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Abstract— Visual perception capabilities are still highly un-
reliable in unconstrained settings, and solutions might not be
accurate in all regions of an image. Awareness of the uncertainty
of perception is a fundamental requirement for proper high
level decision making in a robotic system. Yet, the uncertainty
measure is often sacrificed to account for dependencies between
object/region classifiers. This is the case of Conditional Random
Fields (CRFs), the success of which stems from their ability
to infer the most likely world configuration, but they do not
directly allow to estimate the uncertainty of the solution. In
this paper, we consider the setting of assigning semantic labels
to the pixels of an image sequence. Instead of using a CRF,
we employ a Perturb-and-MAP Random Field, a recently
introduced probabilistic model that allows performing fast
approximate sampling from its probability density function.
This allows to effectively compute the uncertainty of the
solution, indicating the reliability of the most likely labeling
in each region of the image. We report results on the CamVid
dataset, a standard benchmark for semantic labeling of urban
image sequences. In our experiments, we show the benefits of
exploiting the uncertainty by putting more computational effort
on the regions of the image that are less reliable, and use more
efficient techniques for other regions, showing little decrease of
performance.

I. INTRODUCTION

Semantic labeling of a dynamic environment aims at

assigning a semantic class to each region in an image. It

is of crucial importance for the design of intelligent robots

which are able to understand their surroundings.

The semantic labeling of different regions in an image

usually makes use of contextual information, because local

image patches suffer from perceptual aliasing [1]. Many

recently proposed methods exploit contextual information by

expressing the inter-dependencies of different regions in the

scene through CRFs. These are probabilistically sound mod-

els that have been successfully used in numerous applica-

tions, and have become the de facto model for incorporating

spatial or conceptual dependencies between variables. The

reason for the popularity of CRFs is that they allow the

designer to encode conditional independence assumptions

*Both first authors contributed equally.
3Institute for Advanced Study, Technische Universität München, 80333

Munich, Germany
This work was partly supported by the EU projects FP7-ICT-24314

Interactive Urban Robot, and FP7-ICT-248873 Robotic ADaptation to
Humans Adapting to Robots, by the DFG excellence initiative research
cluster Cognition for Technical Systems CoTeSys, and by the Institute for
Advanced Study (IAS), Technische Universität München.

and are highly flexible in terms of the features that can be

incorporated in the model.

The process of inferring the most likely labeling in a

CRF, denoted as the Maximum-A-Posteriori (MAP), can be

computed very efficiently, and many methods have been de-

veloped for minimizing the so-called energy function of the

problem [2], [3]. However, looking only at the MAP solution,

one neglects the probabilistic properties of the model and

reduces it to a pure optimization problem, thereby ignoring

the reliability of that particular solution in comparison to

others.

Neglecting the probabilistic form of the solution is un-

desirable for real world-embedded robots. In such systems,

interconnected modules often combine information from

multiple sources, and the uncertainty is delivered to decision

making or planning modules that decide on the next action

to take. The initial processing stages usually use the uncer-

tainties for information fusion, and high level modules use

it for making more sensible or safe decisions. Furthermore,

a robot might benefit from knowing the uncertainty of the

semantic labeling by using it as indicator of where to focus

the computational or attentional effort.

There are various alternatives that can be used to estimate

the uncertainty of the labeling. For instance, one possibility

is directly taking the scores of individual semantic classifiers,

without the CRF. A higher score means a higher confidence

about the object being detected, allowing to associate a

confidence value to the detection. However, the individual

semantic classifiers are not able to encode the structure of the

labeling, which is necessary to encode contextual dependen-

cies. Another way is to use methods that estimate the CRF

density function, e.g., max-sum loopy belief propagation,

which is able to approximate the marginals [4]. Also, Markov

Chain Monte Carlo (MCMC) sampling could be used, which

in theory is able to deliver any distribution of interest.

However, these techniques are often avoided because belief

propagation on loopy, densely connected, graphs has no guar-

antee on convergence nor quality of the results, and MCMC

sampling in a CRF needs many iterations to guarantee a

good mixing of the chain. Remarkably, Kohli and Torr [5]

introduced a method to estimate the uncertainty of the max-

marginals with graph-cuts, but these do not correspond to the

marginals, and it is not suitable for temporal smoothness [6].

