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On-Line Scheduling to Maximize Task Completions 

Sanjoy K .  Baruah* 
The University of Vermont 

Jayant Haritsa and Nitin Sharma 
Indian Institute of Science 

Abstract 

The problem of uniprocessor scheduling under con- 

ditions of overload is investigated. The system objec- 

tive is t o  niaxinizze the number of tasks that complete 

b y  their deadlines. For this performance metric it zs 

shown that, in general, any on-line algorithm may per- 

form arbitrarily poorly as compared t o  a clairvoyant 

scheduler. Restricted znstances of the general problern 

for  whzch on-line schedulers can provide a guaranteed 

level of performance are identified, and on-line algo- 

rithms presented for these speczal cases. 

1 Introduction 

A primary objective of safety-uitical real-time sys- 

tems is to meet all task deadlines. To achieve this 

goal, system architects typic,ally attempt to anticipate 

every eventuality and design the system to handle 

all of these situations. Such a system would, under 

ideal circumstances, never miss deadlines and behave 

as expectred by the system designers. In reality, how- 
ever, unanticipated emergenc.y conditions may occur 

wherein the processing required to handle the emer- 

gency exceeds the system capacity, thereby resulting 

in missed deadlines. The system is then said to be 

in ovcrload. If this happens, it is important that the 

performance of the system degrade gracefully (if at  

all). A system that panics and suffers a drastic, fall in 

performance in an emergency is likely to contribute to 

the emergency, rather than help solve it. 

Scheduling algorithms that work well under normal 

(non-overloaded) conditions often perform miserably 

upon overload. Consider, e.g., the Earliest Deadline 

scheduling algorithm [9], which is used extensively in 
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uniprocessor real-time systems. This algorithm, which 

preemptively processes tasks in deadline order, is opti- 

mal under non-overloaded conditions in the sense that 

it meets all deadlines whenever it is feasible to do 

so [4]; however, under overload, it has been observed 

to perform worse than even random scheduling [7, 61. 

System Model. We adopt the “firm-deadline” real- 

time model [5] in this study. In this model, only 

tasks that complete execution before their deadlines 

are c.onsidered to be successful; tasks that miss their 

deadlines are considered worthless and are immedi- 

ately discarded without being executed to completion. 

Each input task T is independent of all other tasks 

and is completely characterized by three parameters: 

T.a (the request t ime) ,  T.e (the execution require- 

men t ) ,  and T .d  (the relative deadline). The task’s ab- 

solute deadline is represented by T.LI 2f (T.a  + T . d ) .  

The interpretation of these pararneters is that task 

T ,  for successful completion, needs to be alloc,ated 

the processor for T.e  units of time during the inter- 

val [T.a,T.D).  We assume that the system learns of 

a task’s parameters only at the instant when it makes 

the service request. There is no a priora bound on 

the number of tasks that may make requests. Tasks 

may be preempted a t  any stage in their execution, and 

there is no cost associated with such preemptions. 

We focus our attention here on the study of over- 

load in uniprocessor systems. Our goal is to compare 

the performance of on-line algorithms - algorithms 

that make scheduling decisions a t  run time with no 

prior knowledge about the occurrence of future events 

- against that of an optimal off-line (or clairvoyant) 

algorithm. We will refer to the ratio of the worst-case 

performance of an on-line algorithm with respect to 

an optimal off-line algorithm as the coiupetitiwe factor 

of the on-line algorithm. 

Overload performance Metrics. For the firm- 

deadline uniprocessor model, two cont,ending measures 
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of the "goodness" of a scheduling algorithm under 

conditions of overload are effective processor uti- 

lizatiou (EPU) and completion count (CC). In- 

formally, EPU measures the amount of time during 

overload that the processor spends on executing tasks 

that complete by their deadlines, while CC measures 

the number of tasks executed to completion during 

the overloaded interval. Which measure is appropri- 

ate in a given situation depends, of course, upon the 

application. For example, EPU may be a reasonable 

measure in situations where tasks ("customers") pay 

at a uniform rate for the use of the processor, but are 

billed only if they manage to complete, and the aim 

is to maximize the value obtained. By contrast, CC 
may make more sense when a missed deadline cor- 

responds to a disgruntled customer, and the aim is 

to keep as many customers satisfied as possible. Of 

course, many real-life applications are best modeled 

by modifications to these measures, or perhaps even 

some combination of them. 

