ON LINEAR ALGEBRAIC SEMIGROUPS

BY

MOHAN S. PUTCHA

ABSTRACT. Let K be an algebraically closed field. By an algebraic semigroup we mean a Zariski closed subset of K^n along with a polynomially defined associative operation. Let S be an algebraic semigroup. We show that S has ideals I_0, \ldots, I_r such that $S = I_r \supseteq \cdots \supseteq I_0$, I_0 is the completely simple kernel of S and each Rees factor semigroup I_k/I_{k-1} is either nil or completely 0-simple $(k = 1, \ldots, t)$. We say that S is connected if the underlying set is irreducible. We prove the following theorems (among others) for a connected algebraic semigroup S with idempotent set E(S). (1) If E(S) is a subsemigroup, then S is a semilattice of nil extensions of rectangular groups. (2) If all the subgroups of S are abelian and if for all $a \in S$, there exists $e \in E(S)$ such that ea = ae = a, then S is a semilattice of nil extensions of completely simple semigroups. (3) If all subgroups of S are abelian and if S is regular, then S is a subdirect product of completely simple and completely 0-simple semigroups. (4) S has only trivial subgroups if and only if S is a nil extension of a rectangular band.

1. Preliminaries. Throughout this paper, Z^+ will denote the set of all positive integers. If X is a set, then |X| denotes the cardinality of X. K will denote a fixed algebraically closed field. If $n \in \mathbb{Z}^+$, then $K^n = K \times \cdots \times K$ is the affine nspace and $\mathfrak{M}_n(K)$ the algebra of all $n \times n$ matrices. If $A \in \mathfrak{M}_n(K)$, then $\rho(A)$ is the rank of A. In this paper we only consider closed sets with respect to the Zariski topology. So $X \subseteq K^n$ is *closed* if and only if it is the set of zeroes of a finite set of polynomials on K^n . Let $X \subseteq K^m$, $Y \subseteq K^n$ be closed, $\varphi: X \to Y$. If $\varphi =$ $(\varphi_1, \ldots, \varphi_m)$ where each φ_i is a polynomial, then φ is a morphism. Let $p, n \in \mathbb{Z}^+$, $p \leq n$. Then we use, without further comment, the well-known fact that the set $T = \{A | A \in \mathfrak{M}_n(K), \rho(A) < p\}$ is closed. In fact for $A \in \mathfrak{M}_n(K), A \in T$ if and only if all minors of A of order $\ge p$ vanish. By an algebraic semigroup we mean (S, \circ) where \circ is an associative operation on S, S is a closed subset of K^n for some $n \in \mathbb{Z}^+$ and the map $(x, y) \to x \circ y$ is a morphism from $S \times S$ into S. If S has an identity element then S is an algebraic monoid. Polynomially defined associative operations on a field have been studied by Yoshida [21], [22], Plemmons and Yoshida [13]. Yoshida's results have been generalized to integral domains by Petrich [12]. Clark [4] has studied semigroups of matrices forming a linear variety. Algebraic monoids are briefly encountered in Demazure and Gabriel [8]. The author [15] has studied semigroups on affine spaces defined by polynomials of degree at most 2.

Let S be an arbitrary semigroup. If S has an identity element, then $S^1 = S$. Otherwise $S^1 = S \cup \{1\}, 1 \notin S$, with obvious multiplication. If $a \in S$, then the

Received by the editors November 14, 1978 and, in revised form, August 29, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20M10; Secondary 20G99.

Key words and phrases. Linear algebraic semigroup, idempotent, subgroup, §-class.

^{© 1980} American Mathematical Society 0002-9947/80/0000-0257/\$04.25

centralizer of a in S, $C_S(a) = \{x | x \in S, xa = ax\}$. Then center of S, $C(S) = \bigcap_{a \in S} C_S(a)$. If $a, b \in S$, then a|b (a divides b) if $b \in S^1 a S^1$. §, \mathfrak{R} , \mathfrak{L} , \mathfrak{K} will denote the usual Green's relations on S (see [6]). If $a \in S$, then we let $J(a) = S^1 a S^1$. J_a , H_a will denote the §-class and \mathfrak{K} -class of a in S, respectively. E(S) will denote the set of idempotents of S. If $e, f \in E(S)$ then $e \leq f$ if ef = fe = e. An idempotent semigroup is called a *band*. A commutative band is called a *semilattice*. A band satisfying the identity xyzw = xzyw is called a *normal band*. If ab = b[ba = b] for all $a, b \in S$, then S is a right [left] zero semigroup. A direct product of a right zero semigroup and a left zero semigroup is a rectangular band. A direct product of right [left] zero semigroup, then we say that S is a nil extension of I. Let δ_{α} ($\alpha \in \Gamma$) be a set of congruences on S. If $\bigcap_{\alpha \in \Gamma} \delta_{\alpha}$ is the equality congruence, then S is a subdirect product of S_{α} ($\alpha \in \Gamma$). See [7, p. 99] for details.

A congruence δ on S is an \mathbb{S} -congruence if S/δ is a semilattice. If S is a disjoint union of subsemigroups S_{α} ($\alpha \in \Gamma$) and if for each $\alpha, \beta \in \Gamma$, there exists $\gamma \in \Gamma$ such that $S_{\alpha}S_{\beta} \cup S_{\beta}S_{\alpha} \subseteq S_{\gamma}$, we will say that S is a semilattice (union) of S_{α} ($\alpha \in \Gamma$). We also say that S_{α} ($\alpha \in \Gamma$) is a semilattice decomposition of S. There is an obvious natural correspondence between \mathbb{S} -congruences and semilattice decompositions [6, p. 25]. A semigroup with no \mathbb{S} -congruence on S. Throughout this paper, we let $\Omega = \Omega(S) = S/\xi$ denote the maximal semilattice image of S. By a theorem of Tamura [18], [19], each component of ξ is \mathbb{S} -indecomposable and is called the \mathbb{S} -indecomposable component of S. An ideal P of S is prime if $S \setminus P$ is a subsemigroup of S. In such a case $\{P, S \setminus P\}$ is a semilattice decomposition of S. If S is a commutative algebraic semigroup, then it follows from Corollary 1.4 below, and Tamura and Kimura [20] that $E(S) = \Omega(S)$.

Let S, T be algebraic semigroups, $\varphi: S \to T$ a (semigroup) homomorphism. Then φ is a *-homomorphism if φ is also a morphism (of varieties). If φ is a bijection and if both φ and φ^{-1} are *-homomorphisms, then we say that φ is a *-isomorphism and that S, T are *-isomorphic. S is connected if the underlying closed set is irreducible (i.e. is not a union of two proper closed subsets).

The proof of the following result can be found in Demazure and Gabriel [8, II, §2, Theorem 3.3].

