighted Majority algorithm) 

and does not require advance knowledge of r and k. However one cannot optimize the 

mistake bounds of Cexp without knowing these parameters. The following theorem gives 

the mistake bound we prove for the conversion strategy Ce×p. 

THEOREM 8 For all conservative, deterministic algorithms A, for all subsequence-closed 

sets of sequences E C_ (X x {0, 1})*, andall s E (X x {0, 1}) +, if 

• ~ and/3 are nonnegative real numbers such that a + 3 < 1, and 

• s is a corrupted version of some u E E, 

then the number of mistakes made by Cexp(a , /3 ,  A) on sequence s is at most 

[ dc(s'u) l°g ! + LA( ')l°g 1 
rain m a x  ~ (10) 

Lug2 u ' c u  log 2 , 
- l + a + 3  

where u'  C_ u means that u '  is any subsequence of u. 

It is easy to verify numerically that by choosing a = fl = 0.147, the upper bound for 

Cexp displayed in (10) is at most 

min  m a x  4 .4035(dc(s ,  u) + LA(U')). 
"/-tEE ~'E_U 

Thus we get a reasonable bound that holds for all values of dc(s ,  u) and LA(U'). 

However, if one wants to set a and /3 so that the mistake bound of C,  xp is optimized 

then one needs to know upper bounds k and r on dc(s ,  u) and LA(U'), respectively. The 

case when r or k is 0 is degenerate. Thus we assume that rain(r, k) _> 1. The following 

inequality was numerically checked using MAPLE TM, a software package for symbolic 

computation, 

r log ± + k log -~ 

2 log 1+~+~ 
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" and ~3 k where for c ~ -  f<,k)-~-k -- I(r.k)-~-k' 

f (r ,  k) de=f 2(r + k) + 2x/rk ln(e - 1 + max(r, k)/rain(r, k)) + 2.807x/-~. 

If r _> k, then by dividing the inequality by k, we are left with an inequality in r/k ,  where 

r /k  E [1, c~). We plotted the difference between the left-hand side and right-hand side of 

the latter inequality as a function of r /k  and checked the values of the difference and its 

derivatives with respect to r / k  at the end points 1 and oc. 

One can also show that there is no constant c independent o f r  and k such that the mistake 

bound of Ce×v (with c~ and/3 optimized) is at most 2(r + k) + cx/-~. 

Notice however that Cexp has a worst-case mistake bound larger than Cbin: In much 

the same way we proved Theorem 2 in Section 2.1 we can also prove the following (see 

Section 3.2). 

THEOREM 9 For all k, r c 1~ and all c~, /3 E [0, 1), if c~ +/3 < 1, then 

l 1 m a x { q C N  : q<log(SlZE(r ,k ,q))}  < r l o g K + k l o g  
- - l o g  2 • 

l+~+fl 

(11) 

To show an immediate application of Theorems 7 and 8 consider the special case when the 

set E C (X x {0, 1})* of uncorrupted sequences is the set of all sequences consistent with 

some family 5 t" of {0, 1}-valued functions f on X. That is 

= ~ = { ( ( x t , f ( x t ) ) ) t  ; f E f A (Xt)  t E X + } .  

This more restricted setting was studied by Littlestone (Littlestone, 1989) and Littlestone 

and Warmuth (Littlestone & Warmuth, 1994) where they define the quantities Opt ( f ,  0), 

i.e. the optimal worst-case number of mistakes over all sequences from ET, and Opt ( f ,  r), 

i.e. the optimal worst-case number of mistakes over all r-corrupted sequences from Zy.  

Littlestone and Warmuth (Littlestone & Warmuth, 1994) show that Opt ( f ,  r) > 2r + 

Opt(F, 0), but the problem of finding an equivalent upper bound is left open. By ap- 

plying Theorem 7 (or the weaker Theorem 8) when E = Ey- and the sub-algorithm A 

is optimal, we obtain the upper bound Opt ( f ,  r) <_ 4.4035@ + Opt( f ,  0)), showing 

Opt ( f ,  r) = @(r + Opt ( f ,  0)). Auer and Long (Auer & Long, to appear) independently 

developed an algorithm essentially equivalent to our Cexp strategy, lO 

All of our conversion schemes use deterministic prediction algorithms. This means that 

the algorithm's prediction depends only on its current state and the observation. After 

making its prediction, the algorithm enters a new state based on the observation and the 

outcome. We denote the initial state of the prediction algorithm by Si,~it and use As to 

denote prediction algorithm A in state S. When the observation is fixed, the next state 

entered by algorithm A depends only on the outcome. We use S z°  (and S x,1) to denote the 

(possibly identical) next state entered by As after As receives observation x and outcome 

0 (or outcome 1 respectively). In the rest of this section we state and prove the mistake 

bounds for Cbi n and Ce×p. 
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3.1. The conversion strategy C b i  n 

In this section we formally describe the Cbi n strategy and prove its mistake bound. 

The Cbi n strategy uses a concise representation of the version space in much the same way 

that the B W  algorithm keeps a single binomial weight for each expert. In order to avoid 

confusion with the states of  the algorithm being converted, we call the states of the Cbin 

algorithm configurations. Each configuration encodes the appropriate version space as well 

as a value (which we usually denote d)  indicating an upper bound on the number of mistakes 

yet to be made by the conversion strategy. The Cbi n algorithm changes configurations only 

when it makes a mistake. 

