
 Open access Proceedings Article DOI:10.1109/REAL.1994.342713

On-line scheduling to maximize task completions — Source link

Baruah, Haritsa, Sharma

Institutions: Indian Institute of Science

Published on: 07 Dec 1994 - Real-Time Systems Symposium

Topics: Scheduling (computing) and Performance metric

Related papers:

 Online Scheduling with Hard Deadlines

 On the competitiveness of on-line real-time task scheduling

 Online Computation and Competitive Analysis

 Maximizing job completions online

 Online interval scheduling

Share this paper:

View more about this paper here: https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-
hi6269myyj

https://typeset.io/
https://www.doi.org/10.1109/REAL.1994.342713
https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-hi6269myyj
https://typeset.io/authors/baruah-45uw74clol
https://typeset.io/authors/haritsa-1qku8hu6kg
https://typeset.io/authors/sharma-23xiuyt5ga
https://typeset.io/institutions/indian-institute-of-science-3ga7vigs
https://typeset.io/conferences/real-time-systems-symposium-1cm5ppvk
https://typeset.io/topics/scheduling-computing-3elthrty
https://typeset.io/topics/performance-metric-2s2cmr4a
https://typeset.io/papers/online-scheduling-with-hard-deadlines-3xrh94o3v8
https://typeset.io/papers/on-the-competitiveness-of-on-line-real-time-task-scheduling-2a8nqpq4kd
https://typeset.io/papers/online-computation-and-competitive-analysis-t096jbqm8l
https://typeset.io/papers/maximizing-job-completions-online-3g71o2mxh0
https://typeset.io/papers/online-interval-scheduling-1g99l4pfqi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-hi6269myyj
https://twitter.com/intent/tweet?text=On-line%20scheduling%20to%20maximize%20task%20completions&url=https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-hi6269myyj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-hi6269myyj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-hi6269myyj
https://typeset.io/papers/on-line-scheduling-to-maximize-task-completions-hi6269myyj

On-Line Scheduling to Maximize Task Completions

Sanjoy K . Baruah*
The University of Vermont

Jayant Haritsa and Nitin Sharma
Indian Institute of Science

Abstract

The problem of uniprocessor scheduling under con-

ditions of overload is investigated. The system objec-

tive is t o niaxinizze the number of tasks that complete

b y their deadlines. For this performance metric it zs

shown that, in general, any on-line algorithm may per-

form arbitrarily poorly as compared t o a clairvoyant

scheduler. Restricted znstances of the general problern

for whzch on-line schedulers can provide a guaranteed

level of performance are identified, and on-line algo-

rithms presented for these speczal cases.

1 Introduction

A primary objective of safety-uitical real-time sys-

tems is to meet all task deadlines. To achieve this

goal, system architects typic,ally attempt to anticipate

every eventuality and design the system to handle

all of these situations. Such a system would, under

ideal circumstances, never miss deadlines and behave

as expectred by the system designers. In reality, how-
ever, unanticipated emergenc.y conditions may occur

wherein the processing required to handle the emer-

gency exceeds the system capacity, thereby resulting

in missed deadlines. The system is then said to be

in ovcrload. If this happens, it is important that the

performance of the system degrade gracefully (if at

all). A system that panics and suffers a drastic, fall in

performance in an emergency is likely to contribute to

the emergency, rather than help solve it.

Scheduling algorithms that work well under normal

(non-overloaded) conditions often perform miserably

upon overload. Consider, e.g., the Earliest Deadline

scheduling algorithm [9], which is used extensively in

‘Supported in part by NSF grants OSR-9350540 and CCR-

9410752, and UVM grant PSC194-3. Mailing address: De-

partinelit of Electrical Engineering and Computer Scieuce/ 351

Votey Building/ The llniversity of Verinoiit/ Burlington, VT

05405. Electronic mail: sanjoyecs .uvm.edu

uniprocessor real-time systems. This algorithm, which

preemptively processes tasks in deadline order, is opti-

mal under non-overloaded conditions in the sense that

it meets all deadlines whenever it is feasible to do

so [4]; however, under overload, it has been observed

to perform worse than even random scheduling [7, 61.

System Model. We adopt the “firm-deadline” real-

time model [5] in this study. In this model, only

tasks that complete execution before their deadlines

are c.onsidered to be successful; tasks that miss their

deadlines are considered worthless and are immedi-

ately discarded without being executed to completion.

Each input task T is independent of all other tasks

and is completely characterized by three parameters:

T.a (the request t ime) , T.e (the execution require-

men t) , and T .d (the relative deadline). The task’s ab-

solute deadline is represented by T.LI 2f (T.a + T . d) .