In this paper, we introduce a model for semantic seg-

mentation of a dynamic image sequence, and show how we
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Fig. 1. Example of a labeled image of a dynamic sequence with an on-line semantic labeling framework. In column (a) there is the original image, in
(b) the ground truth labels, (c) is the labeling solution of the MAP, (d) its measure of uncertainty with the entropy of the marginals computed from the
samples obtained with the PM, in which reddish regions indicates more uncertainty. Finally, (e) and (f) are two samples drawn with the PM.

can compute the confidence of the labels from the marginal

distribution obtained from a Perturb-and-Map Random Field

model (PM) [7]. This recently presented probabilistic model

allows to draw samples efficiently by introducing perturba-

tions in the energy function and obtaining the corresponding

MAP estimate. Also, we exploit the uncertainty of the

labeling by concentrating the computational effort in the

most uncertain regions of the scene. This speeds up the

system by releasing computational effort from confident

regions with a minimal sacrifice in accuracy. In Fig. 1 we

illustrate examples of several ground truth labels, the MAP

solution, labeling examples of an image obtained from the

PM and the entropy computed based on the samples.

We tested our method in a standard benchmark of semantic

video labeling, namely the CamVid dataset [8]. We show

that drawing ten samples of the model is enough for making

a good prediction on the confidence level of individual

image regions. We also show that there is only little loss

of performance when using powerful and computationally

costly classifiers only on the locations with more uncertainty,

and weaker and faster classifiers on the rest of the image

regions.

II. RELATED WORK ON SEMANTIC VIDEO LABELING

Semantic labeling of image streams is an important prob-

lem for robotics and computer vision. Related to our ap-

proach are the fully supervised methods for semantic labeling

in a temporal framework. Budvytis et al. [6] introduced

a method to estimate the uncertainty in the labeling by

computing the marginals in a probabilistic model. Nonethe-

less, this method is not for on-line applications, and the

computation of the uncertainty is difficult to adapt to other,

more general, models. Also, [9] showed promising results in

semantic segmentation in videos, but it is neither on-line nor

estimates the uncertainty. Finally, [10] is able to exploit the

temporal redundancy to save computational time, but it does

not rely on a temporal probabilistic model, and makes hard

decisions at each frame. In contrast to previous approaches,

our method is an on-line probabilistic model that is able to

estimate and exploit the uncertainties.

Another important strand of research focuses on the unsu-

pervised labeling of a video. It differs from our method since

it does not learn the semantic classes of the labels, and most

of these unsupervised methods assume that all frames are

available at processing time [11], [12], which does not hold

in a robot, or only consider two frames at the same time [13],

[14]. Vazquez-Reina et al. [15] introduced an unsupervised

on-line method that takes into account a buffer of the last

images to infer the labeling in the current frame. We bring

this idea to the problem of supervised semantic labeling and

uncertainty extraction. Other methods ask a user for part of

the ground-truth [16], [17], and propagate it to the unlabeled

regions. Unfortunately, we can not use these methods for

on-line semantic labeling in a robot.

III. UNCERTAINTY IN THE MAP LABELING

In this section we introduce the model used for the

semantic labeling and estimating the uncertainty, which is

a Perturb-and-MAP Random Field. In the following subsec-

tions, we first introduce CRFs, and show that it is difficult

to measure the uncertainty of the inferred labeling. Then, we

revisit Perturb-and-MAP Random Fields (PM), and introduce



how this model enables us to draw samples, and evaluate the

uncertainty of the inferred labeling.

A. Conditional Random Fields

Many labeling algorithms have been modeled with a CRF

because of its freedom in the design for modeling the

interactions between random variables, while still allowing

to perform MAP inference efficiently. Let G = (V ,E ) be

the graph that represents our CRF, where V is used for

indexing the nodes that correspond to random variables, and

E is the set of undirected edges representing compatibility

relationships between random variables. A clique is a sub-

graph in which every node is connected to all other nodes

in the subgraph. C is the set of cliques of the graph that

are not a subset of any other clique, also known as maximal

cliques.

