
On-line Scheduling of MPI-2 Programs with Hierarchical Work Stealing

Guilherme P. Pezzi Márcia C. Cera Elton Mathias Nicolas Maillard
Philippe O. A. Navaux

Instituto de Informática – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{pezzi, mccera, enmathias, nicolas, navaux}@inf.ufrgs.br

Abstract

MPI (Message Passing Interface) is thede factostan-
dard in High Performance Computing. By using some MPI-
2 new features, such as the dynamic creation of processes, it
is possible to implement highly efficient parallel programs
that can run on dynamic and/or heterogeneous resources,
provided a good schedule of the processes can be computed
at run-time. A classical solution to schedule parallel pro-
grams on-line is Work Stealing. However, its use with MPI-
2 is complicated by a restricted communication scheme be-
tween the processes: namely, spawned processes in MPI-2
can only communicate with their direct parents. This work
presents an on-line scheduling algorithm, calledHierarchi-
cal Work Stealing, to obtain good load-balancing of MPI-
2 programs that follow a Divide & Conquer strategy. Ex-
perimental results are provided, based on a synthetic appli-
cation, the N-Queens computation. The results show that
the Hierarchical Work Stealingalgorithm enables the use
of MPI with high efficiency, even in parallel dynamic HPC
platforms that are not as homogeneous as clusters.

1 Introduction

Most of today’s high-performance architectures aggre-
gate heterogeneous resources, with different levels of par-
allelism: multi-core processors share a common memory
in a node, and different nodes are interconnected by pos-
sibly different, hierarchical networks. Programming such
machines is a challenging task: portability must be achieved
by the use of state-of-the-art libraries or languages, in order
to evolve at the same pace as the architectures. On the other
hand, high-level languages do not provide the expected per-
formance on HPC machines.

TheMessage Passing Interface(MPI) [8, 16] is a recog-
nized standard for HPC programming in a distributed mem-
ory environment. The MPI-2 norm [9] has added new fea-
tures to MPI like dynamic processes creation, remote mem-
ory access and parallel I/O. With MPI-2, it is possible to im-

plement dynamic applications which adapt, at run-time, to
heterogeneous or dynamic resources in the computing plat-
form.

Many projects have proposed other programming inter-
faces or languages, with dynamic adaptation to the under-
lying architecture. One of the key features is the control
of the parallelism,i.e. of the number of tasks that may
be run concurrently (depending of the architecture and of
the language, a task may be run by a heavy process or
by a thread). A major proposal to that end is to use a
recursive-like programming model, for instance Divide and
Conquer (D&C). Besides its algorithmic interest (see for in-
stance [4]),D&C allows to adapt the degree of parallelism
since recursive calls may easily be performed in parallel
or be run sequentially, on-demand, in function of the pro-
cessing resources [7]. Languages that use this approach
include Cilk [1] for shared-memory systems and based on
C; Satin [17], a Java extension which runs on distributed-
memory clusters of clusters; and Charm++ [12], a C++ in-
terface for parallel programming. Yet, they either are lim-
ited to shared-memory systems, either do not provide per-
formances as good as MPI.

The parallel performance ofD&C programs relies on the
scheduling algorithm. Theoretical and practical results have
shown that suchD&C programs can be efficiently sched-
uled, at run-time, byWork Stealing[2]. Work Stealingcan
be seen as a distributed version of list-scheduling. It implies
that the processors, when they are idle, may steal tasks from
any randomly chosen victim processor. However, MPI-2
does not allow a spawned process to communicate with a
process other than its parent (the one that spawned it) or its
children. Thus, using MPI-2 to implementWork Stealingis
not a trivial task.

This article proposes a variation ofWork Stealing, called
Hierarchical Work Stealing, suited to MPI-2 implementa-
tions of dynamic parallel programs.Hierarchical Work
Stealinggeneralizes Satin’s scheduling algorithm by using
a tree-like hierarchy ofmanager processesthat route the
stealing requests. The results that are presented show that
this generalization allows to improve the run-time of a dy-

1

namic parallel program by removing the bottleneck on the
tasks list. This on-line scheduling algorithm also enables
the efficient use of a dynamically increasing platform.