The interpretation of these pararneters is that task

T , for successful completion, needs to be alloc,ated

the processor for T.e units of time during the inter-

val [T.a,T.D). We assume that the system learns of

a task’s parameters only at the instant when it makes

the service request. There is no a priora bound on

the number of tasks that may make requests. Tasks

may be preempted a t any stage in their execution, and

there is no cost associated with such preemptions.

We focus our attention here on the study of over-

load in uniprocessor systems. Our goal is to compare

the performance of on-line algorithms - algorithms

that make scheduling decisions a t run time with no

prior knowledge about the occurrence of future events

- against that of an optimal off-line (or clairvoyant)

algorithm. We will refer to the ratio of the worst-case

performance of an on-line algorithm with respect to

an optimal off-line algorithm as the coiupetitiwe factor

of the on-line algorithm.

Overload performance Metrics. For the firm-

deadline uniprocessor model, two cont,ending measures

228

1052-8725/94 $04.00 Q 1994 IEEE

of the "goodness" of a scheduling algorithm under

conditions of overload are effective processor uti-

lizatiou (EPU) and completion count (CC). In-

formally, EPU measures the amount of time during

overload that the processor spends on executing tasks

that complete by their deadlines, while CC measures

the number of tasks executed to completion during

the overloaded interval. Which measure is appropri-

ate in a given situation depends, of course, upon the

application. For example, EPU may be a reasonable

measure in situations where tasks ("customers") pay

at a uniform rate for the use of the processor, but are

billed only if they manage to complete, and the aim

is to maximize the value obtained. By contrast, CC
may make more sense when a missed deadline cor-

responds to a disgruntled customer, and the aim is

to keep as many customers satisfied as possible. Of

course, many real-life applications are best modeled

by modifications to these measures, or perhaps even

some combination of them.

Performance Results. With respect to the EPU

metric, it has been proved that no uniprocessor on-line

scheduling algorithm can guarantee an EPU greater

than 25 percent under conditions of overload [3, 21.

This bound has also been shown to be tight [2, 81.

These results hold in the general case, when the dead-

lines of the input tasks may be arbitrarily "tight" or

stringent. Recently, the effect on EPU in environ-

ments where there is a limit on the stringency of task

deadlines has been studied [l].

In this paper, we turn our attention to studying the
impact of overload when CC (completion count) is

the measure of scheduler performance. To the best

of our knowledge, this is the first work to study this

metric in the context of on-line overload guarantees.

For this metric, we prove that in the general case, any

uniprocessor on-line algorithm can be made to per-

form arbitrarily worse than a clairvoyant (or off-line)

scheduler; that is, no on-line algorithm can have a

non-zero competitive factor. This is certainly a dis-

appointing result from the perspective of developing

overload-resistant scheduling algorithms. We have,

however, obtained more positive results for several re-

stricted forms of the problem which may occur quite

often in practice. Each of the special cases that we

have considered require certain constraints to hold on

the values of the task parameters. These special cases

and the corresponding results are summarized below:

Equal Request Times (ERT): In this case, all

tasks in the overloaded interval request service at

the same time, that is, requests are made in bulk.

A practical example is a switch in a communica-

tion network which cyclically polls its incoming

links to forward packets that have arrived since

its previous servicing of the link. On each link,

different packets may have different processing

times and deadlines as in, for example, a multi-

media application. For this situation, we present

an optimal on-line scheduling algorithm, that is,

its competitive factor is 1.

Equal Execution Times (EET): Here, all tasks

are identical with regard to their processing times.

This can happen in an antiaircraft battle system,

for example, where the same time is taken to pro-

cess any target but targets may arrive at random

and may have different firing deadlines based on

the distance and speed of the aircraft.

For EET task systems, we show that any on-line

non-preemptive scheduling algorithm will deliver

a competitive factor of 1/2.

Monotonic Absolute Deadlines (MAD):
Here, a task that requests service is guaranteed

to have an absolute deadline no earlier than that

of all tasks that have previously requested ser-

vice. Monotonic deadlines correspond, in a sense,

to first-come first-served fairness: a task that re-

quests service later is not allowed to demand com-

pletion of service prior to that of an earlier re-

quest.

For MAD task systems, we present an efficient on-

line scheduling algorithm that has a competitive

factor of 1/2. We establish the tightness of the

1/2 bound by proving that no on-line scheduling

algorithm may have a competitive factor greater

than 1/2.

