On linear functional equations
in locally convex linear topological spaces

by
M. ALTMAN (Warszawa).

In his famous memoir {1]F. Rrmsz has given what is essentially
an extension to Banach spaces of Fredholm’s theory of Linear equa-
tions. This extension was supplemented by HILDEBRANDT 21
and SCHAUDER [3]. A generalization of Riesz’s theory for locally
convex linear topological spaces has heen given recently by LERAY
[4]. The proof of the “alternative of Fredholm” is baged on s theo-
Tem on the invariance of the domain. This theorem was established
by Schauder for Banach spaces and generalized by Leray for a wid-
er clags of spaces. However, the theorems of Schauder for the
sonjugate space were not obtained by Leray.

The purpose of this paper is to give a simple method of proot
of the Riesz-Schauder theory in the case of locally convex linear to-
pological spaces. Thiy method is based on the above mentioned
theory and permits us to generalize also other theorems coneerning
lineat eompletely continuous transformations (see [3]). TFinally,
we obgerve that in order to prove the corresponding theorems i
suffices to assume that the transformation in question ig continuons
in the sense of Heine.

1. Let X be a linear topological locally convex space, i. e. a lin-
ear set on which a topology is imposed in such a fashion that the
postulated operations of addition and multiplication by real num-
bers are continuous in the topology, muoreover, for évery neigh-
bourhood 2, of the element 2¢X there exists a convex neighhourhood
B, such that B, CEL, (ef. [6] and [7]). Tt suttices to give the system
W of neighbourhoods of 0.

The systemn of neighbourhoods of an arbifrary element x con-
sists of the neighbourhoods of the form U, =a--5 ($e9B)
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A sequence [x,}CX is convergent if, for every neighbourhood &
of 0, there exists a number N such that wm,n >N implies 2, — el
A sequence {2,|CX is econvergent o xeX if there exists an N such
that n>XN imples »,— xefl; we write w,—r, when n->oco Or
lim @, = .

e . . = . @ If1
" A transformation y=U(x) of ¥ into X is econtinuous if?)
lim z,==
00
implies

lim U(e)=U(x), reX.

R—r00
A transformation y=1U(x) is called line¢ar if U is confinuous on
X and has the following property:

Us+y)=Ulx) + Uly) for arbitrary z,yeX;

henee U(tx)=tU(x), where ¢ is & real number. A ﬁra.nsforma,txon
U is called completely continuous if there exists a nglghbourhood
I of 0 such that the image U(SL) is compact in this sense that
svery infinite subset has a limif point.

cvelsinm:]?ozz.lfy convex linear topological space X the pseuqonorflju
izly, where ¥ is an arbitrary convex neighbourhood of 0, is defi-
ned for every zeX as follows®):

lolg=g.1.b. of k>0 such that zfhe®B.

Then x|y has the following properties:

10 [z|y=0,

20 r+ylg<|elst Y

30 |irjg= [t| |zly for any veal . . .

The following elassification of locally eomvex linear topologi-
cal spaces is due to MazUR ([8], D. 199). _

Let X be a linear space and @ an abstract set snch thab D=N,.
Let us further assume that there exists a class of psendonorms
|#)g, #€@P, such that

1) We consider continuity in the sense of Heine; continuity in the sense
i i tinuity.
of Cauchy is stronger than sequential con i e
b %’/’e assume%.lso, without loss of generality, the symmetry of P, —B=D,
for an arbitrary neighbourhood of 0. .
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[#lg=0 for every Hed

is equivalent to =0, Then X is called a (Bj)-space. X is a locally
convex linear fopological space, and the set of all elements ze X
such that |2 —ml, <& (i=1,2,...,n), where ¢ is & positive number,
constitutes the neighbourhood of .

