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Abstract. We discuss complexities of advanced linear attacks. In par-
ticular, we argue why it is often more appropriate to examine the me-
dian of the complexity than the average value. Moreover, we apply our
methods to the block ciphers PUFFIN and PRESENT. For PUFFIN,
a 128 bit key cipher, we present an attack which breaks the cipher for
at least a quarter of the keys with a complexity less than 258. In the
case of PRESENT we show that the design is sound. The design crite-
ria are sufficient to ensure the resistance against linear attacks, taking
into account the notion of linear hulls. Finally, we show that statisti-
cal saturation attacks and multi dimensional linear attacks are almost
identical.

1 Introduction

Block ciphers are probably one of the most studied objects in cryptography in
general. The security of block cipher seems well understood and quite a number
of secure and efficient block ciphers are available today. The AES is of course
the most studied and analyzed block cipher at present, but many other inter-
esting proposals have been made. Recently, there has been a trend to design
block ciphers that are not suitable for every environment, but rather tailored
to special platforms and/or purposes. What all those designs have in common
is that nowadays a detailed analysis against known cryptanalytic methods is
almost mandatory when presenting a new design.

One of those known attacks is of course Matsui’s linear attack [1]. However,
despite its discovery more than 15 years ago, linear cryptanalysis seems to be less
understood in comparison to, for example, differential attacks. In particular, for
advanced linear attacks, such as attacks using so called linear hulls or multidi-
mensional cryptanalysis, we still do not understand completely how to estimate
their running time correctly. Concerning linear attacks using linear hulls Murphy
[2] points out very fundamental problems when estimating the impact of those
attacks.

Besides the well known cryptanalytic methods, some new attacks appeared
recently, and among those are the so called statistical saturation attack. In a nut-
shell, the main idea of statistical saturation attacks is to use a poor diffusion in
a block cipher by fixing certain input bits in the plaintext and disregarding some
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of the output bits. While this method currently provides the best attacks against
the lightweight block cipher PRESENT, a method to estimate its complexity
correctly is missing.

This lack of a deeper understanding is especially surprising as the study of
block ciphers is one of the classical fields of cryptography. One would expect
that the necessary tools to precisely –and formally correctly – formulate attack
complexities have been already developed. However, this is apparently not always
the case.

1.1 Our Contributions

In Section 3 of this paper we discuss in detail the problems pointed out by
Murphy [2] on linear hulls. However, we do not quite agree with the conclusion
that linear hulls do not exist. On the contrary, we explain why linear hulls (when
defined correctly) always exist and always have to be taken into account when
statements about the attack complexity are made. In order to be able to make
meaningful statements about the attack complexity we explain why a paradigm
shift from discussing average complexities to discussing medians of complexities
is necessary. As we will explain, this holds not only for attacks that make use of
linear hulls, but actually also for linear attacks based on a single linear trail. We
present methods on how one can, in many cases, compute good approximations
of the median of the complexities.

As an example, we apply our methods to cryptanalyze the block cipher PUF-
FIN (see Section 4). We present an attack on full round PUFFIN, a block cipher
with a 128 bit key, that allows us to recover 4 bits of the last round key for at
least a quarter of the keys with a complexity below 258.

In Section 5 we use our methods to understand the resistance of PRESENT
to linear cryptanalysis. Most interestingly we show that the design principle
of PRESENT is sound, in the sense that any sbox and any bit permutation
fulfilling the design criteria of PRESENT yield to a cipher secure against this
type of linear attacks. In order to do so, we present a link between optimal bit
permutations and central digraphs which is interesting in itself. Central digraphs
are classical combinatorial objects (see for example [3]) and the link allows us
to answer natural questions about optimal permutations. Most importantly, this
link allows us to classify all optimal bit permutations. This classification then
allows us to get a deeper understanding of the block cipher PRESENT.

Finally, in Section 6 we solve the problem of estimating the biases (or ca-
pacities) in statistical saturation attacks. Using a theorem on the Fourier trans-
formations of restrictions of Boolean functions, we demonstrate that statistical
saturation attacks are in principle identical to multi dimensional linear attacks.
In particular, this link allows us to evaluate the bias used in statistical saturation
attacks using well studied tools and well established theory, a major drawback
of statistical saturation attacks so far. Furthermore, we believe that this link
makes it possible to apply statistical saturation attacks to other ciphers.
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2 Preliminaries

In this section, we fix our notation and recall known identities between the bias
of a function, the correlation and the Fourier transformation. After doing so, we
recall the basic concept of linear hulls and statistical saturation attacks.

2.1 Bias, Correlation and Fourier Transformation

We denote by F2 the binary field with two elements and by F
n
2 the n-dimensional

vector space over F2. The canonical inner product on F
n
2 is denoted by 〈·, ·〉, i.e.

〈(a0, . . . , an−1), (b0, . . . , bn−1)〉 :=
n−1∑

i=0

aibi.

We note that all linear mappings, i.e. all linear functions, l : F
n
2 → F2 can be

described as �(x) = 〈a, x〉 for a suitable a ∈ F
n
2 . Given a vector a ∈ F

n
2 we denote

by wt(a) its Hamming weight, i.e. wt(a) = |{0 ≤ i < n | ai = 1}|. Given a
(vectorial Boolean) function F : F

n
2 → F

m
2 the Fourier coefficient of F at the

pair (a, b) ∈ F
n
2 ×F

m
2 is defined by

F̂ (a, b) =
∑

x

(−1)〈b,F (x)〉+〈a,x〉.