Equal Relative Deadlines (ERD): Here, all tasks

have the same relative deadline. Such a situation

may arise, for example, in environments where ev-

ery customer is guaranteed service within a fmed

duration from arrival - for example, some pizze-

rias offer a lunch special "within 15 minutes, or

it's free" irrespective of the time it takes to pre-

pare the specific pizza which is ordered. Note

that ERD is a refinement of the monotonic abse

lute deadlines case.

For ERD task systems, we show that no on-line
algorithm can have a competitive factor better

than 2/3. We are currently investigating whether

this bound is tight.

229

.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .,..,." I.. "

Equal Absolute Deadlines (EAD):

Here, all tasks have the same absolute dead-

line. A practical example is a computerized stock

exchange wherein transactions arrive in random

fashion and require different processing times but

all transactions that arrive on a given day have

to be cleared by closing time. Note that EAD is

a refinement of the monotonic absolute deadlines

case.

For EAD task systems, we present an optimal

scheduling algorithm, that is, its competitive fac-

tor is 1.

Organization. The rest of this paper is organized

as follows: We present, in Section 2, the definitions

and notation that are used in the remainder of the

paper. In Section 3, we prove that no on-line algo-

rithm can have a non-zero competitive factor for the

CC performance metric. In Section 4, we consider the

special cases described above and show that more pos-

itive results may be obtained for some of them. We

conclude in Section 5, with a summary of the results

presented here.

2 Definitions and Notation

A system is said to be in overload if no schedul-

ing algorithm can satisfy all task requests that are

made on the system. As mentioned in the Introduc-

tion, the Earliest Deadline algorithm is optimal in the

sense that it will successfully schedule any set of task

requests which are in fact schedulable. Given this op-

timality of the Earliest Deadline algorithm, it follows

that a system is in overload if the Earliest Deadline

algorithm fails to meet the deadline of some task in

the system.

Each input task T is independent of all other tasks

and is completely characterized by three parameters:

a request t i m e T.a, an ezecution requirement T.e, and

a relative deadline T.d. The task’s absolute dead-

line is represented by T.D gf (T .a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ T.d). With re-

spect to a particular schedule, a task T is said to

be active a t time-instant t if (i) t 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT.a; i.e., the

task requests service by time t , (ii) T.e, > 0, where

T.e, is the remaining amount of processor time that

needs to be allocated to task T before its deadline,

and (iii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt < T.D; i.e. the deadline has not yet been
reac,hed. An ac.tive task T is non-degenerate a t time

t if T.e, 5 (T.D - t) ; i.e. its remaining execution re-

quirement is not greater than the remaining time to its

deadline. An active task completes if it receives its

full execution requirement before its deadline expires.

Given a scheduling algorithm A and a set of tasks 7 ,

let d.7 denote the schedule generated by A on 7 . Let
C . (d . T) denote the set of tasks executed to comple-

tion, and c.(d.r) denote the number of tasks executed

to completion, by scheduling algorithm A when op-

erated on the taskset T - c.(A.r) g‘ lC.(A.r)[. Let

OPT.7 denote the schedule that maxamzzes the nurn-

ber of completions for the same taskset 7 . On-line

algorithm A is said to have a competitive factor

r , 0 5 T 5 1, iff d.7 is guaranteed to complete at

least r times as many tasks as OPT.r, for any 7 . That,

is,

V r :: c.(A.7) 2 r c.(OPT.r)

3 An upper bound on performance

Theorem 1 The competztzve f a c l o i . of any on-lznp

schedulzng algorzihin as arbztrarzly close t o zero.

Proof: For any on-line scheduling algorithm A, we

describe below a set of tasks 7 such that A completes

exactly one task in T , while an off-line schedule for T

completes a t least 17 tasks. It follows that, as 17 - 00,

the competitive factor of A (equal to 1 / 1 7) becomes

arbitrarily poor. The exact procedure for task gen-

eration is detailed in Figure 1 (a zero-slack task T is

one in which the execution requirement T.e is equal

to the relative deadline T.d). We provide an informal

rationale below for the generation process.

Initially, a t some time t,, A is offered a choice of 2

tasks: (i) task T i , which requires 2 units of processor

time by a deadline of t , + 2, and (ii‘) Task Tj, which

requires r: units of processor time by a. deadline of t f =

t , + (e + l) , where e >> 2. Any scheduling of Ti or T,

must be done within the interval [t c , t f) ; we refer to

this

0

as the in terva l of interest.