The article is structured as follows: the section 2 de-
tails how dynamic parallel programs can be obtained with
D&C, as well as some parallel programming environments
that support it. Then, Sec. 3 presents the main contribution,
the Hierarchical Work Stealingscheduling algorithm, that
is usable with MPI-2D&C programs. In the next section,
an experimental study is performed with timings that show
the performance of such MPI implementations and the im-
pact of the hierarchical tree of managing processes on the
global run-time. Finally, Sec. 5 sums up our contribution
and points to future work.

2 Dynamic Parallel Programs

One of the main techniques to unfold parallelism in an
application at run-time is Divide and Conquer. Subsec-
tion 2.1 details it and lists theoretical arguments and real
implementations that justify its use. The scheduling of the
processes that are created during the “divide” phase is usu-
ally computed byWork Stealing, which has been shown to
be the best possible solution. Subsec. 2.2 explains this al-
gorithm.

2.1 Parallel D&C Programs

Given an instance of a problem,D&C consists in parti-
tioning it recursively inδ sub-problems until its resolution
turns to be trivial. Each partial solution has then to be
merged with the other one(s) in order to aggregate the
results into the output of the initial problem. Thus, it can be
formally described (here forδ = 2) as:

Solution(i):

if trivial(i) → direct(i)

else→ merge

(

Solution(part1(i)),
Solution(part2(i))

)

When more than one processors are available to run a
parallel D&C program, two characteristics of this model
grant a good efficiency:

1. Since the algorithm is recursive, the depth of the call
tree is a logarithm of the size of the input. If there are
enough processors to execute all tasks of a given depth
of the tree, the run-time will be logarithmic. When
the number of processors is bounded by a polynomial
of n, the problem belongs to the NC class of “highly
parallel” problems [11, 13]. It is for instance the case
of various sorting algorithms, of the computation of
the prefix, or of the iterated sum. Notice that the time
complexity is logarithmic only if the merge operation
can also be performed efficiently in parallel.

2. Since there is recursive division in sub-problems, each
division offers the option to be run by a separate thread
(or process), or to be performed as a sequential, re-
cursive function call. Thus, the exact degree of paral-
lelism in the algorithm can be controlled.

In that sense, the parallelD&C program is adaptive to
a dynamic and heterogeneous environment.

Many parallel programming environments have been de-
signed to offer such aD&C programming model to users.

Charm++ [12] is a parallel programming environment
which is not restricted to, but supports, theD&C model.
The programmer can use a C++ API to define the sequen-
tial tasks, as well as their input and output parameters, with
a special object calledchare. On top of Charm++, the user
can use Adaptive-MPI (AMPI) [10], an implementation of
MPI with possibilities of dynamic load balancing. How-
ever, providing adaptability to any MPI program implies a
relevant overhead in the portability layer. The approach in
this paper is to limit the programming model toD&C, to
avoid the need of a middleware such as Charm++ and to
use pure MPI programming.

Cilk [1] has been developed in the MIT and increases
the C language with three keywords:(i) cilk, inserted in
front of a function, declares it as “spawnable”,i.e. asyn-
chronously executed.(ii) spawn, before a call to acilk
function, will dynamically create a new execution flow to
execute the function.(iii) sync forces a synchronization
between a parent task and its children. The combined use of
spawn andsync implies that the programmer uses aD&C
model. A compiler, provided by the Cilk team, transforms
the C code and these three keywords into a threaded code.
Cilk has been used to obtain very efficient codes for SMP
architectures. One of its major results has been the chess
program called Socrates [5], which won a prize. The main
limitation of Cilk is its lack of an efficient implementation
for distributed architectures.

Satin [17, 19] is, to our best knowledge, the only envi-
ronment that supports adaptability in the sense that has been
defined above on a large scale distributed platform. It is a
Java implementation of the Cilk model, that provides an ef-
ficient distributed implementation of Java. In [19], reports
are given of efficient executions of severalD&C bench-
marks and applications, including theN -Queens program
that is used for our validation in Sec. 4.

