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Abstract. Suppose we are given a sequence of n points in the Euclidean plane, and 
our objective is to construct, on-line, a connected graph that connects all of them, 
trying to minimize the total sum of lengths of its edges. The points appear one at a 
time, and at each step the on-line algorithm must construct a connected graph that 
contains all current points by connecting the new point to the previously constructed 
graph. This can be done by joining the new point (not necessarily by a straight line) 
to any point of the previous graph (not necessarily one of the given points). The 
performance of our algorithm is measured by its competitive ratio: the supremum, 
over all sequences of points, of the ratio between the total length of the graph 
constructed by our algorithm and the total length of the best Steiner tree that connects 
all the points. There are known on-line algorithms whose competitive ratio is O(log n) 
even for all metric spaces, but the only lower bound known is of [IW] for some 
contrived discrete metric space. Moreover, for the plane, on-line algorithms could 
have been more powerful and achieve a better competitive ratio, and no nontrivial 
lower bounds for the best possible competitive ratio were known. Here we prove an 
almost tight lower bound of D.(log nflog log n) for the competitive ratio of any on-line 
algorithm. The lower bound holds for deterministic algorithms as well as for 
randomized ones, and obviously holds in any Euclidean space of dimension greater 
than 2 as well. 

1. Introduction 

We consider  the  on-l ine Steiner tree p rob lem in the Eucl idean plane. The p rob lem 
can be i l lus t ra ted by the following example.  Suppose  a c ompa ny  is searching for 
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oil in a certain (planar) region, and it is lucky enough to find a promising place for 
an oil well from time to time. In order to keep the communication between the 
various wells running smoothly, the company needs to maintain a connected 
system of roads that enables movement from any well to any other one. This road 
system is in fact so crucial that it must be updated on-line; whenever a new well 
is found, the road system must be modified instantly. Suppose that the price of a 
road is proportional to its length, and thus the objective is to minimize the total 
length of roads. Obviously, once an amount is spent building a road, it cannot be 
recovered by omitting it, and hence we may assume that the communication system 
is updated only by adding new routes to it. Moreover, the manager wishes to be 
able to come to the stockholders at the end of the searching process and show 
them that the total amount spent on the communication system is not much larger 
than what it could have been even if he had known all the places of the wells in 
advance. 

This example and several similar ones that may arise naturally in the design 
of various networks suggest the following problem, that we call here the on-line 
planar Steiner tree problem. Suppose we are given a sequence of n points vl . . . . .  vn 
in the Euclidean plane, and our objective is to construct, on-line, a connected 
graph that connects all of them, trying to minimize the total  sum of lengths of its 
edges. We assume that the points appear one at a time, v~ arriving at step i. At 
the end of step i, the on-line algorithm must construct a connected graph T~ that 
contains the points vl . . . . .  vi by connecting the new point vl to the previously 
constructed graph T~_ 1- This can be done by joining v~ (not necessarily by a straight 
line) to any point of T~_ 1, which need not necessarily be one of the previously 
given points v~. An algorithm A for the above problem is a procedure that decides 
how to construct the graphs T~ for every given sequence of points v~. Let 
A(vl,  . . . ,  vn) denote the total length of the last graph T~ constructed by the 
algorithm on the input v 1 . . . . .  vn, and let OPT(v l  . . . . .  vn) denote the minimum 
possible length of a connected graph in the plane that contains all the points v~, 
i.e., the length of the optimal Steiner tree for this set of points. The performance 
of the algorithm A is measured by its competitive ratio: the supremum, over all 
sequences vl . . . . .  vn as above, of the ratio 

A(vl . . . . .  v , )  

OPT(v  I . . . . .  v,)" 

(Note that the exact computation of OPT(v1 . . . . .  vn) is in fact NP-hard (see [GJ]), 
but there are simple polynomial algorithms that approximate it up to a constant 
factor.) 