If A executes Tj a t all over [tc , t , +2) , then it can-

not hope to complete Ti on time. Two new tasks

T: and q’ are then added to T at time t’, = t , + 2,

with T: requiring 2 units of processor time by a

deadline oft: + 2, and q! requiring (e - 2) units of

processor tinie by a deadline of t - f . Clearly, d can

hope to complete a t most one of the two tasks Tj

or q! on time; without loss of generality, a s u m e

A gives task q! priority over q . The situation at

time t’, is then virtually identical to the sit,uation

at time t , , with the t,asks q’ and q! playing the

roles of tasks Ti and Tj, and [t : , t f) the new in-

terval of interest. Furthermore, (i) A has as yet

230

Adversary(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/* A call to function g e n (e , d) generates a task

T with T.a = t , , T . e = e t , , and T.d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,.

Variables t, and t , represent the “current time”

and the “time scale factor” respectively. */
t , := 0.0; t , := 1.0;
e := 21);

g e n (2 , a) ; gen(e, e + 1); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for i := 1 to (11 - 1) do

if A executes a zero-slack task over

then

the interval [t c , t c + 2 e . t , / (1 + e))

t , := t , + (2e . t S) / (I + e) ;
t , := t s / (l + e) ;

gen(e, e + 1)

t , := t , + 2 t , ;
e := e - 2 ;

g e n (2 , 2) ; gen(e, e + 1)

else

fi
od

end

Figure 1 : The Adversary Algorithm

executed no tasks to completion, and (ii) an off-

line schedule can execute task Ti over [t , , t , + 2)
and thus have completed one task - Ti - and be

in the same situation as A at time t : .

If A executes T, exclusively over [t , , t , + 2 e / (l +
e)) , then A cannot hope to complete TJ on time.

A new task q! is generated at time t : = t , +
2 e / (1 + e) , requiring e / (l + e) units of processor

time by a deadline oft’, + 1. Task Ti , meanwhile,

requires 2 / (l + e) (i.e., 2 - (2 e / (l + e))) more units

of processor time by a deadline of t: + 2 / (l + e) .
The situation at time t‘, is then again virtually

identical to the situation at time t,, except that

all execution-requirements and relative deadlines

as well as the size of the interval of interest are

scaled by a factor of 1/(1+ e) , with the tasks T,

and q! playing the roles of tasks T, and q , and

[tL, t: + 1) the new interval of interest. Further-

more, (i) A has as yet executed no tasks to com-

pletion, and (ii) an off-line schedule can execute

task

be in the same situation as A at time t : . Since

t : - t , + (t , + (l + e)) - (t ’ , + l) = e , task would
have completed in the off-line schedule.

Notice that, in both the above cases, neither A nor

over [t e , t’,) and [t’, + 1 , i, + (1 + e))

the off-line algorithm has allocated the processor at
all over the new interval of interest. The above argu-

ment can therefore be repeated over this new interval

of interest. By doing so (7 - 1) times, with one of

the above cases being made to occur each time, we

see that an off-line schedule executes (8 - 1) tasks to

completion, and A, none. After 77 - 1 iterations, A
can then be allowed to execute either of the two cur-

rently active tasks to completion; the off-line schedule

does the same, thus ensuring that A has completed 1

task to the off-line schedule’s Q tasks. It follows that

as TI ---$ 00, the competitive factor of A (equal to 1/71)
becomes arbitrarily poor. 0

4 Special Cases

When the measure of performance of an on-line al-

gorithm is the number of tasks executed to completion,

we have seen that, in general, on-line algorithms per-

form poorly vis-a-vis off-line ones. In this section, we

identify restricted kinds of task sets for which on-line

algorithms may be expected to perform better with

respect to their competitive factor. The special cases

impose certain constraints on the values of the task

parameters, but are representative of workloads en-

countered in many real systems.

4.1 Equal Request Times (ERT)

We first consider task sets 7 in which all tasks in the

overloaded interval have the same request times, that

is, requests are made in bulk. Since all the necessary

information - the request times, execution require-

ments, and deadlines of all tasks in T - is known a

priori, scheduling such a task set is not really an “on-

line” problem. For this cme, we have the following

result:

Theorem 2 The EDD (Earliest Deadline w i f h Dis-

card) Algorithm, shown in Figure 2, has a Competitive

fac tor of 1 on equal-request-lime task systems.

Proof Sketch: The basic idea of the EDD algo-

rithm is to create a deadline-ordered sequence of the

entire task set and then to iteratively keep removing

the largest execution time task from the sequence un-

til the remaining set of tasks becomes feasible with an

Earliest Deadline (ED) schedule.

When all tasks have the same request times,

the problems of preemptive scheduling and non-

preemptive scheduling on a uniprocessor are identi-

23 1

~... . -.. . . .