Performance Results. With respect to the EPU 

metric, it has been proved that no uniprocessor on-line 

scheduling algorithm can guarantee an EPU greater 

than 25 percent under conditions of overload [3, 21. 

This bound has also been shown to be tight [2, 81. 

These results hold in the general case, when the dead- 

lines of the input tasks may be arbitrarily "tight" or 

stringent. Recently, the effect on EPU in environ- 

ments where there is a limit on the stringency of task 

deadlines has been studied [l]. 

In this paper, we turn our attention to studying the 
impact of overload when CC (completion count) is 

the measure of scheduler performance. To the best 

of our knowledge, this is the first work to study this 

metric in the context of on-line overload guarantees. 

For this metric, we prove that in the general case, any 

uniprocessor on-line algorithm can be made to per- 

form arbitrarily worse than a clairvoyant (or off-line) 

scheduler; that is, no on-line algorithm can have a 

non-zero competitive factor. This is certainly a dis- 

appointing result from the perspective of developing 

overload-resistant scheduling algorithms. We have, 

however, obtained more positive results for several re- 

stricted forms of the problem which may occur quite 

often in practice. Each of the special cases that we 

have considered require certain constraints to hold on 

the values of the task parameters. These special cases 

and the corresponding results are summarized below: 

Equal Request Times (ERT): In this case, all 

tasks in the overloaded interval request service at 

the same time, that is, requests are made in bulk. 

A practical example is a switch in a communica- 

tion network which cyclically polls its incoming 

links to forward packets that have arrived since 

its previous servicing of the link. On each link, 

different packets may have different processing 

times and deadlines as in, for example, a multi- 

media application. For this situation, we present 

an optimal on-line scheduling algorithm, that is, 

its competitive factor is 1. 

Equal Execution Times (EET): Here, all tasks 

are identical with regard to their processing times. 

This can happen in an antiaircraft battle system, 

for example, where the same time is taken to pro- 

cess any target but targets may arrive at random 

and may have different firing deadlines based on 

the distance and speed of the aircraft. 

For EET task systems, we show that any on-line 

non-preemptive scheduling algorithm will deliver 

a competitive factor of 1/2. 

Monotonic Absolute Deadlines (MAD): 
Here, a task that requests service is guaranteed 

to have an absolute deadline no earlier than that 

of all tasks that have previously requested ser- 

vice. Monotonic deadlines correspond, in a sense, 

to first-come first-served fairness: a task that re- 

quests service later is not allowed to demand com- 

pletion of service prior to that of an earlier re- 

quest. 

For MAD task systems, we present an efficient on- 

line scheduling algorithm that has a competitive 

factor of 1/2. We establish the tightness of the 

1/2 bound by proving that no on-line scheduling 

algorithm may have a competitive factor greater 

than 1/2. 

Equal Relative Deadlines (ERD): Here, all tasks 

have the same relative deadline. Such a situation 

may arise, for example, in environments where ev- 

ery customer is guaranteed service within a fmed 

duration from arrival - for example, some pizze- 

rias offer a lunch special "within 15 minutes, or 

it's free" irrespective of the time it takes to pre- 

pare the specific pizza which is ordered. Note 

that ERD is a refinement of the monotonic abse  

lute deadlines case. 

For ERD task systems, we show that no on-line 
algorithm can have a competitive factor better 

than 2/3. We are currently investigating whether 

this bound is tight. 
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Equal Absolute Deadlines (EAD): 

Here, all tasks have the same absolute dead- 

line. A practical example is a computerized stock 

exchange wherein transactions arrive in random 

fashion and require different processing times but 

all transactions that arrive on a given day have 

to be cleared by closing time. Note that EAD is 

a refinement of the monotonic absolute deadlines 

case. 

For EAD task systems, we present an optimal 

scheduling algorithm, that is, its competitive fac- 

tor is 1. 

Organization. The rest of this paper is organized 

as follows: We present, in Section 2,  the definitions 

and notation that are used in the remainder of the 

paper. In Section 3, we prove that no on-line algo- 

rithm can have a non-zero competitive factor for the 

CC performance metric. In Section 4, we consider the 

special cases described above and show that more pos- 

itive results may be obtained for some of them. We 

conclude in Section 5, with a summary of the results 

presented here. 