Given the probability p of the linear approximation 〈a, x〉 of 〈b, F (x)〉, i.e.

p =
wt(〈b, F (·)〉 + 〈a, ·〉)

2n

the bias εF (a, b) of the linear approximation 〈a, x〉 of 〈b, F (x)〉 is defined as

p =
1
2

+ εF (a, b)

which can be rewritten as

εF (a, b) =
wt(〈b, F (·)〉 + 〈a, ·〉)

2n
− 1

2
.

The relation between the Fourier transformation of F and the bias of a linear
approximation is derived using

wt(〈b, F (·)〉 + 〈a, ·〉)) = 2n−1 − F̂ (a, b)
2

, (1)

which implies

εF (a, b) = − F̂ (a, b)
2n+1

.

Moreover, due to scaling reasons, it is often helpful to talk about the correlation
coefficient of F . This is defined by

CF (a, b) = 2εF (a, b) = − F̂ (a, b)
2n
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Given a vectorial Boolean function F : F
n
2 → F

m
2 , the value used to determine

the complexity of both multidimensional linear attacks and statistical saturation
attacks is

Cap(F ) =
∑

y∈F
m
2

(2−n|{x ∈ Fn
2 | F (x) = y}| − 2−m)2

2−m

which is called capacity in [4]. In [5] the squared euclidian distance was used
which is defined as

D(F ) =
∑

y∈F
m
2

(
2−n|{x ∈ Fn

2 | F (x) = y}| − 2−m
)2

and differers from Cap(F ) by a factor of 2m, i.e. D(F ) = 2−m Cap(F ).
There is an important, and well known, relation between the capacity (or the

squared Euclidian distance) and the Fourier transformation of F which we will
use below (see for example [6] ).

Lemma 1

Cap(F ) = 2−2n
∑

b�=0

(
F̂ (0, b)

)2

=
∑

b�=0

(
ĈF (0, b)

)2

2.2 Linear Trails, Correlations and Linear Hull

Consider a mapping F : F
n
2 → F

n
2 given as the composition of mappings, i.e.

F = Fn ◦ Fn−1 ◦ · · · ◦ F1. The correlation CF (a, b) can in this case be computed
using linear trails. A linear trail consists of an input mask a and output mask
b and a vector U = (u1, . . . , ur−1) with ui ∈ F

n
2 . The correlation of the trail is

defined as

CF (a, b, U) = CF1(a, u1)CF2(u1, u2) · · ·CFr−1(ur−2, ur−1)CFr (ur−1, b).

Now, using correlation matrices [7] or the Fourier transformation of composite
mappings [8], one can prove that

CF (a, b) =
∑

U∈(Fn
2 )r−1

CF (a, b, U).

In contrary to the piling-up lemma [1], no assumption of any kind has to be made
for this equation to hold. In the case where F corresponds to a key-alternating
iterative block cipher, that is when all Fi are the same up to an addition of a
round key, one can rewrite the previous equation as

CF (a, b) =
∑

U∈(Fn
2 )r−1

(−1)sU |CF (a, b, U)|, (2)
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where the signs sU ∈ {0, 1} depend on the sign of CF (a, b, U) and on the round
keys. More importantly, the value |CF (a, b, U)| is independent of the round keys
and the only influence of changing the keys is a change of the signs sU . Again,
no assumption is necessary for Equation 2 to hold. What we understand as the
linear hull is in fact nothing other than Equation 2.

An assumption that will be necessary to understand the distribution of the
biases in a linear attack is the following.

Assumption 1. The signs sU in Equation 2 are independently and uniformly
distributed with respect to the key.

Note that assuming independent round keys does not necessarily imply As-
sumption 1. This is only the case when all trails U with non-zero correlation
CF (a, b, U) are linearly independent. In any case, it is important to verify ex-
perimentally for each cipher at hand, that Assumption 1 holds, before it can be
applied.

Another important result we are going to use (cf. Theorem 1 in [6] and The-
orem 7.9.1 in [7]) is the following.

Proposition 1. Let F be the encryption function of a key alternating block
cipher and assume that all round keys are independent. The average squared
bias (resp. correlation) between an input and an output mask is the sum of the
squared biases (resp. correlations) over all linear trails between the input and the
output mask, i.e.

1
|K|CF (a, b)2 =

∑

U∈(Fn
2 )r−2

CF (a, b, U)2

2.3 Statistical Saturation Attacks

In this section we briefly outline the idea of statistical saturation attacks. We
refer to [5] for details. Given an encryption function

e : F
n
2 → F

n
2

statistical saturation attacks study the distribution of e when some of its inputs
are fixed. While in general one can imagine the restriction to the coset of any
subspace E ⊂ F

n
2 for the inputs and any subspace E′ ⊂ F

n
2 for the output, for

simplicity we restrict ourselves to the case where one fixes the last s bits in the
inputs and considers only the first t bits of the output. Thus we write

e : F
r
2 ×F

s
2 → F

t
2 ×F

u
2 (3)

e(x, y) =
(
e(1)(x, y), e(2)(x, y)

)
(4)

where r + s = t + u = n and e(1)(x, y) ∈ F
t
2, e(2)(x, y) ∈ F

u
2 . For convenience we

denote by hy the restriction of e by fixing the last s bits to y and considering
only the first t bits of the output, that is
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hy : F
r
2 → F

t
2

hy(x) = e(1)(x, y) (5)

In a statistical saturation attack one considers the capacity of hy, and the attack
complexity is usually a constant times 1/ Cap(hy).