2.2 Scheduling D&C Parallel Programs
with Work Stealing

Closely related toD&C parallel programs,Work Steal-
ing has been devised by Blumofe and Leiserson [2] as an
efficient distributed algorithm to maintain the balance of
the load. Each processor maintains a deque (doubly ended

2

queue): when a new task has to be computed, it is pushed
on top of the deque. When a processor gets idle, it pops a
task to process from the top of the deque. If it is empty, then
the processor issues a stealing request, aimed at a randomly
chosen victim processor. When a processor receives such a
stealing request, it pops a task from the bottom of its deque,
to send it to the stealing processor.

The authors mentioned above proved thatWork Stealing
is efficient in a homogeneous environment, both in time and
in space, forstrict computations, i.e. those where no task
is executed before its parents have been executed.D&C
programs belong to this category. The proof relies on the
random choice of the victim and on the homogeneous dis-
tribution of the stealing requests that this implies.

Satin’s team proposed a variation of standardWork Steal-
ing in [19], to be efficient in a cluster of cluster with hetero-
geneous network. In this case, a processor can either try to
steal another one in the same, local cluster, or in a remote
one. In Satin’s two-levelWork Stealing, a processor which
has to steal tasks first issues a non-blocking stealing attempt
to a processor in a remote cluster. In parallel, it tries to steal
other tasks from processors in its local cluster. The first an-
swered request is served. Usually, it is the local one, but the
other request still get processed, and eventually the stealer
will receive some tasks to process from a remote cluster,
without having had to wait idly for it. In simulations and
experimentations, this version ofWork Stealinghas proven
to be more efficient than a random choice of the victim in
an environment with heterogeneous network connection.

The dynamic creation of processes in MPI-2 can be used
to implement parallel applications that spawn processes on
the fly. Such MPI-2 programs, following theD&C model,
should be scheduled byWork Stealing. Next section shows
how this can be achieved.

3 Scheduling D&C MPI-2 Programs with Hi-
erarchical Work Stealing

A classical MPI program is executed with a fixed number
of processes, defined before the execution. With MPI-2, the
MPI Comm spawn procedure enables the spawning of an-
other MPI program during the execution of a MPI process.
These newly spawned processes may communicate by mes-
sage passing (e.g. with standard Send/Receive), with their
parent and their children processes. A previous work [3]
has shown how to schedule, at run-time, these spawned pro-
cesses, with a centralized daemon. Pezziet al. [15] showed
how to programD&C applications with MPI-2. This sec-
tion explains how aD&C program implemented with MPI-
2 can be scheduled on-line byWork Stealing.

3.1 Using Work Stealingwith MPI

With MPI, the main problem is that the processes can
only communicate if they have a parent/child relationship.
Namely, the message passing is possible between processes
that share an Intercommunicator, which is initialized by
the MPI_Comm_spawn call. One solution would be to
merge all the processes in the same communicator with
MPI Intercomm merge. Yet, this would mean a collec-
tive synchronization, at each creation of a process.

Since collective synchronization should be spared, an-
other way to implementWork Stealingin MPI is as follows:
a tree hierarchy of processes (calledmanagement processes,
or managers) is built, which will be in charge of the tasks
deques and of routing the stealing requests. Letδ be the
number of branches of each node in the management tree,
andd be its depth. Each manager of depthd spawnsl leaf
processes, which will be in charge of computing the tasks.

A leaf process that does not have any task to run issues
a stealing request to its parent. Either the parent (which isa
management process) has some tasks in its deque to send to
the leaf; either it has not, and then it forwards the request to
its own parent. This routing of the requests does not respect
the uniform distribution of the stealing requests, that is akey
for the good theoretical properties ofWork Stealingin Blu-
mofe’s work. On the other hand, it is a generalization of the
two-levels request that Satin’s group proposed and respects
the parent/child communicators of MPI. This variation of
Work Stealingis calledHierarchical Work Stealing.

The number of tasks to be sent (if there some) from a
manager to its child is a parameter that can be set; in the
following discussion it is supposed to be set to 1.

The size of the management tree is determined by the
user in function of the topology of his executing environ-
ment. There are1 + δ + . . . + δd−1 = δd

−1

δ−1
managers and

lδd−1 leaves. Setting the number of leaves equal to the num-
berp of processors, one getslδd−1 = p, and therefore the
number of managers ispδ−l

lδ−l
(Sec. 4.4 shows the influence

of this factor).