2 Definitions and Notation 

A system is said to be in overload if no schedul- 

ing algorithm can satisfy all task requests that are 

made on the system. As mentioned in the Introduc- 

tion, the Earliest Deadline algorithm is optimal in the 

sense that it will successfully schedule any set of task 

requests which are in fact schedulable. Given this op- 

timality of the Earliest Deadline algorithm, it follows 

that a system is in overload if the Earliest Deadline 

algorithm fails to meet the deadline of some task in 

the system. 

Each input task T is independent of all other tasks 

and is completely characterized by three parameters: 

a request t i m e  T.a, an ezecution requirement T.e, and 

a relative deadline T.d. The task’s absolute dead- 

line is represented by T.D gf (T .a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ T.d). With re- 

spect to a particular schedule, a task T is said to 

be active a t  time-instant t if (i) t 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT.a; i.e., the 

task requests service by time t ,  (ii) T.e, > 0, where 

T.e, is the remaining amount of processor time that 

needs to be allocated to task T before its deadline, 

and (iii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt < T.D; i.e. the deadline has not yet been 
reac,hed. An ac.tive task T is non-degenerate a t  time 

t if T.e, 5 (T.D - t ) ;  i.e. its remaining execution re- 

quirement is not greater than the remaining time to its 

deadline. An active task completes if it receives its 

full execution requirement before its deadline expires. 

Given a scheduling algorithm A and a set of tasks 7 ,  

let d.7 denote the schedule generated by A on 7 .  Let 
C . ( d . T )  denote the set of tasks executed to comple- 

tion, and c.(d.r)  denote the number of tasks executed 

to completion, by scheduling algorithm A when op- 

erated on the taskset T - c.(A.r) g‘ lC.(A.r)[. Let 

OPT.7 denote the schedule that maxamzzes the nurn- 

ber of completions for the same taskset 7 .  On-line 

algorithm A is said to have a competitive factor 

r ,  0 5 T 5 1, iff d.7 is guaranteed to complete at 

least r times as many tasks as OPT.r, for any 7 .  That, 

is, 

V r  :: c.(A.7) 2 r c.(OPT.r) 

3 An upper bound on performance 

Theorem 1 The competztzve f a c l o i .  of any on-lznp 

schedulzng algorzihin as arbztrarzly close t o  zero. 

Proof: For any on-line scheduling algorithm A, we 

describe below a set of tasks 7 such that A completes 

exactly one task in T ,  while an off-line schedule for T 

completes a t  least 17 tasks. It follows that, as 17 - 00, 

the competitive factor of A (equal to 1 / 1 7 )  becomes 

arbitrarily poor. The exact procedure for task gen- 

eration is detailed in Figure 1 (a zero-slack task T is 

one in which the execution requirement T.e is equal 

to the relative deadline T.d). We provide an informal 

rationale below for the generation process. 

Initially, a t  some time t,, A is offered a choice of 2 

tasks: (i) task T i ,  which requires 2 units of processor 

time by a deadline of t ,  + 2, and (ii‘) Task Tj, which 

requires r: units of processor time by a. deadline of t f  = 

t ,  + (e + l) ,  where e >> 2. Any scheduling of Ti or T, 

must be done within the interval [ t c , t f ) ;  we refer to 

this 

0 

as the in terva l  of interest.  

If A executes Tj a t  all over [ tc ,  t , +2 ) ,  then it can- 

not hope to complete Ti on time. Two new tasks 

T: and q’ are then added to T at time t’, = t ,  + 2,  

with T: requiring 2 units of processor time by a 

deadline oft: + 2,  and q! requiring (e - 2) units of 

processor tinie by a deadline of t - f .  Clearly, d can 

hope to complete a t  most one of the two tasks Tj 

or q! on time; without loss of generality, a s u m e  

A gives task q! priority over q .  The situation at 

time t’, is then virtually identical to the sit,uation 

at time t , ,  with the t,asks q’ and q! playing the 

roles of tasks Ti and Tj, and [ t : , t f )  the new in- 

terval of interest. Furthermore, (i) A has as yet 
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Adversary(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/* A call to function g e n ( e , d )  generates a task 

T with T.a = t , ,  T . e  = e t , ,  and T.d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,. 