EDD(T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/* Earliest Deadline with Discard */
Sort r by increasing deadline, such that

(TI, Tz, . . . ,Tn) is a permutation of the

tasks in T with Ti .D 5 z + l . D for all

i, 1 5 i < ri;
demand := 0
for i := 1 to 71 do Discarded[i] := 0 od

for i := 1 to TL do

demand := demand + z.e
if demand > T , . D then

Let

T k be the task from among TI, T2,. , . ,Ti
with the largest execution requirement

that has not yet been discarded; i.e.? Tk E

{ 7‘1, Tz ~ . . . , T, } A Discarded [k] # 1 A (V j :

j 5 i : T k . e 2
Discarded[k] := 1;

demand := demand - T k .e

. e) ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi
od

Let 7’ = {z I Discarded [i] = 0}
Schedule 7’ using the ED algorithm

end EDD

Figure 2: The EDD Algorithm

cal. in the sense that every set of tasks that can be

scheduled preemptively can also be scheduled with-

out preemption. In [l o] , an algorithm is presented for

non-preemptive scheduling to maximize task comple-

tions for bulk request systems. This algorithm turns

out to be essentially equivalent to E D D ; we therefore

refer the interested reader to [lo] for a proof of the

correctness of E D D . 0

4.2 Equal Execution Times (EET)

We now move on to considering the case where all

tasks have equal exwution times.

A scheduling algorithm is said to use no inserted

idle time if the processor is never idle while there are

active non-degenerate tasks that need to be scheduled.

Theorem 3 Any on-line non-preemptive scheduling

algorithm that uses no inserted id l e time is 1/2 com-

petitive on equal-execution-time task systems.

Proof Sketch: We prove this result by using in-

duction on n, the number of tasks completed by the

optimal off-line scheduler in the overloaded set T . In

the following proof, let NPT to denote a generic non-

preemptive scheduling algorithm that uses no inserted

idle time.

Lemma 4.1 Given a feasible schedule that completes

71 tasks, any non-preemptive on-line algorithm will

complete a t least [-I tasks.

Without loss of generality, assume that all tasks need

unit service, and that minTET{T.u} = 0.

Basis: The lemma is observed to be true for n = 1

n

2

and n = 2.

Step: Suppose the lemma is true for all n 5 (k - 1).

We now show that it is true for 11 = k . Consider

the optimal schedule S which completes k tasks

in the interval [0, z). Let T’ denote the first task

that completes in S, and let t* denote its com-

pletion time. Now replace all the time intervals

in S where T’ is scheduled with idle periods -

obviously, the total time of these “holes” adds up

to unit time. The next step is to compact the

modified schedule S until t* by “sliding” all task

executions in the interval [0, t*) to the right until

all the holes left by the removal of T’ have been

covered up. The compaction, upon completion,

will result in a free slot of unit size in the interval

[0,1). Note also that the sliding does not affect the

completion status of any of the remaining tasks,

since all these tasks have deadlines greater than

t”.

Now identify the task z which was executed in

the interval [0, 1) in NPT. Create a new schedule

R wherein is non-preemptively scheduled in

the interval [0,1), with the remainder of R being

identical to that of the compacted S schedule,

except that the execution intervals of task Ti are

replaced by idle periods, if Ti was executed in S .

By inspec,tion, it is clear that the new schedule R
is feasible for the interval [l , z) and in this interval

completes the task set T-{T , T i } , which is of size

Applying the induction hypothesis to schedule R,
we note that NPT will complete 1-1 tasks

in the interval [l ,z) . Therefore, over the en-

tire interval [O,z), NPT will complete a t least

1 + [,-I tasks, that is, a t least

(k - 2).

k - 2

2

k - 2 k

2
tasks.

We therefore conclude that any non-preemptive algo-

rithm completes at least half of the number of tasks

completed by the optimal off-line scheduler, resulting

in a competitive factor of 1/2. 0

232

The above upper bound on competitive factor
is for non-preemptive on-line scheduling algo-
rithms, since it is easily proven that no on-line non-

preemptive algorithm can deliver a competitive fac-

tor greater than 1/2 for equal-execution-time task
sets. This is shown in the following example. Con-
sider the set of tasks TI, T2, and T3 described by the

following temporal characteristics: TI .a = 0, TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.e =
1,Tl.d = 2, T2.a = 0.5,Tz.e = 1,Tz.d = 1.5, and
T3.a = 0.9,T3.e = 1, T3.d = 1.9. For this set of tasks,

NPT will obviously complete only TI, whereas an op-
timal scheduler would complete TI and T2 over the

interval [O,2) by using preemption.