The Steiner tree problem is an extensively studied problem that has been 
considered not only in the plane but also in arbitrary metric spaces. Given a set 
S = S, of n vertices {vi}~'= 1 which are points from a connected metric space, the 
minimum Steiner tree for these points is the tree T of minimum weight that connects 
all the vertices in S. Here the weight of a tree is the sum of weights of its edges 
where a weight of an edge is the distance between its two endpoints. The Steiner 
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tree problem is that of finding the minimum Steiner tree for a given set of points 
in a metric space, or good approximations to it. This problem plays an important 
role in the study of various communication networks. A survey can be found in 
[W]. The on-line version of this problem, described above for the planar case, is 
defined for a general metric space in the obvious way. 

We evaluate the performance of on-line algorithms by the competitive ratio 
measure, introduced by [ST], which has received a considerable amount of 
attention recently in the study of various algorithmic problems. For the Steiner 
tree problem (in any metric space) the competitive ratio of an on-line algorithm 
is the supremum, over all possible sets S, of the ratio between the weight of the 
connected graph constructed by the algorithm and the weight of the optimal 
Steiner tree for the set S. Note that we must assume that the points are drawn 
from a metric space, i.e., the triangle inequality holds. This assumption is essential, 
since otherwise the competitive ratio can be easily made unbounded as a function 
of n. 

A natural simple on-line algorithm for constructing on-line a Steiner tree is the 
greedy algorithm. At each step i simply join vl to its closest point in T~_ ~. The 
vertex greedy algorithm is to join v~ to its closest neighbor in the set {vl . . . . .  v~_ 1}- 
Observe that the greedy algorithm always performs at least as well as the vertex 
greedy algorithm. As shown by Imase and Waxman in [IW] (using the ideas of 
[RSL]) the (vertex) greedy algorithm achieves an O(log n) competitive ratio in 
every metric space. Moreover, they also showed that there are metric spaces in 
which the competitive ratio of any on-line algorithm is at least f~(log n); however, 
the examples demonstrating this lower bound are not embeddable in the Euclidean 
plane, and as suggested by the example at the beginning of this section, the planar 
case is of special interest. Moreover, the lower bound of [IW] is proved for a 
contrived metric space for which, at each step, an algorithm must choose between 
symmetric paths and it always makes the wrong choice. However, in the Euclidean 
plane on-line algorithms are not restricted, have infinitely many possibilities to 
choose from, and cannot be characterized in a simple way. They may also use 
unexpected curves which depend in a complicated way on the whole history and 
the current state. Thus, the task of obtaining a nontrivial lower bound is much 
harder for the Euclidean plane. In fact, we can even restrict ourselves to the case 
in which all the points are drawn from the n x n grid while the algorithm, which 
knows this information, can connect vertices by any curve in the plane. The greedy 
algorithm is, of course, O(log n) competitive here, too, and one may wonder if there 
is a much better algorithm for this case. Our main result is that the O(log n) 
estimate is nearly optimal, as stated in the following theorem. 

Theorem 1.1. No on-line algorithm can achieve a competitive ratio which is better 
than D(log n/log log n) for the Steiner tree problem of n points in the plane, or even 
for n points in the n by n grid. 

Although this gives a rather tight estimate for the best possible competitive 
ratio there is still an O(log log n) multiplicative gap between our lower bound and 
the O(log n) upper bound given by the greedy algorithm, and it would be interesting 
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to decide which of the two bounds is closer to the truth for the optimal algorithm. 
Our technique for proving the lower bound is totally different than the one used 
in [IW] for obtaining the (much simpler) lower bound for the non-Euclidean 
case. 

Our proof can be modified to deal with randomized algorithms too. The cost 
of a randomized on-line algorithm is defined to be the expected cost over all 
possible coin-flips performed by the algorithm, and the competitive ratio is defined 
as the supremum, over all n-point inputs, of the ratio between this cost and the 
cost of the best off-line algorithm on the same input. Our lower bound holds for 
the oblivious adversary, i.e., the one that does not get to know the coin-flips of 
the algorithm, and, therefore, holds for all other types of adversaries (e.g., adaptive 
ones). 