Variables t, and t ,  represent the “current time” 

and the “time scale factor” respectively. */ 
t ,  := 0.0;  t ,  := 1.0; 
e := 21); 

g e n ( 2 , a ) ;  gen(e,  e + 1); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for i := 1 to (11 - 1 )  do 

if A executes a zero-slack task over 

then 

the interval [ t c , t c  + 2 e .  t , / ( 1  + e ) )  

t ,  := t ,  + (2e  . t S ) / ( I  + e ) ;  
t ,  := t s / ( l  + e ) ;  

gen(e, e + 1) 

t ,  := t ,  + 2 t , ;  
e := e - 2 ;  

g e n ( 2 , 2 ) ;  gen(e,  e + 1) 

else 

fi 
od 

end 

Figure 1 :  The Adversary Algorithm 

executed no tasks to completion, and (ii) an off- 

line schedule can execute task Ti over [ t , ,  t ,  + 2 )  
and thus have completed one task - Ti - and be 

in the same situation as A at  time t : .  

If A executes T, exclusively over [ t , ,  t ,  + 2 e / ( l  + 
e ) ) ,  then A cannot hope to complete TJ on time. 

A new task q! is generated at  time t :  = t ,  + 
2 e / ( 1  + e ) ,  requiring e / ( l  + e) units of processor 

time by a deadline oft’, + 1. Task Ti ,  meanwhile, 

requires 2 / ( l + e )  (i.e., 2 - ( 2 e / ( l + e ) ) )  more units 

of processor time by a deadline of t: + 2 / ( l +  e ) .  
The situation at time t‘, is then again virtually 

identical to the situation at  time t,, except that 

all execution-requirements and relative deadlines 

as well as the size of the interval of interest are 

scaled by a factor of 1/(1+ e ) ,  with the tasks T, 

and q! playing the roles of tasks T, and q ,  and 

[ tL, t:  + 1 )  the new interval of interest. Further- 

more, (i) A has as yet executed no tasks to com- 

pletion, and (ii) an off-line schedule can execute 

task 

be in the same situation as A at  time t : .  Since 

t : - t , + ( t , + ( l + e ) ) - ( t ’ , + l )  = e ,  task would 
have completed in the off-line schedule. 

Notice that,  in both the above cases, neither A nor 

over [ t e ,  t’,) and [t’, + 1 ,  i, + (1 + e ) )  

the off-line algorithm has allocated the processor at  
all over the new interval of interest. The above argu- 

ment can therefore be repeated over this new interval 

of interest. By doing so (7 - 1) times, with one of 

the above cases being made to occur each time, we 

see that an off-line schedule executes (8 - 1) tasks to 

completion, and A, none. After 77 - 1 iterations, A 
can then be allowed to execute either of the two cur- 

rently active tasks to completion; the off-line schedule 

does the same, thus ensuring that A has completed 1 

task to the off-line schedule’s Q tasks. It follows that 

as TI ---$ 00, the competitive factor of A (equal to 1/71) 
becomes arbitrarily poor. 0 

4 Special Cases 

When the measure of performance of an on-line al- 

gorithm is the number of tasks executed to completion, 

we have seen that,  in general, on-line algorithms per- 

form poorly vis-a-vis off-line ones. In this section, we 

identify restricted kinds of task sets for which on-line 

algorithms may be expected to perform better with 

respect to their competitive factor. The special cases 

impose certain constraints on the values of the task 

parameters, but are representative of workloads en- 

countered in many real systems. 

4.1 Equal Request Times (ERT) 

We first consider task sets 7 in which all tasks in the 

overloaded interval have the same request times, that 

is, requests are made in bulk. Since all the necessary 

information - the request times, execution require- 

ments, and deadlines of all tasks in T - is known a 

priori, scheduling such a task set is not really an “on- 

line” problem. For this cme, we have the following 

result: 

Theorem 2 The EDD (Earliest Deadline w i f h  Dis- 

card) Algorithm, shown in Figure 2, has a Competitive 

fac tor  of 1 on equal-request-lime task systems.  

Proof Sketch: The basic idea of the EDD algo- 

rithm is to create a deadline-ordered sequence of the 

entire task set and then to iteratively keep removing 

the largest execution time task from the sequence un- 

til the remaining set of tasks becomes feasible with an 

Earliest Deadline (ED) schedule. 