Applying Lemma 1 to hy we can rewrite the capacity of hy in terms of Fourier
coefficients of hy.

Cap(hy) = 2−2r
∑

b∈F
t
2

(
ĥy(0, b)

)2

=
∑

b∈F
t
2

(
Chy(0, b)

)2
. (6)

One fundamental problem in statistical saturation attacks is that a useful method
to estimate this capacity was missing. However, in Section 6 we show that in
fact statistical saturation attacks are closely related to multi-dimensional linear
attacks and in particular this link provides the missing method to estimate the
capacity of hy.

3 On the Linear Hull Effect

Linear hulls have been studied already in [9] and since then have been used in
a number of papers. The main idea is to consider several, sometimes a lot of,
linear trails with the same input and output mask to decrease the complexity of
linear attacks using Matsui’s Algorithm 2. However, as Murphy [2] pointed out
nicely, there are (at least) two problems often appearing in the literature. In this
section we first recall those two very fundamental problems, and discuss their
impact on the complexity of linear attacks. While our starting point is clearly
the work of Murphy, our conclusions are quite orthogonal. More precisely, we
think that a better statement than Murphy’s conclusion that there is no linear
hull effect is that there is always a linear hull effect and we always have to deal
with this. We furthermore propose methods that allow us to make meaningful
statements about the running time of linear attacks. In particular we show the
following.

Theorem 2. Under Assumption 1 in a linear attack using a single trail with
squared bias ε2, at least half of the keys yield to a squared bias of at least ε2.
Thus, the complexity of this linear attack is less than c/ε2 in more than half of
the cases, where c is a small constant.

In a linear attack using many linear trails with the same squared bias ε2i = ε2

at least one quarter of the keys yield to a squared bias of at least 0.46 ·∑i ε2i .
Thus, the complexity of this linear attack is less than 2.2c/(

∑
i ε2i ) in more than

a quarter of the cases, where c is a small constant.

The first problem Murphy points out comes from an incorrect formalization.
Consider the simplest case of two linear trails with the same input and output
mask, but different intermediate masks. The piling-up lemma is used to estimate
the bias (say ε1, ε2) for each of the equations. We assume that ε1 	= 0 and ε2 	= 0.
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Denoting by α the input mask, by β the output mask and by γ1, γ2 the two key
masks, we end up with the following two equations

〈α, p〉 + 〈β, c〉 = 〈γ1, K〉 and 〈α, p〉 + 〈β, c〉 = 〈γ2, K〉
where the first equation holds with a bias ε1 and the second with a bias ε2. So
far, so good, but now consider any fixed (extended) key K. There are mainly
two cases to consider. First, one could have a key such that 〈γ1, K〉 = 〈γ2, K〉. In
this case one gets the same equation twice, implying that ε1 = ε2. On the other
hand, a different key could yield 〈γ1, K

′〉 = 〈γ2, K
′〉 + 1, and in this case we

conclude that ε1 = −ε2. As it is very likely that there is at least one key for each
of the cases, the only possible choice for the biases is ε1 = ε2 = 0, contradicting
our assumption. What went wrong? Where does the mistake come from? The
main point here is that, by applying the piling-up lemma, one implicitly assumes
independent and uniform distribution in each round. However, having the first
trail at hand, we already know that the inputs are non-uniformly distributed,
and thus this assumption is wrong. It is important to notice the difference to
the approach using correlation matrices, that is Equation 2. Here no assumption
about independent or uniform distribution is involved. Thus, one actually always
deals with the expression

CF (a, b) =
∑

U∈(Fn
2 )r

CF (a, b, U).

but separating the different trails is not possible. This is why the correct con-
clusion is that there is always a linear hull effect and we have to deal with this.

So far, we recaptured the first of the two problems pointed out by Murphy,
and apply the (known) theory of correlation matrices to overcome it. Now, let us
have a closer look at Murphy’s second point, which we present slightly differently.
Assume someone found one linear trail with a non-zero bias ε. Usually, the
conclusion is that an attack based on this bias (lets say using Matsui second
algorithm) is a constant times 1/ε2. But what if the attacker overlooked another
trail with the same absolute bias. The correct correlation is given by

CF (u, v) = ((−1)s1 + (−1)s2)2ε,

where the value of s1 and s2 depend on the extended key. Then, assuming a
random behavior of the signs, the total bias would be zero for half of the keys.

There are two important remarks to make. First, the absolute bias is actually
key dependent and secondly the average complexity is formally infinite. Again,
to make the point very clear, the original attack did not take any linear hull effect
into account and this is the reason why the claim about the attack complexity is
wrong.

Now the attacker tries to do better and can actually show that all other trails
have a (much) smaller bias. Still, for some (maybe only one) keys the biases
could cancel and the average complexity is again infinite.

Thus, due to the linear hull effect, which is always there, estimating the av-
erage complexity of the attack seems very difficult (and often turns out to be
infinite).
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In the example, where there are exactly two trails with the same bias, the
attack will still work for half of the keys (and for this half even faster than
estimated by looking at only one trail). This leads directly to a natural way to
overcome this problem. Namely, instead of studying the average complexity, the
median of the complexities should be studied.