The version space is encoded in a configuration as a (multi-)set of triples representing com- 

putations of algorithm A on corrupted versions of subsequences of the past trials. More pre- 

cisely, the version space is represented by a collection of triples (S, r ~, k ') ,  where S is apossi- 

ble state of  algorithm A and the other two components are integers. Intuitively, r ~ represents 

the maximum number of future examples that can be corrupted by noise and k r represents the 

maximum number of mistakes made by algorithm A in the remaining trials. Thus if c ~ is the 

upper bound on the number of mistakes yet to be made by the conversion strategy, the single 

triple 

( S, r', k ~) represents 

/,=0 

different elements in the version space (or (S, ~-) pairs for r E {0, noise, mstk }c'). It is 

important to understand that the values r t, k' ,  and c ~ all start at the upper bounds r, k, and 

m, respectively, and count down. 

The initial configuration of the Cbi n conversion strategy contains the single triple, 

(Sinit, r, k) where Sinit is the initial state of algorithm A, r is the bound on the number of 

noisy trials, and k is the mistake bound of A on sequences in ~2. The initial configuration 

of Cbin also contains the mistake budget 11 c ~ = m + 1, 1 greater than the mistake bound 

o f  C~bin . 

An important concept is the successors of a configuration. For any possible state S of 

algorithm A and any z E X we use S :~,° and S x,1 to denote the states entered by A from 

state S after processing the single observation-outcome pair (z, 0) or (z, 1), respectively. 

Given a configuration C with mistake budget c ~, we define the successors, C ~'° and C x'l ,  of 

configuration Ct with respect to observation z in the following way. 

Both successor configurations have mistake budget c' - 1. For each triple (S, r ~, k ~) 

in Ct, consider the prediction of As  on observation z. 

If As  predicts 1, then 

• configuration C x,1 contains the single triple (S, r ~, k~), and 

• configuration C ~'° contains the triples (S ~'°, r', k' - 1) and (S, r' - 1, k') 

representing the possibilities of a incorrect prediction by A and a noisy trial 

respectively. 
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Similarly, if A s  predicts 0 on observation z then 

• configuration C z'° contains the triple (S, r', k'), and 

• configuration C x,1 contains the triples (S ~'1, r', k' - 1) and (S, r '  - 1, k'). 

We define the weight of a configuration to be the size of the version space represented 

by that configuration. In particular, the weight 14%, (S, r', U) of the triple (S, r', k') in a 

configuration with mistake budget c' is 

i 1) 1 
i=0 

and the weight of a configuration C, tVc, (C), is the sum of the weights of the triples in C. 

Triples (S, r', k') where either r '  < 0 or k' < 0 represent sequences disallowed by our 

assumptions, and these disallowed triples are given weight O. Deleting disallowed triples 

from a configuration has no effect on the strategy's predictions. 

On each trial the Cbin conversion strategy in configuration C receives the new instance z 

and computes the weights of the two successor states, C z,1 and C z'°. The Cbin conversion 

strategy predicts 1 if the weight of C z'l is greater than the weight of C x'° and 0 otherwise. 

If the Cbin strategy predicted correctly, it keeps the configuration C. If the Cbin strategy 

predicted incorrectly, then it changes its configuration from C to C z'b where b is the outcome 

of the current trial. 

A sketch of the conversion strategy Cbin is given in Figure 3.1. The algorithm Cbin can 

be further improved in the same way that BW' improved BW (See Section 2). However 

these changes do not improve the worst-case mistake bounds, and thus we chose not to 

include them for the sake of the simplicity of the presentation. 

The next result shows some useful properties of sequences of configurations. 

LEMMA 5 For all conservative, deterministic prediction algorithms A, all subsequence 

closedsets ~ C (X x {0, 1})*, a n d a l l r  C ~, i f  

• k > m a x { L A ( U )  : u E E}, 

• s = ((xt,  Yt)) in (X x {0, 1}) + is an r-corruptedversion of  a sequence in ~, and 

• Co is the configuration with mistake budget Co = 9 containing the single triple (Sinit, r, k) 

where Si,~.it is the initial state o f  A, and 

• Co, C 1 , . . . ,  Cg is the sequence of  distinct configurations generated by a run of  Cbm 

applied to A on the sequences s, 

then 

1. for  each t =O, 1 , . . . , g - 1 ,  

Wct(Ct) = Wct_l(C~ t+l'O) -~- VVcL_I(Ci vL+l'l) ~ ~/~/c,_l(Ct+l) 

where ct is the mistake budget o f  Ct, and 

2. for  each t = O, 1 , . . . ,  g, Wg (Ct) >_ 1; 
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Strategy Cbi n 

Input: Two positive integers r, k, and a prediction algorithm A with initial state Si,m. 

1. Let 9 = m + 1, where 

. 

. 

m :=  max {q E N : q < log(sIzE(r,  k, q))} (12) 

Initialize configuration Co to have mistake budget Co = 9 and contain the single triple 

(S~ni~, r, k). 

For each trial t = 1, 2 . . .  

(A) Get the tth observation zt. 

c'x~'° and C~ ' '1 of the current configuration dr-1. (B) Compute the successors ~t-1 

(C) Predict with p E {0, 1} such that 

xt,p = (Ct_l )~Wct l _ l ( C t _ l ) }  W c t _ l _ l ( C t _ l  ) m a x { W ~ _  1_ 1 x~,0 xt,1 

(predict arbitrarily in case of a tie.) 

(D) Get the outcome Yr. 

(E) If p ¢ Yt then decrease the mistake budget and update the current configuration 

r~,,v,,  if p = yt, then keep the current configuration by setting by setting Ct :=  ~t-1 , 

Ct :=  Ct-1. 

Figure 3. Pseudo-code for the conversion strategy Cbi n. 

The proof of Lemma 5 is given in Appendix D. 

