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ON LINEAR ALGEBRAIC SEMIGROUPS
BY

MOHAN S. PUTCHA

Abstract. Let K be an algebraically closed field. By an algebraic semigroup we
mean a Zariski closed subset of K " along with a polynomially defined associative
operation. Let S be an algebraic semigroup. We show that S has ideals /„,...,/,
such that S = /, 3 • • • D I0, I0 is the completely simple kernel of S and each
Rees factor semigroup 4//*_i is either nil or completely 0-simple (k =■ 1,...,/).
We say that S is connected if the underlying set is irreducible. We prove the
following theorems (among others) for a connected algebraic semigroup S with
idempotent set E(S). (1) If E(S) is a subsemigroup, then 5 is a semilattice of nil
extensions of rectangular groups. (2) If all the subgroups of S are abelian and if for
all a e S, there exists e G E(S) such that ea = ae — a, then S is a semilattice of
nil extensions of completely simple semigroups. (3) If all subgroups of S are abelian
and if 5 is regular, then S is a subdirect product of completely simple and
completely 0-simple semigroups. (4) S has only trivial subgroups if and only if 5 is
a nil extension of a rectangular band.

1. Preliminaries. Throughout this paper, Z+ will denote the set of all positive
integers. If A" is a set, then |A"| denotes the cardinality of X. K will denote a fixed
algebraically closed field. If n G Z+, then K" = K X ■ ■ ■ XK is the affine n-
space and 91t„(AT) the algebra of all « X « matrices. If A G 91t„(.fQ, then p(A) is
the rank oí A. In this paper we only consider closed sets with respect to the Zariski
topology. So X C K" is closed if and only if it is the set of zeroes of a finite set of
polynomials on K". Let X Q Km, Y C K" be closed, <p: X -* Y. If <p =
(<p„ . . . , (pm) where each <p, is a polynomial, then <p is a morphism. Let/?, n G Z+,
/? < n. Then we use, without further comment, the well-known fact that the set
T = {A\A G 91tn(/(), p(A) </?} is closed. In fact for A G 91t„(AT), A G T if and
only if all minors of A of order >/? vanish. By an algebraic semigroup we mean
(S, ° ) where ° is an associative operation on S, S is a closed subset of K" for
some n G Z+ and the map (x, y) -> x ° y is a morphism from S X S into S. If 5
has an identity element then S is an algebraic monoid. Polynomially defined
associative operations on a field have been studied by Yoshida [21], [22], Plemmons
and Yoshida [13]. Yoshida's results have been generalized to integral domains by
Petrich [12]. Clark [4] has studied semigroups of matrices forming a linear variety.
Algebraic monoids are briefly encountered in Demazure and Gabriel [8]. The
author [15] has studied semigroups on affine spaces defined by polynomials of
degree at most 2.

Let S be an arbitrary semigroup. If S has an identity element, then S1 = S.
Otherwise S' = Su {1}, 1?S, with obvious multiplication. If a G S, then the
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centralizer of a in S, Cs(a) = {x\x G S, xa = ax}. Then cevifev of S, C(S) =
fi aes Cs(a). If a, be. S, then a|6 (a divides b) if b e SlaSl. %, %, £, % will
denote the usual Green's relations on S (see [6]). If a G S, then we let J(a) =
5 'aS l.Ja,Ha will denote the $• -class and DC-class of a in S, respectively. E(S) will
denote the set of idempotents of S. If e,f e E(S) then e < / if ef = fe = e. An
idempotent semigroup is called a band. A commutative band is called a semilattice.
A band satisfying the identity xyzw = xzyw is called a normal band. If a¿? = ¿?[Z?a
= ¿] for all a, b e S, then S is a r/g/tf [left] zero semigroup. A direct product of a
right zero semigroup and a left zero semigroup is a rectangular band. A direct
product of a rectangular band and a group is a rectangular group. A direct product
of right [left] zero semigroup and a group is a right [left] group. Let / be an ideal of
S. If S/I is a nil semigroup, then we say that S is a nil extension of /. Let 8a
(a e T) be a set of congruences on 5. If f) oer 5„ is the equality congruence, then
S is a subdirect product of Sa (a G T). See [7, p. 99] for details.

A congruence 8 on 5 is an S -congruence if S/5 is a semilattice. If S is a disjoint
union of subsemigroups Sa (a G T) and if for each a, ß G T, there exists y G T
such that SaSß U SßSa C Sy, we will say that 5 is a semilattice (union) of Sa
(a e T). We also say that Sa (a G T) is a semilattice decomposition of S. There is an
obvious natural correspondence between S-congruences and semilattice decom-
positions [6, p. 25]. A semigroup with no S -congruences other than S X S is said
to be S -indecomposable. Let | be the finest S-congruence on S. Throughout this
paper, we let fi = ß(S) = 5/| denote the maximal semilattice image of S. By a
theorem of Tamura [18], [19], each component of £ is S-indecomposable and is
called the S -indecomposable component of S. An ideal P of S is prime if S \ P is a
subsemigroup of 5. In such a case {/*, S \ P) is a semilattice decomposition of S.
If 5 is a commutative algebraic semigroup, then it follows from Corollary 1.4
below, and Tamura and Kimura [20] that E(S) = ß(S).

