Discrete Mathematics and Theoretical Computer Scigh@904, 339—-358

On Linear Layouts of Graphs'

Vida Dujmovic!? and David R. Wootf

1 School of Computer Science, McGill University, Méatl; Canada. {ida@cs.mcgill.ca )
2 school of Computer Science, Carleton University, Ottawa, Canatividw@scs.carleton.ca )
3 Department of Applied Mathematics, Charles University, Prague, Czech Republic.

received Nov 4, 20Q3evised Apr 19, 2004 ccepted May, 2004

In a total order of the vertices of a graph, two edges with no endpoint in common caodsng nestedor disjoint

A k-stack(respectivelyk-queuek-arch) layoutof a graph consists of a total order of the vertices, and a partition of
the edges intd& sets of pairwise non-crossing (respectively, non-nested, non-disjoint) edges. Motivated by numerous
applications, stack layouts (also calledok embeddingsnd queue layouts are widely studied in the literature, while
this is the first paper to investigate arch layouts.

Our main result is a characterisation lefirch graphs as thalmost(k + 1)-colourablegraphs; that is, the graphs

G with a setS of at mostk vertices, such thaG\ Sis (k+ 1)-colourable. In addition, we survey the following
fundamental questions regarding each type of layout, and in the case of queue layouts, provide simple proofs of a
number of existing results. How does one partition the edges given a fixed ordering of the vertices? What is the
maximum number of edges in each type of layout? What is the maximum chromatic number of a graph admitting
each type of layout? What is the computational complexity of recognising the graphs that admit each type of layout?

A comprehensive bibliography of all known references on these topics is included.

Keywords: graph layout, graph drawing, stack layout, queue layout, arch layout, book embedding, queue-number,
stack-number, page-number, book-thickness.
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1 Introduction

We consider undirected, finite, simple gragbsvith vertex set(G) and edge seE(G). The number
of vertices and edges @ are respectively denoted loy= |V (G)| andm= |E(G)|. The subgraph o6
induced by a set of verticeSC V(G) is denoted byG[S. G\ SdenotesG[V(G) \ §, andG\ v denotes
G\ {v} for each vertex € V(G).

A vertex orderingof ann-vertex graphG is a bijectiono : V(G) — {1,2,...,n}. We writev <5 w to
mean thao(v) < o(w). Thus<g is a total order oV (G). We sayG (or V(G)) is ordered by<g. At
times, it will be convenient to expresshy the list(vi, Vo, ...,Vn), Wwhereo(v;) =i. These notions extend
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to subsets of vertices in the natural way. SupposeVthab, . .., Vi are disjoint sets of vertices, such that
eachV, is ordered by<;. Then(V1,Vs,...,Vk) denotes the vertex orderirmgsuch that <, w whenever
velandwe Vjwithi < j, orve Vi, weV;, andv <; w. We writeVy <g Vo <g -+ <g V-

In a vertex ordering of a graphG, letL(e) andR(e) denote the endpoints of each edge E(G) such
thatL(e) <q R(e). Consider two edges f € E(G) with no common endpoint. There are the following
three possibilities for the relative positions of the endpoints afd f in o. Without loss of generality
L(e) <g L(f).

e eandf cross L(e) <¢ L(f) <¢ R(e) <¢ R(f).
e eandf nestandf is nested inside:e_(e) <¢ L(f) <¢ R(f) <o R(e)
e eandf aredisjoint L(e) <¢ R(e) <g L(f) <g R(f)

Edges with a common endpoint do not cross, do not nest, and are not disjoint.

A stack(respectivelyqueue arch) in o is a set of edges C E(G) such that no two edges in are
crossing (respectively, nested, disjoint)dn Observe that when traversimg edges in a stack appear in
LIFO order, and edges in a queue appear in FIFO order — hence the names.

A linear layout of a grapltG is a pair (o, {E1,Ep,...,Ex}) whereo is a vertex ordering of5, and
{E1,Ep,...,Ex} is a partition ofE(G). A k-stack(respectively,queue arch) layout of G is a linear
layout (o, {Eq, Ep,...,Ex}) such that eaclk, is a stack(respectively,queug arch) in 0. At times we
write stack(e) = ¢ (or queue(e) = ¢, arch(e) = ¢) if e E,. Layouts ofKg of each type are illustrated in

Figuref].