Proof  of  Theorem 7: Choose n, k E N and a sequence s '~ E (X × {0, 1}) n that is an 

r-corrupted version of  some u E E. Let m be the integer defined by formula (9) and, 

assume to the contrary that Chin (r, k, A) makes at least 9 = m + 1 mistakes on s. Let g be 

the trial on which Chin(r, k, A) makes its 9th mistake and c ~ the mistake budget after the 

gth trial. We will show that 

wg(c°) (13) 
w~, (Ce) _< 29 

< 1. (14) 

Let t l ,  t 2 , . . . ,  tg be the trials at which algorithm Cbi n makes its first g mistakes and u / be 

the associated subsequence of u.  Since E is closed under subsequences, u / E E. We apply 

Lemma 5 to sequence u ~ and the associated sequence Co, Ctx, • . . ,  Ct, of configurations 

generated by the algorithm. By construction, the algorithm predicts on each trial t (1 < 

t _< n) according to the heaviest successor of the current configuration Ct- a. The current 
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configuration is unchanged if Cbi n predicts correctly. If the algorithm makes a mistake 

on trial t, the successor Ct_~'~ ' corresponding to the correct prediction Yt becomes the 

new current configuration. Because algorithm Cbi n predicts on each trial according to the 

heaviest successor, it fol lows from part 1 o f L e m m a  5 that Wg_ 1 (Ctl) <_ W9 (Co)/2 and that 

~/~Tj-l(Ctj+l) ~_ Wcj(Ctj)/2, for 2 _< j < g, where cj (for 1 _< j < g - 1) is the mistake 

budget of  Ctj. This implies inequality (13). By definition of  rn in (9) and the fact that 

g - m + 1 we derive inequality (14). N o w  part 2 of  Lemma 5 shows that Wc~ (Ct,,) >_ 1, 
contradicting (14). Thus Cbi n makes at most m = 9 - 1  mistakes on s,  concluding the proof. 

A good consequence of the fact that Cbin is conservative is that the number of triplets 

does not increase on trials where Cbi n predicts correctly. However, it seems that the 

number of  triples kept by algorithm Cbi n can potentially double each time Chin makes an 

incorrect prediction. We now show that this apparent worst-case behavior is not possible, 

and that the maximum number of triples in any configuration of Chin(/', k, A) is bounded 

by (<mi~r,k}) = O(T7~'min{r'k})' where m is the number of mistakes made by Cbi  n before 

the configuration is reached. 

THEOREM 10 For all conservative, deterministic prediction algorithms A, and all sub- 

sequence closedsets E _C (X x {0, 1})*, if 

• k >_ m a x { L A ( u ) :  u C E}, 

• s = ((xt, Yt)) is an r-corrupted version of some sequence in E, 

• Co is the configuration with some mistake budget m containing the single triple (Stair, r, k 

where Sinit is the initial state of A, and 

• Co, C1, . . . ,  Cm is the sequence of distinct configurations generated by a run of Cbin  

applied to A on the sequences s, 

then for each I < t < m, configuration Ct contains at most (<mi~{,-,k}) triples with nonzero 

weight. 

Proof:  We prove the theorem when r = rain{r, k}, the other case is similar. For all 

t = 0, 1 . . . , m  and 0 < i < r let Mr(i) be the number of triples ( S , r ' , k ' )  ~ Ct with 

r '  = r - i. Thus Mo(0) = 1 (for the initial configuration), and Mo(i) = 0 for all i > 0. 

Note that some triples counted in Mt(r  - / )  might have 0 weight if their U < 0. 

From the definition of successors, Mt+l(i) <_ Mr(i) + Mt(i  - 1). The unique function 

f = f ( t ,  i) satisfying 

f ( 0 , 0 )  = 1, 

f (0 ,  i) = 0, f o r l  < i < r ,  

f ( t + l , i )  = f ( t , i ) + f ( t , i - 1 ) ,  f o r t > 0 a n d l < i < r ,  

is the binomial coefficient (ti). Therefore Mt (i) < (~) yielding that the number of  triples 

(S, r', k') in Ct with 0 _< r t < r is at most 
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Z : , 
i=0 i=0 ~ r 

as desired. 

3.2. The conversion strategy Cexp 

We now move on to the description of the conversion strategy Ce×p. Where Cbin was based 

on binomial weights, Cexp uses exponential weights. The advantage of using exponential 

weights is that the conversion strategy does not need to know the bounds r and k that Cbin 

requires as inputs. However if one wants to optimize the mistake bound of C~xp so that it 

is in the form 2(r + k) plus a square root term, then knowledge of k and r is required for 

C~×p as well. Analogously to Cbin, the bound of C~xp does not depend on the length of the 

sequence to predict. The weighting scheme used by C~xp has two real parameters, a and 

/3, such that 0 < a,/3 < 1. 

Here we define a configuration by a set of triples for different computations of algorithm 

A. Unlike the description of strategy Chin given before, here a configuration does not 

have a mistake count or mistake budget. However, as before each triple is of the form 

(S, i, j)  where S is a possible state of algorithm A and i, j are both integers. For any fixed 

0 < oe,/3 < 1, the weight W,~,~ (S) of the triple (S, i, j)  is the product a - i 3  - j .  As before, 

the weight of a configuration, W~,~(C), is the total weight of the triples in C. The role 

played here by the components i and j in each triple is analogous to the role respectively 

played by the components r / and U in the triple (S, r', U) defining algorithm Chin- 

We use essentially the same definition of successors as the one introduced in Section 3.1 

for the strategy Cbin with only two differences. Namely, the mistake count is absent and a 

triple is never removed since its weight never drops to 0. Note also that i, j can be negative. 