Let S, T be algebraic semigroups, <p: S -* T a (semigroup) homomorphism. Then
<p is a *-homomorphism if qj is also a morphism (of varieties). If m is a bijection and
if both <p and <p"' are *-homomorphisms, then we say that ¡p is a *-isomorphism and
that 5, T are *-isomorphic. S is connected if the underlying closed set is irreducible
(i.e. is not a union of two proper closed subsets).

The proof of the following result can be found in Demazure and Gabriel [8, II,
§2, Theorem 3.3].

Theorem 1.1 (see [8]). Let S be an algebraic monoid. Then S is *-isomorphic to a
closed submonoid of 91t„(A')/or some n G Z+.

Let S be an algebraic semigroup which is a group. Let <p: S -» 91t„(/r) be given
by Theorem 1.1. By Hubert's Nullstellensatz, 1/det y(x) is a polynomial on S. So
x"1 = <fT'(adj (p(x)/det q>(x)). Hence the map x —» x"1 is a morphism and S1 is an
algebraic group in the usual sense [2].

The following result can also be found in [8, II, §2, Corollary 3.6].

Corollary 1.2 (see [8]). Let S be an algebraic monoid which is not a group. Then
the nonunits of S form a closed prime ideal of S.
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Let S be an algebraic semigroup, 5 Ç K". Let T = (S X {0}) u {(0, 1)} Ç
Kn+1. Define (x, a)(y, ß) = (xy + ßx + ay, aß). Then T is an algebraic monoid
with identity element (0, 1). S is *-isomorphic to the closed subsemigroup S X {0}
of T. Hence we have

Corollary 1.3. Let S be an algebraic semigroup. Then S is *-isomorphic to a
closed subsemigroup l$\ln(K) for some n G Z+.

The following result was pointed out to the author by Clark [5].

Corollary 1.4 [Clark]. Let S be an algebraic semigroup. Then there exists
n G Z + such that for all a G S, a" lies in a subgroup of S.

Proof. By Corollary 1.3, we can assume that S is a closed subsemigroup of
91t„(AT) for some n G Z+. Let A G S. Then without loss of generality we can
assume A = ($.:$). where B G 91^(K) is invertible and C G Mn_p(K) is nilpotent.
Let T = {(&:iJ)|A" G Mp(K), X is invertible}. Then A" G T. Let G = {($;$), a)^
G Mp(K), a e K, a det • A" = 1}. Then G is an algebraic group, <p: G -» T given
by <K(oVo\), a) = A" is a bijective morphism. G, = «^'(T n S) is a closed subsemi-
group of G,. It is well known (see [8, II, §2, Corollary 3.5]) that a closed submonoid
(and hence a closed subsemigroup) of a linear algebraic group is a subgroup. Thus
G, is a subgroup of G. So T n S = <p(G¡) is a subgroup of S. Since /I " G T n 5,
we are done.    □

Corollary 1.5. Let S be an algebraic semigroup. Then S has a kernel M which is
closed and completely simple.

Proof. By Theorem 1.1, we can assume that 5 is a closed subsemigroup of
91t„(AT) for some n G Z+. By Corollary 1.4 and Clark [3], S has a completely
simple kernel M given by its elements of minimal rank r. Then M = {a\a G 5,
p(a) < r + 1} is closed.    □

Lemma 1.6. Let & be an infinite set of idempotents in 91t„(AT) of rank r. Then there
exist E, F G S such that E =£ F and p(EF) = p(FE) = r.

Proof. If E G S, then let &E = {A\A G 91t„(AT), p(EA) < r), %E = {A\A G
9Ttn(A:), p(AE) < r}. Then £E, <&E are closed subsets of 91tn(AT). We claim:

There exists an infinite subset 'S of S ^,
such that for all E G S, \âE n S\ < oo.

Suppose (1) is false. Then there exists £, G S such that S, = éE£ n S is infinite.
Again by (1), there exists E2 G ê, such that £2 = éE£ n Sj is infinite. Continuing,
we obtain a sequence E{, E2, . . . , in S such that p(E¡Ej) < r for i <j. So
£/+i G 0£i n • • • n<î£j, £/+1 G ft^+I. Hence

ff*, 3 «*, n ®Ei 3 éB£i n a£2 n <£E2 9 • • • .

Since £E£'s are closed sets, we have a contradiction to the Hubert Basis Theorem.
Thus (1) is true. The dual of (1) applied to 'S shows that there exists an infinite
subset  g   of f such that for all E e §, \%E n §| < oo. Let E e §. Then
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\âE n S | < oo, !<$£ n 31 < oo. Hence there exists F G S such that F g S£ u
®jj. So pí^F) = p(F£) = r.    Q

A semigroup S with the property that a power of each element lies in a subgroup
of S is said to be strongly it-regular. The study of strongly w-regular rings and
semigroups was initiated by Azumaya [1], Drazin [9] and Munn [11]. Clark [3]
showed that a strongly w-regular matrix semigroup has a kernel given by its
elements of minimal rank. Let S be a strongly w-regular semigroup. A ^-class of 5
containing an idempotent is called regular.