Definition 1. The median of the complexities C̃ is the value such that, for
half of the keys the complexity of the attack is less than or equal to C̃. More
generally, one could study the complexity Cp defined as the complexity such that
the probability that for a given key the attack complexity is lower than Cp, is p.

Note that C̃ = C1/2.
Studying the complexity Cp instead of the average complexity has several

advantages. First, given the median of the biases ε̃, the median of the complexity
is simply c/ε̃2 (as the inverse is a monotone function). Secondly, the median
(or general Cp) is actually a more interesting value to know than the average
complexity, especially in the case where the latter is infinite.

Finally, let us see what happens when we ignore or overlook trails in the com-
putation of CF (u, v). This was exactly where the trouble started for the average
complexity. Let us assume we take n trails with correlations γi into account.
Furthermore, let us denote by γp the correlation such that the probability that
a given key yields a correlation larger or equal to γp is p, given the n trails. That
is

ProbK

(∣∣∣∣∣
∑

i

(−1)siγi

∣∣∣∣∣ > |γp|
)

=
1
2
.

Denoting the correlations of the remaining trails by ηj , we get

CF (u, v) =

(
∑

i

(−1)siγi

)
+

⎛

⎝
∑

j

(−1)s′
j ηj

⎞

⎠ .

With a probability of 1/2 the sum
∑

j(−1)s′
j ηj has the same sign as the sum∑

i(−1)siγi. Thus

ProbK(|CF (u, v)| > |γp|) ≥ p

2
. (7)

This inequality implies that the probability of having a complexity less than a
given bound, might actually be smaller than estimated due to linear trails that
have not been taken into account. However, this probability drops by at most a
factor of 2.

Coming back to the case where an attacker just considered one trail with
bias ε. As we saw, it is not possible to conclude anything meaningful about the
average, but using the above considerations, one can conclude that for at least
half of the keys the data complexity is below c/ε2.

One important point not discussed so far is how to estimate the medians of
the correlations. Here we consider two cases. First, in an attack where only a
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few trails are used, one can easily compute the median by running through all
possible values for the signs. This gets infeasible when there are too many trails.
However, in the case where one deals with many trails with the same absolute
correlation, one can estimate the median nicely by using a normal approximation,
as explained below. In Section 4 we furthermore show by example, how one can
estimate the median in the case of many trails with different absolute values.

3.1 Many Trails with the Same Absolute Value

As already done before (see [10]) in the case of many linear trails with the same
absolute value, the distribution of the correlation

CF (a, b) =
∑

U∈(Fn
2 )r−2

(−1)sU |CF (a, b, U)| =
∑

i

(−1)si2εi,

where εi are the absolute biases of the trails, can be approximated by a normal
distribution. This approximation implicitly makes use of Assumption 1. Clearly,
this assumption has to be justified for each cipher by experiments (and we do
so below for the block cipher PUFFIN). Denoting by X the random variable
corresponding to the bias, we will approximate its distribution by

X ∼ N (0,
∑

ε2i ),

that is, X is normally distributed with mean zero and variance σ2 :=
∑

ε2i . The
probability density function is thus given by

f(x) =
1√

2πσ2
e−

1
2σ2 x2

.

Again, when trying to compute the average complexity of the attack, that is, the
mean value of the random variable c/X2, it turns out that this value is formally
infinite. Therefore, and for reasons outlined above, we focus on the median of the
squared biases corresponding to the random variable Y := X2. Denoting by F
the cumulative distribution function of X , the cumulative distribution function
G of Y = X2 can be computed as

G(t) = Prob(Y ≤ t) = Prob(−√
t ≤ X ≤

√
(t))

= F (
√

t) + F (−√
t) − 1 = 2F (

√
t) − 1.

Using the relation to the normal distribution (or ask maple) we can simplify
G(t) to

G(t) = erf(

√
t

2σ2
)

where erf is the Gauss error function. The median ε̃2 of Y is by definition the
value ε̃2 such that G(ε̃2) = 1

2 . We get

erf(

√
ε2m
2σ2

) =
1
2
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and using the approximation erf−1(1/2) ≈ 0.48 we conclude that ε2m ≈ 0.46σ2 .
For completeness, we can furthermore compute the mean of Y as E[Y ] = σ2

which naturally corresponds to Proposition 1 (without using the normal approx-
imation).

Thus, using the normal approximation and Equation 7 we can conclude that
for a quarter of the keys the attack has a complexity lower than a small con-
stant times 1/(0.46σ2) ≈ 2.21/σ2. A similar calculation shows that fraction of
approximately 0.317 of the keys lead to an attack complexity of a small constant
times σ2.

4 Linear Hulls and PUFFIN

This section applies the ideas outlined above to the block cipher PUFFIN [11].
PUFFIN, a very PRESENT like SP-network, is a 64 bit block cipher with 32
rounds and a 128 bit master key. The only components we are interested in
here are the linear layer and the sbox-layer. The linear layer is the following bit
permutation.

The sbox-layer consists of 16 parallel executions of a single 4 bit sbox given by
the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] D 7 3 2 9 A C 1 F 4 5 E 6 0 B 8

The main difference to PRESENT is that all components are involutions,
thus allowing to save area when implementing the decryption circuit. For more
details on PUFFIN we refer to [11].

We show how one can estimate quite precisely the distribution of the biases
and thus in particular estimate the median of the attack complexity. Applying
Theorem 2, our results indicate that, for at least a quarter of the keys, PUFFIN
can be broken with a complexity less than 258. Because everything in our attack,
except the estimation of the attack complexity, is a standard application of
Matsui’s second algorithm, we skip some details of the attack.