A sketch of the conversion strategy Cexp, using the above weighting scheme, is given in 

Figure 4. The next lemma establishes some properties of such weighting schema. 

LEMMA 6 For all conservative and deterministic prediction algorithms A, and all subse- 

quence closedsets E C ( X  x {0, 1})*, if 

• s = ((xt, Yt)} is an r-corrupted version of some sequence u c E, 

• Co, C1, . . . ,  C~ is the sequence of distinct configurations generated by a run of  Cexp 

applied to A on the sequence s, and 

• c~,3E [0,1), 

then Wa,~(Cn) >_ oldc(u'S) 3LA(U), and for each t = 1 , . . . ,  n 

< (1  + a  + 3"] Wc~ ~(Ct-1), W~,~(Ct) 
- -  \ 2 ] ' 

The proof of this lemma is an easy generalization of Littlestone and Warmuth's proof of 

the worst-case bound for the Weighted Majority algorithm (Littlestone & Warmuth, 1994). 
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Strategy Cexp 12 

Input: Two real numbers a,/3 such that 0 < c~,/3 < 1 and a prediction algorithm A with 

initial state Sinu. 

1. Initialize configuration Co to contain the single triple (Stair, 0, 0). 

2. On each step t = 1, 2 , . . .  

(A) Get the tth observation xt. 

(B) Compute the successor configurations CtJ '° and C~J'~ of the current configuration 

Ct-- 1. 

(C) Predict with p C {0, 1} such that 

W t P z t ' P "  x t  0 = max{W~ Z(C t ' I ) .W ,,.,:~.1~ a , / 3 k b t - 1  ) , - , a , f l kL ' t - ' l  )1  

(predict arbitrarily in case of a tie.) 

(D) Get the outcome Yt. 

(E) If p ¢ yt, then update the current configuration by letting Ct := £{J'~; or, if 

P = Yt, let Ct := Ct-1. 

Figure 4. Pseudo-code for the conversion strategy Cexp. 

We now turn to the proof of the worst-case mistake bound for the conversion strategy Cex p. 

Proof of Theorem 8: Choose any sequence s = ((xt,yt)) and choose u E E. By 

construction, Cexp predicts on each step t according to the heaviest successor of the current 

configuration Ct. Ifa mistake occurs, then the successor C{J'~ * , corresponding to the correct 

prediction Yt, becomes the new current configuration. Moreover, again by construction 

of Cexp, the current configuration is unchanged if the algorithm predicts correctly. We 

can therefore apply Lemma 6 to the subsequence s I C s determined by the sequence 

t l, t 2 , . . . ,  tm of the indices of the prediction trials where Cexp makes a mistake. Since E 

is subsequence-closed, the subsequence u / of u that corresponds to these trials lies in E. 

By applying part 1 of the same lemma, and given that a +/3  < 1, we conclude that the 

total weight of the current configuration decreases by a factor of at least 1+2+-----£~ each time 

C~xp makes a mistake. Also, dc(s  ~, u') < de(s ,  u) and hence, i fC f~  is the configuration 

following the last prediction mistake made by C~×p on s, part 2 of Lemma 6 implies that 

a d c ( 8 , U )  LA (U') 
w ~ , z ( c s i , ~ )  >>_ Z . 

Hence, assuming Cexp(a,/3) makes m mistakes on s and recalling that W~,~(Co) = 1, 

( l + a + f l )  '~ "~ ~ ~'Va,o(Ct) ~ o~dc(8'U)~LA(U'). 
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Solving for m, recalling that m is integer, yields 

1 dc(8, u) log l_a + LA(U')log 
m <  

- l o g  2 
1 + ~ + ~  

Since s E (X x {0, 1}) + and u E E were chosen arbitrarily, the proof is concluded. 

We conclude this section by proving the last of the three theorems stated in Section 3. 

We will need a preliminary lemma. 

LEMMA 7 For all k, r, m E N and for all a, /3 E [ 0 , 1 ) , i f a + ~ < l a n d m > _ r + k t h e n  

~ + k ( m ) (  i ) < ( l + a + C / ) m  

Z < k - a ~  k 
i=O 

P r o o f  o f  Lemma 7: By a double application of the Binomial Theorem we show 

( 1 +  a +/3)m = Z ( m )  (c~ + ~3)i > ak~3r Z ( m )  . 

i = 0  i = 0  j = O  

m 

P r o o f  o f  T h e o r e m  9: We shall upper bound the maximal value of a larger set. 

{ ( q i ) ( ) }  r l °g  1 + k l ° g ~  .+k i < . . . . .  . (15) 
q N:q<log ,=0 -L J 

It is easy to see that r + k is a lower bound on the number of mistakes of any master 

algorithm. The left-hand side of (11) is an upper bound on the number of mistakes made 

by Cbin, therefore it is larger than r + k. Thus we can apply Lemma 7 to (15) obtaining 

m a x  q e l N : q _ _ _ l o g  E k = m a x  qelS]:2q~ Z k 
i = 0  i = 0  

_< max {q E N : 2q < (l + ct + /3)q c~r~k 

= max q E 1N : q < r log S + k log -} 
- l o g  2 O+a+~) 

[r log + k log 
= io---~ [(~+ ~+_~_ _ _  J" 

If we give Cexp an additional input parameter k such that k > rnaxu~E LA(U~), the 
strategy can exploit this information in order to minimize the number of states in each 
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configuration. In particular, Cexp can discard from the current configuration each triple 

(S, i,j), such that j >_ k. By using this trick, we can show, analogously to what we did 

for Chin in Theorem 10, that the maximum number of triples in each configuration of 

Ce,,p (c~,/3, A, k) is  bounded by O( (~) ) ,  where ~ is the number of mistakes made by Ce×p 

up to the current configuration. 