Theorem 1.7. Let S be a strongly m-regular subsemigroup of 91t„(AT). Then S has
only finitely many regular §■-classes.

Proof. Suppose not. Then there exists an infinite set of idempotents S of S such
that for all e,f G &, e%f implies e = /. Let r = 0, . . . , n, let Sr = {e\e G &,
p(e) = r}. Then &r is infinite for some r. By Lemma 1.6, there exist e,fe ër such
that e y*=f, p(ef) = p(fe) — r. Let °V be the space of all n X 1 vectors on K. Then
efY = e% fe'Y = /T. Hence eT = (ef),cV for all t G Z+. There exists an
idempotent g of S, p G Z+ such that g3C(e/y. Hence gT = (cf/T = <?T. If
v G T, then eu G gT and so gev — et). So ge = e. Hence f\(eff\g\e. So f\e.
Similarly e\f and e$/. This contradiction proves the theorem.   □

Corollary 1.8. Lei S be a strongly ir-regular subsemigroup of 91t„(A"). Then
S2(S) is /»'«/te.

Proof. Let <p: S^»ß(S) denote the natural homomorphism. By Theorem 1.7,
y(E(S)) is finite. Let a G S. Then a"DCe for some e G £"(S). So <p(a) = cp(a") =
<p(e). Hence ÏÏ(S) = <p(S) = <p(E(S)) is finite.    □

Lemma 1.9. Let S be a strongly ir-regular semigroup with only finitely many regular
$-classes. Then there exist finitely many ideals I0, . . ., I, of S such that S = I,
D • • • D I0, I0 is the completely simple kernel of S and each /,//,_, is either
completely 0-simple or a nil semigroup (i = 1, . . . , t).

Proof. We prove by induction on the number of regular f -classes of S. Let
E = E(S). Let Je, . . . , Je be the regular ^-classes of 5 where ex, . . ., en G E. Let
/ = J(ex) n • • • n J(en). Then / is an ideal of S. So there exists / G / n E. Let
a e S. Then there exists m G Z+ such that amj-ej for some i. So/ G J(am) Q J(a).
Hence J(f) = I0 is the kernel of S. By Munn [11], /0 is completely simple. Let
% = {J(e)\e e E n (S \ /(,)}• Then % is finite. If % = 0, then S \ I0 has no
idempotent and S \ I0 is nil. So assume % ¥= 0. Then % has a minimal element
J(g), g e E. Let I2 = J(g), Ix = I2\ Jg. Then I0 Q /, and /, is an ideal of S. Let
a e Iv Then am%h for some h G E, m G Z+. Then n G /,. So 7(«) g 7(g). By
minimality of J(g), h G /0. Thus am G /0. So /,/'/0 is nil. Since I2\ Ix= Jg and
g e E, I2/Ix is 0-simple. By Munn [11], J^/A is completely 0-simple. Clearly S/I2
has lesser number of regular $--classes than S. We are thus done by our induction
hypothesis.    □

By Theorem 1.7 and Lemma 1.9 we have the following.
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Theorem 1.10. Let S be a strongly it-regular subsemigroup of 91t„(ÄT). Then there
exist ideals I0, . . . , I, of S such that S = /, D • • • D I0,10 is the completely simple
kernel of S and each Ii/Ii_l is either completely 0-simple or nil (i = I, . . . , t).

By Corollary 1.3, Corollary 1.4 and Theorem 1.10, we have

Corollary 1.11. Let S be an algebraic semigroup. Then S has ideals I0, . . . , I,
such that S = /, D • • • D I0, I0 is the completely simple kernel of S and each
hih-\ 's e>(her completely 0-simple or nil (i = 1, . . . , t).

Theorem 1.12. Let S be an algebraic semigroup and P a prime ideal of S. Then P
is closed.

Proof. By Corollaries 1.3 and 1.4, we can assume that S is a closed, strongly
w-regular subsemigroup of 91t„(/T) for some n G Z+. Hence Sx = S \ P is strongly
w-regular. By Clark [3] the kernel T of Sx is the set of elements of S, of minimal
rank. Let e G E(T), p(e) = r. Let a G Sv Then (eaèf G T and so p((eae)n) = r.
Let a G P. There exists / G E(P) such that (eae)n%f. So ef = fe =/. Hence
p(f) < p(e) = r. Clearly p((eae)n) = p(f). Thus P = {a\a G S, p((eae)n) < r) is
closed.    □

2. Connected algebraic semigroups. Let S be an algebraic semigroup, e G E(S).
Then the maximal subgroup He of S need not be closed. However He can be
identified with G = {(a, b)\a, b G S, ab = ba = e, ae = ea = a, be = eb = b}. If
(a, b), (c, d) G G, define (a, b)(c, d) = (ac, db). Then G is an algebraic group. The
correspondence between He and G is given by a *r* (a, a"1). More precisely define
<p: G —* S as <p(a, b) = a. Then <p is an injective *-homomorphism and <p(G) = He.
It is easy to show that G is unique to within ^isomorphisms. It can also be easily
shown that if S is connected then so is G. However, we will not need these facts in
this paper.

Theorem 2.1. Let S be a connected algebraic semigroup. Then ti(S) has an identity
element.