Fig. 1: Layouts ofKg: (a) 3-stack, (b) 3-queue, (c) 3-arch.

A graph admitting &-stack (respectively, queue, arch) layout is callddstack(respectivelygueue
arch) graph The stack-numbelrespectively,queue-numberarch-numbe) of a graphG, denoted by
sn(G) (respectivelygn(G), an(G)), is the minimumk such thatG is a k-stack (respectivelyk-queue,
k-arch) graph.

Stack and queue layouts were respectively introduced by Ollmann [85] and éteatf55, (59]. As
far as we are aware, arch layouts have not previously been studied, although Dan Ardﬁdeggalsts
doing so.

Stack layouts are more commonly calledok embeddingsind stack-number has been callexbk-
thicknessfixed outer-thicknes@andpage-number Applications of stack layouts include sorting permu-
tations [36] 49, 86, 89, 102], fault tolerant VLSI design![17,[92,[93, 94], complexity theory [38, 39, 66],
compact graph encodings [63,182], compact routing tables [45], and graph drawing [6, 24, 108, 109].
Numerous other aspects of stack layouts have been studied in the literature [7, 8,[10/ 11, 14, 15, 16, 18,

* http://www.emba.uvm.edu/~archdeac/problems/stackg.htm
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20,2238 34, 35, 37, 40,142,]151,)52] 63| 54,[55/ 59, 60, 62, 64, 65,167,169, 70| 74,7576 77, 79, 80, 81,
84,88/ 91| 95, 96, 97, 98, 99, 100, 103, 106,/111]. Stack layouts of directed draphs| [23,/50, 57, 58] and
posets|[2, 3, 56, 78, 83, 101] have also been investigated.

Applications of queue layouts include sorting permutations [36, 61/ 86 89, 102], parallel process
scheduling [[5], matrix computations [88], and graph drawingd [25,[27] 110]. Other aspects of queue
layouts have been studied in the literature [29,/30[ 41/, 91, 95]. Queue layouts of directed|graphs [57, 58]
and posets [56] have also been investigated.

Table[] summarises some of the known bounds on the stack-number and queue-number of various
classes of graphs. A blank entry indicates that a more general result provides the best known bound.

Tab. 1: Upper bounds on the stack-number and queue-number.

graph family stack-number reference queue-number reference
nvertices (21 [4,[17,[48] 13] [59]
medges O(,/m) [76] ey/m Theoren) #
proper minor-closed bounded [9, 11]

genusy o(vYy) [75]

tree-widthw w+1 [42] w.p@" -w-1)/9_1  [27,31]
tree-widthw, max. degre@ 36Aw [110]
path-widthp p [110]
band-widthb b—1 [100] K [59]
track-numbet t—1 [272,[30]110]
toroidal 7 [33]

planar 4 [111]

bipartite planar 2 [22,[87]

2-trees 2 [91] 3 [28,[91]
Halin 2 [41] 3 [41]
X-trees 2 [17] 2 59]
outerplanar 1 [4] 2 [55]
arched levelled planar 2 [55] 1 [55]

trees 1 [17] 1 [59]

Consider a vertex ordering = (v1, Vo, ...,Vy) of a graphG. For each edgev; € E(G), let thewidth
of vivj in o be|i — j|, and let themidpointof viv; be 3 (i + j). Theband-widthof o is the maximum width
of an edge ofs in 0. Theband-widthof G, denoted byw(G), is the minimum band-width over all vertex
orderings ofG. Consider the two fundamental observations:

Observation 1 ([59]). Edges whose widths differ by at most one are not nested.
Observation 2. Distinct edges with the same midpoint are nested.

Observatiof [l was made by Heath and Rosenberg [59]. Remarkably, Obsdrjation 2 seems to have gone
unnoticed in the literature on queue layouts.

Our main result is a characterisation lefirch graphs, given in Secti¢n 3. We also survey various
fundamental questions regarding each type of layout, and in the case of queue layouts, provide new and
simple proofs (based on Observatidn 2) of a number of existing results. In Sgction 2 we consider how to
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partition the edges given a fixed vertex ordering. In Segtjon 4 we analyse the computational complexity
of recognising the graphs that admit each type of layout. In Section 5 we consider the extremal questions:
what is the maximum number of edges in each type of layout, and what is the maximum chromatic number
of a graph admitting each type of layout? Secfipn 6 considers how to produce a queue layout of a graph
G given queue layouts of the biconnected components.afn Sectior] ¥ we give a simple proof of the
known result that queue-number is@f./m).