THEOREM 1.1 (SEE [8]). Let S be an algebraic monoid. Then S is *-isomorphic to a closed submonoid of $\mathfrak{M}_n(K)$ for some $n \in \mathbb{Z}^+$.

Let S be an algebraic semigroup which is a group. Let $\varphi: S \to \mathfrak{M}_n(K)$ be given by Theorem 1.1. By Hilbert's Nullstellensatz, $1/\det \varphi(x)$ is a polynomial on S. So $x^{-1} = \varphi^{-1}(\operatorname{adj} \varphi(x)/\det \varphi(x))$. Hence the map $x \to x^{-1}$ is a morphism and S is an algebraic group in the usual sense [2].

The following result can also be found in [8, II, §2, Corollary 3.6].

COROLLARY 1.2 (SEE [8]). Let S be an algebraic monoid which is not a group. Then the nonunits of S form a closed prime ideal of S.

Let S be an algebraic semigroup, $S \subseteq K^n$. Let $T = (S \times \{0\}) \cup \{(0, 1)\} \subseteq K^{n+1}$. Define $(x, \alpha)(y, \beta) = (xy + \beta x + \alpha y, \alpha \beta)$. Then T is an algebraic monoid with identity element (0, 1). S is *-isomorphic to the closed subsemigroup $S \times \{0\}$ of T. Hence we have

COROLLARY 1.3. Let S be an algebraic semigroup. Then S is *-isomorphic to a closed subsemigroup $\mathfrak{M}_n(K)$ for some $n \in \mathbb{Z}^+$.

The following result was pointed out to the author by Clark [5].

COROLLARY 1.4 [CLARK]. Let S be an algebraic semigroup. Then there exists $n \in \mathbb{Z}^+$ such that for all $a \in S$, a^n lies in a subgroup of S.

PROOF. By Corollary 1.3, we can assume that S is a closed subsemigroup of $\mathfrak{M}_n(K)$ for some $n \in \mathbb{Z}^+$. Let $A \in S$. Then without loss of generality we can assume $A = \binom{B \cdot 0}{0:C}$, where $B \in \mathfrak{M}_p(K)$ is invertible and $C \in M_{n-p}(K)$ is nilpotent. Let $T = \{\binom{X \cdot 0}{0:C}\} X \in M_p(K)$, X is invertible}. Then $A^n \in T$. Let $G = \{\binom{X \cdot 0}{0:C}, \alpha\} X \in M_p(K)$, $\alpha \in K$, $\alpha \det \cdot X = 1$ }. Then G is an algebraic group, $\varphi: G \to T$ given by $\varphi(\binom{X \cdot 0}{0:C}, \alpha) = X$ is a bijective morphism. $G_1 = \varphi^{-1}(T \cap S)$ is a closed subsemigroup of G_1 . It is well known (see [8, II, §2, Corollary 3.5]) that a closed submonoid (and hence a closed subsemigroup) of a linear algebraic group is a subgroup. Thus G_1 is a subgroup of G. So $T \cap S = \varphi(G_1)$ is a subgroup of S. Since $A^n \in T \cap S$, we are done. \Box

COROLLARY 1.5. Let S be an algebraic semigroup. Then S has a kernel M which is closed and completely simple.

PROOF. By Theorem 1.1, we can assume that S is a closed subsemigroup of $\mathfrak{M}_n(K)$ for some $n \in \mathbb{Z}^+$. By Corollary 1.4 and Clark [3], S has a completely simple kernel M given by its elements of minimal rank r. Then $M = \{a | a \in S, \rho(a) < r+1\}$ is closed. \Box

LEMMA 1.6. Let \mathcal{E} be an infinite set of idempotents in $\mathfrak{M}_n(K)$ of rank r. Then there exist $E, F \in \mathcal{E}$ such that $E \neq F$ and $\rho(EF) = \rho(FE) = r$.

PROOF. If $E \in \mathcal{E}$, then let $\mathcal{Q}_E = \{A | A \in \mathfrak{M}_n(K), \rho(EA) < r\}, \mathfrak{B}_E = \{A | A \in \mathfrak{M}_n(K), \rho(AE) < r\}$. Then $\mathcal{Q}_E, \mathfrak{B}_E$ are closed subsets of $\mathfrak{M}_n(K)$. We claim:

There exists an infinite subset
$$\mathcal{F}$$
 of \mathcal{E}
such that for all $E \in \mathcal{F}, |\mathcal{Q}_E \cap \mathcal{F}| < \infty$. (1)

Suppose (1) is false. Then there exists $E_1 \in \mathcal{E}$ such that $\mathcal{E}_1 = \mathcal{Q}_{E_1} \cap \mathcal{E}$ is infinite. Again by (1), there exists $E_2 \in \mathcal{E}_1$ such that $\mathcal{E}_2 = \mathcal{Q}_{E_2} \cap \mathcal{E}_1$ is infinite. Continuing, we obtain a sequence E_1, E_2, \ldots , in \mathcal{E} such that $\rho(E_i E_j) < r$ for i < j. So $E_{i+1} \in \mathcal{Q}_{E_1} \cap \cdots \cap \mathcal{Q}_{E_i}, E_{i+1} \notin \mathcal{Q}_{E_{i+1}}$. Hence

$$\mathscr{Q}_{E_1} \supseteq \mathscr{Q}_{E_1} \cap \mathscr{Q}_{E_2} \supseteq \mathscr{Q}_{E_1} \cap \mathscr{Q}_{E_2} \cap \mathscr{Q}_{E_2} \supseteq \cdots$$

Since \mathscr{Q}_{E_i} 's are closed sets, we have a contradiction to the Hilbert Basis Theorem. Thus (1) is true. The dual of (1) applied to \mathscr{F} shows that there exists an infinite subset \mathscr{G} of \mathscr{F} such that for all $E \in \mathscr{G}$, $|\mathfrak{B}_E \cap \mathscr{G}| < \infty$. Let $E \in \mathscr{G}$. Then $|\mathscr{Q}_E \cap \mathscr{G}| < \infty, |\mathfrak{B}_E \cap \mathscr{G}| < \infty$. Hence there exists $F \in \mathscr{G}$ such that $F \notin \mathscr{Q}_E \cup \mathfrak{B}_E$. So $\rho(EF) = \rho(FE) = r$. \Box

A semigroup S with the property that a power of each element lies in a subgroup of S is said to be *strongly* π -regular. The study of strongly π -regular rings and semigroups was initiated by Azumaya [1], Drazin [9] and Munn [11]. Clark [3] showed that a strongly π -regular matrix semigroup has a kernel given by its elements of minimal rank. Let S be a strongly π -regular semigroup. A \mathcal{G} -class of S containing an idempotent is called *regular*.

THEOREM 1.7. Let S be a strongly π -regular subsemigroup of $\mathfrak{M}_n(K)$. Then S has only finitely many regular \mathcal{G} -classes.