Theorem 1.2. The f~(log n/log log n) lower bound for the competitive ratio of any 
on-line algorithm for the planar Steiner tree problem for n points in the plane holds 
for randomized on-line algorithms as well. 

Before concluding the introduction let us mention some related problems. It is 
interesting to note that for the on-line spanning tree problem the situation is much 
simpler. There, the algorithm is not allowed to use Steiner points and thus can 
use only edges between current points. As observed in [CV], no on-line algorithm 
can perform better than the greedy algorithm for the on-line spanning tree 
problem. That follows from the fact that the cost of adding new vertex i by any 
on-line algorithm is at least d(v~, {vl . . . . .  v~_ 1}), and the greedy algorithm (which 
is the same as vertex greedy) encounters precisely this cost. Therefore the competi- 
tive ratio for the best algorithm for this problem is | n). Note also that for 
this problem algorithms cannot take advantage of the fact that the metric space 
is known in advance. Since the algorithms for the on-line spanning tree problem 
are so restricted the proofs of lower bounds are easy and not useful at all for 
Steiner trees. 

It is well known that, for any set S of points in an arbitrary metric space, the 
weight of the optimal traveling salesman tour for S must be at least that of the 
best Steiner tree for S and cannot exceed it by more than a factor of two. In fact, 
these two problems are intimately related and there is a tight relationship between 
the nearest-neighbor algorithm for the traveling salesman problem and the greedy 
algorithm for the Steiner tree problem (see, e.g., I-RSL]). Various papers that 
explore properties of the traveling salesman problem and the nearest-neighbor 
algorithm are [RSI], [BS], I-N-J, [M], and [BM]. Our basic approach here 
resembles the one of Bentley and Saxe in [BS'] but a few additional ideas are 
required. 

The next section contains the main technical part of this short paper including 
the proof of Theorem 1.1 and a sketch of the modification needed to establish 
Theorem 1.2. In Section 3 we present a very short proof of the O(log n) upper 
bound estimate for the greedy algorithm, first proved in a somewhat more 
complicated way in [IW-J. 
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2. The Lower Bound Proof 

In this section we prove Theorem 1.1 and sketch the proof  of  Theorem 1.2. The 
metric space considered is the Euclidean plane and all the requested points that  
appear one at a time in the course of the algorithm belong to the n by n grid. 
Define x by x 2x = n, so that  x is (�89 + o(1)Xlog n/log log n). In order to prove the 
lower bound  we next show that an adversary can construct a set of at most  
2n points such that the weight of the optimal Steiner tree on these points 
is O(n) whereas the on-line cost of any algorithm will be at least n x / 8  = 

t2(n log n/log log n). This yields a lower bound of fl(log n/log log n), as needed. 
For  simplicity of notation, we assume that x is an integer and omit all floor 

and ceiling signs; the p roof  can be repeated without this assumption with no real 
complications. Since we are interested in large values of n we assume that x > 2 
and hence n > 16. 

The points given by the adversary consist of x + 1 layers, where each layer is 
a set of  equally spaced points on a horizontal  line of length n = x 2x. The 
coordinates of the points in layer i, 0 < i < x, are (ja~, hi) where a~ = x 2x-2~ and 
0 < j  < n/ai .  Thus ao = x 2x (=n) ,  al = x 2 X - 2 ,  and ax = 1. Hence in layer 0 there 
are only two points, in layer 1 there are x 2 + i, and so on up to layer number  x 
which contains n + 1 points. (See Fig. 1 for an example with x = 2, n = 16.) Let 
bo = 0. The vertical distance between layer number  i and layer number  i + 1 is 
ci = b i +  l - -  bi, where, for all i, 

a i 
ai+ l ~ ci ~ ai+lX = - .  