Mazor ([8], p. 199) and v. NEUMANN (independently of each
other) have shown that every locally convex linear fopological
space is isomorphic to a certain (B¥)-space. Thus, a sequence {mn}Cx
is convergent to an element xe X if

lim|r,—x,=0 for every ¥ed.
B-20T
Let U be a linear completely continuous transformation and &
the neighbourhood of 0 sueh that the image U(Y) is compact. Then
there exists a neighbourhood L of 0 such that BLCEY, where B
is defined by the inequalities |z], <& (1=1,2,...,u). We define the
pseudonorm |z|= sup {#ls,- Then the image of any for this pseudo-
%

norm bounded set I3 compact. Hence we have the following

Lemma. If U s a linear completely continuwous transformation,
there exists for every ded o number M, such that [U(z)], < My ).

Proof. The set U{zf|z]) is compact. If |20 there exists
a number M, such that [T (x)],/j2] <M,; hence [U(x)|s < M,|x. The
condition |x|=0 irmplies that |iz|=0 for every i Since the seb
2U(x) is compact, we have [4]|U(x)], <<+ oo. Since 1 ig arbifrary,
it is necessary that |U(zr)|,=0 for every de®,

On fhe basis of lemma 1 we construct an auxiliary Banach
space as follows:

Let U be a linear completely continueus transformation. hav-
ing its domain and range in X and jx| the above chosen pseudo-
norm. We divide the space X into classes and we say that x; and @,
belong o the swme class ¢, if |, —2,)=0. The set @ of all clements
xeX such that |#j=0 constitutes the zero class. Thus we have ob-
tained & (B*)-space X* with the norm iti=|z], where zerC¥. De-
note by X7 the complefion of ¥*. X’ iy a Banach space.

The transformation y= () defines in the space X* a trans-
formation y="{(z), where yey, zer. We shall show that & is 2 com-
pletely continuous transformation. If [r,} is an arbitrary sequence
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from X* sueh thab |g,}< M, where M is a constant, then for x, eg,
the sequence |T(x,)| is ecompact. Let [s} be a sequence of positive
numbers such that g,~>0 as n—-oco. Since the sequence [T(r,)} is
compact, there exists an element y,e ¥ such that each of the neigh-
bourhoods defined by the condition |lr—y,|<e, (n=1,2,...) con-
taing infinitely many elements of the sequence {U(;r.“ }, whenee it
follows that the sequemce [f(x,)} contains a subsequence eonver-
gent t0 1y, Wheve yen,.-

The transformation & can be extended over the whole space X'
and its range is contained in ¥°. In fact, if ¢ is an arbitrary element
of ¥, then fhere exists a sequence {r,]CX* such that r,—r for
n—>o0. Thus the sequence [H(z,)} is compact and convergent in the
gpace X*; henee there exists an element y e X* such that

500

lim S‘[ (gn,) = I)r

and consequently p=_2(r).

Theorem 1. If U is a linear completely continuous iransfor-
mation, then the range of the transformation T(x) =x—Ulx) is closed.

Proof. Consider the transformation ()=t —U(r) defined
on X'. By a theorem of Rimsz ([1], Satz 3) its range is cloged. If
peX* is a limis point of the range of the transformation T then there
exists an element 1 e X’ sueh that T(r) =t — (r)=1n. Since H{z)e X*,
also reX*. Thus the range of the transformation T with its domain
restricted to X* is closed in ¥*. The homomorphism z->g, where
zetCX, reX®, is continuons; this implies that the range of T
is closed. ]

Theorem 2. If U is a linear completely continuous transfor-
mation, then the solutions of the equation x— U(x)=0 form an Bucli-
dean space.

Proof. Consider the equation ¢—3i(r)=0 corresponding 6o
the equation x— U(x) =0, where zer. By a theorem of Rimsz ([1],
Satz 1) the set of solubions constibutes a linear space of finite di-
mengion contained in ¥*. Let 2,2,-..,%, be linearly independent
solutions of the equation »—U(z)=0. If z61;, then ,0h,.-.,0s
are linearly independent solutions of the equation r—U{z)=0.