When all tasks have the same request times, 

the problems of preemptive scheduling and non- 

preemptive scheduling on a uniprocessor are identi- 
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EDD(T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/* Earliest Deadline with Discard */ 
Sort r by increasing deadline, such that 

(TI, Tz, . . . ,Tn) is a permutation of the 

tasks in T with Ti .D 5 z + l . D  for all 

i, 1 5 i < ri; 
demand := 0 
for i := 1 to 71 do Discarded[i] := 0 od 

for i := 1 to TL do 

demand := demand + z.e 
if demand > T , . D  then 

Let 

T k  be the task from among TI, T2,. , .  ,Ti 
with the largest execution requirement 

that has not yet been discarded; i.e.? Tk E 

{ 7‘1, Tz ~ . . . , T, } A Discarded [ k ]  # 1 A ( V j  : 

j 5 i : T k . e  2 
Discarded[k] := 1; 

demand := demand - T k  .e 

. e ) ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi 
od 

Let 7’ = {z I Discarded [i] = 0}  
Schedule 7’ using the ED algorithm 

end EDD 

Figure 2: The EDD Algorithm 

cal. in the sense that every set of tasks that can be 

scheduled preemptively can also be scheduled with- 

out preemption. In [ l o ] ,  an algorithm is presented for 

non-preemptive scheduling to maximize task comple- 

tions for bulk request systems. This algorithm turns 

out to be essentially equivalent to E D D ;  we therefore 

refer the interested reader to [ lo ]  for a proof of the 

correctness of E D D .  0 

4.2 Equal Execution Times (EET) 

We now move on to considering the case where all 

tasks have equal exwution times. 

A scheduling algorithm is said to use no inserted 

idle time if the processor is never idle while there are 

active non-degenerate tasks that need to be scheduled. 

Theorem 3 Any on-line non-preemptive scheduling 

algorithm that uses no inserted id l e  time is 1/2 com- 

petitive on equal-execution-time task systems. 

Proof Sketch: We prove this result by using in- 

duction on n, the number of tasks completed by the 

optimal off-line scheduler in the overloaded set T .  In 

the following proof, let NPT to denote a generic non- 

preemptive scheduling algorithm that uses no inserted 

idle time. 

Lemma 4.1 Given a feasible schedule that completes 

71 tasks, any non-preemptive on-line algorithm will 

complete a t  least [-I tasks. 

Without loss of generality, assume that all tasks need 

unit service, and that minTET{T.u} = 0. 

Basis: The lemma is observed to be true for n = 1 

n 

2 

and n = 2. 

Step: Suppose the lemma is true for all n 5 ( k  - 1). 

We now show that it is true for 11 = k .  Consider 

the optimal schedule S which completes k tasks 

in the interval [0, z). Let T’ denote the first task 

that completes in S, and let t* denote its com- 

pletion time. Now replace all the time intervals 

in S where T’ is scheduled with idle periods - 

obviously, the total time of these “holes” adds up 

to unit time. The next step is to compact the 

modified schedule S until t* by “sliding” all task 

executions in the interval [0, t* )  to the right until 

all the holes left by the removal of T’ have been 

covered up. The compaction, upon completion, 

will result in a free slot of unit size in the interval 

[0,1). Note also that the sliding does not affect the 

completion status of any of the remaining tasks, 

since all these tasks have deadlines greater than 

t”. 

Now identify the task z which was executed in 

the interval [0, 1) in NPT. Create a new schedule 

R wherein is non-preemptively scheduled in 

the interval [0,1), with the remainder of R being 

identical to that of the compacted S schedule, 

except that the execution intervals of task Ti are 

replaced by idle periods, if Ti was executed in S . 

By inspec,tion, it is clear that the new schedule R 
is feasible for the interval [ l ,  z) and in this interval 

completes the task set T-{T , T i } ,  which is of size 

Applying the induction hypothesis to schedule R, 
we note that NPT will complete 1-1 tasks 

in the interval [ l ,z) .  Therefore, over the en- 

tire interval [O,z), NPT will complete a t  least 

1 + [,-I tasks, that is, a t  least 

( k  - 2). 

k - 2  

2 

k - 2  k 

2 
tasks. 