2 Fixed Vertex Orderings

Consider the problem of assigning the edges of a g@gh the minimum number of stacks given a
fixed vertex orderingy of G. This problem is equivalent to colouring a circle graph with the minimum
number of colours. (Aircle graphis the intersection graph of a set of chords of a circle.) As illustrated
in Figure[2(a), awistin o is a matching{viw; € E(G) : 1 <i < k} such that

V1<0'V2 <o‘"'<o‘Vk<o‘W1 <0’W2<0’"'<0'Wk .

A vertex ordering with &-edge twist needs at leaktstacks, since each edge of a twist must be in a
distinct stack. However, the converse is not true. There exist vertex orderings wikhHig-edge twist

that requireQ(klogk) stacks[[71]. Moreover, it i\ P-complete to test if a fixed vertex ordering of a
graph admits &-stack layout [4ﬂ On the other hand, KostochKa [72] proved that a vertex ordering with

no 3-edge twist admits a 5-stack layout, and Agéév [1] proved that 5-stacks are sometimes necessary in
this case. In general, Kostochka and Kratdtfi®1] proved that a vertex ordering with &+ 1)-edge

twist admits a #6-stack Iayo@ thus improving on previous bounds by &fas [46,[47]. Hence the
stack-number of a grap® is bounded by the minimum, taken over all vertex orderiags G, of the
maximum number of edges in a twistdn

NN~ i

Vi V2 V3 W1 V5 W1 W2 W3 Wqg W5 Vi V2 V3 V4 V5 W5 Wq W3 Wop W1 V1 Wp Vo W2 V3 W3 V4 Wq V5 Wg
(b)
Fig. 2: (a) 5-edge twist, (b) 5-edge rainbow, (c) 5-edge necklace.

Now consider the analogous problem for queue layouts: assign the edges of &doagbie minimum
number of queues given a fixed vertex orderingf G. As illustrated in Figurg¢]2(b), einbowin o is a
matching{viw; € E(G) : 1 <i <k} such that

Vl<0'V2<o'"'<o'Vk<o'Wk <0'Wk_]_ <0’“'<0'W1 .

The rainbow{viw; : 2 <i <k} is said to benside yw;. We now give a simple proof of a result by Heath
and Rosenberg@ [59].

§ Unger [102[105] claimed that it i8/P-complete to determine whether a given vertex ordering of a g@pkimits a 4-stack
layout, and that there is@(nlogn) time algorithm in the case of 3-stack layouts. Crucial details are missing from these papers.
' Unger [104] claimed without proof that a vertex ordering with(ke- 1)-edge twist admits akestack layout. This claim is refuted
by Ageev [1] in the case df= 2.
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Lemma 1 ([59]). A vertex ordering of a graph G admits a k-queue layout of G if and only if it has no
(k+ 1)-edge rainbow.

Proof. A k-queue layout has nk+ 1)-edge rainbow since each edge of a rainbow must be in a distinct
queue. Conversely, suppose we have a vertex ordering wiitk #dl)-edge rainbow. For every edge
vw € E(G), let queue(vw) be the maximum number of edges in a rainbow insideplus one. Ifvwis
nested insidety thenqueue(vw) < queue(xy). Hence we have a valid queue assignment. The number of
queues is at most O

Heath and Rosenberg [59] presented(anloglogn) time algorithm that, given a fixed vertex ordering
of a graphG with no (k+ 1)-edge rainbow, assigns the edge$ab k queues. Lemnig 1 implies that the
gueue-number o0& is the minimum, taken over all vertex ordering®f G, of the maximum number of
edges in a rainbow io. Hence determining the queue-number of a graph is no more than the question of
finding the right vertex ordering.

Now consider the problem of assigning the edges of a g&fahthe minimum number of arches given
a fixed vertex ordering of G. Asiillustrated in FigurE]Z(C), mecklacan g is a matchingviw; : 1 <i <k}
such that

V]_ <0Wl <0'V2 <0'W2 <o' <0'Vk <0Wk .
The necklacgviw; : 1 <i < k— 1} is said toprecedethe edgeswy.