In fact, suppose that there exist numbers AyyAgge ey, such that
Ay + Aol ... 4 A p,==0. Then we have | yity -+ Agity .0+ A2, | =00
By lemma 1 we obtain U{iwr + A2+ ...+ Apt,)=0. Since a linear
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combination of solutions is also a solufion, we have A, A+ ...
422, =0 and 2,=1=...=1,=0. Hence it follows also that the
condition A, -+ ety ... + Byl =0, where f,8,,...,5, are arbi-
trary nombers and oy,%,...,%, — arbitrary solutions of the equa-
tion r—U{x)="0, implies pyy 4 fatz + .- . + P, ==0.

Theorem 2'. The solutions of the equation T"(x)=0 for any
postiive integer - form an Euclidean space.

Proof. The solutions of the equation {*(r)=6 have the re-
quired property and the same is true for the equation T™{x)=0.

Denote by &, the set of solutions of the equation T™(z)=0
(n=1,2,...). We prove now

Theorem 3. There evists a positive integer v such that G,=G,
for n>v and G,7%G, for n<y (or, equivalently, T™(x)=0 ‘mplies
T"x)=0 for n>>v, and for n<<v there exists an element x such that
Ty =0, but T*(x)#£0).

Proof. By a theorem of Rrmsz ([1], Satz 2) there exists a po-
sitive integer » such that &,=G, for n>» and G,# G, for n<y,
whera by &, we denote the set of all solutions of the equation
F(r)=0. I T""{x)==0 then ') =0 and T'(t) =0, where xer.
Hence |T"(x)|==0 and T"*Yz)=T"(x)— UT(2)=T"(x)=0. On the
other hand, if 7% (z)=10 implies T*(x)=0 and if we assume that
F"Hr) =0, then for zer we have |T™H (2)|=0. If y=1""*"(z), then
I™y)=y for an arbitrary m. We have T**'(z)—y=0, hence
™Yo —y)=0, where z—gyeg. This implies T"(x—y)=0 and
L) =4.

Theorem 4. If the equation T(s)=y has o solution for any

yeX, then it has only one solution, i. e. the equation v — U{w)=10 has
the only solution z=0.

Proof. Thig follows from theorem 3.

‘We denote by L, the range of the transformation ™, Since
the range of the transformation T* is closed, so is I,.

=

Theorem 5. There evists a positive integer v such that for n>>»

_L-%‘”—"L, and for n<v Ly, £ L,. The number v coincides with that de-
fined in theorem 3.

Proof. Sin‘ee Y= (I Uy =I—YU(nl—...) and the range of
the transformation I is contained in X*, R*(r)eX* implies reX*.
Denote by £, the range of T Let v be the number defined in theo-
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rem 3; from s theorem of Rrmsz ([1], Satz 6) it follows that €,=%,
for n>v. Let & be an arbitrary element belonging to X and reteX’;
there exists an element peX’ such that T{r)=T"(y). () e £,
hence yeX*. If yey, then T"(w)==T"(y)+ 2, where |¢]=0, and we
obtain 7™ (y) -+ 2 =T"(y -+2). Since x is an arbitrary element of X,
we have L,=UI,. On the other hand, if L, ;== L,, then for any »
there exists an element y such that T™(r)=T" (). This implies
F™(1) == I™Y(y), where zer, yey, for any reX". Since X* ig dense
in X’ and the range of " is closed, we have £,,,,= £, and the theo-
rem iy proved.

h ig called a regular value of U if the equation z—hU(x)=0
has only the solution =0, otherwise % is called a proper or charac-
teristic value of U. The set of all proper valuex of U forms the
so-called spectrum. Obviously, if 2 is a regular value of U, then k is
also a regular value of &: if r, is a solution of the equation r—
R8l()=#, thent, e X* and there exists an zye f, such that z, — AU (ze) = 03
hence #,==0 and g;= 0. Conversely, if t —hil{r) =46 implies =10,
then if there exists an element X such that z —hTU(x) =0, then
zef; by lemma 1 T(r)=0 and thus »=0. The transformations
U and & have the same spectrum.