PROOF. Suppose not. Then there exists an infinite set of idempotents \mathcal{E} of S such that for all $e, f \in \mathcal{E}$, $e \notin f$ implies e = f. Let $r = 0, \ldots, n$, let $\mathcal{E}_r = \{e | e \in \mathcal{E}, \rho(e) = r\}$. Then \mathcal{E}_r is infinite for some r. By Lemma 1.6, there exist $e, f \in \mathcal{E}_r$ such that $e \neq f$, $\rho(ef) = \rho(fe) = r$. Let \mathcal{V} be the space of all $n \times 1$ vectors on K. Then $ef \mathcal{V} = e \mathcal{V}$, $fe \mathcal{V} = f \mathcal{V}$. Hence $e \mathcal{V} = (ef)^r \mathcal{V}$ for all $t \in \mathbb{Z}^+$. There exists an idempotent g of $S, p \in \mathbb{Z}^+$ such that $g \mathcal{K}(ef)^p$. Hence $g \mathcal{V} = (ef)^p \mathcal{V} = e \mathcal{V}$. If $v \in \mathcal{V}$, then $ev \in g \mathcal{V}$ and so gev = ev. So ge = e. Hence $f | (ef)^p | g | e$. So f | e. Similarly e | f and $e \notin f$. This contradiction proves the theorem. \Box

COROLLARY 1.8. Let S be a strongly π -regular subsemigroup of $\mathfrak{M}_n(K)$. Then $\Omega(S)$ is finite.

PROOF. Let $\varphi: S \to \Omega(S)$ denote the natural homomorphism. By Theorem 1.7, $\varphi(E(S))$ is finite. Let $a \in S$. Then $a^n \mathcal{H}e$ for some $e \in E(S)$. So $\varphi(a) = \varphi(a^n) = \varphi(e)$. Hence $\Omega(S) = \varphi(S) = \varphi(E(S))$ is finite. \Box

LEMMA 1.9. Let S be a strongly π -regular semigroup with only finitely many regular §-classes. Then there exist finitely many ideals I_0, \ldots, I_t of S such that $S = I_t$ $\supseteq \cdots \supseteq I_0, I_0$ is the completely simple kernel of S and each I_i/I_{i-1} is either completely 0-simple or a nil semigroup $(i = 1, \ldots, t)$.

PROOF. We prove by induction on the number of regular \oint -classes of S. Let E = E(S). Let J_{e_1}, \ldots, J_{e_n} be the regular \oint -classes of S where $e_1, \ldots, e_n \in E$. Let $I = J(e_1) \cap \cdots \cap J(e_n)$. Then I is an ideal of S. So there exists $f \in I \cap E$. Let $a \in S$. Then there exists $m \in \mathbb{Z}^+$ such that $a^m \oint e_i$ for some i. So $f \in J(a^m) \subseteq J(a)$. Hence $J(f) = I_0$ is the kernel of S. By Munn [11], I_0 is completely simple. Let $\mathfrak{K} = \{J(e)|e \in E \cap (S \setminus I_0)\}$. Then \mathfrak{K} is finite. If $\mathfrak{K} = \emptyset$, then $S \setminus I_0$ has no idempotent and $S \setminus I_0$ is nil. So assume $\mathfrak{K} \neq \emptyset$. Then \mathfrak{K} has a minimal element $J(g), g \in E$. Let $I_2 = J(g), I_1 = I_2 \setminus J_g$. Then $I_0 \subseteq I_1$ and I_1 is an ideal of S. Let $a \in I_1$. Then $a^m \oint h$ for some $h \in E$, $m \in \mathbb{Z}^+$. Then $h \in I_1$. So $J(h) \subseteq J(g)$. By minimality of $J(g), h \in I_0$. Thus $a^m \in I_0$. So I_1/I_0 is nil. Since $I_2 \setminus I_1 = J_g$ and $g \in E, I_2/I_1$ is 0-simple. By Munn [11], I_2/I_1 is completely 0-simple. Clearly S/I_2 has lesser number of regular \oint -classes than S. We are thus done by our induction hypothesis. \Box

By Theorem 1.7 and Lemma 1.9 we have the following.

THEOREM 1.10. Let S be a strongly π -regular subsemigroup of $\mathfrak{M}_n(K)$. Then there exist ideals I_0, \ldots, I_i of S such that $S = I_i \supseteq \cdots \supseteq I_0, I_0$ is the completely simple kernel of S and each I_i/I_{i-1} is either completely 0-simple or nil $(i = 1, \ldots, t)$.

By Corollary 1.3, Corollary 1.4 and Theorem 1.10, we have

COROLLARY 1.11. Let S be an algebraic semigroup. Then S has ideals I_0, \ldots, I_t such that $S = I_t \supseteq \cdots \supseteq I_0$, I_0 is the completely simple kernel of S and each I_i/I_{i-1} is either completely 0-simple or nil $(i = 1, \ldots, t)$.

THEOREM 1.12. Let S be an algebraic semigroup and P a prime ideal of S. Then P is closed.

PROOF. By Corollaries 1.3 and 1.4, we can assume that S is a closed, strongly π -regular subsemigroup of $\mathfrak{M}_n(K)$ for some $n \in \mathbb{Z}^+$. Hence $S_1 = S \setminus P$ is strongly π -regular. By Clark [3] the kernel T of S_1 is the set of elements of S_1 of minimal rank. Let $e \in E(T)$, $\rho(e) = r$. Let $a \in S_1$. Then $(eae)^n \in T$ and so $\rho((eae)^n) = r$. Let $a \in P$. There exists $f \in E(P)$ such that $(eae)^n \mathfrak{M}f$. So ef = fe = f. Hence $\rho(f) < \rho(e) = r$. Clearly $\rho((eae)^n) = \rho(f)$. Thus $P = \{a | a \in S, \rho((eae)^n) < r\}$ is closed. \Box

2. Connected algebraic semigroups. Let S be an algebraic semigroup, $e \in E(S)$. Then the maximal subgroup H_e of S need not be closed. However H_e can be identified with $G = \{(a, b) | a, b \in S, ab = ba = e, ae = ea = a, be = eb = b\}$. If $(a, b), (c, d) \in G$, define (a, b)(c, d) = (ac, db). Then G is an algebraic group. The correspondence between H_e and G is given by $a \leftrightarrow (a, a^{-1})$. More precisely define $\varphi: G \rightarrow S$ as $\varphi(a, b) = a$. Then φ is an injective *-homomorphism and $\varphi(G) = H_e$. It is easy to show that G is unique to within *-isomorphisms. It can also be easily shown that if S is connected then so is G. However, we will not need these facts in this paper.

THEOREM 2.1. Let S be a connected algebraic semigroup. Then $\Omega(S)$ has an identity element.