3.2 The Hierarchical Work StealingAlgorithm

The Hierarchical Work Stealingalgorithm starts as
shown in Algorithm 1. In all algorithms,this is sup-
posed to return an identifier of the running process.ROOT
is the first process to be run, the others being recursively
spawned by it. The deque data-structure provides the meth-
odsempty(), push(), size() andpop().

In Algorithm 1, one process starts executing and if it is
a leaf process, it just has to receive the tasks from it par-
ent, process them and return the partial result; then, it exits
(lines 3–6). Else, the process pushes on its deque all the
tasks, and gets the list of available processors (the depth

3

d of the management tree will be controlled by the num-
ber of available processors); if the process isROOT, it has
to obtain this information by the O.S. and the launcher of
the program (lines 9–10); in the other case, it receives the
tasks and the list of processors from its parent (lines 12–14).
Then, it calls the creation of managers or leaves depending
of the numberπ of available processors. Both functions
create-managers and create-leaves (presented
below) will eventually spawn new processes, that will re-
cursively run the same algorithm 1. However, since they
will not beROOT, they will receive tasks from their parent
(line 12), push them on their deque and receive the list of
processors. Then, they proceed with the recursive behav-
ior of callingcreate-managers or create-leaves
(the latter will end the recursion, see Algorithm 3).

In all the cases, the process will finally either return the
total result of the computation if it is theROOT, either sim-
ply send its partial result to its parent. The corresponding
receive is issued in thecreate-managers below (Algo-
rithm 2, line 6). After this send, the process exits.

Notice that therecv in this algorithm must deal with
messages of unknown size. They can be implemented with
MPI as a sequence of two messages, a first one that indi-
cates the number of elements to be received in the second

Algorithm 1 HierarchicalWork Stealingfor MPI.
1: Input: an integerπ.
2: Output: the result of the program.
3: if this == leafthen
4: recv(parent, tasks)
5: part-res = Compute(tasks);
6: send(parent, part-res);
7: else
8: if this == ROOTthen
9: deque.push(newtasks);

10: Processors-l = getProcessorsList();
11: else
12: recv(parent, tasks);
13: deque.push(tasks);
14: recv(parent, Processors-l);
15: end if
16: if Processors-l.size()> π then
17: create-managers();
18: else
19: create-leaves();
20: end if
21: if this == ROOTthen
22: return(result);
23: else
24: send(parent, part-res);
25: end if
26: end if

message.
Algorithms 2 and 3 present the (recursive) cre-

ation of managers (create-manager) and leaves
(create-leaf).

Algorithm 2 Creation of Management Processes (create-
manager).

1: for i = 1 . . . δ do
2: spawn(child[i]);
3: tasks = deque.pop();
4: send(child[i], tasks);
5: send(child[i], processor-l);
6: irecv(child[i], part-res);
7: end for
8: live-children =δ;
9: while live-children> 0 do

10: wait-any();
11: if part-res.tag == ENDthen
12: live-children - - ;
13: end if
14: if ! deque.empty()then
15: tasks = deque.pop();
16: send(part-res.src, tasks);
17: irecv(part-res.src, part-res);
18: else
19: if father-has-tasksthen
20: send(parent, part-res);
21: recv(parent, tasks);
22: if tasks.size> 0 then
23: deque.push(tasks);
24: else
25: father-has-tasks = false;
26: end if
27: end if
28: end if
29: end while

In Algorithm 2, the running process first spawnsδ chil-
dren (line 2) and gets a reference on each one of them, that
will be used to communicate (actually, this is implemented
with the intercommunicator mechanism of MPI-2). Notice
that this procedurecreate-manager will be called only
when management processes must be spawned.