We therefore conclude that any non-preemptive algo- 

rithm completes at least half of the number of tasks 

completed by the optimal off-line scheduler, resulting 

in a competitive factor of 1/2. 0 
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The above upper bound on competitive factor 
is for non-preemptive on-line scheduling algo- 
rithms, since it is easily proven that no on-line non- 

preemptive algorithm can deliver a competitive fac- 

tor greater than 1/2 for equal-execution-time task 
sets. This is shown in the following example. Con- 
sider the set of tasks TI, T2, and T3 described by the 

following temporal characteristics: TI .a = 0, TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.e = 
1,Tl.d = 2, T2.a = 0.5,Tz.e = 1,Tz.d = 1.5, and 
T3.a = 0.9,T3.e = 1, T3.d = 1.9. For this set of tasks, 

NPT will obviously complete only TI, whereas an op- 
timal scheduler would complete TI and T2 over the 

interval [O,2) by using preemption. 

4.3 Monotonic Absolute Deadlines 

(MAD) 

Statement (1) : SRPTF completes some task Tk a t  

or before Ti . t f  , or 

Statement (2) : SRPTF has already completed Ti 
before q . t , .  

Note that SRPTF scheduling tasks other than z 
over Ij may mean that it  might not be able to com- 
plete T, later. However, it will certainly not affect the 

feasibility of tasks other than Ti. 

The interval Zi is defined to be “good” for SRPTF 
if : 

Case 1 : SRPTF completes T, before Tj.t,, or com- 

pletes i t  at some later time after completing Tk, 
or 

Case 2 : Tk (as defined by Statement 1) is not com- 

Task system T is said to be monotonic absolute 

deadline iff it is guaranteed that a newly-arrived task 
will not have a absolute deadline before that of any 

task that has previously arrived, i.e., 

pleted by OPT at all. In this case, SRPTF might 

lose Ti, but it completes Tk in return (which OPT 
does not). So, its performance is the same as that 

of OPT for this interval. 

The Smallest Remaining Processing Time 

First(SRPTF) on-line scheduling algorithm allocates 

the processor at every instant to the non-degenerate 
task with smallest remaining execution requirement. 
We prove below in Theorem 4 that SRPTF is a reason- 

ably good on-line scheduling algorithm for monotonic- 

deadline systems, in that it  always performs at least 

half as well as an optimal algorithm. Furthermore, we 
show in Theorem 5 that we cannot hope to do better, 

that is, 1 / 2  is an upper bound on the competitive fac- 
tor of any on-line scheduling algorithm for MAD task 

systems. 

Theorem 4 The SRPTF algorithm is  1/2-competitive 

on monotonic-absolute-deadline task systems. 

Proof Sketch: Suppose OPT executes a set 
of 11 tasks in some order. Let Tl,T2,. . .,Tn be 
the deadline-ordered sequence of the same set of 

tasks. Then there exists a schedule which success- 

fully completes all these tasks consecutively in the or- 

der T I, T2, . . . , T,. This follows from the optimality of 

Earliest Deadline for non-overload conditions. 

We view OPT’S schedule as consisting of n disjoint 
intervals, 1 1 , 1 2 , .  . .,In, where Ij is the interval over 

which OPT scheduled task Ti .  We assess SRPTF’s 
performance for each such interval to prove SRPTF’s 
competitiveness. Since, a t  any instant, SRPTF sched- 
ules the shortest remaining execution time task, one 
of the following must hold for every Zi = [ Z . t 5 ,  %.if), 

Conversely, the interval Ij is “bad” for SRPTF if OPT 

completes both Ti and Tk, while SRPTF misses out 

on T,. But, notice that (i) SRPTF can lose at most 

one task (i.e., rrl:) for a bad interval, and (ii) Each 

bad interval results in at least one good interval, that 
is, interval Ik corresponding to  task Tk, since Case 1 

would be true for lk. 

From the above we conclude that at most n / 2  in- 
tervals can be bad for SRPTF and it therefore misses 

at most half the tasks that OPT completes. It then 
immediately follows that SRPTF is 1/2 competitive. 

0 

Theorem 5 The Competitive fac tor  of any on- 
line scheduling algorithm operating on monotonic- 

absolute-deadline task sets is  arbitrarily close to 1 / 2 .  

Proof Sketch: For any on-line scheduling algorithm 

A, we describe below a set of tasks T such that either 

(i) A completes rn tasks in 7 while an off-line schedule 
for 7 completes at least 2 m  tasks, or (ii) A completes 

k + 1 tasks in T ,  while an off-line schedule for 7 com- 

pletes at least 2k tasks. In the former case, the com- 

petitive factor of A is clearly 1/2. In the latter case, 

the competitive factor of A is ( 1 / 2  + 1/2k); it follows 

that as k 4 03, the competitive factor of A becomes 
arbitrarily close to 1/2. 