We use X = {Xi} to denote the set of random variables,

which has a cardinality of N. Each random variable takes a

discrete value from a set of labels L , and x∈L N is a possi-

ble state or instantiation of X. Pθ (x) denotes the probability

density distribution of a labeling modeled with the graph G ,

where θ are the parameters of the distribution. According

to the Hammersley-Clifford theorem, the probability density

that satisfies the Markov properties with respect to the graph

G is a Gibbs distribution. Thus, Pθ (x) is the normalized

negative exponential of an energy function, i.e.,

Pθ (x) =
1

Z
exp(−E (x)) , (1)

where Z is the normalization, also called partition function.

Observe that the value of the partition function, i.e., Z, is

obtained by summing over all possible states of X, which is

not possible to compute in practice. Thus, we do not have

direct access to the probability density function, though we

know which states are more probable than others.

The energy takes the following form:

E(x) = ∑
c∈C

ψc(xc;θ), (2)

where ψc are the potential functions of the maximal cliques

c ∈ C and θ the parameters of the model. The energy

function can be also expressed as a product of parameters

θ and the sufficient statistics of the model, denoted as the

mapping φ(x). Thus, the energy can be equivalently written

as

E(x) = ∑
c∈C

ψc(xc;θ) = θ T φ(x), (3)

where T denotes vector transpose. φ(x) is a re-

parametrization of {ψc}, such that the energy is a product

between θ ∈ R
M and φ(x) ∈ R

M . This is a common trans-

formation in the literature, and in the rest of the paper we

use both notations indistinctively.

Let x⋆ be the state that minimizes the energy function, or

equivalently, the Maximum-a-Posteriori (MAP) labeling:

x⋆ = arg min
x∈L N

θ T φ(x). (4)

For many useful energy functions in vision and robotics there

are efficient solvers that optimize this energy function, or can

give some guarantees about the distance to the minimum.

Indeed, one of the reasons of the success of CRFs is the

availability of off-the-shelf solvers that allows the design of

sophisticated energy functions without the need of rethinking

the optimization.

To evaluate the uncertainty of the MAP labeling we need

to explore the probability function that models the label-

ing, for instance, by drawing samples from the probability

density. However, in a CRF we do not have access to

the probability density, even though we can compute its

maximum. This is because the probability density of a CRF is

normalized with the partition function, i.e., Z, which can not

be computed in practice. We might draw samples from a CRF

with a Markov Chain Monte Carlo (MCMC), but it suffers

from the curse of dimensionality in practical problems. In

the next subsection, we revisit Perturb-and-MAP Random

Fields, which was introduced to alleviate the difficulties in

sampling from a CRF distribution.

B. Perturb-and-MAP Random Fields

Possibly because of the above mentioned limitations,

generating samples from a CRF has been rarely explored.

Recently, however, Papandreou and Yuille introduced the

PM random field [7], which was specifically designed to

allow drawing samples, bypassing the expensive MCMC. In

a follow up paper, Tarlow et al. [18] extended this idea to

models more general than CRFs. In the following we briefly

review the PM random field, but for a complete explanation

we refer the reader to [7].

Perturb-and-MAP is built around the effective MAP in-

ference algorithms commonly used in CRFs. It draws ap-

proximate samples by calculating the MAP of an energy

function constructed by perturbing its parameters. We define

the random variable ε , which takes values from R
M , and it

is used to perturb the parameters such that θ̃ = θ +ε . MAP

inference can be done after perturbing the energy function

by simply computing argminx(θ + ε)T φ(x).
Let Px − θ be the set of perturbations ε that yield an

energy function with minimum labeling equal to x, i.e.,

Px −θ =

{

ε ∈ R
M|x = arg min

x′∈L N
(θ + ε)T φ(x′)

}

. (5)

Then, the PM model defines the probability density of a

labeling x as

fPM(x;θ) =
∫

Px−θ
fε(ε)dε, (6)

where fε(ε) is the probability density distribution of ε ,

and might be independent from the parameters θ . Observe

that fε(ε) inserts randomness in the parameters, and thus

determines which energy function is optimized. Intuitively,

the PM model assigns more probability to the labelings

that are inferred for more likely perturbations. We can

draw samples from the PM model by simply generating a

perturbation and doing MAP inference. Thus, even though
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Fig. 2. Illustration of the on-line framework for semantic labeling of
temporal sequences. We take a buffer of several frames to infer the labeling
of the last taken frame. We use superpixel level instead of pixel level to
define the random variables, and we take into account spatial smoothing
and temporal consistency.

the exact computation of Eq. (6) is intractable in practice,

we can efficiently generate samples.