x 

In fact, cl = kai+ t for some integer k between 1 and x that is chosen by the 
adversary. The adversary presents the points to the algorithm layer by layer 

a2 

a2 <_ c~ <_ a2z = a, /z  
I al 

' O  �9 �9 �9 

al  <_ c~, < a ~ z  = a o / x  

G O ~--- X 2x 

Fig. 1. The construction for x = 2, n = 16. 
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(bottom to top), where in each step it chooses c~ carefully forcing the algorithm 
to work hard in building its on-line Steiner tree. Note that the on-line algorithm 
knows all the information stated above (e.g., the x-coordinate of all points and 
the range of c~ for all i). The only piece of information which the on-line algorithm 
does not get to know till it is done with all the points in layer i is the exact value 
of cv 

First, observe that the total number of points presented is 

+ 1  = + 1  = + 1  <2n.  
i=O i=0  i=0  

Note also that 

x-1 x-X ai n x~l 1 2n 
E c,-< E . . . .  

i=o  i=o  X x i= o  ~ ]  ~ x _< n 

and therefore all the points lie, indeed, in the n by n grid. 
Next observe that the length of the optimal (off-line) Steiner tree is at most 

O(n). Indeed, the horizontal line in the last layer (layer number x) together with 
vertical lines from it to any other point can be taken as a tree. The total length 
of this tree is 

n +  + 1  < 1 +  ~ - - / < n  l + x  = ci -- n 3n. 
i=o al i=o 

The next lemma shows that the adversary can force the on-line algorithm to 
construct a connected graph of total weight D(nx). The on-line algorithm cannot 
imitate the adversary's tree since it does not know the exact value of ci till it is 
done with all the points in layer i. Guessing the value, or being prepared for 
different values or any other strategy, turns out to be either useless or too expensive 
as shown by the next lemma. 

Lemma 2.1. For each i, 1 < i < x, the adversary can choose c i_ 1 in such a way 
that when it reveals the points in layer i to the on-line algorithm this algorithm will 
have to add a total length of at least n/8 for connecting the new given points, unless 
the total length of the graph it has before these points appear is already at least nx/8. 

Once the lemma is proved, the assertion of the theorem follows easily. Indeed, 
if for some i it turns out that the on-line algorithm already has a graph of total 
length at least nx/8, then there is nothing to prove. Otherwise, by the lemma, the 
adversary can force the algorithm to add a total length of at least n/8 for each 
layer, giving again the required total nx/8 length, as needed. 

It remains to prove the lemma. To this end we consider, for a fixed i, the various 
possibilities to choose c~_ 1 = ka~ where k is an integer in the range 1 to x. We 
must show that either the algorithm has to pay at least n/8 for at least one of 
these choices, or it has already paid at least nx/8. 
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For a fixed i, there are x possibilities to place the horizontal line of layer i, and, 
for each such possibility, there are (n/al + 1) points. Consider the set of (n/ai + 1)x 
points which is the union of points on all possible line placements of layer i. Let 
P be the set of all (n/ai + 1)x > nx/a~ disks Cp whose centers are these points, 
where the radius of each disk is ai/2. Note that since the distance between any 
two centers is at least a~ the interiors of the disks are pairwise disjoint. Define 
another set Q of disks Cq as follows. For each disk in P we have a disk in Q with 
the same center but with radius ai/4. Clearly, IPI = I QI and the disks in Q are also 
pairwise disjoint. In fact, the distance between any two of them is at least a~/2. 