Lemma 2. A vertex ordering of a graph G admits a k-arch layout of G if and only if it haske1)-edge
necklace.

Proof. A k-arch layout has n¢k+ 1)-edge necklace, since each edge of a necklace must be assigned to
a distinct arch. Conversely, suppose we have a vertex ordering with-pd)-edge necklace. For every
edgevw € E(G), letarch(vw) be the maximum number of edges in a necklace that precedekis one.

If vw andxy are disjoint then, without loss of generalityy is in a necklace that precedeg and thus
arch(vw) < arch(xy). Hence we have a valid arch assignment. The number of arches is dt.most ]

Lemm4 2 implies that the arch-number of a gr&pts the minimum, taken over all vertex orderings
of G, of the maximum number of edges in a necklaceirFor examplean(Kn) = | 5]. Now consider
the following algorithm.

Algorithm ASSIGNARCHES G, 0)

letkg=0

let (vi,Vo,...,Vn) =0

fori=1,2,...,ndo
for each edge;v; € E(G) with i < |, let arch(vivj) =1+ ki_1
let ki =ki—1
for each edgeiv; € E(G) with j < i, let ki = max{ki,1+k;_1}

ok~ wNE

Lemma 3. Given a vertex ordering of an n-vertex m-edge graph G, the algoritAreSIGNARCHES G, 0)
assigns the edges of G to the minimum number of arches with resgeit ©(n+ m) time.
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Proof. It is easily verified that the algorithm maintains the invariant #has the maximum number of
edges in a necklace in the vertex order{ng, V2, ...,Vv;). Hence, for every edgew € E(G), arch(vw) is

the maximum number of edges in a necklace that precadptus one. Thus, as in Lemrph 2, we have an
assignment of the edges to the minimum number of arches. O

The proofs of Lemmati|1 arfd 2 hide an application of the easy half of Dilworth’s Thebrem [26] for
partitioning a poset int& antichains, wheré is the maximum size of a chain. In Leminpel< f if e
is nested insidd, and in Lemm4 Re < f if R(e) < L(f). The problem of assigning edges to queues
in a fixed vertex ordering is equivalent to colouring a permutation giiagh [32]. Assigning edges to arches
corresponds to partitioning an interval graph into cliques.

3 Arch Layout Characterisation

A graphG is almost k-colourablef there is a seSC V(G) of at mostk — 1 vertices such thaB \ Sis
k-colourable.

Theorem 1. A graph G has arch-numben(G) < k if and only if G is almostk+ 1)-colourable.

Proof. (<) First suppose tha® is almost(k + 1)-colourable. Then there is a set of vertics-
{X1,%2,...,%} CV(G) such thatG\ Sis (k+ 1)-colourable. LeW;,V,,..., Vi1 be the colour classes
in such a colouring. Let be a vertex ordering such that

V1 <g X1 <g V2 <g X2 <g -+ <¢ Vk <o %k <o Vk+1 -

Clearly every necklace ia has at mosk edges. By Lemmjg| 21 admits ak-arch layout ofG.

(=) The proof is by induction ok. Fork =0, the result is trivial. Suppose thai(G) < k— 1 implies
G is almostk-colourable. LeG be ak-arch graph with vertex ordering= (vi,Vz,...,Vn).

Let Vep = (V1,V2,...,Vp) andVsp = (Vpi1,Vpi2,...,Vn). It is simple to verify that the maximum
number of edges in a necklace\fap, is equal to, or one less than, the maximum number of edges in a
necklace invV<p, 1, for all 1 < p < n—1. Consequently, there is maximum numbsuch that/<; admits
a (k— 1)-arch layout. By the maximality af V<1 contains &-edge necklace. Therefoxg;; is an
independent set db, otherwise an edge @b[V-i 1] together with thek-edge necklace df<;,; would
comprise gk+ 1)-edge necklace. Therefor@]V-.i] is a forest, at most one component of which is a star
centred atj, 1, and the remaining components are isolated vertices.

By the induction hypothesis there is a Sgt; of k— 1 vertices such thaB[V<; \ Sc_1] is k-colourable.
SinceG|V.| is a star centred a1 with some isolated vertices, it follows that 8 = Sc_1 U {Vvit1},
the induced subgrapB[V \ &] is (k+ 1)-colourable. Therefords is almost(k+ 1)-colourable. O

Arch-number and chromatic number are tied in the following strong sense.
Theorem 2. The arch-number of every graph G satisfies:

an(G)+1<x(G) <2an(G)+1.