The task generation process is such that initially, 

at some time t , ,  A is offered a choice of 2 tasks: (i) 
task Ti, which requires 2 units of processor time by a 
deadline of 1, + 2,  and (ii) Task Tj, which requires 1 

unit of processor time by a deadline oft ,  + 3. 
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Case (1) If A executes T j  at  all over [t,,t,+ l ) ,  then 

it cannot hope to complete T; on time. Task set 

r in this case consists of Ti and Tj. An off-line 

schedule would schedule T; over [t,,t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2), and 

T j  over [ t ,  + 2 , t ,  + 3),  thus completing two tasks. 

Case (2) If A executes T; exclusively over [t,, t,+ l ) ,  

then two tasks TI and T2 are added to r at  time 

t ,  + 1, each requiring 1 unit of procesor time by 

a deadline of t ,  + 3. Task T; now needs to be 

scheduled for the next unit of time by A in order 

to complete, and T j ,  TI, and T2 eac.h need to be 

scheduled for one of the next 2 units of processor 

time by A in order to complete. We consider 2 

cases : 

Case (2.1) If A schedules T, exclusively over 

[ tc + 1, t ,  + 2 ) ,  or if it schedules at  most 2 of 
the three tasks T j ,  TI, or T2 over [ t ,  + 1, t ,  + 
2),  then a new task T3 is added to T at  time 

t ,  + 2, requiring 0.5 units of processor time 

by a deadline of t ,  + 3.5. 

If A schedules T, ,  or exactly one of the tasks 

? , T I ,  or T2, over [ t c + 1 , t , + 2 ) ,  then that 

task completes in A at  time t ,  + 2. If A 
schedules 2 of the 3 tasks Tj, TI, or T2 over 

[ t ,  + 1, t ,  + 2 ) ,  then neither of the two tasks 

will have completed by t ,  + 2; however, both 

may complete by t , + 3 .  Without loss of gen- 

erality, therefore, we may assume that one 

task has completed at  time t ,  + 2, and (at 

least) another one needs to be scheduled for 

the time unit [ t ,  + 2, t ,  + 3) in order to com- 

plete. Let t’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgF t ,  + 2, q’ !? one of the tasks 

that need to be scheduled for the next time 

unit (i.e., one of T j  , TI, T2 that has not been 

scheduled over [ t c ,  t ,  + 2)) ,  and Tj’ g‘ T3. 

Case (2.2) Otherwise, at most one of the tasks 

Tj, TI, or T 2  will be completed by A, while 

an off-line algorithm could schedule Tj over 

[ t c , t c + l ) , T 1  over [ t ,+ l , tC+2) ,andT2 over 

[t, + 2,  t ,  + 3). 

In Cases (1) and (2.2) above, A has executed exactly 

one task to completion, while an off-line algorithm will 

have executed at  least two tasks to completion. 

In Case (2.1) above, A executes one task over 

[t,,t, + 2) (and may complete another by t ,  + 3). 

However, an off-line schedule completes two tasks over 

[ t c , t ,  + 2) by executing T j  over [ t , , t ,  + l ) ,  and TI 
over [t,+ l , t c + 2 ) .  Furthermore, the situation at  time 

t i  = t , + 2  is virtually identical to the situation at  time 

t,, with all task parameters - execution requirements 

and relative deadlines - halved, with tasks T,’ and q,’ 
playing the roles of tasks T, and T3 respectively. The 

above argument may therefore be recursively applied 

whenever Case (2.1) occurs. Doing this k - 1 times 

would result in A having completed k - 1 tasks, while 

an off-line algorithm completes 2 ( k  - 1) tasks. The 

kth time, tasks TI, T2, T3 are not generated: both A 
and an off-line algorithm therefore complete 2 tasks. 

On this sequence of task requests, therefore, the num- 

ber of tasks completed by A is k + 1, and the number 

completed by an optimal algorithm is 2 k .  0 

4.4 Equal Relative Deadlines (ERD) 

We now move on to the case where all tasks in the 

overloaded interval have the same relative deadline. 

For this case, we have the following result: 

Theorem 6 N o  on-line algorithm can have a cornpet- 

itive fac tor  greater than 213 f o r  equal-relative-deadline 

task systems. 