Theorem 6. If ki o regular value of U, then the transforma-
tion #—hU(2) is o one-fo-one mapping of X onto ftself and its in-
verse is contimuous, i. e. the mapping i a homeomorphism.

Proof. k iy also a regular value of . The mapping T—hi(r)
is by a theorem of Riesz ([1], Satz 7) a homeomorphism of X'. If
yen e X and Iy 15 a solution of the equation £—hi(r)=Y, then there
exists an z e, such that w, —hU{z,) =Y. Suppose z, —hU(2,)—>0,
when #-—oo. Then |z, — kU (@,)] =0, hence also £, — B (L) = 0.
Since the transgformation ¢ — h8(z) has & continuous inverse, |[f,|—0
and also |z,]—0; hence, by lemma 1, U(w,)—0 and congequently
2> 0.

The element &¢X is ealled a null-dlement if it 15 a solukion of
the equation T"(z)=10. The element y of the form y ==71"(w), where
ze¥ is called & kernel-element.

Theorem 7. Hvery element of X ean be represented as the sum
of & null-clement and o kernel-element in only one manner.

Proof. This results from theorems 3-5 in exactly the same
way as in the case of Banach spaces and'it ean be obtained directly


GUEST


200 M. Altman

from the corresponding theorem of Rimsz ([1], Satz 8) as follows:
Let = be any element of ¥ and xer, then r=3' 4", where r'e®,,
r'ef,. Since T(')=9 and reX', we have p',r"eX*. Tt per
shen 1(2')=y and |y|=0, & =(z'~y) + (5—1' -+y), T"(z'— y)=T"(z')
—Py)=T"()—y=0, whence #'—ye@,. Since z—a'+yer’ and
1"=%(w), where weX*, then if wew we have T"(w)er”, hence
p—a'+y=T"(w) + W, where W|=0 and z—a'+y="T"(w--B)e L,.
The condition &,2 =0 implies G L, =0.

Theorem 8. There erists a wnique linear transformation VAR
which maps every kernel-clement into iself and every wull-element
into 0. T® maps every element of X énfo a hernd-clement and I — T
maps every clement into o null-dlement. Moreover, TO' =T gy
U= 17,

Proof. For every element zeX we have, by theorem 7, z=u’
+ (2 — '), where & is a kernel-element and z—g’ is a null-element.

Denote by T® the mapping z—=', It is obvious that 7% (p'y= »’
if &' is a kernel-element, T™(x)'=0 if 2* is a null-element, and
for every xeX, T(x) is a kernel-element and I(z) — T(x) is a null-
element. Since @, is of finite dimension and G, L,==0, for w,eX,
we eoan wrjte Ty=Nay+15a)+ ..+ 2al + @, where the elements
Ty yd2;..., 8 form a base in @, and z,¢ L,. Suppose that , -0, when
n-+oe, and put 7,=|Af}4-[AF[+...4-14%). We shall show that T 0,
Suppose that there exists a number £ and a subseguence {nk] such
that r, >p; then

1 ‘
. (A% 4 Ag%af .. 4 Al ) 0.

Tig

) It follows that A3*/r, 0, when k- oo, for 6=1,2,...,p; other-
w::se there would exist a number 8 and an index i, Such that
L [r,>p for infinitely many elemenfs of the sequence [nk} and
we could choose a subsequence |7} of indices such that the sequen-

- _

ces L%/ r;, wonld be convergent and i Tag—> %, # 0, which gives

1 - _ .
0 np 0 7
— P+ A ) g, 52 0,
ng
where xyel?,.

This.wogld imply «%5, ) s+ —x, and @ye.02,, which fs impossible.
We obtain iM*/r,,—0 when k- oo, hut then
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AP 15 L A

Fay,

]
—{L

The obtained contradiction shows thab », -0, henee A% - 5 nd
...+ a0 and also x,—~0. Thus the continuity of the transfor-
mation T® is proved.

Arguing as in fhe cage of Banach spaces we can prove the other
statements of the theorem.