4.1 Linear Trails in PUFFIN

We focus only on trails, where all intermediate masks have Hamming weight
one, i.e we have exactly one active sbox in each round. As it turns out, the
highest median of biases can be expected for the input and output mask e1 =
0x2000000000000000, that is between the first (counting from zero) bit of the
plaintext and the first bit of the ciphertext. The number of all such trails together
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with their absolute squared correlation can easily be computed for up to 31
rounds. Those results are summerized below. An entry t in this table at level �
and round r means that there are 2t one bit trails, each with an absolute bias
of 2−r−l. Note that there is exactly one trail with maximal absolute bias of 2−r

and this trail is not included in the table.
Round\Level 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 2.00 - 1.00 - - - - - - - - - - - - - -
5 2.81 - 2.58 - - - - - - - - - - - - - -
6 3.32 - 4.00 2.00 1.00 - - - - - - - - - - - -
7 3.81 - 5.13 3.32 4.09 2.58 - - - - - - - - - - -
8 4.17 - 6.00 4.58 5.95 4.46 3.32 - - - - - - - - - -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
28 7.70 - 13.41 12.69 17.88 18.04 21.51 22.05 24.47 25.18 26.89 27.63 28.84 29.50 30.34 30.87 31.41
29 7.80 - 13.61 12.90 18.19 18.36 21.91 22.48 24.98 25.72 27.52 28.30 29.58 30.30 31.22 31.81 32.43
30 7.89 - 13.80 13.09 18.47 18.66 22.30 22.89 25.48 26.25 28.12 28.94 30.30 31.07 32.06 32.71 33.41
31 7.99 - 13.99 13.29 18.76 18.95 22.67 23.28 25.95 26.75 28.70 29.55 30.99 31.80 32.86 33.57 34.34

4.2 Approximation of the Bias Distribution

In the case of PUFFIN we use a normal approximation to approximate the many
linear trails for levels greater than 1. Denote by σ2 the sum of squares of all those
biases, i.e.

σ2 =
∑

i

ε2i ,

where εi runs through all one bit linear trails of level greater than 1 and smaller
than 19. We denote the bias of the unique trail with maximal absolute bias by
η. In order to incorporate this one maximal biased trail as well, we expect that
the cumulative distribution function G of the total bias as is given by

G(t) =
1
2

(F (t − η) + F (t + η)) , (8)

where F is the cumulative distribution function of N (0, σ2).
In order to justify the approximation, that is the implicit assumption on the

random behavior of the signs, we experimentally compute the bias for 1000 keys
for rounds 7 to 10. The results are shown in Figure 1.

Note that one reason for the small difference is that the estimates for very
small biases are wrong, due to a naturally limited amount of samples. Apart
from this small error, the distributions are quite close and in particular the
median is predicted very precisely. Using Equation 8 one can easily compute the
median numerically (using for example Maple). It turns out that the base two
logarithm of the medians of the squared biases is almost an affine function. A
good approximation of the median of the square bias for r rounds is given by
2−1.71r−3.13. In particular, applying Theorem 2 this implies that for a quarter of
the keys, the data complexity of attacking r rounds of PUFFIN is proportional
to 21.71(r−1)+3.13. Experimental results for 7 to 12 round attacks (again using
1000 randomly chosen keys per round) indicate that using 4 ·21.71(r−1)+3.13 gives
full gain, that is it recovers four key bits of the last round key successfully, in
over 40% of the cases. In particular for r = 32, that is for the full PUFFIN, we
get a complexity of about 258.
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(a) 7 rounds (b) 8 rounds

(c) 9 rounds (d) 10 rounds

Fig. 1. Theoretical estimates vs. experimental bias for 7 to 10 rounds. The experimental
data is based on 1000 randomly chosen keys for each round.

We expect that this is not the optimal attack. For example partial decryption
of two instead of only one round might further reduce the data complexity (at the
cost of increasing the computational complexity). Another improvement is likely
obtained by applying the below mentioned statistical saturation attack (however
estimating the exact data requirements is difficult). As the main objective of this
section was to demonstrate how one can estimate the distribution of biases in
the case of many linear trails, and use this finally to allow meaningful statements
about the behavior of a linear attack, those improvements are out of scope of
this paper and we leave them as a topic for further investigation.

5 Linear Hulls and PRESENT

PRESENT is a 64-bit block cipher developed by A. Bogdanov et al. [12] and was
designed to be particular suitable for low-cost devices like RFID-tags. There are
two versions, a 80 bit key version, called PRESENT-80 and a 128 bit version
PRESENT-128. PRESENT is an substitution-permutation-network with 31
rounds and one final key exclusive-or at the end.

In the substitution layer (called sBoxLayer in PRESENT) a single 4-bit to
4-bit sbox is applied 16 times in parallel. The action of the sbox in hexadecimal
notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The permutation layer (called pLayer in PRESENT) is given as a simple bit
permutation. Bit i of the current state is moved to bit position P (i), where

P (i) =
{

16 × i mod 63 for 0 ≤ i ≤ 62
63 for i = 63
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The sbox in PRESENT S : F
4
2 → F

4
2 has been chosen to fulfill several criteria

(see [12] for details) to ensure resistance against differential and linear crypt-
analysis. We call a sbox fulfilling these criteria optimal.