4.3 Monotonic Absolute Deadlines

(MAD)

Statement (1) : SRPTF completes some task Tk a t

or before Ti . t f , or

Statement (2) : SRPTF has already completed Ti
before q . t , .

Note that SRPTF scheduling tasks other than z
over Ij may mean that it might not be able to com-
plete T, later. However, it will certainly not affect the

feasibility of tasks other than Ti.

The interval Zi is defined to be “good” for SRPTF
if :

Case 1 : SRPTF completes T, before Tj.t,, or com-

pletes i t at some later time after completing Tk,
or

Case 2 : Tk (as defined by Statement 1) is not com-

Task system T is said to be monotonic absolute

deadline iff it is guaranteed that a newly-arrived task
will not have a absolute deadline before that of any

task that has previously arrived, i.e.,

pleted by OPT at all. In this case, SRPTF might

lose Ti, but it completes Tk in return (which OPT
does not). So, its performance is the same as that

of OPT for this interval.

The Smallest Remaining Processing Time

First(SRPTF) on-line scheduling algorithm allocates

the processor at every instant to the non-degenerate
task with smallest remaining execution requirement.
We prove below in Theorem 4 that SRPTF is a reason-

ably good on-line scheduling algorithm for monotonic-

deadline systems, in that it always performs at least

half as well as an optimal algorithm. Furthermore, we
show in Theorem 5 that we cannot hope to do better,

that is, 1 / 2 is an upper bound on the competitive fac-
tor of any on-line scheduling algorithm for MAD task

systems.

Theorem 4 The SRPTF algorithm is 1/2-competitive

on monotonic-absolute-deadline task systems.

Proof Sketch: Suppose OPT executes a set
of 11 tasks in some order. Let Tl,T2,. . .,Tn be
the deadline-ordered sequence of the same set of

tasks. Then there exists a schedule which success-

fully completes all these tasks consecutively in the or-

der T I, T2, . . . , T,. This follows from the optimality of

Earliest Deadline for non-overload conditions.

We view OPT’S schedule as consisting of n disjoint
intervals, 1 1 , 1 2 , . . .,In, where Ij is the interval over

which OPT scheduled task Ti . We assess SRPTF’s
performance for each such interval to prove SRPTF’s
competitiveness. Since, a t any instant, SRPTF sched-
ules the shortest remaining execution time task, one
of the following must hold for every Zi = [Z . t 5 , %.if),

Conversely, the interval Ij is “bad” for SRPTF if OPT

completes both Ti and Tk, while SRPTF misses out

on T,. But, notice that (i) SRPTF can lose at most

one task (i.e., rrl:) for a bad interval, and (ii) Each

bad interval results in at least one good interval, that
is, interval Ik corresponding to task Tk, since Case 1

would be true for lk.

From the above we conclude that at most n / 2 in-
tervals can be bad for SRPTF and it therefore misses

at most half the tasks that OPT completes. It then
immediately follows that SRPTF is 1/2 competitive.

0

Theorem 5 The Competitive fac tor of any on-
line scheduling algorithm operating on monotonic-

absolute-deadline task sets is arbitrarily close to 1 / 2 .

Proof Sketch: For any on-line scheduling algorithm

A, we describe below a set of tasks T such that either

(i) A completes rn tasks in 7 while an off-line schedule
for 7 completes at least 2 m tasks, or (ii) A completes

k + 1 tasks in T , while an off-line schedule for 7 com-

pletes at least 2k tasks. In the former case, the com-

petitive factor of A is clearly 1/2. In the latter case,

the competitive factor of A is (1 / 2 + 1/2k); it follows

that as k 4 03, the competitive factor of A becomes
arbitrarily close to 1/2.

The task generation process is such that initially,

at some time t , , A is offered a choice of 2 tasks: (i)
task Ti, which requires 2 units of processor time by a
deadline of 1, + 2, and (ii) Task Tj, which requires 1

unit of processor time by a deadline oft , + 3.

233

Case (1) If A executes T j at all over [t,,t,+ l) , then

it cannot hope to complete T; on time. Task set

r in this case consists of Ti and Tj. An off-line

schedule would schedule T; over [t,,t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2), and

T j over [t , + 2 , t , + 3), thus completing two tasks.

Case (2) If A executes T; exclusively over [t,, t,+ l) ,

then two tasks TI and T2 are added to r at time

t , + 1, each requiring 1 unit of procesor time by

a deadline of t , + 3. Task T; now needs to be

scheduled for the next unit of time by A in order

to complete, and T j , TI, and T2 eac.h need to be

scheduled for one of the next 2 units of processor

time by A in order to complete. We consider 2

cases :

Case (2.1) If A schedules T, exclusively over

[tc + 1, t , + 2) , or if it schedules at most 2 of
the three tasks T j , TI, or T2 over [t , + 1, t , +
2), then a new task T3 is added to T at time

t , + 2, requiring 0.5 units of processor time

by a deadline of t , + 3.5.