C. Uncertainty of the MAP Labeling

We measure the uncertainty from multiple samples drawn

from the PM model. Let {ε j} be the set of perturbations

drawn from fε(ε), and x(ε j) the labeling obtained from one

of those perturbations, i.e.,

x(ε j) = arg min
x∈L N

(θ + ε j)
T φ(x). (7)

Thus, {x(ε j)} is a collection of labelings that represents the

density distribution of the PM model.

From the collection of samples we can extract some

measurement of uncertainty. An interesting measure, that

we will use in the paper, is the entropy of the marginal

distributions, which gives an idea of the reliability of the

labeling of each random variable. We estimate the marginal

distribution by approximating it with a histogram. Qi(l) is

the entry of the histogram of label l ∈L , that approximates

the marginal of the random variable xi:

Qi(l) =
1

K
∑
{ε j}

I[xi(ε j) = l], (8)

where I[·] is the indicator function, and K normalizes the

histogram. Then, the uncertainty can be computed with

the entropy of the marginal, which is by definition: Hi =
−∑l∈L Qi(l) log2 Qi(l).

IV. SEMANTIC LABELING OF A DYNAMIC ENVIRONMENT

In this section we introduce the formulation for the on-line

semantic labeling problem. We aim at on-line labeling the

video stream from a camera mounted on a robot navigating

in a dynamic environment. Our formulation uses the Perturb-

and-MAP Random Field to model the spatial and temporal

consistency between and within frames of the video.

Instead of using one random variable for each pixel, a

random variable is defined for each superpixel1. This strategy

has been previously used to reduce the number of random

variables of the model and speeds up inference, e.g., [19].

For each incoming frame we infer the best labeling by

taking into account the previous F frames of the sequence.

This allows temporal consistency in the last frames. In Fig. 2

we show a scheme of the on-line system with the superpixels.

A label is used to represent each semantic class, L =
{l1, l2 . . .}. Each random variable is indexed using two in-

dices, one for the set of frames T and another for the set

of superpixels P , which gives rise to V = T ×P . In our

approach, since we consider the last F incoming frames,

it yields a set of frames as T = {t1, . . . , tF}. For a frame

t ∈ T , we denote as xt
i a random variable associated with

the superpixel i, i ∈ P . We define N t
i as the set of spatial

neighbors of the random variable xt
i which are in the same

frame t ∈ T , and M t
i as the set of neighbors of xt

i that are

in the previous frame, i.e., in the frame t −1.

The energy function E(x) is defined as the sum of the

unary, the spatial smoothness and the temporal consistency

potentials:

E(x) = ∑
t∈T

∑
i∈P

ψu(x
t
i)+

∑
t∈T

∑
i∈P

∑
j∈N t

i

ψs(x
t
i ,x

t
j)+ ∑

i∈P

∑
t∈T

∑
j∈M t

i

ψtc(x
t
i ,x

t−1
j ), (9)

In Fig. 3 we show the representation of the graph of our

model with the notation used in this paper. The unary term

ψu(x
t
i) encodes the classification scores for superpixel i

of frame t. The smoothness term ψs(x
t
i ,x

t
j) determines the

pairwise relationship between neighboring nodes in N t
i .

It represents a penalization for the labeling of two neigh-

boring nodes. Finally, the temporal consistency potential

ψtc(x
t
i ,x

t−1
j ) expresses the dependency relationship between

the neighboring nodes M t
i that are in consecutive frames.

It enforces an agreement of the labeling among connected

nodes between frames. In the following we explain the po-

tentials of the energy function E(x). For the implementation

details we refer the reader to Section VI.

A. Unary Potentials

The unary potentials ψu(x
t
i) are the scores obtained from

the semantic classifiers applied at each superpixel indepen-

dently. We use descriptors and classifiers based on [20],

which are representative of the state-of-the-art in image

semantic segmentation.