Proof. Let ti = ti(S), <p: S —* ti be the canonical homomorphism. By Corollary
1.8, ti is a finite semilattice. Suppose ti has two maximal elements e,f. Then
Í2, = ti \ {<?}, ti2 = ti \ {/} are prime ideals of ti, ti = tix u ti2. So S = Px u P2
where P¡ = tp'x(ti¡), i = 1,2. But P,, P2 are prime ideals of S and hence closed by
Theorem 1.12. This contradiction shows that ti has a maximum element e. So e is
the identity element of ti.    □

In the above notation, we call <p~'(e) the top § -indecomposable component of S. If
S is a monoid, then the top S-indecomposable component of S is the group of
units of S.

Proposition 2.2 Let S be a connected algebraic semigroup, e,f G E(S). Then eS,
Se, eSf are connected, closed subsemigroups of S. If SeS is closed, then SeS is also
connected.
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Proof. eS - {x\x G S, ex = x}, eSf = {x\x G S, ex = x = xf}. Hence eS, Se,
eS/are closed. Define «p,: S -^ eS as (p^*) = ex. Since <p, is a surjective morphism,
eS is connected. Define q>2: S —* eSf as tp2(x) = ex/. Since <p2 *s a surjective
morphism, eSf is connected. S X S is connected. Define <p3: SXS-> SeS as
<P3(-*>>0 = *ÇV- If SeS is closed, then <p3(S X S) = SeS is also connected.    □

Theorem 2.3. Let S be a connected algebraic semigroup. Then
(1) all maximal subgroups of S are closed if and only if S is a nil extension of a

completely simple semigroup.
(2) all subgroups of S are trivial if and only if S is a nil extension of a rectangular

band.

Proof. (2) follows trivially from (1). So we prove (1). First assume that all
maximal subgroups of S are closed. Let e G E(S). By Proposition 2.2, eSe is
connected. By hypothesis He is closed. By Corollary 1.2, eSe\ He is also closed.
Hence eSe = He. Thus a\e for all a G S. Hence e G T = kernel of S. Thus
E(S) Q T. By Corollary 1.11, T is completely simple and S/T is nil. Conversely
assume S/T is nil where T is the completely simple kernel of S. Then for
e G E(S) = E(T), He = eSe is closed.    □

Theorem 2.4. Let S be a connected algebraic semigroup. Then the following
conditions are equivalent.

(1) All subgroups of the top S -indecomposable component of S are abelian.
(2) All subgroups of S are abelian.
(3) eSe is commutative for all e G E(S).

Proof. (1) => (3). Let T be the top S-indecomposable component of S. Then by
Theorem 1.12, P — S \ T is closed. Let e G E(T). Then He is abelian. Let
S, = eSe, P, = S, \ He. Then P, is closed, S, is closed and connected. S, = P, U
He. Let a G He. Then //e Ç CSi(a) and so S, = P, u CS[(a). Hence CSi(a) = S,.
Thus //e £ C(S,) and S, = P, u C(S,). Hence C(SX) = S, and S, is commutative.
Let a e T. By Corollary 1.4 there exists « G Z+ such that a"%e for some
e G E(T). So a"Sa" G eSe is commutative. Let Tt = (a|a G S, a"Sa" is com-
mutative}. Then T, is closed, X Q Tv Since S = P u 7\, 7\ = S. Hence eSe is
commutative for all e G E(S). That (3) => (2) => (1) is obvious.   □

Theorem 2.5. Let S be a connected algebraic semigroup such that all subgroups of
S are abelian. Suppose further that for each a G S, there exists e G E(S) such that
ea = ae = a. Then S is a semilattice of nil extensions of completely simple semi-
groups and the top S -indecomposable component of S is completely simple.

Proof. By Theorem 2.4, eSe is commutative for all e G E(S). Let a G S. Then
there exists e G E(S) such that ea = ae = a. Let x, ^ G S1. Then xay xtry =
x(eae)(eyxe)(eae)y = x(eae)2(eyxe)_y = xa^yxey. Hence a2\(xay)2. By a paper by
the author [14, Theorem 2.13], S is a semilattice of nil extensions of completely
simple semigroups. Let T be the top S -indecomposable component of S. Then T is
a nil extension of a completely simple semigroup. Let TX = kernel of T. Then
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E(T) C Tv Let a G T. Then there exists e G E(S) such that ea = a. Clearly
e e E( T). Hence a G Tx and T = Tx is completely simple.    □

A semigroup is regular if a G aSa for all a G S.

Theorem 2.6. Le/ S be a regular, connected algebraic semigroup such that all
subgroups of S are abelian. Then S is a finite subdirect product of semigroups, each of
which is either completely simple or completely 0-simple.

Proof. Let e,f, g G E(S) such that e >/, e > g, fj-g. We claim that /= g.
There exist x, y G S ' such that xjjy = g. By Theorem 2.4, eSe is commutative. So
g = exefeye = e/eeyeexe = eyeexeefe. Hence g = j^exe = eyexf. Hence gf = fg =
g. So/ > g. Similarly g > /and/ = g. Thus

for all e,f, g G £(S), the conditions
e > /, e > g,/£g together imply/ = g.