Compared to a general linear layer the permutation layer of PRESENT pro-
vides relatively low diffusion. However, as stated in [12], for a bit permutation
the pLayer is optimal in the sense that full dependency is reached already after
a minimal number of rounds. After three rounds each of the 64 input bits in-
fluence each of the 64 output bits. For convenience we call such a permutation
optimal.For more details on PRESENT we refer to [12].

5.1 Linear Attacks on PRESENT

Several papers discussed linear attacks on PRESENT. In [10] linear hulls where
used to attack up to 25 rounds. Moreover, in [6] a multi dimensional linear
attack on up to 26 rounds of PRESENT is described. The main reason why
linear cryptanalysis works against up to 26 rounds of PRESENT is the relative
high number of linear trails with only one active sbox per round. As the number
of those linear trails was not discussed in [12] an important question is how
sound the design of PRESENT is, when taking linear hulls into account. For
a, b ∈ {0, . . . , 63} we denote by N(a, b) the number of linear trails starting with
the input bit a, ending with the output bit b and with exactly one active sbox
per round.

5.2 On the Choice of Sbox and Permutation in PRESENT

Here we are interested in understanding the influence of the choice of the sbox
and the bit permutation on the maximal number of trails N(a, b). As explained
below, using classification results on optimal sboxes and central digraphs, we
can conclude that

– Given the PRESENT bit permutation, the PRESENT sbox is among the
8% worst of all optimal sboxes.

– Given the PRESENT sbox, the PRESENT bit permutation was the worst
among roughly 221 optimal permutations tested.

It should be noted that the PRESENT bit permutation is a natural choice,
also reflected by the fact that it corresponds to what is known as the standard
example in central digraphs (see below). However, the sbox in PRESENT was
selected among all possible optimal sboxes as one with the smallest hardware
circuit. We leave it as a topic for further investigation to explore, if there is a
correlation between the size of the hardware circuit and the number of trails.

Furthermore, using those classification results we conclude that there is not a
particular good bit permutation nor a particular good sbox. The number of one
bit linear trails is mainly determined by the combination of both.

Most importantly, the results outlined below imply that the design principle
of PRESENT is sound, in the following sense.

Fact 3. For no combination of an optimal sbox and an optimal bit permutation,
a linear attack based on one bit trails seems possible on 31 rounds.
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Influence of the Sbox. In this section we fix the bit permutation to the
one used in PRESENT and compute the maximal number of trails for various
choices of the sbox. Up to adding constants before and after the sbox, which
clearly does not change any of these criteria and furthermore does not change
the number of linear one bit trails, there are exactly 8064 such sboxes (see for
example [13]). For each possible sbox fulfilling these criteria we computed the
maximal number of one bit trails over all input/output bit combination for 31
rounds. It turns out that there are only 31 possible values for this maximum,
ranging from 0 to approx 239. In Table 1 the number of sboxes (out of the 8064
possible ones) for each of the 30 possible values for the maximum of trails is
shown. The PRESENT sbox has a maximal trail number of approx. 238.17 and
thus is among the 8 percent worst optimal sboxes with this respect.

Table 1. Maximal number of trails (log2 maxa,b N(a, b)) vs number of sboxes (out of
8064) with the given trail number. In all cases the PRESENT bit permutation was
used.

Maximal Number of Trails −∞ 0 3.000 6.965 7.754 9.509 9.965 10.75 12.26

Number of sboxes 96 1056 192 48 48 192 768 48 48

Maximal Number of Trails 15.00 16.47 17.42 19.42 21.47 21.71 22.86 24.29 25.25

Number of sboxes 144 48 48 816 96 48 48 96 864

Maximal Number of Trails 25.30 25.54 25.75 26.03 26.04 26.08 26.33 26.34 26.37

Number of sboxes 96 96 192 96 96 96 96 96 96

Maximal Number of Trails 26.60 27.00 38.17 39.47

Number of sboxes 96 1728 384 192

Influence of the Bit Permutation. Different choices of an optimal bit per-
mutation might result in different resistance against linear attacks. Below, we
discuss the influence of the bit permutation on the number of one bit linear
trails.

The first problem one encounters is, that it is actually not straight forward
to find a permutation of 64 bits that, in a PRESENT style SP-network, yield
to full dependency after three rounds. Optimal permutations are very rare and
a naive trial to construct such objects is likely to fail. However, there is an
interesting link to well studied objects in graph theory, namely central digraphs,
that allows us to overcome this obstacle.

Definition 2. Let n be an integer and D be a directed graph with n vertices. D
is said to be a central digraph if there is a unique oriented path of length two
between any two of its vertices.

It is known (see [3]) that central digraphs exist only for n = k2 and necessarily
every vertex has in and out degree 4.

Any optimal bit permutation gives rise to a central digraph as follows. Think-
ing about the 16 sboxes as 16 vertices, we add a directed arc from vertex i to
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vertex j if and only if there is an output bit of sbox i that gets mapped to an
input bit of sbox j. Clearly, each of the 16 vertices has in and out degree 4. Being
an optimal bit permutation now translates to the fact that each vertex (that is
each sbox) can be reached from each vertex (that is any other sbox) in exactly
two steps. A counting argument shows that such a path has to be unique and
therefore the resulting graph is indeed a central digraph.

On the other hand, the converse construction, works as well. That is, given a
central digraph of order 16 we can easily construct a optimal bit permutation.
Note that this correspondence is unique only up to a permutation of the input
and output bits of each sbox, as clearly permuting the input and output bits of
an sbox does not change the corresponding graph (neither the optimality of the
permutation). We thus have the following theorem.

