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Abstract. In this paper we consider the normalization of quadratic 
Hamiltonian. We get the new method to find the generating function of the 
canonical transformation. We obtain the solution of the system of matrix 
equations to find this transformation. The corresponding Hamiltonian 
matrix has multiply eigenvalues.  

1 Introduction    
The Hamiltonian systems have an important role in fluid mechanics. The systems are of 
potential interest for statistical mechanics. Let us consider the quadratic Hamiltonian H = 
=1/2 wTΩw. By w denote vector with dimension 2n, by Ω denote the symmetric 2n-by-2n 
matrix. We consider the Hamiltonian system of differential equations 
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where En is identity matrix. With canonical transformation we find the normal form of 
Hamiltonian matrix JΩ:  
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where submatrix U has Jordan normal form.  
In the paper [1] the author considers the normalization of Hamiltonian matrix in the case 

of nonzero eigenvalues. In the paper [2] the author proves the possibility of normalization 
of non-singular Hamiltonian matrix. In the papers [3 – 5] the authors obtain other methods 
of normalization the matrix. We find the canonical transformation with generation function. 
Hamiltonian matrix has multiply nonzero and zero eigenvalues. 

2 System of matrix equations 
Let us consider the quadratic Hamiltonian  

H = 1/2 wTΩw = 1/2 xT

Ax + xT

By + 1/2 yT

Cy,     (2) 
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where both x and y are vectors with dimension n, .
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 By A, B, C denote n-by-n real 

matrices. The matrices A and C are symmetric. The matrix
T

B C
V J

A B

� �
� � � � �

� �	 

       (3) 

is corresponding Hamiltonian matrix. Let q, p be vectors of new canonical coordinates with 
the same dimension n. Let us consider the generation function of the canonical 
transformation:

S(x, p) = ½ pT

Kp + pT

Lx + ½ xT

Mx, (4)

where the n-by-n matrices K, M are symmetric, n-by-n matrix L is non-singular. Since 

, ,S S� �
� �

� �
q y

p x
 we obtain the system of equations: 

Kp + Lx = q, L
Tp + Mx = y.

Therefore, the following equation takes place: 

1 1

1 1T

L L K
T

ML L ML K

� �

� �

� �� � � � � �
� �� �� � � � � ��	 
 	 
 	 
	 


x q q
y p p

    (5) 

We want to find an invertible matrix T such that 1 .T VT I
� �  From the equations (3), (5) 

it follows that 
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From the equations (1), (5) it follows that  
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Since the block matrices are equal we obtain the system of matrix equations: 
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    (6) 

It is clear that the forth equation follows from the first, second and third equations. The 
equations 

,T T T T T
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follow from first and second equations. Therefore, we get the equivalent system: 

1
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Finally, we get the system of matrix equations: 
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     (8) 

In this system the unknown matrices M and K are symmetric, matrix L is non-singular.
From the first equation we find the matrix M. From the second equation we find the 
matrices L and U. From the third equation we find the matrix K. Finally we find the normal 
form (1) of the Hamiltonian matrix (3). We get the new corresponding Hamiltonian:

( , ) T

H U�q p p q         (9) 

Theorem. Suppose the generating function (4) of the canonical transformation has non-
singular matrix L. The quadratic Hamiltonian (2) has the normal form (9) with the 
canonical transformation (5) if and only if the matrices K, L and M of the generating 
function are the solutions of the system (8).

3 Solution of the system of matrix equations 
The first equation of the system (8) is called [5 - 7] matrix Riccati equation: 

T

MCM MB BM A O� � � �       (10) 

Let us consider methods of solving this equation in various special cases. 
Case 1. We substitute matrices C = E, B = O into the equation (10). Then we get the 

equation: 
2

M A O� �         (11) 

We want to find the symmetric root of the symmetric matrix. The symmetric matrix A is 
similar to the diagonal matrix LA with real eigenvalues:
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where the matrix F is the orthogonal matrix, by λi we denote the eigenvalues of the 
matrix A. Let ΛA be a diagonal matrix such that 2

A A
L� � � : 
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The diagonal entries of the matrix ΛA are real or pure imaginary numbers. Therefore we 
get the symmetric solution of the equation (11): 

T

A
M F F� �        (12) 

Case 2. Let C be a symmetric positive-definite matrix, B = O. We substitute these matrices 
into the equation (10). Then we get the following equation:

MCM A O� �        (13) 

Let Q be such that C = QQ
T. After the change M1 = Q

T

MQ, A1 = Q
T

AQ we get the 
following equation: 