Proof. By Theoren] LG is almost(an(G) + 1)-colourable. Thus it i§2an(G) + 1)-colourable. Con-
versely,G is almosty (G)-colourable, andn(G) < x(G) — 1 by Theoren[i. O
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Theorenf R implies that any graph family that has bounded chromatic-number also has bounded arch-
number. Examples include graphs with bounded maximum degree, graphs with bounded tree-width, and
graphs with an excluded clique minor, and so on.

Lemma 4. Planar graphs have arch-number at most three and this bound is tight.

Proof. The Four Colour Theorem and Theorgm 1 imply that all planar graphs have arch-number at most
three. Any planar grap® containing three vertex-disjoitd, subgraphs is not almost 3-colourable. By
Theorenj [Lan(G) = 3. O

4 Computational Complexity

The 1-stack graphs are precisely the outerplanar graphs [4], and thus can be recogbisediine [78].

2-stack graphs are characterised as the subgraphs of planar Hamiltonian [graphs [4], which implies that it
is ALP-complete to test ifn(G) < 2 [107]. Heath and Rosenbefg [59] characterised 1-queue graphs as
the ‘arched levelled’ planar graphs, and proved thati{#8-complete to recognise such graphs.

Lemma 5. There is a @n(n+ m)) time algorithm to determine if a given n-vertex m-edge graph G has
arch-numbeman(G) < 1.

Proof. By Theoren] JLan(G) < 1 if and only if there is a vertex such thaG \ v is bipartite. The result
follows since bipartiteness can be teste®im-+ m) time by breadth-first search. O

Note that almost bipartite graphs have been studied bgnBret al. [90].
Open Problem 1. Is there a sub-quadratic time algorithm for determining whethé®) < 1?

Theorem 3. Given a graph G and an integerk 2, it is A'P-complete to determine if G has arch-number
an(G) <k.

Proof. The problem is clearly im\(?. The remainder of the proof is a reduction from the gr&ph
colourability problem: given a grap® and an integek, is x(G) < k? LetG' be the graph comprised kf
components each isomorphic® We claim thatx(G) < k if and only if G’ is almostk-colourable. The
result will follow from Theoren[]l and since gragfcolourability isA/P-complete([68].

If G is k-colourable then so i§', and thusG’ is almostk-colourable. Conversely, & is almostk-
colourable then there is a s8bf at mostk — 1 vertices such that(G'\ S) < k. Since|]§ <k-1,G'\S
contains a component isomorphic@ and thusG is k-colourable. O

The next result follows from the reduction in Theorigln 3 and sinceZi{#8-complete to determine if a
4-regular planar graph is 3-colourable [19] 44].

Corollary 1. It is AlP-complete to determine if a givetregular planar graph G has arch-number
an(G) < 2. O
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5 Extremal Questions
In this section we consider the extremal questions:

e what is the maximum number of edges in a particular type of layout?

e what is the maximum chromatic number of a graph admitting a particular type of layout?

The answer to the first question for stack layouts has been observed by many authors.

Lemma 6 ([4,[18)69]). Every s-stack n-vertex graph has at m@st 1)n— 3s edges, and this bound is
tight forallevenn>4andall1 <s< 3.

Proof. It will be beneficial to view the vertex orderir{go, V1, . . ., Vn—1) as circular. Each edg&V(i 1) modn
is said to be @oundaryedge. Each stack has at most-23 edges, since a 1-stack graph is outerplanar.
Every boundary edge can be assigned to any stack. Thus there are at-rsion-boundary edges in
each stack, and at masboundary edges, giving a total of at me&t— 3) +n = (s+ 1)n— 3sedges.

Now for the lower bound. As illustrated in FigUrg 3(a), for each D< s—1, let

E={viw:[3(j+k]=i (mod})} .

ThenEg,E;,...,Es 1 are edge-disjoint paths, each of which is a stack ef3 non-boundary edges.
Adding the boundary edges to any stack, we obtais-atack graph with the desired number of edges.

Note that withs = 3, we obtain arj-stack layout oK. O
V2
V3 V1
Vg Vo
Vs V11
V7 VA Vg Vi V2 V3 Vg Vg Ve V7 \%:] Vg V10
@ (b)

Fig. 3: Edge-maximal layouts: (a) 2-stack, (b) 2-queue.