Furthermore, as we mentioned above, the knowledge of bounds r or k can be used to 

optimize the parameters o~ and ,3. 

Note that both the conversion strategy Cbi n and Ce×p are conservative in the sense that they 

only update their configuration when they make a mistake. At least one copy of algorithm 

A receives only the subsequence of clean examples on which the conversion strategies 

makes a mistake. Therefore we require that the mistake bound of algorithm A holds on all 

subsequences of sequences in ~. This is the reason we assumed that the set of sequences Z 

in Theorems 7 and 8 is subsequence-closed. We would like conversion strategies that do not 

require this assumption. It seems that this is possible only for a mistake bound that increases 

with the length of the sequence. If we somehow could give A the "correct" feedback in 

trials in which the conversion strategy makes no mistake, then we could drop the assumption 

and update the configuration in all trials. The simple method of using the prediction of the 

conversion strategy as feedback does not work. This is illustrated by the following example. 

Assume the original algorithm A predicts 0 in the first trial and afterwards it simply predicts 

always with the label of the first example. Now let the sequence of examples be labeled as 

(0, 1, 1, 1, . . . ) .  The conversion strategy will correctly predict 0 in the first trial and feeding 

0 to A will "spoil" A. If we want to update in each trial, then we need to simulate noise 

and mistakes on all trials and this will lead to increased mistake bounds. 

4. Conclusions 

We have investigated the problem of on-line boolean prediction from two different view- 

points. We first improved known results about strategies that predict deterministically 

using the advice from a set of experts. These improvements are obtained using a weighting 

scheme that uses Binomial coefficients rather than exponential weights of the form/3m. 

These binomial coefficients can be interpreted as counting the members of an appropriate 

version space. In the expert setting the mistake bound based on binomial weights is never 

larger than the mistake bound based on exponential weights. Furthermore, the advantage of 

the binomial weights can be made arbitrarily large. Nevertheless both bounds can be shown 

to have the optimum leading term using probabilistic techniques. We also prove that, for 

an infinite subset of the possible problem parameters, the bound using binomial weights is 

best possible. The proof of this fact relies on a new translation of our prediction problem 

to Ulam's game with lies. 

Secondly, we introduced a novel approach for making on-line algorithms robust to noise. 

We show how to convert an on-line prediction algorithm that is guaranteed to make at most k 

mistakes when given an observation-outcome sequence from its domain into an algorithm 

that works well when up to r of the outcomes are corrupted by noise. The converted 

algorithm has a conjectured mistake bound of 
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2(r + k) + 2V/rk ln(e - 1 + max(r, k)/min(r, k)) + 2.807v/-~ 

on any of the corrupted sequences (the conjecture is supported by numerical evidences.) 

The best lower bound we know of is 2r + k; tightening the gap between these bounds 

remains an open problem. 

Based on our experience, binomial weights seem to lead to better mistake bounds than 

exponential weights. They have the advantage of being motivated by a version space 

argument that leads to a deeper understanding of the on-line learning problem. The ex- 

ponential weights seem to approximate the binomial weights and are sometimes easier to 

use, especially when the number of mistakes made by the best expert is unknown (although 

optimizing their mistake bounds requires knowledge of these parameters as well). Also 

exponential weights can be used for designing randomized prediction algorithms. In the 

case of exponential weights the worst-case expected number of mistakes of the randomized 

algorithm is exactly half of the worst-case number of mistakes of the deterministic algo- 

rithm (Littlestone & Warmuth, 1994, Cesa-Bianchi, et al., 1995). We were unable to find a 

randomized binomial weighting algorithm that had an expected mistake bound significantly 

smaller than the deterministic BW algorithm. 
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Appendix A 

A prediction algorithm that is strictly optimal for a large number of experts 

As was shown in Section 2.3, the number of mistakes that the BW algorithm makes is within 

one from optimal when N, the number of experts, is large enough. In fact, we have shown 

that, for most values of N, BW obtains strict optimality. In this section we describe a variant 

of BW, which we call EBW (Enhanced Binomial Weighting), that achieves optimality in 

the worst case for all sufficiently large values of N. This modification and its analysis is a 

direct adaptation of a result of Spencer's ((Spencer, 1992), Section 3). 

As we have seen in the proof of Theorem 5, the only slack which allows for the gap 

between the upper and the lower bounds is in the way the game is played for the first k 

trials. In these trials there are no pennies available to Paul and thus he may not be able to 

split the chips into two sets of equal weight. When the weights do not split evenly, then 

Carol can choose a next configuration whose weight is less than half of the current one. 

From some starting configurations Carol can reduce the weight fast enough to "save" a 

mistake. However, the value of m chosen by the BW algorithm ignores this possibility of 
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saving a mistake. Thus, since it is using the "wrong" weights, BW might play suboptimally 

and miss the opportunity to save a mistake. The solution is to refine the calculation of m 

used by the BW algorithm to account for the savings from when Paul is forced to split 

unevenly. We call the resulting algorithm EBW, and (for large enough N)  this strategy is 

the best possible as there also exists a refined strategy for Paul that can force any algorithm 

to make the exact same number of mistakes. 

The key observations are that the weight of every configuration is a multiple of  the greatest 

common divisor (gcd) of  the chip weights, and that after t < k trials all of the chips are 

in bins 0 through t. Thus, on the first trial, Carol can ensure not only that the weight goes 

down by at least a factor of 2, but also that it is divisible by the gcd of the (new) weights of 

the first two bins. After the second trial Carol can again reduce the weight by at least half, 

in addition to being divisible by the (new) weights of the first three bins, and so forth. 