2
1 1 1 1; T

M A O A A� � �       (14) 

If the matrix M1 is the symmetric solution of the equation (14) then the matrix 
1 1

1( )T

M Q M Q
� ��        (15) 

is the symmetric solution of the equation (13).  
Case 3. Let us substitute matrices C = E, B = B

T into the equation (10). Then we get the 
equation: 

2
M MB BM A O� � � �      (16) 

After the change M = N – B, D = B
2 – A we get the equation N2 = D. Since matrix D is 

symmetric matrix we obtain the same equation as the equation (11). Let the matrix F be the 
orthogonal matrix such that ,T

D
D F L F�  where the matrix LD is the diagonal matrix. Let 

the matrix ΛD be the diagonal matrix such that 2
D D

L� � . Then the matrix 

T

D
M F F B� � �        (17) 

is the symmetric solution of the equation (16) 
Case 4. Let us consider the equation:  

2 T

M MB BM A O� � � �       (18) 

After the change M = N – B, M
T

 = N
T – BT, D = BB

T – A we get the equation: 

NN
T

 = D        (19) 

The symmetric matrix D is similar to the diagonal matrix LD. Therefore D = F
T

LDF,
where the matrix F is the orthogonal matrix. Let the matrix ΛD be the diagonal matrix such 
that 2

D D
L� � . Then we get the solution of the equation (19): 

,T

D
N F G� �        (20) 

where the matrix G is any orthogonal matrix. Since M is the symmetric matrix, we obtain 
the equality: N – B = N

T – BT. After the change (20) we get the equation: 
T T T

D D
F G G F B B� � � � �

After the change X = GF
T, P = F(B – BT

)F
T  finally we get the equation: 

,T

D D
X X P� � � �       (21) 
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where the matrix P is the skew-symmetric matrix. From the equation (21) we want to 
find the orthogonal complex matrix X. Let us see the matrices X = (xij), P = (pij), ΛD =
=diag{λ1,…, λn}. From the equation (21) we get the system of ½ n(n – 1) linear equations:

, 1
i ij j ji ij
x x p i j n � � � � �     (22) 

After solving the system (22) we get the solution of the equation (18): 
T

D
M F XF B� � �       (23) 

Case 5. Let the matrix C of the equation (10) be the symmetric positive-definite matrix, 
therefore C = QQ

T

. After the change 
1

1 1 1, B ( ) ,T T T T

M Q MQ Q B Q A Q AQ
�� � �

we obtain the equation similar to the equation (18). Let M1 be the solution of the equation 
2

1 1 1 1 1 1
T

M M B B M A O� � � �

Then the matrix  
1 1

1( )T

M Q M Q
� ��        (24 

is the symmetric solution of the equation (10). 
Let us consider the second equation of the system (8). In this equation the matrix U is 

the Jordan normal form of the matrix B
T

 + CM. Hence this equation always has the 
solution. 

Let us consider the third equation of the system (8). The unknown matrix K is 
symmetric. Let us consider matrices 

1

1 2

1

0 0
0

, 0, 1, 1, 1;
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n 1� 1n 1

LCL
T = (cij), K = (kij).

From the third equation of the system (8) we get the system of ½ n(n + 1) linear 

equations: 

1 1, 1 , 1 0 0 0( ) , , 0,
i j ij i i j j i j ij ij ji j i

k k k c k k k k� � � �� �� �� �� � � � � � �

1 .i j n� � �

The determinant of the system is 
1

( ).
i j

i j n� � �

� � ��  If the determinant is nonzero, then the 

system has the unique solution. We consistently find the unknowns of the system. 
Thus we find the solution of the system of matrix equations.  
Example. Let  

1 8 1 2
, ,

8 4 2 3
A B C E

� �� � � �
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be the matrices of the Hamiltonian (2). Therefore 

2 4 0 2 0
,

0 9 0 3D
D B A

� � � �
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. 

Thus the matrices 

1 2 1/ 4 0
, , ,

2 0 0 1/ 6D D
M B L E U K
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are the solution of the system (8). So
2 2
1 2

1 1 2 2
2
1 1 2

,   1/ 2  1/ 2 1/ 8( )

1/ 2 2

1/12pT T T

S K L M p

p x xp xx x �

� � � �

�

� �

� �

x p p p p x x x

is the generation function of the canonical transformation. Hence

1 1 2 22) 3( ,  T

p q p qH U � ��q p p q

is the new Hamiltonian. 

4 Conclusions 

We obtain the new method of normalization of the quadratic Hamiltonian. With this 
method we can investigate the stability of the solution of the Hamiltonian systems. 
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