By Munn [11], the principal factors of S are completely simple or completely
0-simple. Hence by (2) and Lallement [10, Theorem 2.17], S is a subdirect product
of completely simple and completely 0-simple semigroups. Since, by Theorem 1.7,
S has only finitely many £-classes, a close examination of [10] shows that the
subdirect product can be chosen to be finite.    □

Theorem 2.7. Let S be a connected algebraic semigroup, e G E(S), e G C(S).
Then e G B where B is either an infinite, closed right zero subsemigroup of S or an
infinite, closed left zero subsemigroup of S.

Proof. By symmetry assume dim eS > dim Se. Define <f>: eS —* eSe as <p(a) =
ae. Then <p is a surjective morphism, eS, Se, eSe are closed and connected. By [17,
Chapter I, §6, Theorem 7], dim eS > dim eSe. First assume dim eS = dim eSe.
Then since eSe G eS, eS = eSe. Since dim eS > dim Se and eSe Ç Se we have
Se = eSe. Hence eS = Se and e G C(S), a contradiction. So dim eS > dim eSe.
Let B = (p '(e). By [17, p. 60] dim B > 0. Hence ß is infinite. Let a e B. Then
a G eS, ae = e. Hence a = ea. Let a, b e B. Then a¿> = aeZ? = eb = b. This
proves the theorem.    □

Theorem 2.8. Let S be a connected algebraic semigroup.  Then the following
conditions are equivalent.

(l)E(S) is finite.
(2) E(S) is commutative.

(3) E(S) Q C(S).
(4) S is a semilattice of nil extensions of groups.

Proof. By Theorem 2.7, (1) => (3) and (2) <=> (3). By Corollary 1.8, (4) => (1). So it
suffices to show that (3) => (4). Assume (3). Let a, b G S such that ab, ba G E(S)
C C(S). Then ab = a(ba)b = (ab)(ba) = baba = ba. By Weissglass and the
author [16, Corollary 8], we are done.    □

The following result is implicit in Munn [11]. We include a proof here for the
convenience of the reader.
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Lemma 2.9 [Munn]. Let S be a strongly ir-regular semigroup. Let a, b e S. If
afab then a'&ab. Ifafba, then atba. If a fa2, then a%a2.

Proof. It suffices to consider the case a fab. There exist x, y G S1 such that
xaby = a. Then x'a(by)' = a for all t G Z+. There exist n G Z+, e G E(S) such
that (by)"%e. So a = ae G a(by)nSl G abSK Hence a<$lab.    □

Lemma 2.10. Lei S be a connected algebraic semigroup, e, / G £(S), e|/. 77ien
there exists g G £(S) such that e<3lg aw/ g/£/.

Proof. Let E = £(S). Suppose the lemma is false. Then by Lemma 2.9, gf { / for
all g G E with g*3le. In particular ef \ f. There exist x, >> G S such that xey = /. By
Corollary 1.2 and Proposition 2.2, eSe \ He and/S/ \ /L are closed sets. Let

Tx = {a|a e eSJxaf G /S/ \ //,},        T2 = {a|a G eS, ae G eSe \ #e}.

Then Tx, T2 are closed subsets of eS. If e G Tx, then /xe/ G /L and e/|/, a
contradiction. So e G 7\. Clearly /xey/ = / and so ey G F,. Thus 0 ^ TxGeS.
Clearly e G r2. We claim that ef G T2. Otherwise efe G #e. Then e/|e/e|e|/, a
contradiction. So ef G 72. Hence 0 =£ T2 g eS. Since eS is connected by Prop-
osition 2.2, Tx \j T2 ¥= eS. Hence there exists a G eS such that a G 7\ u jT2. Then
ea = a, /xa/ G Hf, ae G #e. There exists z G S such that zae = e. So za2 = zaea
= ea = a. Hence a2fa. By Lemma 2.9, a2%a. By [6, Theorem 2.16], there exists
g G £ such that a%g. Now g G a2S = aeaS Ç aeS = eS, e G aeS Ç aS = gS.
So e'Slg. Now fxagf = /xa/ G Hf. Hence gf\f, a contradiction. This proves the
lemma.    □

Theorem 2.11. Let S be a connected algebraic semigroup such that E(S) is a
subsemigroup of S. Then S is a semilattice of nil extensions of rectangular groups.

Proof. Let E = E(S). Let a, b G S such that e = ab, f = ba G E. By the
author [14, Theorem 2.17], it suffices to show that/e/ = / Now e = aé|(¿?a)2 = /
By Lemma 2.10 there exists g G £ such that eÇRg, gftf. Since gf G E, fgf = f.
Since e<3lg, eg = g. So fegf = /. Since fe G E, fef = (fefgf = fegf = / This proves
the theorem.    □

Theorem 2.12. Let S be a connected algebraic semigroup such that all subgroups of
S are abelian. Then the following conditions are equivalent.

(1) E(S) is a band.
(2) E(S) is a normal band.
(3) S is a semilattice of nil extensions of rectangular groups.