PROOF. Let $\Omega = \Omega(S)$, $\varphi: S \to \Omega$ be the canonical homomorphism. By Corollary 1.8, Ω is a finite semilattice. Suppose Ω has two maximal elements e, f. Then $\Omega_1 = \Omega \setminus \{e\}, \ \Omega_2 = \Omega \setminus \{f\}$ are prime ideals of $\Omega, \ \Omega = \Omega_1 \cup \Omega_2$. So $S = P_1 \cup P_2$ where $P_i = \varphi^{-1}(\Omega_i), i = 1, 2$. But P_1, P_2 are prime ideals of S and hence closed by Theorem 1.12. This contradiction shows that Ω has a maximum element e. So e is the identity element of Ω . \Box

In the above notation, we call $\varphi^{-1}(e)$ the top S-indecomposable component of S. If S is a monoid, then the top S-indecomposable component of S is the group of units of S.

PROPOSITION 2.2 Let S be a connected algebraic semigroup, $e, f \in E(S)$. Then eS, Se, eSf are connected, closed subsemigroups of S. If SeS is closed, then SeS is also connected.

PROOF. $eS = \{x | x \in S, ex = x\}, eSf = \{x | x \in S, ex = x = xf\}$. Hence eS, Se, eSf are closed. Define $\varphi_1: S \to eS$ as $\varphi_1(x) = ex$. Since φ_1 is a surjective morphism, eS is connected. Define $\varphi_2: S \to eSf$ as $\varphi_2(x) = exf$. Since φ_2 is a surjective morphism, eSf is connected. $S \times S$ is connected. Define $\varphi_3: S \times S \to SeS$ as $\varphi_3(x, y) = xey$. If SeS is closed, then $\varphi_3(S \times S) = SeS$ is also connected. \Box

THEOREM 2.3. Let S be a connected algebraic semigroup. Then

(1) all maximal subgroups of S are closed if and only if S is a nil extension of a completely simple semigroup.

(2) all subgroups of S are trivial if and only if S is a nil extension of a rectangular band.

PROOF. (2) follows trivially from (1). So we prove (1). First assume that all maximal subgroups of S are closed. Let $e \in E(S)$. By Proposition 2.2, *eSe* is connected. By hypothesis H_e is closed. By Corollary 1.2, $eSe \setminus H_e$ is also closed. Hence $eSe = H_e$. Thus a|e for all $a \in S$. Hence $e \in T = \text{kernel}$ of S. Thus $E(S) \subseteq T$. By Corollary 1.11, T is completely simple and S/T is nil. Conversely assume S/T is nil where T is the completely simple kernel of S. Then for $e \in E(S) = E(T)$, $H_e = eSe$ is closed. \Box

THEOREM 2.4. Let S be a connected algebraic semigroup. Then the following conditions are equivalent.

- (1) All subgroups of the top S-indecomposable component of S are abelian.
- (2) All subgroups of S are abelian.
- (3) eSe is commutative for all $e \in E(S)$.

PROOF. (1) \Rightarrow (3). Let T be the top \mathcal{S} -indecomposable component of S. Then by Theorem 1.12, $P = S \setminus T$ is closed. Let $e \in E(T)$. Then H_e is abelian. Let $S_1 = eSe$, $P_1 = S_1 \setminus H_e$. Then P_1 is closed, S_1 is closed and connected. $S_1 = P_1 \cup$ H_e . Let $a \in H_e$. Then $H_e \subseteq C_{S_1}(a)$ and so $S_1 = P_1 \cup C_{S_1}(a)$. Hence $C_{S_1}(a) = S_1$. Thus $H_e \subseteq C(S_1)$ and $S_1 = P_1 \cup C(S_1)$. Hence $C(S_1) = S_1$ and S_1 is commutative. Let $a \in T$. By Corollary 1.4 there exists $n \in \mathbb{Z}^+$ such that $a^n \mathcal{H}e$ for some $e \in E(T)$. So $a^nSa^n \subseteq eSe$ is commutative. Let $T_1 = \{a \mid a \in S, a^nSa^n \text{ is com$ $mutative}\}$. Then T_1 is closed, $T \subseteq T_1$. Since $S = P \cup T_1$, $T_1 = S$. Hence eSe is commutative for all $e \in E(S)$. That (3) \Rightarrow (2) \Rightarrow (1) is obvious. \Box

THEOREM 2.5. Let S be a connected algebraic semigroup such that all subgroups of S are abelian. Suppose further that for each $a \in S$, there exists $e \in E(S)$ such that ea = ae = a. Then S is a semilattice of nil extensions of completely simple semigroups and the top S-indecomposable component of S is completely simple.

PROOF. By Theorem 2.4, eSe is commutative for all $e \in E(S)$. Let $a \in S$. Then there exists $e \in E(S)$ such that ea = ae = a. Let $x, y \in S^1$. Then $xay xay = x(eae)(eyxe)(eae)y = x(eae)^2(eyxe)y = xa^2yxey$. Hence $a^2|(xay)^2$. By a paper by the author [14, Theorem 2.13], S is a semilattice of nil extensions of completely simple semigroups. Let T be the top S-indecomposable component of S. Then T is a nil extension of a completely simple semigroup. Let T_1 = kernel of T. Then $E(T) \subseteq T_1$. Let $a \in T$. Then there exists $e \in E(S)$ such that ea = a. Clearly $e \in E(T)$. Hence $a \in T_1$ and $T = T_1$ is completely simple. \Box

A semigroup is regular if $a \in aSa$ for all $a \in S$.

THEOREM 2.6. Let S be a regular, connected algebraic semigroup such that all subgroups of S are abelian. Then S is a finite subdirect product of semigroups, each of which is either completely simple or completely 0-simple.

PROOF. Let $e, f, g \in E(S)$ such that $e \ge f, e \ge g, f \oiint g$. We claim that f = g. There exist $x, y \in S^1$ such that xfy = g. By Theorem 2.4, eSe is commutative. So g = exefeye = efeeyeexe = eyeexeefe. Hence g = fyexe = eyexf. Hence gf = fg = g. So $f \ge g$. Similarly $g \ge f$ and f = g. Thus

for all
$$e, f, g \in E(S)$$
, the conditions
 $e \ge f, e \ge g, f \oiint g$ together imply $f = g$. (2)

By Munn [11], the principal factors of S are completely simple or completely 0-simple. Hence by (2) and Lallement [10, Theorem 2.17], S is a subdirect product of completely simple and completely 0-simple semigroups. Since, by Theorem 1.7, S has only finitely many \mathcal{G} -classes, a close examination of [10] shows that the subdirect product can be chosen to be finite. \Box

THEOREM 2.7. Let S be a connected algebraic semigroup, $e \in E(S)$, $e \notin C(S)$. Then $e \in B$ where B is either an infinite, closed right zero subsemigroup of S or an infinite, closed left zero subsemigroup of S.