If A schedules T, , or exactly one of the tasks

? , T I , or T2, over [t c + 1 , t , + 2) , then that

task completes in A at time t , + 2. If A
schedules 2 of the 3 tasks Tj, TI, or T2 over

[t , + 1, t , + 2) , then neither of the two tasks

will have completed by t , + 2; however, both

may complete by t , + 3 . Without loss of gen-

erality, therefore, we may assume that one

task has completed at time t , + 2, and (at

least) another one needs to be scheduled for

the time unit [t , + 2, t , + 3) in order to com-

plete. Let t’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgF t , + 2, q’ !? one of the tasks

that need to be scheduled for the next time

unit (i.e., one of T j , TI, T2 that has not been

scheduled over [t c , t , + 2)) , and Tj’ g‘ T3.

Case (2.2) Otherwise, at most one of the tasks

Tj, TI, or T 2 will be completed by A, while

an off-line algorithm could schedule Tj over

[t c , t c + l) , T 1 over [t ,+ l , tC+2) ,andT2 over

[t, + 2, t , + 3).

In Cases (1) and (2.2) above, A has executed exactly

one task to completion, while an off-line algorithm will

have executed at least two tasks to completion.

In Case (2.1) above, A executes one task over

[t,,t, + 2) (and may complete another by t , + 3).

However, an off-line schedule completes two tasks over

[t c , t , + 2) by executing T j over [t , , t , + l) , and TI
over [t,+ l , t c + 2) . Furthermore, the situation at time

t i = t , + 2 is virtually identical to the situation at time

t,, with all task parameters - execution requirements

and relative deadlines - halved, with tasks T,’ and q,’
playing the roles of tasks T, and T3 respectively. The

above argument may therefore be recursively applied

whenever Case (2.1) occurs. Doing this k - 1 times

would result in A having completed k - 1 tasks, while

an off-line algorithm completes 2 (k - 1) tasks. The

kth time, tasks TI, T2, T3 are not generated: both A
and an off-line algorithm therefore complete 2 tasks.

On this sequence of task requests, therefore, the num-

ber of tasks completed by A is k + 1, and the number

completed by an optimal algorithm is 2 k . 0

4.4 Equal Relative Deadlines (ERD)

We now move on to the case where all tasks in the

overloaded interval have the same relative deadline.

For this case, we have the following result:

Theorem 6 N o on-line algorithm can have a cornpet-

itive fac tor greater than 213 f o r equal-relative-deadline

task systems.

Proof Sketch: Without loss of generality, assume

that the relative deadline of all tasks is I . Let ONL
denote the on-line algorithm. Consider the following

task sequence: At t = 0, a task TI, wit>h T1.e = 1

arrives. Later, a t t = 0.25, another task T2 arrives

(T2.D is therefore l.25), with T2.e = 0.25.

Case 1 : If ONL executes T2 at all over [0.25,0.5),

then it cannot hope to complete TI. Hence, it

completes only T2, whereas an off-line scheduler

would be able to execute TI until t = l and then

execute T2.

Case 2 : If ONL schedules only TI over [0.25, 0.5),
the adversary generates two more tasks T3 and

T4 at t=0.5, with T3.e = T4.e = 0.5 (note that

T3.D = T4.D = 1.5). ONL can now complete at

most two of the four ac,tive tasks before k 1 . 5 ,

since TI, T3, T4 all have requirement of 0.5 units.

In contrast, the off-line scheduler would execute

T2 over [0.25, 0.5), and then complete T3 and T4.

At best, therefore, ONL completes 2 t,asks whereas the

off-line algorithm can complete 3. This implies that

no on-line algorithm has a competitive factor greater

than 2/3 for the equal relative deadlines case. 0
The above theorem presents an upper bound on

the competitive factor. We are currently working on

establishing whether the above bound is tight. As dis-
cussed in the Introduction, equal-relative-deadlines is

a special case of monotonic-absolute-deadlines. There-

fore, from Theorem 4, it is clear that the SRPTF algo-

234

rithm will deliver a competitive factor of at least 1/2

in the ERD case.

4.5 Equal Absolute Deadlines (EAD)

We now consider the case where all tasks in the

overloaded interval have the same absolute deadline,

that is, we have “bulk deadlines”. For this case, we

have the following result:

Theorem 7 The SRPTF Algorithm has a competitive

factor of 1 on equal absolute deadline task systems.