The manager sends to each child some tasks of its deque
(lines 3–5) and starts receiving any partial result that may
arrive. It then enters into a loop (line 9), waiting for any in-
coming message that could have been received by the non-
blockingirecv of line 6. Thewait-any call of line 10
blocks until receiving whatever MPI non-blocking message
(from any source). When a process ends up with its tasks,
it sends a message with the partial results that it has com-
puted if it is a leaf process, or received from its children if
it is a management process, to its parent (see Algorithm 3,

4

line 21). This message has a tagend. The parent man-
ager, upon receiving a message with tagend (line 11 of
Algorithm 2), updates the number of live children that re-
main. In all other cases, a received message is a stealing
request, which is treated in lines 14–17: if there is still tasks
to be processed in the deque of the manager, then one is
sent to the process which asked for work (as informed in
themsg.src field of the received message). Else, the steal
request will be forwarded to the parent of the management
process (lines 19–27). When the own parent does not have
any task left in its queue, and since the stealing requests are
always routed bottom-up, and then answered fromROOT
down to the leaves, there can not be any more task available
up to theROOT process. At this point the manager just waits
for the results from its children which are already executing,
sends the merged results to its parent and finalizes.

The variableprocessors-l of line 5 (in Algorithm 2)
is the list of processors that the process is managing. It is
initialized by theROOT, which sends it to each manager. It
controls the recursive creation of managers or leaves.

Algorithm 3 Creation of Leaf Processes (create-leaf).
1: live-children = 0;
2: local-result = 0;
3: for i ∈ processors-ldo
4: spawn(child[i]);
5: live-children++ ;
6: tasks = deque.pop();
7: send(child[i], tasks);
8: irecv(child[i], part-res);
9: end for

10: while live-children> 0 do
11: wait-any();
12: local-result += part-res;
13: live-children– ;
14: task = deque.pop();
15: if task !=∅ then
16: spawn(child);
17: live-children++ ;
18: send(part-res.src, task);
19: irecv(part-res.src, part-res);
20: if father-has-tasksthen
21: send(parent, local-result);
22: recv(parent, tasks);
23: if tasks.size> 0 then
24: deque.push(tasks);
25: else
26: father-has-tasks = false;
27: end if
28: end if
29: end if
30: end while

In thecreate-leaf procedure (Algorithm 3), the cur-
rent process starts spawning one child process by proces-
sor. Each child is now a leaf process. The current process
sends to each child a task to be processed and issues a non-
blocking reception of some partial result. When it receives
a partial result, it aggregates it to other that may have been
previously received inlocal-result. Since partial re-
sults that have been received mean that the leaf process is
done with his tasks (and has exited, see Algorithm 1), the
current process spawns a new leaf (line 16), pops a task and
sends it to the leaf, if it is not NULL (i.e. if its deque was not
empty). When sending the task, it tests if its deque is now
empty, in order to issue a steal request to its parent (lines
20–28) if necessary.

TheHierarchical Work Stealingalgorithm has been im-
plemented and tested on a synthetic application. The next
section gives practical insights on its effective performance.

4 Experimental Evaluation of a Dynamic
MPI-2 Application Scheduled by Hierar-
chical Work Stealing

The performance of a dynamic MPI program, scheduled
by Hierarchical Work Stealing, is demonstrated in this sec-
tion. In 4.1, theN -Queens application is quickly presented.
Then, Sec. 4.2 presents timing results for theN -Queens
program and compares the run-time of the MPI adaptive
implementation with Satin’s, on a 20 nodes cluster. Sec. 4.3
presents its behavior in a dynamic environment: during the
execution of the program, new processors are included. As
expected, the MPI dynamic program reacts well andHierar-
chical Work Stealingschedules new spawned processes on
the new resources. Finally, Sec. 4.4 illustrates the main in-
terest ofHierarchical Work Stealing: by adapting the num-
ber of manager processes (i.e. the depth of the management
tree), the load balance improves and the run-time gets lower.

4.1 The Test Application: N-Queens

TheN -Queens problem consists in placingN queens on
aN ×N chessboard, in such a way that no queen may cap-
ture any other. That is to say, one has to find all the board
configurations in which there exists at most one queen in
a given row, column or diagonal. Although direct applica-
tions of theN -Queens problem are limited, this problem
is often used as a benchmark because it represents a large
class of problems, known as Constraint Satisfaction Prob-
lems (CSPs) [14].

The standard backtracking algorithm used to solve the
N -Queens problem consists in placing recursively and ex-
haustively the queens, row by row. With MPI, each place-
ment consists in a new spawned task. The algorithm back-
tracks whenever a developed configuration contains two

5

queens that threaten each other, until all the possibilities
have been considered. A maximum depth is defined, in or-
der to bound the depth of the recursive calls.