B. Spatial Smoothness Potentials

The smoothness term is a modulated Potts potential. We

use the color differences between neighboring nodes to

weight the potential. The potential penalizes neighboring

1A superpixel is a group of pixels that belong to the same object. A
superpixel algorithm aims at over-segmenting the image by grouping pixels
into superpixels.
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Fig. 3. Graph representation of our model with the notation used in this
paper. For each superpixel i of frame t we define a random variable xt

i . Each
random variable has a unary potential ψu(x

t
i) associated. ψs(x

t
i ,x

t
j) is the

spatial smoothness potential for the neighboring nodes of the same frame.
ψtc(x

t
i ,x

t−1
j ) is the time consistency term, which encourages an agreement

between similar superpixels of consecutive frames.

nodes of the same image frame with different labels, de-

pending on the color differences, i.e.,

ψs(x
t
i ,x

t
j) = ci jI[x

t
i 6= xt

j], (10)

where I[·] is an indicator function. ci j is a similarity measure

of the color between the superpixels indexed by i and j.

C. Temporal Consistency Potentials

Analogously to the spatial smoothness potential, we use

a modulated Potts potential for the temporal consistency

potential:

ψtc(x
t
i ,x

t−1
j ) = mi jI[x

t
i 6= xt−1

j ], (11)

where mi j is a similarity measure between superpixel i of

frame t and superpixel j of frame t −1.

V. EXPLOITING UNCERTAINTY FOR EFFICIENCY

In this Section we show a simple application to exploit

the uncertainty, which allows to speed up the process of

labeling an image sequence of a dynamic environment. We

aim at spending more computational effort in the areas where

the semantic class is not so clear. However, applications

of the uncertainty for other purposes are also feasible. For

instance, a robot may make its exploration decisions based

on the uncertainty coming from the vision system or actively

employ other sensors to analyze uncertain regions.

We introduce a simple method, yet effective, aiming to

strike a balance between efficiency and performance. When

a new frame arrives, we set all unary potentials to values

estimated from fast classifiers and image descriptors, and

we compute the uncertainty. This gives an idea of which

labels can already be inferred with the temporal and spatial

redundancy, and which ones require more accurate unary po-

tentials. We select which nodes will be assigned the accurate

unaries by sampling without replacement from a categorical

distribution, where each category is associated with a node

and has a probability pi, i ∈P , where pi =
Hb

i
T

, T = ∑Hb
i is

a normalization factor and the exponent b is a parameter

to control how much the samples should concentrate on

uncertain nodes (b is set to 3 in the experiments). Once a

pre-defined percentage of unaries is computed, we infer the

MAP labeling. Computing a higher percentage of accurate

unaries improves the inferred labeling, but at the cost of more

computational effort.

VI. IMPLEMENTATION DETAILS

In this section we describe the implementation details of

the on-line semantic labeling system.

A. Unary Potentials

We first over-segment the images using the SLIC al-

gorithm, which extracts superpixels [21]. The pipeline to

calculate the unary potentials is shown in Fig. 4. First,

we extract patches in a dense grid, independently of the

superpixel form, and we describe and encode them. Then,

for each superpixel, we pool the patches from the image

region of the superpixel, and generate the feature descriptor

of the superpixel. Finally, a classifier computes the score that

is used as unary potential.

We define two different types of encodings, which are

applied in different superpixels, depending on the entropy of

the labeling (see Section V). One achieves state-of-the-art

performance, but it is too computationally demanding (we

refer to it as accurate feature). The second sacrifices some

performance, but is more suitable for on-line applications

(referred as fast feature). In the following subsections, we

describe the details of each part of the pipeline for both

features.

We extract patches in a dense grid in an image. The center

of the patches are separated by 4 pixels, and are extracted

at several scales (8,16,32 pixels of patch size). We describe

each patch with a SIFT [22] descriptor, which has a length

of 128, and it is used for both fast and accurate features.

The encoding is based on the Bag-of-Words approach. For

the encoding of the accurate feature, we use the encoding

based on [20]. For each input patch described with SIFT, we

select the K nearest neighbors in a codebook, and we build a

vector indicating the selected entries of the codebook. In the

experiments, K is set to 5. The codebook is built by randomly

picking a set of 1000 patches as codebook entries, which

achieves performance similar to k-means clustering [23].

Feature encoding has been reported in the literature as

an important bottleneck of the pipeline. A way to speed

it up is using Nested Sparse Quantization for coding [24].

This method builds upon two sparse quantizations, which

allows a very efficient encoding because it is based on binary

vectors. This method is used for the fast feature. We use the

parameters reported in [24].