Proof Sketch: It has been shown [l l] that a SRPTF

schedule will always have completed at least as many
tasks as any other schedule at any observation time.

Given this result, it is straightforward to see that if

a common deadline was drawn for all tasks, SRPTF
would have completed at least the same number of

tasks as any other schedule by the time of the deadline.

1

5 Conclusions

Earlier studies that have investigated the overload
performance characteristics of real-time scheduling al-

gorithms have done so with respect to the effective

processor utilization (EPU) metric. In this paper, we

have studied the impact of overload when completion

count (CC) is the measure of algorithm performance.

To the best of our knowledge, this is the first work
to study this metric in the context of on-line overload

guarantees.

Our study showed that, in the general case, no on-

line algorithm can have a non-zero competitive fac-

tor. We then considered several special cases, repre-
sentative of practical systems, for which more posi-
tive results were obtained. In particular, we described
optimal on-line scheduling algorithms for the follow-

ing cases: Equal Request Times, Monotonic Absolute

Deadlines, and Equal Absolute Deadlines. For Equal

Request Times and Equal Absolute Deadlines, the
performance of the optimal on-line scheduler was equal

to that of the optimal off-line scheduler, while for the
Monotonic Absolute Deadlines case, the on-line sched-

uler could deliver one half the performance of the clair-

voyant scheduler. We also presented an upper bound

on the achievable competitive factor for the Equal Rel-
ative Deadlines case. For the Equal Execution Times

situation, we showed that any non-preemptive on-line
scheduling algorithm has a competitive factor of 1/2

and that this bound is tight for non-preemptive algo-
rithms. Our results are summarized in the following

table (the last three columns describe the upper bound
on achievable competitive factor (CFB), the compet-

itive factor that we have managed to achieve (CFA),
and the algorithm which delivers this competitive fac-

tor).

Case

ERT

EET

MAD

ERD

EAD

Definition

T.a’s are equal

T.e’s are equal

T.d’s are equal

T.D’s are equal

CFB

1

1

1 /2

2/3

1

Algorithm

EDD

NPT

SRPTF

SRPTF

SRPTF

References

[l] S. Baruah and J . Haritsa. ROBUST: A Hardware
Solution to Real-Time Overload. In Proceedings of
the 13th ACM SIGMETRICS Conference, Santa

Clara, California, pages 207-216, May 1993.

[2] S. Baruah, G. Koren, D. Mao, B . Mishra,

A. Raghunathan, L. Rosier, D. Shasha, and

F. Wang. On the competitiveness of on-line

real-time task scheduling. In Real- Time Sys-
tems, 4:125-144, 1992. Also in Proceedings of the

12th Real- Time Systems Symposium, Sun Antonio,
Texas, December 1991.

[3] S. Baruah, G. Koren, B. Mishra, A. Raghunathan,
L. Rosier, and D. Shasha. On-line scheduling in

the presence of overload. In Proceedings o f the

32nd Annual IEEE Symposium on Foundations of

Computer Science, San Juan, Puerto Rico, Octo-
ber 1991. IEEE Computer Society Press.

[4] M. Dertouzos. Control robotics : the procedural

control of physical processors. In Proceedings of

the IFIP Congress, pages 807-813, 1974.

[5] J . Haritsa, M. Carey, and M. Livny. On being
optimistic about real-time constraints. In Proc.

of the 1990 ACM Principles of Database Systems
Symposium, April 1990.

235

[6] J . Haritsa, M. Carey, and M . Livny. Earliest-
deadline scheduling for real-time database sys-

tems. In Proceedings of the 12th IEEE Real-Tame

Systems Symposium, San Antonio, Texas, Decem-

ber 1991.

[7] E. Jensen, D. Locke, and H . Tokuda. A time-driven

sc,heduling model for real-time operating systems.

In Proceedings of the 6th IEEE Real-Time Systems

Symposiu~n, December 1985.

[8] G . Koren and D. Shasha. Dover: An optimal on-

line sc.heduling algorithm for overloaded real-time

systems. Technical Report T R 594, Computer Sci-

ence Department, New York [Jniversity. 1992.

[9] C. Liu and J . Layland. Scheduling algorithms

for multiprogramming in a hard real-time environ-

ment. In Journal of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACM, January 1973.

[lo] J . Moore. An 11 job, one machine sequencing al-

gorithm for minimizing the number of late jobs. In

Managernenl Science, 15(I) , 1968.

[l I] L. Schrage. A proof of the optimality of the short-

est remaining processing time discipline. In Oper-

ations Research, 16, pages 687-690, 1968.

236