PROOF. By symmetry assume dim $eS \ge \dim Se$. Define $\phi: eS \rightarrow eSe$ as $\varphi(a) = ae$. Then φ is a surjective morphism, eS, Se, eSe are closed and connected. By [17, Chapter I, §6, Theorem 7], dim $eS \ge \dim eSe$. First assume dim $eS = \dim eSe$. Then since $eSe \subseteq eS$, eS = eSe. Since dim $eS \ge \dim Se$ and $eSe \subseteq Se$ we have Se = eSe. Hence eS = Se and $e \in C(S)$, a contradiction. So dim $eS \ge \dim eSe$. Let $B = \varphi^{-1}(e)$. By [17, p. 60] dim B > 0. Hence B is infinite. Let $a \in B$. Then $a \in eS$, ae = e. Hence a = ea. Let $a, b \in B$. Then ab = aeb = eb = b. This proves the theorem. \Box

THEOREM 2.8. Let S be a connected algebraic semigroup. Then the following conditions are equivalent.

(1) E(S) is finite.

(2) E(S) is commutative.

(3) $E(S) \subseteq C(S)$.

(4) S is a semilattice of nil extensions of groups.

PROOF. By Theorem 2.7, $(1) \Rightarrow (3)$ and $(2) \Leftrightarrow (3)$. By Corollary 1.8, $(4) \Rightarrow (1)$. So it suffices to show that $(3) \Rightarrow (4)$. Assume (3). Let $a, b \in S$ such that $ab, ba \in E(S) \subseteq C(S)$. Then ab = a(ba)b = (ab)(ba) = baba = ba. By Weissglass and the author [16, Corollary 8], we are done. \Box

The following result is implicit in Munn [11]. We include a proof here for the convenience of the reader.

LEMMA 2.9 [MUNN]. Let S be a strongly π -regular semigroup. Let $a, b \in S$. If $a \S ab$ then $a \Re ab$. If $a \S ba$, then $a \Re ba$. If $a \S a^2$, then $a \Re a^2$.

PROOF. It suffices to consider the case $a \notin ab$. There exist $x, y \in S^1$ such that xaby = a. Then x'a(by)' = a for all $t \in \mathbb{Z}^+$. There exist $n \in \mathbb{Z}^+$, $e \in E(S)$ such that $(by)^n \mathcal{K}e$. So $a = ae \in a(by)^n S^1 \subseteq abS^1$. Hence $a \Re ab$. \square

LEMMA 2.10. Let S be a connected algebraic semigroup, $e, f \in E(S)$, e|f. Then there exists $g \in E(S)$ such that $e \Re g$ and gf & f.

PROOF. Let E = E(S). Suppose the lemma is false. Then by Lemma 2.9, $gf \nmid f$ for all $g \in E$ with $g \Re e$. In particular $ef \nmid f$. There exist $x, y \in S$ such that xey = f. By Corollary 1.2 and Proposition 2.2, $eSe \setminus H_e$ and $fSf \setminus H_f$ are closed sets. Let

$$T_1 = \{ a | a \in eS, fxaf \in fSf \setminus H_f \}, \qquad T_2 = \{ a | a \in eS, ae \in eSe \setminus H_e \}.$$

Then T_1 , T_2 are closed subsets of eS. If $e \notin T_1$, then $fxef \in H_f$ and ef|f, a contradiction. So $e \in T_1$. Clearly fxeyf = f and so $ey \notin T_1$. Thus $\emptyset \neq T_1 \subsetneq eS$. Clearly $e \notin T_2$. We claim that $ef \in T_2$. Otherwise $efe \in H_e$. Then ef|efe|e|f, a contradiction. So $ef \in T_2$. Hence $\emptyset \neq T_2 \subsetneq eS$. Since eS is connected by Proposition 2.2, $T_1 \cup T_2 \neq eS$. Hence there exists $a \in eS$ such that $a \notin T_1 \cup T_2$. Then ea = a, $fxaf \in H_f$, $ae \in H_e$. There exists $z \in S$ such that zae = e. So $za^2 = zaea = ea = a$. Hence $a^2 \notin a$. By Lemma 2.9, $a^2 \Re a$. By [6, Theorem 2.16], there exists $g \in E$ such that $a \Re g$. Now $g \in a^2 S = aeaS \subseteq aeS = eS$, $e \in aeS \subseteq aS = gS$. So $e \Re g$. Now $fxagf = fxaf \in H_f$. Hence gf|f, a contradiction. This proves the lemma. \Box

THEOREM 2.11. Let S be a connected algebraic semigroup such that E(S) is a subsemigroup of S. Then S is a semilattice of nil extensions of rectangular groups.

PROOF. Let E = E(S). Let $a, b \in S$ such that e = ab, $f = ba \in E$. By the author [14, Theorem 2.17], it suffices to show that fef = f. Now $e = ab|(ba)^2 = f$. By Lemma 2.10 there exists $g \in E$ such that $e \Re g$, gf & f. Since $gf \in E$, fgf = f. Since $e \Re g$, eg = g. So fegf = f. Since $fe \in E$, $fef = (fe)^2 gf = fegf = f$. This proves the theorem. \Box

THEOREM 2.12. Let S be a connected algebraic semigroup such that all subgroups of S are abelian. Then the following conditions are equivalent.

(1) E(S) is a band.

(2) E(S) is a normal band.

(3) S is a semilattice of nil extensions of rectangular groups.

PROOF. (1) \Rightarrow (3) follows from Theorem 2.11. (2) \Rightarrow (1) is obvious. So we must show (3) \Rightarrow (2). By Corollary 1.4, there exists $n \in \mathbb{Z}^+$ such that for all $a \in S$, $a^n \mathcal{K}e$ for some $e \in E(S)$. Let E = E(S) and let T be the top S-indecomposable component of S. If T = S, we are done. So assume $P = S \setminus T \neq \emptyset$. P is a prime ideal of S and hence closed by Theorem 1.12. T is a nil extension of a rectangular group T_1 . Since the subgroups of T_1 are abelian, T_1 satisfies the identity xyzw = xzyw. Hence T satisfies the identity $x^ny^nz^nw^n = x^nz^ny^nw^n$. By [17, p. 54], $S \times S \times S \times S$ is connected. Let $M = \{(a, b, c, d) | a, b, c, d \in S, a^nb^nc^nd^n = a^nc^nb^nd^n\}$. Then M is closed and $T \times T \times T \times T \times C \subseteq M$. Clearly

$$S \times S \times S \times S = M \cup (S \times S \times S \times P) \cup (S \times S \times P \times S)$$
$$\cup (S \times P \times S \times S) \cup (P \times S \times S \times S).$$

Hence $M = S \times S \times S \times S$. Thus for all $e, f, g, h \in E(S)$, efgh = egfh. In particular efef = eeff = ef and E(S) is a normal band.