We now describe the EBW algorithm. Recall step 1 in BW (Figure 1), in this step the 

bound on the number of mistakes, m, is calculated. Algorithm EBW has an additional step 

1 *, between steps 1 and 2 of BW. In this step EBW checks if there will be enough unevenness 

in the partitions to guarantee that at most m - 1 mistakes will be made. Specifically, it 

computes a new variable, m* that is equal to either m or m - 1. The value of m* is an 

improved upper bound on the worst case number of mistakes. The rest of the algorithm 

stays almost the same, the only difference being that m* is used instead of m in steps 2 and 

3. 

We now describe the computation of m* in step 1". First, the algorithm checks if N -  2k _> 

[ 2m / (_~k) ] '  If  the inequality holds, then it is known from Theorem 5 that the bound cannot 

be improved and m* is set to be m. Otherwise, a reduction of one error might be possible. 

As observed above, the total weight of  any configuration is a multiple of the gcd of the 

weights of the chips. The algorithm computes these common divisors for each of the first 

k configurations 1 < i < k: 

) 
• ' - 1  '" ' \ k - i + l } / "  

It then calculates the initial weight that corresponds to rn - 1 

\_<k/ 

Using these values, the observations given above, and the fact that the algorithm can reduc 

the total weight at each step by at least a factor of two, the algorithm calculates an uppe 

bound on W~_i(I  i) for 1 < i < k: 

v/def { Vi--1} 
= max j E N  : j - = V o m o d A i ,  and j <  2 " 

If Vk <_ 2 m- l -k  then the algorithm can guarantee at most m - 1 mistakes, and m* is s( 

to m - 1. If  the condition does not hold, then m* is set to m. 

It remains to be shown that the number of  mistakes made by EBW is at most rn* and th~ 

no other algorithm can make a smaller number of  mistakes for large enough values of _~ 

The proof of  both of these claims is based on showing the the upper bounds Vi are tigh 

the proof is a direct translation of the proof of  the theorem in section 3 of (Spencer, 1992 
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Appendix B 

Proof of Lemma 1 

Since up(N, k,/3) : (log N + k log { ) / l o g  1+~ we have 

0up(N, k,/3) k up(N, k,/3) 

0/3 /31n 2 + (1 +/3) in ..z 
1 + 0  

2 Note that In 1-~ > 0 since/3 E [0, 1). So the equivalence between (a.) and (b.) is easily 

verified by setting the above derivative to 0, multiplying by/3(1 +/3) in 1--~Z' and solving 

for/3. The equivalence between (b.) and (c.) is obtained by substituting/3 = ~ into 

(b.) and solving for m. To show equivalence between (c.) and (d.) we multiply (c.) by the 

denominator of up(N, k, mk---~_ k). 

Using log 2 = 1 + log(1 - ± )  we get the inequality 
1 +  7,~ k - k m 

m >_ log N _ k log k ( k )  m - k  mlog 1 -  (B.1) 

whose right-hand side equals log N + mH(~). 
Note that 2k < logN + 2kH(½), so m _< logN + mH(-~) for m close to 2k. Since 

H ( ~ )  < 1 for m > 2k, the left-hand side of (B.1) grows faster than the right-hand side 

(as a function of m). Thus there will be exactly one m* where m* = log N + m*H(k-~v). 
From the equivalences it follows that Oup/0/3 evaluated at/3 =/3* = k is 0, and this 

m *  - k  

/3* is the unique minimizer of up(N, k,/3). 

Appendix C 

Proof of Equation (7) 

Suppose for contradiction that the limit in (7) does not hold. 

Since 0 <_ Low(N/, ki)/up(Ni, ki,/3*) < 1, there is a subsequence w' = {(N~, k{)}icN 
LOW(N',k'i) 

of W such that l i m i ~  up(N;,k',0;') converges to some constant less than 1. 

We now consider two cases based on the limiting behavior of k~/log N~ as i ---* oc. 

The first case is when {k~/logN~}i~ N has an accumulation point at 0 or infinity. 

This means that there is an infinite subsequence w" = {(N~', k~')}ie N of co' such that 

l i m i ~  k~'/log N/' = 0 or l i m i ~  k~'/log Y~' = oc. In either case we use the upper 

bound on the function "up" proven in (Cesa-Bianchi, et al., 1995), 

up(N, k,/3*) <_ logN + 2k + 2v/'kln N (C.1) 

to get 

lim Low(N",  k~') 
I I  I I  . I I  

up(N:, & ) 
> lim 

log x [ ' +  2<' 

- logg;'  + 2<' + 
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= lira 1 + 2k~'/log N~' = 1. 

~ 1 + 2k~'/logN~' + 2v/k~'/logN~ ' 

LOW(N/,k'i) 
Since ca" is a subsequence ofcJ this contradicts the assumption that up(N;,k', ,~7,) converges 

to a constant strictly less than 1. 

For the other case we assume that there are positive constants a and b such that 

a < k~/log N~ _< b (C.2) 

for all i. Thus both Nf and k~ go to infinity. For the remainder of the proof we only deal 

with the sequence ca' = {(N[, k~)}~N and thus we can simplify our notation by dropping 

the primes. 

Let m** denote up(Ni, ki,/3~). Recall from Lemma 1 that m~ > 2k~ and that m~' is the 

largest real solution to the equation 

x = l o g N ~ + x H ( ~ ) .  