Theorem 4. Up to a permutation of the input and output bits of each sbox
there is a one to one correspondence between optimal permutations of 64 bits
and central digraphs of order 16.

It is interesting to note that the PRESENT bit permutation actually corre-
sponds to what is known as the “standard example” in terms of central di-
graphs. The vertex set of the standard example consists of all pairs (x, y) with
1 ≤ x, y ≤ k and we let (x, y) → (x′, y′) precisely when y = x′.

Using this link a couple of interesting questions can be easily answered. For
example, one might want to avoid optimal permutations where a bit coming
from one sbox gets mapped to the same sbox in the next round. However, it is
well known (see for example [3]) that every central digraph on k2 vertices has
exactly k loops. This translate to the property that an optimal permutation on
64 bits will map exactly 4 input bits (coming from 4 distinct sboxes) back into
the source sbox. Furthermore, for implementation reasons, one might want to
chose a optimal permutation that is an involution. Again, it follows from the
theory of central digraphs, that such a permutation does not exist.

For our purpose, the most interesting fact about central digraphs is that a
classification of all central digraphs of order 16 is known (see [14]) and the
actual number of (non-isomorphic) central digraphs of order 16 is reasonable
small. Up to isomorphism there are precisely 3492 central digraphs of order 16.
Thus, this link allows us to compare a great variety of choices for the optimal
bit permutation.

We fixed the sbox to the one specified by PRESENT and computed the
number of trails for all the 3492 possible central digraphs. Here, we randomly
assigned the 4 incoming vertices and the 4 outgoing vertices to input and output
bits of the sbox in 1000 different ways for each of the 3492 central digraphs. The
result is shown in Table 2.

Again, the PRESENT permutation gives a maximal number of trails of ap-
prox 238.17 and is therefore the worst of all 3492 · 1000 ≈ 221 cases.

Influence of both Components. In a next step, instead of fixing the sbox
and varying the permutation we varied both, that is we run through all 8064
possible sboxes and all 3492 possible central digraphs, again with 1000 randomly
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Table 2. Maximal number of trails (�log2 maxa,b N(a, b)�) vs number of optimal per-
mutations (out of 3492 · 1000) with the given trail number. In all cases the PRESENT
sbox was used.

�Trails 1 2 3 4 5 6 7 8 9 10

�permu. 2 5 7 8 16 21 46 51 86 144

�Trails 11 12 13 14 15 16 17 18 19 20

�permu. 234 351 559 990 1780 3260 5951 11187 21033 39284

�Trails 21 22 23 24 25 26 27 28 29 30

�permu. 71712 125520 205411 313402 431188 524990 553858 494911 359864 205508

�Trails 31 32 33 34 35 36 37 38

�permu. 87875 26257 5344 941 184 18 1 1

chosen permutations for the input and output bits of each sbox. As this is far
too much data to be included in the paper, we only give parts of in the picture
below.

There are two important observations to make. First, all curves follow pretty
much the same pattern. This is to say there is no specially good or bad choice
of sbox or bit permutation, only the combination of both can be good or bad.
Second, in non of the 3492 ·8064 ·1000 ≈ 234 cases the number of trails was high
enough to allow a linear attack based on one bit trails for 31 rounds.

6 Understanding Statistical Saturation Attacks

In this section we show how the capacity of statistical saturation attacks can be
explained using tools from linear cryptanalysis. The main technical ingredient is
an identity between the Fourier transform of a Boolean function and the biases
of its restrictions (cf. Theorem V.1 in [15], see also Proposition 9 in [16])

Proposition 2 (Theorem V.1 in [15]). Let f : F
n
2 → F2 be a Boolean func-

tion. Furthermore, let E and E′ be subspaces of F
n
2 such that E ∩E′ = {0} and

whose direct sum equals F
n
2 . For every a ∈ F

n
2 let ha be the restriction of f to the

coset a+E (ha can be identified with a function on F
k
2 where k is the dimension

of E. Then
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∑

u∈E⊥

(
f̂(u)

)2

= |E⊥|
∑

a∈E′

(
ĥa(0)

)2

. (9)

Here E⊥ is the orthogonal space of E.
Recall that we consider the encryption function e : F

n
2 → F

n
2 and its restric-

tions by fixing the last s bits of the input and considering only the first t bits
of its output, that is the function hy(x) defined by Equation 5. For statistical
saturation attacks we are interested in the capacity given by Equation 6. Using
the proposition above, we now state the main result of this Section.

Theorem 5. With the above notation, the average capacity in statistical sat-
uration attacks where the average is taken over all possible fixations is given
by

Cap(hy) = 2−s
∑

y∈F
s
2

Cap(hy) = 2−2n
∑

a∈{0}×F
s
2,b∈F

t
2 ×{0}

(ê(a, b))2

=
∑

a∈{0}×F
s
2,b∈F

t
2 ×{0}

(Ce(a, b))2 .

Proof. By definition

C(hy) = 2−s
∑

y∈F
s
2

Cap(hy) = 2−s
∑

a∈{0}×F
s
2,b∈F

t
2

2−2r
(
ĥa(0, b)

)2

(10)

Applying identity (9) to all component function 〈b, e〉 (and its restrictions 〈b, hy〉)
where we choose E = F

r
2 ×{0} and E′ = E⊥ = {0} × F

s
2 yields

∑

u∈{0}×F
s
2

(ê(u, b))2 = 2s
∑

a∈{0}×F
s
2

(
ĥa(0, b)

)2

Using this we deduce from (10).