THEOREM 2.13. Let S be a connected algebraic semigroup such that dim S = 1. Then S is either a group, a group with zero, a null semigroup, a right zero semigroup or a left zero semigroup.

PROOF. First assume S has an identity element 1. If $E(S) = \{1\}$, then S is a group. Otherwise there exists $e \in E(S)$ such that $e \neq 1$. Then dim $eS = \dim Se = 0$. So $eS = Se = \{e\}$. Hence S has a zero 0 and $E(S) = \{1, 0\}$. Let G be the group of units of S. By Corollary 1.2, $M = S \setminus G$ is a closed ideal of S. Let $a \in M$. Consider the map $\varphi: S \to M$ given by $\varphi(x) = ax$. φ is a morphism. Hence T, the closure of $\varphi(S)$ is irreducible. Since $T \subseteq M \neq S$, dim T = 0. Since $0, a \in T$, a = 0. Thus $S = G \cup \{0\}$.

So assume S does not have an identity element. Let $e \in E(S)$. Suppose eS = S. Then $Se \neq S$. So $Se = \{e\}$. Let $a, b \in S$. Then ab = a(eb) = (ae)b = eb = b. So S is a right zero semigroup. Similarly Se = S implies that S is a left zero semigroup. So assume $eS \neq S$, $Se \neq S$ for all $e \in E(S)$. Hence $eS = Se = \{e\}$. So S has a zero 0 and $E(S) = \{0\}$. By Corollary 1.4, there exists $n \in \mathbb{Z}^+$ such that $a^n = 0$ for all $a \in S$. Let $D = \{a | a \in S, a^2 = 0\}$. Then D is closed. Define φ : $S \rightarrow D$ as $\varphi(a) = a^{n-1}$. Then $\varphi(S) \neq \{0\}$. Let T be the closure of $\varphi(S)$. Then $T \subseteq D$. Since S is connected, T is irreducible. So dim T = 1 and S = T = D. Let $a \in S$. Let $M = \{b | b \in S, ab = 0\}$. We claim that M = S. Suppose not. Clearly M is closed. Define ψ : $S \rightarrow M$ as $\psi(b) = ab$. Since $M \neq S$, $\psi(S) \neq \{0\}$. If W is the closure of $\psi(S)$, then dim $W \neq 0$, W is irreducible, $W \subseteq M$. This contradiction shows that M = S. Hence $S^2 = \{0\}$, proving the theorem. \Box

REMARK 2.14. It is well known [2, p. 257] that a connected algebraic group of dimension one is *-isomorphic to either (K, +) or the group $\{(a, b)|a, b \in K, ab = 1\}$ under multiplication. Let S be an algebraic semigroup of dimension 1. The only case of Theorem 2.13 that needs a closer look is when $S = G^0$, G is a group. Let 1 be the identity of S. Then $\hat{G} = \{(a, b)|a, b \in S, ab = 1\}$ is a connected algebraic group of dimension 1. So S is isomorphic to (K, \cdot) . The example $S = \{(x, y)|x, y \in K, x^2 = y^3\}$ under multiplication shows that in general S is not *-isomorphic to (K, \cdot) .

THEOREM 2.15. Let S be a connected algebraic semigroup such that dim S = 2. Then E(S) is a band. If S does not have an identity element then E(S) is a normal band. PROOF. Let *M* be the kernel of *S*. By Corollary 1.5, *M* is closed and completely simple. Let $e \in E(M)$. Then SeS = M. By Proposition 2.2, *M* is connected. First assume M = S. If eS = S for some $e \in E(S)$, it follows (since *S* is completely simple) that E(S) is a right zero semigroup. Similarly Se = S implies E(S) is a left zero semigroup. So assume $eS \neq S$, $Se \neq S$ for all $e \in E(S)$. So dim $eS = \dim Se$ ≤ 1 for all $e \in E(S)$. Let $e \in E(S)$. If $eSe \neq \{e\}$ then dim eSe = 1. Since $eSe \subseteq$ $Se \cap eS$, we obtain eS = Se. But then *S* is a group. So assume $eSe = \{e\}$ for all $e \in E(S)$. Then *S* is a rectangular band.

Next assume dim M = 1. By Theorem 2.13, M is either a right zero semigroup, a left zero semigroup or a group. By symmetry assume M is not a left zero semigroup. If E(M) = E(S), we are done. So assume $E(M) \neq E(S)$. Suppose S has an identity element 1. Let $e \in E(S)$, $e \notin M$. Then $M \subsetneq eS$. So eS = S and e = 1. Then $E(S) = E(M) \cup \{1\}$ and we are done. Next assume S does not have an identity element. Let $e \in E(S) \setminus M$. As above, eS = S. So $Se \neq S$. Now Me is closed and connected and $Me \subsetneq Se$. So dim Me = 0. If $Me = \{f\}$, let $\theta(e) = f \in E(M)$. So θ : $E(S) \setminus M \to E(M)$. Let $D_1 = E(M), D_2 = E(S) \setminus D_1$. Then D_1, D_2 are right zero semigroups. If $e \in D_2$, $f \in D_1$, then ef = f, $fe = \theta(e)$. It follows easily that E(S) is a normal band.

Finally assume that dim M = 0. Then S has a zero 0. Suppose S has an identity element 1. Let $e \in E(S)$, $e \neq 1, 0$. Then $\{0\} \subsetneq eSe \subseteq eS \subsetneq S$. So eS = eSe. Similarly Se = eSe and $e \in C(S)$. Hence $E(S) \subseteq C(S)$. Next assume S does not have an identity element. By symmetry we can assume that $eS \neq S$ for all $e \in E(S)$. Then $\{0\} \subsetneq eSe \subseteq eS \subsetneq S$ for all $e \in E(S), e \neq 0$. So eSe = eS for all $e \in E(S), e \neq 0$. Let $A = \{e|e \in E(S), Se = s\}$. Then $A = \emptyset$ or A is a left zero semigroup. Let $e \in E(S), e \neq 0, e \notin A$. Then $\{0\} \subsetneq eSe \subseteq Se \subsetneq S$. Hence eSe = Se and eS = Se. So $e \in C(S)$. It follows that E(S) is a normal band. \Box

Let S be a strongly π -regular semigroup, J a regular \mathcal{G} -class of S. Let J^0 be the semigroup $J \cup \{0\}$ where 0 is the zero of J^0 and for $a, b \in J$, we set ab = 0 if $ab \notin J$. By Munn [11], J^0 is completely 0-simple. By the Rees theorem [6, Theorem 3.5] we can assume that $J^0 = (\Gamma \times G \times \Lambda) \cup \{0\}$ with sandwich map $P: \Lambda \times \Gamma \to G^0$ where G is a group. Multiplication in J^0 is given by

$$(\alpha, a, \beta)(\gamma, b, \delta) = \begin{cases} (\alpha, aP(\beta, \gamma)b, \delta) & \text{if } P(\beta, \gamma) \neq 0, \\ 0 & \text{if } P(\beta, \gamma) = 0. \end{cases}$$
(3)

THEOREM 2.16. Let S be a connected algebraic semigroup, J a regular \mathcal{G} -class of S. Let J^0 have the Rees representation given by (3). Then for all $\alpha, \beta \in \Gamma$, there exists $\gamma \in \Lambda$ such that $P(\gamma, \alpha) \neq 0$ and $P(\gamma, \beta) \neq 0$. For all $\gamma, \delta \in \Lambda$, there exists $\alpha \in \Gamma$ such that $P(\gamma, \alpha) \neq 0$ and $P(\delta, \alpha) \neq 0$.