Similarly, define mi as the largest real solution of the equation 

( )  x - l o g  1 + I n  <k~ x = l o g N i + l o g  <k~ (c.3) 

We will now show that ~ > (2 + ~)k i .  Since l i m i ~  ki = oo, for large enough i 

we have (2 + ~b)k~ < ki/b + 2k~ - 1 - log(1 + (2k~ - 1) ln2). Using logNi > k~/b 
22 ,-1 + and = we obtain (2 + log log 2k~ (1 In (<k,)) for 

sufficiently large i. Next we observe that (a) the right-hand side of equation (C.3) increases 
x 

with x and (b) when x is very large, x is larger than the right-hand side of equation (C.3). 

( Y) )  then z < ~i-Applying Therefore, i fy  < z < l o g N i + l o g ( _ < ~ ) - l o g  l + l n ( < k ,  ' 

this with y = 2ki and z = (2 + ~)ki proves that 

(1) 
~7~> 2 + ~  k~, (C.4) 

when i is sufficiently large. 

Finally, define mi as the maximum of 2ki + log Ni and ~i .  Note that rni is within 1 of 

Low(N.i, ki). As we are interested in asymptotics, we use mi instead of Low(N/, ki). In 

addition, 

mi _< mi _< m~' (C.5) 

and, by (C.1) and (C.2) 

mi<2ki+logNi+2V/~ilnNi<_ki(2+ 1-+2 l x / ~ n 2 a  V/~)  (C.6) 
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Since ki ~ ~z for i --~ ~x~, it follows from (C.4) that mi  --+ oc as well. We now examine 

the asymptotic behavior of  ~ i  in more detail. 

) 

- log Ni + log (<~,) 

( ) [ ( m i ) ]  s i n c e ~  m~ -o(1) l o g N i + l o g  <k~ = l o g N i + l o g  <_ki 

= ( 1 - o ( 1 ) )  l o g N ~ + ~ H  ~ . (C.8) 

1 log m + O(1),  which holds To get (C.8) we use the identity log (~_k) = m g ( k / m )  - -~ 

when m goes to infinity and m / 2 k  is bounded away from both 0 and 1/2 (Graham, Knuth & 

Patashnik, 1989, exercise 9.42). Since ki/~ni is bounded away from both 0 and 1/2 for 

large i (see (C.4) and (C.6)), we have that H(k / ra )  is at least some constant depending 
A 

m i  only on a and log (<k,) = (1 - o(1))~iH(ki /Cni) .  

* T N , *  Let f i (x )  = log Ni + xH(k~ /x ) .  From the definition of m* we know that m i = f i (  i )- 

Equation (C.8) means that for any e > 0 there exists some i, such that for all i > i,, 

~ i ( 1  + e) >_ fi(m~).  Recall that ~ < m~ <_ m*. We need to show that m~ ~ m~'. 

To do this we first uniformly bound the derivatives of the functions f~ (x) in some ranges. 

Notice that f~(x) = log (x / ( x  - k~) ). Thus for all x > 2ki + log N~, 

f [ (x)  < log 
2ki + log Ni < log {1 + 
k~ + log N~ - \ 

1 ) 
l + k i /  log Ni " 

Since k~/log Ni > a we get that f~(x) < 1 - c, for some c > 0 independent of i. 

Using the mid-point theorem, we can lower bound f i  (mi) in the following way: fi  (mi)  = 

fi(m*i) ~ * * Using the bound on the derivative we - f i ( 0 ) ( m  i - mi)  for some mi  < 0 < m i .  

get that 

f i (mi )  >_ f~(m'~) - (1 - c)(m~ - m,)  = c(m~ - mi)  + mi. (C.9) 

On the other hand, ff~i (1 + e) > fi  (~zi), and f~ (x) < I for all x __ 2ki. As mi  _> ~ i  >_ 2ki, 

(see (C.4))  we get that 

f i (mi )  < (1 + e)mi. (C.lO) 

Combining (C.9) and (C.10) we get that c(m'~ - mi) + mi <_ (1 + e)mi.  This implies that 

m * / m i  <_ (c + c)/c. As we can choose E arbitrarily small, we get that m~ ~ m~'. 
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Appendix D 

Proof of Lemma 5 

To prove part 1 

successor triples 

W c t - 1  ( ~ ,  r t, k t) 

= Ct -- 

j=0 J 

r~ + k ' -  i 

j=0  

r ' + k ' - i  

j=0  

ct -- 

j=O J 

r ' + k ' - I  

+ X (  
j=0  

= Ct -- 

j=0 J 

+ ~ '  

j = l  

j=0  

we show, for each triple (S, r ~, U), that the sum of the weights of the 

equals the weight of the original. That is, if the example is xt, yt then 

+ Wc~_l(SZ~'Y',r ' -  1,k') + Wc,_l(S, rt, U -  1) 

1 )  r / - - - k '  

- 1 )  [ (<_Jr ' ) - (<_ J k ' )]  
j j -  

1) [ ( J r , ) - ( <  j _  U _  

J - l )  + [ ( j + l ~  _ ( j + l  ~] 
\ <_ r' J \ 5  j - k'JJ 

1) [(Jr,)-(<_j_k,_ 

To prove part 2 choose a sequence u in E and let s = ((xt, Yt)) be a r-corrupted version 

of u. Let v be the subsequence of s containing all the pairs (xt, Yt) where Cbi n makes 

a mistake by predicting 1 - Yr. Let to be the subsequence of v obtained by deleting the 

examples corrupted by noise. Finally, for each t _> 1 let p(t) <_ t be the number of 

uncorrupted examples in v t (recall that v t is the length t prefix of v), so t - p(t) is the 

number of corrupted examples in v t and top(t) is the sequence obtained from v t by deleting 

the corrupted examples. 