4.2 Performance of MPI vs. Satin

In this section, the performance of the MPIN -Queens
program is compared to a Satin implementation.

The sameD&C algorithm has been implemented in both
MPI and Satin. First, the constant overhead due to Java
(in Satin) should be evaluated, when compared to the MPI
implementation. Table 1 presents the run-times of each one
of the two implementations, executing on one processor, for
different sizesN of the problem.

MPI run-time (sec.) Satin run-time (sec.)
N Average Std. Dev. Average Std. Dev.

16 11.31 0,01 15.74 0.01
17 76.79 0,28 108.75 0.06
18 552.88 0.14 790.75 0.42
19 4252.88 0.57 6085.02 0.38

Table 1. Run-time of the N -Queens program
with MPI-2 vs. Satin in the sequential case.

As can be seen, in all sequential executions, Satin is sub-
stantially slower than MPI, as expected. This is because of
this overhead that MPI is a clear interesting solution if it can
be used to implement and schedule dynamic programs.

All further parallel executions have been made on a
Linux cluster of 20 nodes bi-processors Pentium III. Each
program has been run 5 times and the mean run-time is pre-
sented. The standard deviation has been small enough to
consider the mean to be relevant. Figure 1 presents the gain
of run-time with the MPI implementation ofN -Queens, for
N = 18, expressed as a percentage of the run-time of the
Satin implementation, when the numbern of computing
nodes increases:1 − TMPI(n)/TSatin(n).

In the parallel executions, the MPI program has never
been slower than the Satin one. In this configuration, the
sequential run-time is around 265 sec. with MPI, and 400
sec. for Satin. On 20 nodes, MPI runs in 18.2 sec.,vs.
26.7 sec. for Satin. Actually, when the sizeN of the prob-
lem increases, MPI turns out to outperform Satin even more.
Thus, forN = 20, MPI solved theN -Queens problem in
846.1 sec.,vs.1604.6 sec. for Satin (gain of 47.3 %).

As can be seen, the MPI implementation is consistently
faster than Satin; but this gain actually comes from the se-
quential overhead measured in the former table: forN =
18, it constantly remains around 30%. The interest in this
comparison is to show that the MPI program, scheduled by

 0

 5

 10

 15

 20

 25

 30

 35

 40

M
P

I−
2

tim
e

ga
in

 o
ve

r
S

at
in

 (
%

)

Number of Nodes
1 4 8 12 16 20

Figure 1. Run-time gain of the N -Queens pro-
gram with MPI-2 over Satin.

Hierarchical Work Stealing, is as scalable as the Satin im-
plementation (up to 20 nodes, 40 CPUs), already known to
be scalable in real Grid environments [18].

4.3 Scheduling a MPI Program in a Dy-
namic Environment

Figure 2 shows the behavior of theN -Queens applica-
tion, scheduled byHierarchical Work Stealing, with N =
18, implemented with MPI. In this experiment, new proces-
sors are dynamically added to the processing environment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
um

be
r

of
 p

ro
ce

ss
es

Time (min)
1 2 3 4 5

Figure 2. Number of processes on proces-
sors vs. time during an execution of N -
Queens with MPI. Each minute, a new node
is added. The new processes are scheduled
on-line on the new nodes due to Hierarchical
Work Stealing.

6

In the experiment, LAM’slamgrow facility has been
used, in order to add a new processing node (made of 2
CPUs) each minute. The bar diagram shows how many pro-
cesses are run on each CPU, as a function of the time: at the
beginning, all processes are run on the only node available.
During the first minute, only one bar appears, which shows
that all the 11 processes are run on one node. Each time that
a 2-CPUs node becomes available, theN -Queens programs
adapts itself by spawning new processes that are scheduled,
on-line, byHierarchical Work Stealingon the newly avail-
able CPUs, thanks to the stealing requests that are issued.
For instance, in the third minute of the execution, 5 CPUs
are used with different numbers of processes running on
each one. At the end of the computation, all the CPUs of
the 5 nodes are running processes of theN -Queens compu-
tation. Since no migration is allowed, the initial nodes run,
until the end, more processes than those that were added
later on. Yet, this experiment shows that the MPI program
adapts itself to the appearance of new nodes in the comput-
ing environment.