PROOF. The second statement being the dual of the first, we only need to prove the first. Let α , $\beta \in \Gamma$. Since J^0 is regular, it follows [6, Lemma 3.1] that there exist $\mu, \nu \in \Lambda$ such that $P(\mu, \alpha) \neq 0$, $P(\nu, \beta) \neq 0$. Let $e = (\alpha, P(\mu, \alpha)^{-1}, \mu)$, $f = (\beta, P(\nu, \beta)^{-1}, \nu)$. Then $e, f \in E(S)$, e|f. By Lemma 2.10, there exists $g \in E(S)$ such that $e \Re g$ and gf & f. Now $g = (\alpha, a, \gamma)$ for some $a \in G$, $\gamma \in \Gamma$. Since $g^2 = g$, $P(\gamma, \alpha) \neq 0$. Since $gf \neq 0$ in J^0 , $P(\gamma, \beta) \neq 0$. This proves the theorem. \Box THEOREM 2.17. Suppose S is a connected, algebraic semigroup. Assume that S is a semilattice of groups and that E(S) is linearly ordered. Then $|E(S)| \leq 2$.

PROOF. By Theorem 2.8, E(S) is finite and $E(S) \subseteq C(S)$. Suppose $|E(S)| \ge 3$. Let $E(S) = \{e_1 < e_2 < e_3 < \cdots \}$. Let $T = e_3S$. Let $T_1 = e_1S$, $T_2 = e_2S$. Then $T_1 \subsetneq T_2 \subsetneq T$, $e_2(T \setminus T_1) = T_2 \setminus T_1$, $e_2T_1 = T_1$. Define $\varphi: T \to T_2$, as $\varphi(x) = e_2x$. Clearly φ is surjective and dim $T > \dim T_2$. So [17, p. 60], dim $\varphi^{-1}(a) > 0$ for all $a \in T_2$. In particular dim $\varphi^{-1}(e_1) > 0$. Let $x \in \varphi^{-1}(e_1)$. Then $e_2x = e_1$. But then $x \in T_1$ and so $e_2x = x$. This contradiction proves the theorem. \Box

3. Examples and problems. Let D be a closed subset of K^n . Let \circ be a binary operation on D such that the map $(a, b) \rightarrow a \circ b$ from $D \times D$ into D is a morphism. We will then say that (D, \circ) is an *algebraic groupoid*.

EXAMPLE 3.1. Let D be an algebraic groupoid, S a subsemigroup of D. Let T be the closure of S in D. Then T is an algebraic semigroup. In fact let $a \in S$, $T_1 = \{b | b \in T, ab \in T\}$. Then $S \subseteq T_1$ and so $T_1 = T$. So a $T \subseteq T$. Let $T_2 = \{b | b \in T, bT \subseteq T\}$. $S \subseteq T_2$ and so $T_2 = T$. Hence $T^2 \subseteq T$. Let $a, b \in S$ and let $T_3 = \{c | c \in T, (ab)c = a(bc)\}$. $S \subseteq T_3$ and so $T_3 = T$. Repeating this argument twice, we see that T is a semigroup.

EXAMPLE 3.2. Let $X \subseteq K^n$ be closed. Let $S = \{A | A \in \mathfrak{M}_n(K), XA \subseteq X\}$. Then S is a closed subsemigroup of $\mathfrak{M}_n(K)$.

EXAMPLE 3.3. Let $X \subseteq K^n$ be a nonempty closed set. Then X admits a right zero, left zero and null semigroup structures given by ab = b, ab = a, ab = u where u is a fixed element of X.

EXAMPLE 3.4. Let S be any finite semigroup. Then S is closed subsemigroup of the finite dimensional algebra K[S]. Hence S is an algebraic semigroup.

EXAMPLE 3.5. Let $S \subseteq K^2$ be the closed set $\{(a, b)|a, b \in K, ab^2 = b\}$. If (a, b), $(c, d) \in S$, define (a, b)(c, d) = (abcdac + 1 - abcd, 0). Then S is a commutative algebraic semigroup. Note that $(1, 1)S = S^2 = \{(a, 0)|a \in K, a \neq 0\}$ is not closed. $S^3 = \{(1, 0)\}$.

PROBLEM 3.6. Let S be an algebraic semigroup. Does there exist $n \in \mathbb{Z}^+$ such that $S^n = S^{n+1}$ is closed?

PROBLEM 3.7. Let S be an algebraic semigroup, $e \in E(S)$. Is SeS necessarily closed?

PROBLEM 3.8. Can the ideals in Corollary 1.11 be chosen to be closed?

PROBLEM 3.9. Let $n \in \mathbb{Z}^+$. Does the number of regular \mathcal{G} -classes of strongly π -regular subsemigroups of $\mathfrak{M}_n(K)$ have an upper bound (depending on *n*)? More generally, can \mathcal{E} in Lemma 1.6 be replaced by a sufficiently large finite set of idempotents?

PROBLEM 3.10. Are the nil Rees factor semigroups of Theorem 1.10 and Corollary 1.11 necessarily nilpotent?

PROBLEM 3.11. Can the Krohn-Rhodes theorem for finite semigroups be generalized to strongly π -regular subsemigroups of $\mathfrak{M}_n(K)$?

EXAMPLE 3.12. Let $T_1 \subseteq K^m$, $T_2 \subseteq K^n$ be algebraic semigroups. Let $S = (T_1 \times \{0_n\} \times \{1\}) \cup (\{0_m\} \times T_2 \times \{0\}) \subseteq K^{m+n+1}$ where $0_m, 0_n$ are the zero vectors of

M. S. PUTCHA

 K^m and K^n respectively. Then S is closed. Define multiplication in S as follows.