Theorem 9. The transfermation U can be decomposed in one
and only one way into two ecomponents: U=U,+U,, where

10 Uy is @ linear transformation, which maps all null-elements
nto 0 and U, maps all kernel-elements into 0 ;

20 U, cotncides with U for kernel-elements and U, coincides
with U for null-elements ;

3v  For any x, Uy{x) is & kernel-element and U,(x) a null-element ;
U, and U, are ortogonal, i. ¢. UyUy=U,U=0; U, and U, are com-
pletely continuous,

Proof. Putting U,=T%0 =UT® and U,={I—1%)U=U({I—-T"})
we obviously have U,+U,=U. We shall ghow that the fransfor-
mations T, and U, are completely econtinuous; everything else
can be proved in exactly the same way as in the case of Banach
space ([1], Satz 10).

By theorem 8 we have T®(2)=r'eL, and (I—T")(a)=2"eC,,
hence r=1'-+t", Wheve x'el’, 5 ¢l", wel, L'e%,, 1€ G,. By a lemma
of Rresz (717, Hilfssatz 6) there exist numbers M,, M, such that
1< M, rf and [g]"<C AL, |r); henee follows |o'|<CM, x| and |af" < M, ).
Thug the transformations U,=UTY and U,=U(I—T) map the
neighbourhood of 0, defined by the condition |#}< e, into compact
setbs.

Theorem 10. The transformation Ty=I—U; has an inverse,
i. e. there exisis a transformation Ty sueh that Ty 77 =T Ty=1. The
equations TM(x)=10 and T5(x)=0, where Th=I—T, have the seme
solutions. The eguations T"(x)=y and 17 (x)==y with the same right-
hand sides either both have solutions or both have mo solutions.

Proof. The theorem results from theorems 6 and 7 in the
same manner as in the case of Banach spaces ([1], Satz 11).

Theorem 11. The proper values of U have no finite limit poinis.
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Proof. This follows from a theorem of Rimsz ([1], Satz 12)
for the linear completely continuous transformation Il defined in
the Banach space X’ and from the fact that U and i have the same
speetrom,

Theorem 12. All the values of the parameter b1 are regular
values of the transformation U, defined in theorem 9. '

Proof. In accordance with the decomposition s=2"+4",
where x'eL,, 7"¢6, we obtain the following decomposition for the
space X': if zer, w'er’ then r'e®, r"e®, and we set =g+
The transformation T(r)=1’, corresponding to the transforma-
tion T@(x)==w’, is defined by the homomorphism x->g, where xetr.
Tn an analogous way we obtain the transformations TWU=1,
and (I —TN =8, corresponding to the transtormations T U =0,
and (I—T9T="T, and identical with those defined in theorems
& and 9 for the Banach space £ on the basis of the corresponding
theorems of Riesz.

Suppose now that £—h8l,(r) =0 implies r==6. Hence it follows
that if there exists an element zeX such that »—hU,(2)=0, then
we have xef and also =0, since U,(x)=0.

On the other hand, if x—hU,{z)=0 implies @ =0 and if reX’
ig an element such that r— hél,(r)=0, then there exists an element
ey such that x— hU,(x) =0; hence =0 and t=0. Thus we have
estiablished that the transformations U, and I, have the same
regular values. But by a theorem of Rimsz ([1], Satz 13) the
asgertion is true for U, and therefore also for U,.

2. We shall denote by X the set of all linear functionals X
defined on X.

A sequence of linear functionals {Xn} is said to be sirongly con-
vergent 40 a linear functional XeX if it is uniformly eonvergent in
& cerfiain neighbourhood © of 0, i e.

sug | Xp(r)—X{x)] =0 when n-»oo.

A get M of linear functionals is said to he beunded if there exists

& neighbourhood © of 0 and a constant M sueh that |X(z)| < M
for all XeM, z€O.