Proof. (1)=>(3) follows from Theorem 2.11. (2)=>(1) is obvious. So we must
show (3) => (2). By Corollary 1.4, there exists n G Z+ such that for all a G S, a"%e
for some e G E(S). Let E = E(S) and let T be the top S-indecomposable
component of S. If T = S, we are done. So assume P= S \ T =£ 0. P is a prime
ideal of S and hence closed by Theorem 1.12. T is a nil extension of a rectangular
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group 7,. Since the subgroups of 7", are abelian, Tx satisfies the identity xyzw =
xzyw. Hence T satisfies the identity xnynznwn = x^ySv". By [17, p. 54], S X S X
S X S is connected. Let M = {(a, b, c, d)\a, b,c,d G S, anbncndn = anc"bnd"}.
Then M is closed and TXTXTxTXGM. Clearly

SxSxSxS = A/u(SxSxSxP)u(SxSxPxS)
U (S x P X S x S) u (P x S x S x S).

Hence M=SxSxSxS. Thus for ail e,/, g, « G E(S), efgh = eg/ft. In
particular efef = eeff = ef and £(S) is a normal band.    □

Theorem 2.13. Let S be a connected algebraic semigroup such that dim S = 1.
77ien S is either a group, a group with zero, a null semigroup, a right zero semigroup
or a left zero semigroup.

Proof. First assume S has an identity element 1. If E(S) = {1}, then S is a
group. Otherwise there exists e G E(S) such that e ^ 1. Then dim eS = dim Se =
0. So eS = Se = {e}. Hence S has a zero 0 and E(S) = {1, 0}. Let G be the group
of units of S. By Corollary 1.2, M = S \ G is a closed ideal of S. Let a G M.
Consider the map <p: S —» M given by <p(x) = ax. <p is a morphism. Hence T, the
closure of <p(S) is irreducible. Since T G M ¥= S, dim T = 0. Since 0, a G T,
a = 0. Thus S = G U {0}.

So assume S does not have an identity element. Let e G E(S). Suppose eS = S.
Then Se ^ S. So Se = {e}. Let a, b G S. Then a¿? = a(e¿>) = (ae)¿? = eb = b. So
S is a right zero semigroup. Similarly Se = S implies that S is a left zero
semigroup. So assume eS =£ S, Se ¥= S for all e G E(S). Hence eS = Se = {e}. So
S has a zero 0 and E(S) = {0}. By Corollary 1.4, there exists n G Z+ such that
a" = 0 for all a G S. Let D = {a|a G S, a2 = 0}. Then D is closed. Define <p:
S-* D as <p(a) = a""1. Then <p(S) ̂  {0}. Let T be the closure of cp(S). Then
T G D. Since S is connected, T is irreducible. So dim T = 1 and S = T = D. Let
a G S. Let M = {Z>|¿? G S, aZ? = 0}. We claim that M = S. Suppose not. Clearly
M is closed. Define ^: S --> M as $(b) = ab. Since M =t S, \p(S) =t {0}. If H7 is the
closure of ¡p(S), then dim W =£ 0, W is irreducible, W G M. This contradiction
shows that M = S. Hence S2 = {0}, proving the theorem.    □

Remark 2.14. It is well known [2, p. 257] that a connected algebraic group of
dimension one is *-isomorphic to either (K, +) or the group {(a, ¿?)|a, b G K,
ab = 1} under multiplication. Let S be an algebraic semigroup of dimension 1. The
only case of Theorem 2.13 that needs a closer look is when S = G0, G is a group.
Let 1 be the identity of S. Then G = {(a, b)\a, b G S, ab = 1} is a connected
algebraic group of dimension 1. So S is isomorphic to (K,-). The example
S = {(x, .y)|x,j> G K, x2 = .y3} under multiplicaton shows that in general S is not
*-isomorphic to (K,■).

Theorem 2.15. Let S be a connected algebraic semigroup such that dim S = 2.
Then E(S) is a band. If S does not have an identity element then E(S) is a normal
band.
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Proof. Let M be the kernel of S. By Corollary 1.5, M is closed and completely
simple. Let e G E(M). Then SeS = M. By Proposition 2.2, M is connected. First
assume M = S. If eS = S for some e G £(S), it follows (since S is completely
simple) that E(S) is a right zero semigroup. Similarly Se = S implies E(S) is a left
zero semigroup. So assume eS ¥= S, Se ¥= S for all e G £(S). So dim eS = dim Se
< 1 for all e G £(S). Let e G E(S). If eSe ^ {e} then dim eSe = 1. Since eSe Ç
Se n eS, we obtain eS = Se. But then S is a group. So assume eSe = {e} for all
e G E(S). Then S is a rectangular band.

Next assume dim M = 1. By Theorem 2.13, M is either a right zero semigroup, a
left zero semigroup or a group. By symmetry assume M is not a left zero
semigroup. If E(M) = £(S), we are done. So assume E(M) j= E(S). Suppose S
has an identity element 1. Let e G E(S), e G M. Then M § eS. So eS = S and
e = 1. Then E(S) = £(M) u {1} and we are done. Next assume S does not have
an identity element. Let e G E(S) \ M. As above, eS = S. So Se ^ S. Now Me is
closed and connected and Me g Se. So dim Me = 0. If Me = {/}, let 9(e) = / G
E(M). So 0: £(S) \ M -» £(M). Let D, = E(M),D2 = £(S) \ Dx. Then D„ Z>2
are right zero semigroups. If e G D2, f G Dx, then e/ = /, fe = 9(e). It follows
easily that E(S) is a normal band.