The description of a superpixel is done by pooling the

encoded SIFT features. We use two pooling regions, one

inside the superpixel, and another of the contextual area

around it. This contextual area is extended up to 4 times the

size of the superpixel. This combination allows to include

the context, which makes the descriptor more powerful, as

shown in [19] and [20]. It gives a final descriptor of the

superpixel of dimension 2×1,000 bins, due to the 2 pooling

regions. We use use average pooling for the accurate feature,
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Fig. 4. Pipeline used for feature description and classification of a
superpixel.

and max-pooling (cf. [25]) for the fast feature. In the case

of semantic segmentation, we observed that max-pooling

decreases the performance compared to average pooling, but

the combination of Nested Sparse Quantization and max-

pooling results in a binary vector, and performs well with

linear (i.e., efficient) classifiers.

We obtain the classification scores for each superpixel

with Support Vector Machines (SVM). For the accurate

feature, we use the RB-χ2 kernel, approximating its non-

linear mapping using [26] for efficiency. For the fast feature

we use a linear SVM. We learn the SVM using a one-vs-

all scheme by using 5,000 samples of the specific class

as positive examples, and 5,000 samples of the rest of

the classes as negatives examples. The number of positive

examples is less in case no sufficient training examples are

available for a specific class. The parameter C of the SVM

is set to 1,000.

One of the main drawbacks of learning independent classi-

fiers for multi-class problems is that at some point we have to

merge the classification scores. Since each classifier is trained

independently, the bias between classes is not taken into

account . This effect is more noticeable when the training set

is unbalanced. To alleviate this fact, we use a weight for the

scores of each class to calibrate the confidence in the output

of each classifier. In the learning stage, we perform a random

search of the weights that maximize average accuracy.

B. Spatial Smoothness Potentials

To compute the color similarity between neighboring

superpixels of the same frame, we use the norm of the

difference between the mean RGB colors of the superpixels

indexed by i and j. This is, ci j = ‖ci − c j‖
2
2, where ci is

the 3-dimensional vector of the mean of the RGB color of

superpixel i.

C. Temporal Consistency Potentials

The matching between superpixels of consecutive frames

is done based on the pairwise distance of the patches inside

them. Thus, we compare the patches inside one superpixel

with all patches inside the other superpixel, and we average

the similarities to get a measure of the superpixel similarity.

We use the BRIEF descriptor [27] of length 256 to compute

the similarity measure. It uses binary descriptors that allows

computing similarities with a Hamming distance, which are

very efficient to evaluate, since most modern CPUs include

dedicated hardware instructions [27].

D. Parameters

We use the Gumbel distribution for perturbing the energy

function as suggested in [7] and perturb only the parameters

associated with the unary potentials. The amount of samples

are analyzed in the experiments section. The MAP inference
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Fig. 5. Global accuracy rate on CamVid changing the number of samples
of the perturb-and-MAP to compute the entropy of the marginals. We report
results evaluating only the percentage of superpixels with less uncertainty
up to a threshold.

is done with α−expansion graph cuts [3]. In all experiments,

the buffer of the on-line model takes the last 2 frames,

because we did not observe significant improvements when

including more frames.

The parameters to learn are the per-class weighting of the

unary potentials, and the weights for the spatial smoothness

and time consistency potentials. Parameters are learnt by

performing a stochastic gradient descent step after observing

each training example. The learning of the parameters of

the CRF is done on the whole training set, with the unary

potentials learned with 3-fold cross-validation.

VII. EXPERIMENTS

We report results of our method on a challenging dataset

for semantic segmentation in videos, namely the Cambridge-

driving Labeled Video Database (CamVid) dataset [8]. It

consists of a collection of 4 video sequences with ground

truth, provided at a rate of 1Hz, and partially at 15Hz, of

32 semantic classes for each pixel of the frames. It has a

total of 701 labeled images. We use the sequences 0016E5,

0006R0 and the first half of the dusk sequence (0001TP) for

training, which has 468 images, and the sequence 0005VD

and the second half of the dusk sequence for testing with

233 images.

We use the standard metrics to evaluate the accuracy

performance of the different methods, namely the global

and the per-class average accuracy rate. The global accuracy

rate measures the percentage of correct classified pixels of

all classes. The per-class average accuracy rate, takes into

account the accuracy of the pixels of each of the class

independently, and then it averages them.