¥ Ui a linear transformation defined on %, then the transfor-
mation X=U(Y) defined by the formula X(x)=Y¥U(z) is said
to be the adjoint of U.
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A transformation defined on ¥ is said to be completely eontin-
wous if it maps any bounded set into a compact one.
A set MCX is said to be compact if any infinite part of M
containg a sequence strongly convergent to some element of X
Theorem 13. If y=U(x) is a linear completely econtinyous
transformation then so is the adjoint X=T(Y) and ils range belongs
to the conjugate space of X'.
Proof. Let |¥,} be a bounded sequence of linear functionals,
i e
sup | Xo(y)| < H,
yel
where O i3 a neighbeurhood of 0. There exists a neighbourhood O,
of 0 defined by the inequalifies |yiy<Cen Ylag<Toas ..o s 1Wisp<to such
that O,CO. We define the pseudonorm:

lyh= sup [yls;-
1ik

The set of all elements y such that |y} < e belongs to O, and
hereby
M ,
sup | Yo (y)l < -——= M".
i<t &g
We have
| X (@) =T U)] < sup [Xn(@)]1U (@)
Wiyt
By lemma 1 there exists a constant M, sueh that |Ufr)l < M, |zl
Finally we obtain
1 sup | X, ()| < sup LY, ()~ My
=<1 1W<t
Trom (1) follows the linearity of the adjoint transformation.
By a well known theorem, for any linear functional the inequality

X<V sup ([glg,see -1 Wlg)s

where N is a consbant and n & positive integer, is true. From this
fact and from (1) it follows that the range of the adjoint transior-
mation X=T(Y) belongs to the conjugate space of X'. TIf we eon-
sider the range of the trangformation y=U(x) as a space with the
psendonorm |y};, then we see that the transformation U defined on
X with the psendonorm |z| is completely continuous; hence it fol-
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lows thab its range is separable for the pseudomorm |y|,. Thus by
use of the diagonal method we can ehoose a subsequence {Y m.»}
convergent for every y of the range of U. We have
lim ¥, U(z) =lim X, ().
i—roo 1—roa’
From (1) we infer that
lim X, (#)=X(x)
00
is a Hnear functional for the pseudonorm |z| and hence also on X'
Let {2;]C¥ be a sequence such that

1
=1, | X(wg) — ()= 5 sup X () — Ky, ().
< i1
Suppose that there exists a positive number i guch that
2) sup | X (2) — X, (@) >>4
Zl<1
for every 4, then we have
im ¥, U (2,)— ¥, U () =

1sm “

A.

ik

S.ince l#:i=1, there exists an element y, and a sequence of indices
{i} sueh that

kﬁm [U(@i,) — yols= 0.

Now let & be an arbitrary positive number; there exists an index %o
such that for k>%, we have

Y= Tri<e
and.
iYik(yo)—]Eim Yyl <e.
For k>%, we have o

]YikU(mik) —kl_]fg Yik U("'“"u_-” {M'E +3+M,E:

which is incompatible with condition (2), since ¢ i arbitrary. d?hus
the sequence {X,,‘} 18 wniformly convergent in the neighbourhood

O, defined by the inequality |z|<1 to the L .
s ¢ linear funct
this completes the proof. _ ctional X and
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Theorem 14. If the equation ¥=X—T(X), where U is a line-
ar completely continuous transformation having ils demain and range
in X, has a solution for any YeX, then the equation X—T{X)=0 has
only the solution X=0,

Proof. Since, by theorem 13, T(X}eX’ for every XeX and
X8(r)=XU(x) for wer, XeX’, we have U(X)=i(X) for Xe¥X'.
Further, the equation Y=X —E(X) has for any YeX' a solution
belonging alse to %'. By a theorem of SceATDER [3] il is a com-
pletely continuous transformation, hence by a thecrem of Rimsz
(11], Satz 3) the equation X —8{(X)=0 has only the solution
X =0; therefore X —U(X)=0 implies X=0.