 $(a, b, \alpha)(c, d, \beta) = (\alpha\beta ac, (1 - \alpha)\beta b + \alpha(1 - \beta)d + (1 - \alpha)(1 - \beta)bd, \alpha\beta).$ Then S is an algebraic semigroup. Let $\hat{T}_1 = T_1 \times \{0_n\} \times \{1\}, \hat{T}_2 = \{0_m\} \times T_2 \times \{0\}$. Then $S = \hat{T}_1 \cup \hat{T}_2$, xy = yx = y for $x \in \hat{T}_1$, $y \in \hat{T}_2$. \hat{T}_1 , \hat{T}_2 are disjoint closed subsemigroups of S. \hat{T}_i is *-isomorphic to T_i (i = 1, 2).

EXAMPLE 3.13. Let \mathscr{C} be a finite dimensional algebra over K. Then the multiplicative semigroup of \mathscr{C} is a connected algebraic semigroup. \mathscr{C} along with the circle operation $a \circ b = a + b - ab$ is also a connected algebraic semigroup.

EXAMPLE 3.14. Let $S = \mathfrak{M}_n(K)$. For i = 1, ..., n, let $S_i = \{a | a \in S, \rho(a) \leq i\}$. If $e \in S_i$, $e^2 = e$, $\rho(e) = i$, then $SeS = S_i$ and so by Proposition 2.2, each S_i is a connected algebraic semigroup. S_1 is completely 0-simple and all subgroups of S_1 are abelian. Also dim $S_1 = 2n - 1$.

Let S, T be algebraic semigroups. Suppose for $a \in S$, $b \in T$ an element $a^b \in S$ is uniquely determined. Suppose the map $(a, b) \rightarrow a^b$ is a morphism and that for all $a_1, a_2 \in S$, $b_1, b_2 \in T$, $(a_1a_2)^b = a_1^b a_2^b$, $(a_1)^{b_1b_2} = (a_1^{b_2})^{b_1}$. In $D = S \times T$ define $(a_1, b_1)(a_2, b_2) = (a_1a_2^{b_1}, b_1b_2)$. Then the semidirect product D is an algebraic semigroup. If S, T are connected then so is D. In particular if $a \in \mathfrak{M}_n(K)$, $b \in$ $GL(n, K) = \{a|a \in \mathfrak{M}_n(K), \rho(a) = n\}$, we can set $a^b = bab^{-1}$. If G is any connected, closed subgroup of GL(n, K), we can form the semidirect product of S_i (see Example 3.14) and G to again obtain a connected algebraic semigroup. By Lallement [10, Theorem 2.17], the semidirect product of S_1 and G is a subdirect product of completely simple and completely 0-simple semigroups.

EXAMPLE 3.15. The example $S = \{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} | a, b \in K \}$ shows that Theorem 2.12 is not true without the assumption that the subgroups of S are abelian.

PROBLEM 3.16. Let S be a connected algebraic semigroup which is a semilattice of groups. Determine all possibilities for E(S) and |E(S)|. For example, by Theorems 1.2 and 2.17, $|E(S)| \neq 3$. If S is also the multiplicative semigroup of a finite-dimensional algebra, then clearly $|E(S)| = 2^n$ for some $n \in \mathbb{Z}^+$. This is not true in general as the following example shows.

EXAMPLE 3.17. Let $T = K^4$ under multiplicaton and let $S = \{(a, b, c, d) | a, b, c, d \in K, ab = cd\}$. Then S is a connected, closed subsemigroup of T. S is also a semilattice of groups, dim S = 3 and |E(S)| = 10.

PROBLEM 3.18. Determine all possibilities for $\Omega(S)$ and $|\Omega(S)|$ where S is a connected algebraic semigroup.

EXAMPLE 3.19. Let $T_1 = (K^3, *)$ where

 $(a_1, a_2, a_3) * (b_1, b_2, b_3) = (a_2b_3 + a_1 + b_1, b_2, a_3).$

Let T_2 be any commutative finite-dimensional algebra with an identity element. Then T_1 is completely simple. $T_1, T_2, T_1 \times T_2$ are all examples of connected algebraic semigroups satisfying the hypothesis of Theorem 2.5.

EXAMPLE 3.20. Let $S = \{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | a, b \in K \}$. Then S is a connected algebraic semigroup of dimension 2. S is a semilattice of a nil semigroup and a right group.

EXAMPLE 3.21. Let $P \in \mathfrak{M}_n(K)$ and let $\mathfrak{C} = \{A | A \in \mathfrak{M}_n(K), A^T P A = 0\}$, $\mathfrak{B} = \{A | A \in \mathfrak{M}_n(K), A^T P A = P\}$. Then $\mathfrak{C}, \mathfrak{B}$ are closed subsemigroups of $\mathfrak{M}_n(K)$. \mathfrak{A} has a zero and \mathfrak{B} has an identity element. When is \mathfrak{A} or \mathfrak{B} connected? If n = 3 and

$$P = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

then \mathscr{Q} is a connected algebraic semigroup of dimension 7.

References

1. G. Azumaya, Strongly π-regular rings, J. Fac. Sci. Hokkaido Univ. 13 (1954), 34-39.

2. A. Borel, Linear algebraic groups, Benjamin, New York, 1969.

3. W. E. Clark, Remarks on the kernel of a matrix semigroup, Czechoslovak Math. J. 15 (90) (1965), 305-310.

4. _____, Affine semigroups over an arbitrary field, Proc. Glasgow Math. Assoc. 7 (1965), 80-92.

5. _____, Private communication.

6. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Math. Surveys, No. 7, Amer. Math. Soc., Providence, R. I., 1961.

7. P. M. Cohn, Universal algebra, Harper and Row, New York, 1965.

8. M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groups commutatifs, North-Holland, Amsterdam, 1970.

9. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 7 (1958), 506-514.

10. G. Lallement, Demi-groupes reguliers, Ann. Mat. Pura Appl. 77 (1967), 47-129.

11. W. D. Munn, Pseudo-inverses in semigroups, Proc. Cambridge Philos. Soc. 57 (1961), 247-250.

12. M. Petrich, Associative polynomial multiplications over an integral domain, Math. Nachr. 29 (1965), 67-75.

13. R. J. Plemmons and R. Yoshida, Generating polynomials for finite semigroups, Math. Nachr. 47 (1970), 69-75.

14. M. S. Putcha, Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), 12-34.

15. _____, Quadratic semigroups on affine spaces, Linear Algebra and Appl. 26 (1979), 107-121.

16. M. S. Putcha and J. Weissglass, A semilattice decomposition into semigroups with at most one idempotent, Pacific J. Math. 39 (1971), 225-228.

17. I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1974.

18. T. Tamura, The theory of construction of finite semigroups. I, Osaka J. Math. 8 (1956), 243-261.

19. _____, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780.

20. T. Tamura and N. Kimura, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112.

21. R. Yoshida, Algebraic systems which admit polynomial operations, Mem. Res. Inst. Sci. Engrg. Ritsumeikan Univ. 10 (1963), 1-5.

22. ____, On semigroups, Bull. Amer. Math. Soc. 69 (1963), 369-371.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27650