Let T~_ 1 denote the graph of the on-line algorithm just before it gets the points 
in layer i. For each k, 1 < k < x, let rk be the number of disks in Q whose centers 
are on the kth possible line of layer i, and no point in the disk contains any point 
of T/_ 1. Put r = ~ =  1 rk. If r <_ nx/2al ,  then there are more than nx/2a i disks of 
Q that contain points of T~_ 1. However, T~_I is connected and contains points 
outside each disk in P (since it contains the points in layer i - 1). Therefore, for 
each disk Cq in Q that contains a point of T~_ 1 there must be a path that connects 
this point to a point on the boundary of the corresponding disk Cp in P that 
contains it. This path lies in the interior of Cp and its length is clearly at least 
aJ2 - aJ4  = a J4. Since there are at least nx/2a  i such paths and they are pairwise 
disjoint we conclude that the total weight of T~_ ~ is at least (nx/2a~)" (ai/4) = nx/8 
as needed. (In fact, this estimate can be improved by a factor of 2 by being a little 
bit more careful, but we make no attempt to optimize the constants here and in 
what follows.) 

It remains to check the case r > nx/2ai.  In this case there exists an l such that 
r~ > n/2a~. The adversary can now choose c~_ 1 = a~l. In order to connect the points 
of layer i corresponding to this choice of c~_ a to T~_ ~ the algorithm must add at 
least r z paths connecting the centers of the disks in Q that lie in this horizontal 
line and contain no point of T~_ 1 to the circles bounding them (since these centers 
have to be joined to the graph). These paths are pairwise disjoint (and are disjoint 
from T~_ 1) as each of them lies completely inside the corresponding member of 
Q. Therefore, the algorithm must pay at least r I �9 (a J4) > (n /2ai) ' (aJ4)  = n/8 total 
length, completing the proof of the lemma and hence that of Theorem 1.1. [] 

The proof can be modified to apply to the randomized case (and hence establish 
Theorem 1.2). The argument, that is sketched below, combines the easy direction 
of a result of [Y] with the above construction. More precisely, since any 
randomized algorithm is simply a probability distribution on deterministic ones 
it suffices to establish a lower bound for the expected time of deterministic 
algorithms over some probability distribution of the input. Thus, we define a 
distribution on the possible inputs such that the expected cost for any on-line 
algorithm is f~(nx) while the cost of the off-line one on each possible instance is 
O(n). The adversary can use essentially the same construction, but since it cannot 
compute the actual values of r k for 1 < k < x, it will choose the value of k uniformly 
at random for each layer independently. Consider any on-line algorithm: if the 
expected value of r = ~ rk at some step i is at most nx/2al  we are done since the 
expected weight of the graph is already at least nx/8 (by linearity of expectation). 
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Otherwise, for each i the expected value of r at step i is at least nx/2a~. Thus, for 
each i, the expected value of r~ at step i (when l is chosen at random) is at least 
n/2ai. Thus, the expected cost for the algorithm at each step is at least n/8 and, 
therefore, the expected weight of the final graph is at least nx/8, completing the 
proof. [] 

3. The Upper Bound 

In this section we give a simple proof  for the upper bound theorem of [ IW] for 
the competitive ratio of the vertex greedy algorithm. We hope that such a simple 
proof  may shed more light on the behavior of the algorithm. 

Theorem 3.1. The (vertex) greedy algorithm achieves a competitive ratio of O(log n) 
for the Steiner tree problem for n points in any metric space. 

Proof. We need the following. 

Lemma 3.1. Let I be the length of the optimal Steiner tree. The number of steps in 
which the greedy algorithm pays more than 2Ilk is less than k. 

Proof of Lemma 3.1. Let S be the set of points whose addition caused the greedy 
algorithm to pay more than 2Ilk. Clearly, the distance between any two of them 
is more than 2Ilk. Thus the length of the shortest Hamilton tour on these points 
is more than ]S[21/k and hence the weight of the opt imum Steiner tree for them 
is more than [S]l/k. Since S is a subset of the original set of points the weight of 
the Steiner tree of S is at most I implying that IS] < k. [] 

To complete the proof of the theorem observe that the lemma implies that the 
weight of the kth largest edge of the tree constructed by the on-line algorithm is 
at most 21/k and thus its total weight is at most  ~_~ = 1 21/k = O(l log n). [] 
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