Theorem 15. If the equation X —T (X)=0, where U i o ln-
ear completely continuous fransformation having its domain and
vange in X has only the solution X =10, then the equation ¥ =X — 7(X)
has a solution for any TeX.

Proof. As follows from the condition given in the theorem,
the equation X —8(X)=0, where XeX’, has only the solution X =0.

Using the well known theorem for the Banach space X' we
find that the equation r—&(r)=6 has only the solution r=0. This
implies that the equation # — U{x)=0 also has only the solution &=0.
According to Theorem 6 the transformation y=z— U(x) is a one-to-
one maping of the space ¥ onto itself having a continuous inverde.

Theorem 16. If T is a linear completely continous transfor-
mation having s domain and romge in X, then the equations
a+Ule)=0 and X —T(X)=0 have the same number of linear in-
dependent solutions.

Proof. It is easy to see that the equabions a—U@)=0 and
r—H(p)=0 have the same number of linearly independent solu-
tions. The equations X —T(X)=0 and X —-U(X)=0 have the
same solutions. By & theorem of ScHAUDER [3] the equations
r—U@)=0 and X—i[(X):O have the same number of linearly
independent solutions and hence follows the above assertion.

Theorem 17. The lincar completely continvous transformation
U and dts adjoint U have the same spectrumi.
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Proof. The transformations U and & have the same spectrum
and this holds also for U and I

Thus, given a system of equnations r—hU(z)=y and X -—hﬁ(X)
=Y, we can judge one of them from the behaviour of the other.

Pheorem 18. The set of all regular valuwes of U is an open sel.

Proof. This follows from the fact that U and & have the same
gpectrum.

Theorem 19. If #—hU(z)=0 and X—h' U
then X(x)=

Proof. X(;E)SIIXU(:E)=]$[?(X)(Q7). Hence X(r)=hX(x)/h" and
‘we have X(r)=0.

If U is a linear completely continuous transformation, then
we can state for the equations

=0 (h5=1L'),

M s—hUE) =0, X—rU(X)=

the generalization of Fredholmg theorems for infiegral equations
as follows:

Theorem 20. (a) The equations (I) have the same nwumber d(h)
of Uinearly independent solutions.

(b) If d(h)=0, then the assertion of Theorem 6 holds:

(©) If dR)>0 ond |}, (X} (i=1,...,d(h) are Unearly inde-
pendent solutions of ithe equations (1), thm the equation x—hU(x)=y
has a solution for any y salisfying the condition X;(y)=0(i=1,2...d(h)},
and the equation X —hU(X)=Y has a solution for any Y satysfying
the econdition Y(z)=0 (1=1,2,...,d(k)).

Proof. (6) Suppose that ¥eX natisties the condition ¥ ()=
{i=1,...,d(R)).

There exist pseudonorms @, (k=1,...,n) and & number N
such that

[ X (@) <N sup |, .
lckgn
We define the pseudonorm
Jely = BUP(\JJI [#la, 5+« s [la,)
for which we can repeat the game reasoning as for the psendonorm [z

) Denot(? by %I the corresponding quotient space and by i
its completion, We define the fransformation 9=_81'(r) corresponding

icm

On the linear functionnl eguations,

F
<
<

to the transformation y="U(x), where wereX;, yepe¥y. Let O1
be the neighbourhood defined by the inequality |z],<e. Since the
condition |sh<<e implies |»| <z, then T(O,) is a compact set. By
lemana 1, established for the pseudonorm |x[;, the transformation b
is completely eontinuous and can be extended over the whole %, .
We have YeX; and Y(m)=Y{5), zet (1=1,2,. d(h)) Denote
by ®' he set of all solutions of the equation 1 —hﬁ ( y==0,; then it
is easy to see that {L} (’a—l, ,- ,d(h)) is & base in ®’, whence by
a theorem of SCHAUDER [3] there exists a linear functional X%
such that ¥ =X (X). Obviously, Xe}., and for mere¥, we have
X8 (1) =X U ()= U(X){z), hence ¥Y=X—T(X) and the theorem
is proved.
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