4.4 Performance vs.. Number of Managers
in Hierarchical Work Stealing

The Hierarchical Work Stealingalgorithm enables to
choose the number of management processes and their
topology: for instance, it can build a flat tree with only one
manager, which balances the load betweenn leaves. When
a leaf gets idle, it will ask the centralized manager for more
tasks. This centralized strategy clearly leads to a bottleneck.
It is also possible to increase the depth of the management
tree and change the degreeδ of each management node to
manage the same number of processes as in the centralized
solution, yet without bottleneck.

Clearly, The performance of theHierarchical Work
Stealingalgorithm depends of the granularity: the finer the
grain, more tasks there will be to balance the load and the
better the result. With coarse tasks, the processors do not
have much opportunities to steal work from other. In this
evaluation, the granularity has been fixed to two tasks by
stealing request. The study of the impact of the granular-
ity on theHierarchical Work Stealingalgorithm is left for
another article.

Figure 3 shows the execution time ofN -Queens, for
N = 19, with different numbers of managers, on a 20 nodes
(dual) cluster. Each measure is the mean of 10 executions,
and the standard deviation is represented in the graph. As
in previous experiences, it is insignificant.

Using the notations of Sec. 3.1, withp = 40 = 23 ×
5 and sincel, δ, d are integers, the choices are limited for
these parameters. Table 2 indicates the possibilities and the
corresponding number of managers (pδ−l

lδ−l
).

As can be seen,1, 3, 5, 6, 7, 9, 11, 15, and21 managers

 100

 125

 150

 175

 200

 225

 250

 0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
.)

Number of managers

Figure 3. Run-time of the N -Queens MPI pro-
gram, with 40 CPUs, vs. number of managers
in Hierarchical Work Stealing.

Depth Nb of managers
d l δ

1 40 0 1
2 20 21
4 10 11

2 8 5 6
5 8 9
10 4 5
20 2 3

3 2 10 7
4 5 2 15

Table 2. Tree hierarchy and number of man-
agers for p = 40 processors.

can be obtained with different topologies for the manage-
ment tree. Other values can be obtained if the tree is not to-
tally balanced. Fig 3 has been obtained, with these values,
of with depth 2 but an adapted numberl of leaves. Fig. 3
clearly shows the decreasing run-time when the number of
managers increases. The worst case is the flat hierarchy
with only 1 manager (centralized management of the steal
requests). An interesting point is that a limited number of
managers (5) already lowers significantly the run-time. No-
tice also that the experimental platform only included 40
CPUs: on hundreds of nodes,Hierarchical Work Stealing
with more managers should do even better.

To sum this section up, the MPID&C implementation
of N -Queens is adaptable to a growing number of CPUs,
thanks toHierarchical Work Stealing; its global run-time
outperforms the Satin implementation on a distributed plat-

7

form, as expected from MPI, yet remains as scalable. Fi-
nally, the use of a hierarchical scheme to manage the steal-
ing requests allows for a clear improvement in the run-time
of the application, when compared to a centralized load bal-
ancing scheme, or to non-hierarchical Work Stealing.

5 Conclusion: Contribution and Future
Work

This article has presented how theD&C parallel model
andWork Stealingcan be used to obtain dynamic, efficient
MPI-2 programs. TheWork Stealingalgorithm has had to
be adapted, to use a hierarchical routing of the stealing re-
quests along the process tree. For an instance of such a
program, the response to a changing environment, the qual-
ity of the load balance and the overall timing performance
have been shown to be good, and anyway better than the
Satin implementation, one of the references in Java-based
distributed computing environments for Grid and Clusters.
The use of a hierarchical scheme inHierarchical Work
Stealingallows to avoid bottlenecks, thus improving even
more the run-time.