A. Quality of the Uncertainty Measure

We evaluate the global accuracy metrics of CamVid only

on the superpixels with less entropy than a threshold, sweep-

ing the threshold such that it takes a percentage of nodes

from 0% to 100%. In this way, we can evaluate the quality

of the uncertainty measure. This experiment is performed

with a varying number of samples ranging from 2 to 40. We

measure the global accuracy metric with the entropy of the

marginals explained in Section III. The results are reported in
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100% 59 75 93 84 45 90 53 27 0 55 21 54.7 75.0

0% 78 71 91 63 8 91 22 15 0 39 6 44.0 76.4

Entropy-based sampling

30% 76 74 92 72 16 92 33 17 0 40 14 48.0 77.4

20% 77 73 91 70 14 92 33 18 0 40 12 47.3 77.2

15% 77 73 91 68 12 92 30 17 0 40 10 46.5 77.3

10% 77 72 91 67 11 92 28 16 0 40 8 45.7 77.0

5% 78 72 91 65 10 91 25 15 0 40 7 44.9 76.8

Random-based sampling

30% 75 73 91 69 13 91 26 17 0 41 10 46.2 76.7

20% 76 72 91 67 11 91 27 17 0 40 9 45.7 76.6

15% 77 71 91 66 11 91 26 15 0 40 8 45.2 76.6

10% 77 71 91 65 9 91 25 15 0 40 7 44.7 76.5

5% 77 71 91 64 8 91 21 15 0 40 7 44.2 76.5

TABLE I

GLOBAL AND AVERAGE ACCURACIES ON THE TEST SET USING A

PERCENTAGE OF SUPERPIXELS WITH THE ACCURATE FEATURES.

Fig. 5, showing the global accuracy rate as a function of the

percentage of nodes that are considered for the evaluation and

the amount of samples. First, we observe that the accuracy,

when considering only nodes with low entropy, is very high.

As more entropic nodes are considered, the global measure

decreases until it reaches the global accuracy value of the

whole test set. Furthermore, it can be seen that as more

samples are considered, entropy becomes a more reliable

indicator. Based on these observations we decide to use

10 samples for the rest of the experiments, giving a good

compromise between accuracy and efficiency.

B. Exploiting the Uncertainty to Reduce the Computational

Cost of the Labeling

In this experiment, we evaluate the method introduced

in Section V. We use the uncertainty to choose where to

compute the accurate features, whereas we use the fast

features by default. In Table I, we compare the accuracy

obtained choosing the nodes with the entropy versus random.

This experiment shows that the uncertainty given by the

entropy can be used to effectively estimate where to spend

more computational time. In the table, 100% indicates that

we only use the accurate features, achieving similar accuracy

to the appearance-based state-of-the-art method for efficient

applications [8], and 0% for the fast features. We see that

thanks to the combination of the multiple potentials that bind

the random variables together, the classification accuracy

stays at reasonable levels with much less computational

effort, and that our entropy based sampling outperforms

random sampling in all situations. In terms of computation

speed, using only the fast feature set we achieve 3 fps,

while the accurate features achieve 0.2 fps, on an eight core

machine, enabling online applications.

VIII. CONCLUSIONS

A model for on-line semantic labeling based on Perturb-

and-Map was presented. This model is able to obtain a

labeling, as well as to evaluate the uncertainty by computing

the entropy of the marginals. Experiments demonstrated that

this uncertainty measure correlates well with the accuracy of

the classifier. It was shown in the experiments on the CamVid

dataset that focusing computational effort in areas of high

entropy compares favorably to a baseline. Thus, it pays to use

powerful and costly features and classifiers on the locations

with more uncertainty, and weaker and faster features and

classifiers for the rest of the image regions. An interesting

direction for future work might be to include higher-order

cliques in the model, covering larger image regions in order

to better predict which areas might require more attention.
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“SLIC superpixels,” TPAMI, 2012.

[22] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, 2004.

[23] A. Coates and A. Ng, “The importance of encoding versus training
with sparse coding and vector quantization,” in ICML, 2011.

[24] X. Boix, G. Roig, and L. Van Gool, “Nested sparse quantization for
efficient feature coding,” in ECCV, 2012.

[25] Y. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in vision algorithms,” in NIPS, 2010.

[26] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit
feature maps,” TPAMI, 2012.

[27] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzinski, C. Strecha, and
P. Fua, “BRIEF: Computing a Local Binary Descriptor Very Fast,”
TPAMI, 2011.