Cap(hy) = 2−2s−2r
∑

u∈{0}×F
s
2,b∈F

t
2 ×{0}

(ê(u, b))2

as claimed. ��
In general, statistical saturation attacks work well if one can identify subspaces
U, U ′′ ∈ F

n
2 (where U corresponds to output masks and U ′ to input masks) such

that the sum
∑

u∈U ′,U∈E (ê(u, b))2 is big. Moreover, Theorem 5 allows us to
estimate the capacity, which is a first step in estimating the attack complexity
of a statistical saturation attack.

From this point of view, statistical saturation attacks are very closely related
to multi dimensional linear attacks. Especially, the statistical saturation attack
on PRESENT presented in [5] and the multi dimensional linear cryptanalysis
on PRESENT presented in [6] are in principle the same attack.
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6.1 Statistical Saturation Attacks on PRESENT

For a description of PRESENT we refer to Section 5 and for more details to
[12].

In this section we take a closer look at the statistical saturation trails used in
[5] and explain its capacity using the above link to linear attacks. A picture of
the trail used in [5] is given below.

In this trail the bits (counting from right to left, starting with 0)

S = {21, 22, 25, 26, 37, 38, 41, 42}

are fixed. At the output the same set of bits is used to compute the bias. In light
of Theorem 5 this corresponds to taking e : F

64
2 → F

64
2 and its restrictions by

fixing the 8 bits of the trail and restricting the output to the 8 bits in the trail
as well hy : F

56
2 → F

8
2 .

Defining E = span{ei | i ∈ S}, where ei ∈ F
64
2 is the canonical basis vector

with a single one at position i (counting from zero), Theorem 5 states that

Cap(hy) =
∑

a,b∈E

(Ce(a, b))2 .

To compute this capacity, we have to compute the correlation coefficients Ce(a, b)
for a, b ∈ E.

Like in Section 5 we restrict to a, b of weight one. This was done as well in
[10,6], the argument being that it can be expected that those correlation coeffi-
cients have a much higher absolute value. Again, this assumptions is confirmed
by the experimental data, see below. Given a, b ∈ E of weight one, we recalled in
Section 5 that there are many possible linear trails, starting with the input mask
a and ending in the output mask b where all intermediate masks have weight
one as well. Recall that we denoted the number of these linear trails by N(a, b).
Furthermore it is easy to compute the exact number of such paths for any pair
(a, b).

The correlation Ce(a, b, Ui) of the linear trails Ui, using the fact that in each
round the bias is 2−3, is given by Ce(a, b, Ui) = 2−2R. Applying Proposition 1,
the average square correlation is given by

(
Ce(a, b)

)2
= 2−4RN(a, b),



On Linear Hulls, Statistical Saturation Attacks 321

and

C(hy) =
∑

a,b∈E

(
Ce(a, b)

)2 ≈ 2−4R
∑

a,b∈E
wt(a)=wt(b)=1

N(a, b) (11)

We compared experimental computations of C(hy), averaged over 100 different
keys and 10 different values of y for each key with the results of the approximation
(11). Except for the first two rounds the experimental date follow quite closely
the approximation.

Round 2 3 4 5 6 7 8 9
log2

∑
N(a, b) 5.00 6.00 7.32 8.64 9.97 11.34 12.72 14.10

approx. (11) −11.00 −14.00 −16.68 −19.36 −22.03 −24.66 −27.28 −29.90
experimental −10.38 −13.82 −16.27 −18.90 −21.60 −24.13 −26.78 −29.26

The next observation that is immediate from looking at the numbers N(a, b) is
that this trail is likely to not be the best choice. Indeed, using the trail defined by
fixing the same input bits as before, i.e. using S = {21, 22, 25, 26, 37, 38, 41, 42}
but this time restricting the output to the bits S′ = {21, 23, 29, 31, 53, 55, 61, 63}
gives better results theoretically. Defining E′ = span{ei | i ∈ S′}, the sum∑

a∈E,b∈E′ N(a, b) is higher compared to the original trail (for example the ca-
pacity for 9 rounds is 2−29 instead of 2−29.9). Again, we verified this behavior
experimentally and the experimental data confirm the approximations used quite
nicely.

7 Conclusion and Further Work

We explained in detail why an estimate of the complexity of linear attacks is
difficult and statements on the average complexity are often wrong. This is a
very fundamental problem and we conclude that a paradigm shift from studying
the average complexity to studying the median of the complexity is necessary. To
simplify statements on the median, an important problem for further research is
to give a general lower bound of the median in terms of the capacities of trails.
In the case where the correlation for all trails have the same absolute value, this
is not too difficult. However, as shown in Section 3 in this case an approximation
by a suitable normal distribution provides nice results anyway.

Furthermore, we explained in Section 6 that statistical saturation attacks are
almost identical to multidimensional linear attacks. This link allowed us to nicely
estimate the average capacity of statistical saturation attacks. Of course, know-
ing only the average capacity for statistical saturation and multidimensional
linear attacks suffers from the same problems as knowing the average in linear
attacks. Namely, a useful statement on the running time is difficult. One impor-
tant topic of further research is therefore to extend the ideas outlined in Section
3 to these cases.
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