Let C(v t) be the set of (S, r', k') triples in Cbin'S configuration immediately after Cbin 

has seen the sequence v t. Recall that C(v °) = {(Si,~a, r, k)}, and a triple (S, r', k') is 

discarded from the configuration if either r ~ < 0 or U < 0. 

To prove the statement in part 2 of the lemma it suffices to prove the following claim. 

Claim. For each 0 < t < Iv I, there is a triple (S, r', k') C C(v t) such that: 
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1. S is the state of A(wP(t)), 

2. 0 _< k - k '  is the number of mistakes made by A on sequence w p(t), and 

3. 0 < r - # < t - p( t ) ,  the number of corrupted trials in v t. 

Proof of Cla im:  First note that w is a subsequence of  u ,  so A makes at most k mistakes 

on w.  Furthermore, v is a subsequence of  s and s contains at most r noisy examples, so v 

contains at most r noisy trials. Therefore both k - k '  and r - r '  are at least 0. 

We now prove by induction on t that an appropriate triple is in the configuration C(vt). 

For the base case consider t = 0, and recall that p(0) = 0. There is only one triple, 

(Sinit,r, k) in C(v°). Since w ° is the empty sequence, A(w °) = Si~it, and A makes no 

mistakes on sequence w °. Thus all three conditions are satisfied by this triple. 

For the inductive step assume some triple (S, #,  k') E C(v t) satisfies the three conditions 

of  the claim. We now show that either (S, r ' ,  k ')  or one of its successors in C(v t+l) also 

satisfies the claim 

Case 1: the t + 1st trial is a corrupted trial, so w p(t+l) = w p( t ) .  If As agrees with the 

corrupted outcome, then (S, r ' ,  k ~) is also in C(vt+l), and the three parts of  the claim 

continue to hold. If A s  disagrees with the corrupted outcome then (S, r '  - 1, k ' )  is in 

C(v t+l) and since v t+l has one more corrupted trial than v t, the three parts of the claim 

also holds for C(vt+l). 

Case 2: the t + 1st trial is not a corrupted trial, so Vt+l = Wp(t)+l = Wp(t+l). If  As 
predicts correctly o n  W p ( t ) + l ,  then the triple (S, r ' ,  k ' )  remains in the configuration. Also, 

since A is conservative, S = A ( w  p(t)+l) = A ( w  p(t+l)) and the claim holds for C(v t+l). 

If  As predicts incorrectly then so does A(wP(t)). Thus A makes k - k '  + 1 mistakes 

on w p(t+l). Let e be the example Wp(t+l) and thus S ~ is the state A(wP(t+l)). In this 

situation, the triple (S  e, r ' ,  k '  + 1) is in C(vt+l), satisfying the claim. • 

Notes 

1. A similar approach can be taken for learning the best combination of experts, although different forms of the 

weights are used when the loss of the master is to be close to the loss of the best convex (Littlestone, Long & 

Warmuth, 1995) or linear (Cesa-Bianchi, Long & Warmuth, 1993) combination of experts. 

2. The notion of "version space" for learning algorithms was originally introduced by Tom Mitchell in (Mitchell, 

1977). 

3. A weighting scheme based on the sum of binomial coefficients was first introduced bY Berlekamp (1968)- 

4. Expanding each expert into (<k) variants instead of (~<+1) variants (where m is defined as in Figure 1) 

does not lead to the mistake bound of ra stated in Theorem 1. For example, consider the case where there is 

N = 1 expert guaranteed to make at most k = 1 mistake, so m = 1. Assume the expert is expanded into just 

(~k) = 2 variants (one predicting as the expert and one predicting the other way), and the expert is correct on 

the first trial. The master algorithm would see a tie vote and could predict as the variant and make a mistake. 

Now only the (unmodified) expert is consistent, and the master will predict as the expert does. However, this 

expert still has a mistake to make, and thus the master might make a total of two mistakes. Although the 

number of consistent variants has been reduced to one (the original expert), the surviving variant may still 

(m+l"l variants of each expert we guarantee that if only one variant have mistakes to make. By considering \ <k ) 

is consistent, then the expert producing that variant has already made k mistakes (and thus will be correct on 

all future trials). 
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5. In the original algorithm expert E simply votes with weight ~qJ for its own prediction. The more complicated 

voting scheme given in the text is more similar to the voting scheme of the BW algorithm. Both variants of 

the WM algorithm generate the same predictions. 

6. The algorithms predict arbitrarily if the weights are tied. 

7. These values are chosen to make the algebra tractable, rather than indicating a particular region of interesting 

behavior. 

8. An important point is that Carol does not have to "commit" to a specific number x ahead of time. The 

requirement is only that her choice of answers be such that at all times there exists z E { 1 , . . . ,  N}  that is 

consistent with all but at most k of her answers. 

9. In this section we completely ignore the instances xt that are given as inputs to the experts. Because we are 

dealing with worst case lower bounds, we can assume that for any S C_ g, there is always an observation 

x s  E X that causes the experts in S to predict l, and the experts not in ,5' to predict 0. Thus the adversary 

can control the predictions of the experts by choosing the appropriate observation. 

10. In a subsequent paper (Auer & Long, 1994) a randomized variant of their conversion strategy is introduced. 

The worst-case expected number of mistake of their randomized strategy is significantly lower than the worst- 

case mistake bound of (the deterministic strategy) Cbirt. 

11. Recall from footnote D that using c ~ = m can lead to more than m mistakes. 

12. An alternative way of arriving at the same prediction is the following. Given an instance x each triple 

(S, r I, k ~) votes with weight o:-r '13 - k '  for the prediction of A s  on the instance x. The master algorithm 

then predicts with the vote that got the larger total weight. When this method of prediction is used the successor 

configuration has to be computed only when a mistake occurs. 
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