Proof Sketch: Without loss of generality, assume 

that the relative deadline of all tasks is I .  Let ONL 
denote the on-line algorithm. Consider the following 

task sequence: At t = 0, a task TI, wit>h T1.e = 1 

arrives. Later, a t  t = 0.25, another task T2 arrives 

(T2.D is therefore l.25), with T2.e = 0.25. 

Case 1 : If ONL executes T2 at  all over [0.25,0.5), 

then it cannot hope to complete TI. Hence, it 

completes only T2, whereas an off-line scheduler 

would be able to execute TI until t = l  and then 

execute T2. 

Case 2 : If ONL schedules only TI over [0.25, 0.5), 
the adversary generates two more tasks T3 and 

T4 at  t=0.5, with T3.e = T4.e = 0.5 (note that 

T3.D = T4.D = 1.5). ONL can now complete at 

most two of the four ac,tive tasks before k 1 . 5 ,  

since TI, T3, T4 all have requirement of 0.5 units. 

In contrast, the off-line scheduler would execute 

T2 over [0.25, 0.5), and then complete T3 and T4. 

At best, therefore, ONL completes 2 t,asks whereas the 

off-line algorithm can complete 3. This implies that 

no on-line algorithm has a competitive factor greater 

than 2/3 for the equal relative deadlines case. 0 
The above theorem presents an upper bound on 

the competitive factor. We are currently working on 

establishing whether the above bound is tight. As dis- 
cussed in the Introduction, equal-relative-deadlines is 

a special case of monotonic-absolute-deadlines. There- 

fore, from Theorem 4, it is clear that the SRPTF algo- 
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rithm will deliver a competitive factor of at  least 1/2 

in the ERD case. 

4.5 Equal Absolute Deadlines (EAD) 

We now consider the case where all tasks in the 

overloaded interval have the same absolute deadline, 

that is, we have “bulk deadlines”. For this case, we 

have the following result: 

Theorem 7 The SRPTF Algorithm has a competitive 

factor of 1 on equal absolute deadline task systems. 

Proof Sketch: It has been shown [ l l ]  that a SRPTF 

schedule will always have completed at  least as many 
tasks as any other schedule at  any observation time. 

Given this result, it is straightforward to see that if 

a common deadline was drawn for all tasks, SRPTF 
would have completed at  least the same number of 

tasks as any other schedule by the time of the deadline. 

1 

5 Conclusions 

Earlier studies that have investigated the overload 
performance characteristics of real-time scheduling al- 

gorithms have done so with respect to the effective 

processor utilization (EPU) metric. In this paper, we 

have studied the impact of overload when completion 

count (CC) is the measure of algorithm performance. 

To the best of our knowledge, this is the first work 
to study this metric in the context of on-line overload 

guarantees. 

Our study showed that, in the general case, no on- 

line algorithm can have a non-zero competitive fac- 

tor. We then considered several special cases, repre- 
sentative of practical systems, for which more posi- 
tive results were obtained. In particular, we described 
optimal on-line scheduling algorithms for the follow- 

ing cases: Equal Request Times, Monotonic Absolute 

Deadlines, and Equal Absolute Deadlines. For Equal 

Request Times and Equal Absolute Deadlines, the 
performance of the optimal on-line scheduler was equal 

to  that of the optimal off-line scheduler, while for the 
Monotonic Absolute Deadlines case, the on-line sched- 

uler could deliver one half the performance of the clair- 

voyant scheduler. We also presented an upper bound 

on the achievable competitive factor for the Equal Rel- 
ative Deadlines case. For the Equal Execution Times 

situation, we showed that any non-preemptive on-line 
scheduling algorithm has a competitive factor of 1/2 

and that this bound is tight for non-preemptive algo- 
rithms. Our results are summarized in the following 

table (the last three columns describe the upper bound 
on achievable competitive factor (CFB), the compet- 

itive factor that we have managed to achieve (CFA), 
and the algorithm which delivers this competitive fac- 

tor). 

Case 

ERT 

EET 

MAD 

ERD 

EAD 

Definition 

T.a’s are equal 

T.e’s are equal 

T.d’s are equal 

T.D’s are equal 

CFB 

1 

1 

1 /2 

2/3 

1 

Algorithm 

EDD 

NPT 

SRPTF 

SRPTF 

SRPTF 
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