These programming techniques have been proposed in
other environments, yet their effective use in MPI, in a
dynamic context, allows new high-performing code to be
easily developed. We think that this parallel programming
model should be fostered in MPI and used with HPC tra-
ditional applications. OurD&C MPI implementation of
N -Queens is very generic and can be generalized to any
D&C application. It can be applied for instance to Branch
& Bound problems, to sorting algorithms, to Game Theory
(e.g. chess), or to Scientific Computations. The LU fac-
torization or the matrix product are both part of the bench-
marks of Cilk and Satin. Since the best known algorithms
for these operations are block-recursive [6], they are well
suited to this parallel programming model.

One of the most interesting possibilities to continue this
work is to explore the control of the parallelism, in function
of the resources that can be dynamically integrated in the
environment: for instance, instead of spawning a MPI pro-
cess, a light-weight process could be launched. Another im-
portant study would be the impact of the hierarchical rout-
ing of the stealing requests on the mean number of steals.

Acknowledgement: this work has been partially sup-
ported by CAPES scholarships.

References

[1] R. Blumofe and et al. Cilk: An efficient multithreaded run-
time system. InPDOPP’05, pages 207–216, 1995.

[2] R. D. Blumofe and C. E. Leiserson. Space-efficient schedul-
ing of multithreaded computations.SIAM Journal on Com-
puting, 27(1):202–229, 1998.

[3] M. C. Cera, G. P. Pezzi, E. N. Mathias, N. Maillard, and
P. O. A. Navaux. Improving the Dynamic Creation of Pro-
cesses in MPI-2. InLNCS - 13th European PVMMPI Users
Group Meeting, volume 4192/2006, pages 247–255, Bonn,
Germany, Set. 2006.

[4] T. H. Cormen, C. E. Leiserson, and R. L. R. ans Clif-
ford Stein. Introduction to Algorithms. The MIT Press,
second edition, 2001.

[5] D. Dailey and C. E. Leiserson. Using Cilk to write multi-
processor chess programs.The Journal of the International
Computer Chess Association, 2002.

[6] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy,
L. Torczon, and A. White. Sourcebook of Parallel Com-
puting. Morgan Kaufmann, first edition, 2003.

[7] I. Foster. Designing and Building Parallel Programs.
Addison-Wesley, 1994.

[8] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, Cambridge, Massachusetts, USA, oct 1994.

[9] W. Gropp, E. Lusk, and R. Thakur.Using MPI-2 Advanced
Features of the Message-Passing Interface. The MIT Press,
Cambridge, Massachusetts, USA, 1999.

[10] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. InPro-
ceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2003), LNCS
2958, pages 306–322, College Station, Texas, October 2003.

[11] J. Jaja. An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.

[12] L. Kalé and S. Krishnan. CHARM++: A Portable Concur-
rent Object Oriented System Based on C++. In A. Paepcke,
editor, Proceedings of OOPSLA’93, pages 91–108. ACM
Press, September 1993.

[13] R. M. Karp and V. Ramachandran. Parallel algorithms
for shared-memory machines. InHandbook of Theoretical
Computer Science, chapter 17, pages 871–941. Elsevier Sci-
ence Publishers, 1990.

[14] V. Kumar. Algorithms for constraint-satisfaction problems:
A survey.AI Magazine, 13(1):32–44, 1992.

[15] G. P. Pezzi, M. C. Cera, E. N. Mathias, N. Maillard, and
P. O. A. Navaux. Escalonamento dinâmico de programas
mpi-2 utilizando divisão e conquista. InVII Workshop em
Sistemas Computacionais de Alto Desempenho, pages 71–
79, Ouro Preto, Brazil, Oct. 2006.

[16] M. Snir and et al.MPI: the Complete Reference vol. 1 and
2. The MIT Press, 1998.

[17] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Satin:
Efficient Parallel Divide-and-Conquer in Java. InEuro-Par
2000 Parallel Processing, number 1900 in LNCS, pages
690–699, Munich, Germany, aug 2000. Springer.

[18] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann,
and H. E. Bal. Satin: Simple and efficient java-based grid
programming. InAGridM 2003 Workshop on Adaptive Grid
Middleware, New Orleans, Louisiana, USA, 2003.

[19] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, T. Kiel-
mann, and H. E. Bal. Adaptive load balancing for divide-
and-conquer grid applications.J. of Supercomputing, 2006.

8