Finally assume that dim M = 0. Then S has a zero 0. Suppose S has an identity
element 1. Let e G E(S), e * 1, 0. Then {0} g eSe ç eS g S. So eS = eSe.
Similarly Se = eSe and e G C(S). Hence E(S) G C(S). Next assume S does not
have an identity element. By symmetry we can assume that eS =£ S for all
e G E(S). Then {0} Ç* eSe G eS C¡ S for all e G £(S), e =*= 0. So eSe - eS for
all e G £(S), e ^ 0. Let yi = {e|e G E(S), Se = s). Then A = 0 or A is a left
zero semigroup. Let e G E(S), e =£ 0, e e A. Then {0} g eSe Ç Se g S. Hence
eSe = Se and eS = Se. So e G C(S). It follows that £(S) is a normal band.    □

Let S be a strongly w-regular semigroup, J a regular f -class of S. Let 7° be the
semigroup 7 U {0} where 0 is the zero of 7° and for a, b G 7, we set ab = 0 if
ab G 7. By Munn [11], 7° is completely 0-simple. By the Rees theorem [6, Theorem
3.5] we can assume that7° = (r x G X A) u {0} with sandwich map i:AxT->
G° where G is a group. Multiplication in 7° is given by

(a,aP(ß,y)b,8)     ifP(ß,y)*0,
0 ÜP(ß,y) = 0. {)

Theorem 2.16. Let S be a connected algebraic semigroup, J a regular f-class of S.
Let 7° have the Rees representation given by (3). Then for all a, ß G T, there exists
y G A such that P(y, a) ^ 0 and P(y, ß) ¥" 0. For all y, 8 G A, there exists a G T
such that P(y, a) ¥= 0 and P(8, a) ¥= 0.

Proof. The second statement being the dual of the first, we only need to prove
the first. Let a, ß G T. Since 7° is regular, it follows [6, Lemma 3.1] that there exist
H, v G A such that P(u, a) =t 0, P(v, ß) ¥= 0. Let e = (a, P(¡x, a)~\ u), f =
(ß, P(v, /?)-', v). Then e,f G E(S), e\f. By Lemma 2.10, there exists g G E(S)
such that e'Slg and g/£/. Now g = (a, a, y) for some a G G, y G T. Since g2 = g,
P(y, a) ^= 0. Since gf ¥= 0 in 7°, P(y, 0) ¥= 0. This proves the theorem.    □

(a, a, 0)(y, b, 8) =
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Theorem 2.17. Suppose S is a connected, algebraic semigroup. Assume that S is a
semilattice of groups and that E(S) is linearly ordered. Then \E(S)\ < 2.

Proof. By Theorem 2.8, E(S) is finite and E(S) G C(S). Suppose \E(S)\ > 3.
Let E(S) = {e, < e2 < e3 <•••}. Let T = e3S. Let Tx = e,S, T2 = e2S. Then
Ti ë T2 § T, e2(T \ Tx) = T2 \ Tx, e2Tx = Tx. Define <p: T^> T2, as <p(x) = e2x.
Clearly cp is surjective and dim T > dim 7*2. So [17, p. 60], dim <p~l(a) > 0 for all
a e T2. In particular dim <p"'(e,) > 0. Let x G <p~l(ex). Then e2x = e,. But then
x e Tx and so e2x = x. This contradiction proves the theorem.    □

3. Examples and problems. Let D be a closed subset of K". Let ° be a binary
operation on D such that the map (a, b) —> a ° b from D X D into D is a
morphism. We will then say that (D, ° ) is an algebraic groupoid.

Example 3.1. Let D be an algebraic groupoid, S a subsemigroup of Z). Let T be
the closure of S in Z>. Then 7" is an algebraic semigroup. In fact let a G S,
T, = {¿?|6 G T, ab G T}. Then 5 ç 7, and so 71, = T. So a T G T. Let T2 =
{b\b e T,bT G T}. S G T2 and so T2 = T. Hence T2 Ç T. Let a, b G S and let
7^ = (c|c G T, (ab)c = a(Z?c)}. SçTj and so T3 = T. Repeating this argument
twice, we see that T is a semigroup.

Example 3.2. Let X G K" be closed. Let S = {A\A G 91t„(#), AV1 ÇA'}. Then
S is a closed subsemigroup of 91t„(Ä").

Example 3.3. Let A" ç AT" be a nonempty closed set. Then X admits a right zero,
left zero and null semigroup structures given by ab = b, ab = a, ab = u where u is
a fixed element of X.

Example 3.4. Let S be any finite semigroup. Then S is closed subsemigroup of
the finite dimensional algebra K[S]. Hence S is an algebraic semigroup.

Example 3.5. Let S G K2 be the closed set {(a, ¿?)|a, b G K, ab2 = b). If (a, b),
(c, d) e S, define (a, b)(c, d) = (abcdac + 1 — abed, 0). Then S is a commutative
algebraic semigroup. Note that (1, 1)S = S2 = {(a, 0)\a G K, a ¥= 0} is not closed.
S3 = {(1, 0)}.

Problem 3.6. Let S be an algebraic semigroup. Does there exist n G Z+ such
that S " = Sn+1 is closed?

Problem 3.7. Let S be an algebraic semigroup, e G E(S). Is SeS necessarily
closed?

Problem 3.8. Can the ideals in Corollary 1.11 be chosen to be closed?
Problem 3.9. Let n G Z+. Does the number of regular ^-classes of strongly

77-regular subsemigroups of 91t„(AT) have an upper bound (depending on n)l More
generally, can & in Lemma 1.6 be replaced by a sufficiently large finite set of
idempotents?

Problem 3.10. Are the nil Rees factor semigroups of Theorem 1.10 and
Corollary 1.11 necessarily nilpotent?

Problem 3.11. Can the Krohn-Rhodes theorem for finite semigroups be gener-
alized to strongly w-regular subsemigroups of 9!t„(AT)?

Example 3.12. Let Tx G Km, T2 G K" be algebraic semigroups. Let S = (Tx X
{°n) x i1}) U ({0m} X T2 X {0}) Ç Km+n+i where 0m, 0„ are the zero vectors of
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Km and K" respectively. Then S is closed. Define multiplication in S as follows.

(a, b, a)(c, d, ß) = (aßac, (1 - a)ßb + a(l - ß)d + (1 - a)(l - ß)bd, aß).
Then S is an algebraic semigroup. Let f, = Tx X {0„} X {1}, f2 = {0m} X T2 X
{0}. Then S = f, U t2, xy = yx = y for x G f„ y G f2. f„ f2 are disjoint
closed subsemigroups of S. 7¡ is *-isomorphic to T¡ (i = 1, 2).

Example 3.13. Let 6E be a finite dimensional algebra over K. Then the multi-
plicative semigroup of éB is a connected algebraic semigroup. & along with the
circle operation a°b = a + b — ab is also a connected algebraic semigroup.

Example 3.14. Let S = 9lt„(AT). For / = 1, . . . , n, let S, = {a|a G S, p(a) < /}.
If e G S¡, e2 = e, p(e) = i, then SeS = S, and so by Proposition 2.2, each S, is a
connected algebraic semigroup. S, is completely 0-simple and all subgroups of S,
are abelian. Also dim S, = 2n — 1.

Let S, T be algebraic semigroups. Suppose for a G S, Z? G Tan element a* G S
is uniquely determined. Suppose the map (a, b) —> a* is a morphism and that for all
a„ a2 G S, ¿?„ b2 G 7\ (a^)* = afâ, (a,)*'*2 = (af2)6'. In D = S X T define
(a,, ¿])(a2> Z?2) = (axa2\ bfi^. Then the semidirect product D is an algebraic semi-
group. If S, T are connected then so is D. In particular if a G 91t„(A"), ¿? G
GL(«, A") = {a|a G 91t„(AT), p(a) = n), we can set ab = bab'K If G is any con-
nected, closed subgroup of GL(n, K), we can form the semidirect product of S, (see
Example 3.14) and G to again obtain a connected algebraic semigroup. By
Lallement [10, Theorem 2.17], the semidirect product of S, and G is a subdirect
product of completely simple and completely 0-simple semigroups.

Example 3.15. The example S = {(ll)\a, b G K) shows that Theorem 2.12 is
not true without the assumption that the subgroups of S are abelian.

Problem 3.16. Let S be a connected algebraic semigroup which is a semilattice
of groups. Determine all possibilities for E(S) and |£(S)|. For example, by
Theorems 1.2 and 2.17, |£(S)| ¥= 3. If S is also the multiplicative semigroup of a
finite-dimensional algebra, then clearly |£(S)| = 2" for some n G Z+. This is not
true in general as the following example shows.

Example    3.17.    Let    T = K4   under   multiplicaton    and    let    S =
{(a, b, c, d)\a, b,c,de K, ab = cd). Then S is a connected, closed subsemigroup
of T. S is also a semilattice of groups, dim S = 3 and |£(S)| = 10.

Problem 3.18. Determine all possibilities for ti(S) and \ti(S)\ where S is a
connected algebraic semigroup.

Example 3.19. Let Tx = (K3, *) where
(ax, a2, a3) * (bx, b2, ¿?3) = (a2b3 + a, + bx, b2, a3).

Let T2 be any commutative finite-dimensional algebra with an identity element.
Then Tx is completely simple. Tx, T2, Tx X T2 are all examples of connected
algebraic semigroups satisfying the hypothesis of Theorem 2.5.

Example 3.20. Let S = {(¡j o)\a, b G K}. Then S is a connected algebraic
semigroup of dimension 2. S is a semilattice of a nil semigroup and a right group.

Example 3.21. Let P G 91tn(AT) and let & = {A\A G ^(K), ATPA = 0},
$ = {A\A G 91t„(A:), ATPA = P}. Then  &, $   are closed subsemigroups of
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91t„ (K). & has a zero and % has an identity element. When is & or & connected?
If n = 3 and

0      10
P=    -1     0    0

.0     0    0.
then & is a connected algebraic semigroup of dimension 7.
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