As observed by Bernhart and Kainén [4], Lenfmha 6 implies that (every induced subgraplsafipak
graph has a vertex of degree less tha#s 2, and is therefore verteg2s-+ 2)-colourable by the minimum-
degree-greedy algorithm. This result can be improved for ssndlistack graphs are outerplanar, which
are 3-colourable, and 2-stack graphs are planar, which are 4-colourable.

Open Problem 2. What is the maximum chromatic numbgerof the s-stack graphs? In generg{,e
{2s,25+ 1,25+ 2} sincex(Kn) = 2sn(Ky) for evenn.
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Now consider the maximum number of edges kkrgueue graph. The answer foe= 1 was given by
Heath and Rosenberig [59] and Pemmaraju [88]. We now give a simple proof for this case. The proof by
Heath and Rosenberg [59] is based on the characterisation of 1-queue graphs as the arched levelled planar
graphs. The proof by Pemmaraju [88] is based on a relationship between queue layouts and ‘staircase
covers of matrices’. The observant reader will notice parallels between the following proof and that of the
lower bound on the volume of three-dimensional drawings due to Boak[13].

Lemma 7. A queue in a graph with n vertices has at mast- 3 edges.

Proof. By Observation P, distinct edges with the same midpoint are nested. Since every midpoint is in
{%, 2, 2%, ...,n— %}, there are at most2- 3 midpoints. The result follows since no two edges in a queue
are nested. O

An immediate generalisation of Lemina 7 is that eveueue graph has at mdg2n — 3) edges|[50].
The following improved upper bound was first discovered by Pemmaraju [88] with a longer proof. That
this bound is tight for all values af andk is new.

Lemma 8. Every n-vertex graph with queue-number k has at i@ket- k(2k+ 1) edges. For every k
and n> 2k, there exists an n-vertex graph with queue-number k2knd- k(2k+ 1) edges

Proof. First we prove the upper bound. Note tmat 2k, since by Lemm@]1, the corresponding vertex
ordering has &-edge rainbow. By Observatigr} 2, distinct edges with the same midpoint are nested.
Since at mosk edges are pairwise nested ik-gueue layout, at most edges have the same midpoint.
Moreover, for all integers ¥ i <k, at most — 1 edges have a midpoint gfand at most— 1 edges have

a midpoint ofi — % At the other end of the vertex ordering, for all integers 1< k— 1, at most edges

have a midpoint oh — i, and at most edges have a midpoint af—i + % Sincen > 2k we are not double
counting here. It follows that the number of edges is at most

Zil(il) + (2n4k+1)k+2§11i = 2kn—k(2k+1) .

We now prove the lower bound. As illustrated in FigE}e 3(b)PRtlenote tha" power of then-vertex
pathP,. Thatis,P; hasV (P3) = {vi,V2,...,va} andE(PY) = {viv; : |i — j| < s}. Heath and Rosenbeig [59]
proved thatin(P2¥) = k for n > 2k, where for each ¥ ¢ <k, the set of edgefviv; : 20 — 1< |i — j| < 2¢}
is a queue in the vertex orderifg, Vo, ...,Vn). (Thisis Observatioﬁ] 1.) Swaminathanal. [10Q] proved
that P has xn— k(2k+ 1) edges. S appears in[[59, 100] with regard to the relationship between
band-width and queue- and stack-number, respectively.) O

Lemmd 8 implies that (every induced subgraph dfyqueue graph has a vertex of degree less than 4
and is thereforeltcolourable by the minimum-degree-greedy algorithm.

Open Problem 3. What is the maximum chromatic numberof a k-queue graph? We know thgte
{2k+ 1,2k +2,...,4k} sinceX(Kn) = 2an(Ky) + 1 for oddn (by Lemma[1). Note that the extremal
exampleP in Lemma@ also has chromatic numbér21.

We now prove that the lower bound in Open Probfém 3 is attainable in the clise bf
Lemma 9. Everyl-queue graph G i8-colourable.
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Proof. Let o be the vertex ordering in a 1-queue layout of a gr&@hPartition the vertices into inde-
pendent set¥;, Vo, ..., Vi such thato = (V1,Vs,..., V), and for all 1<i < k— 1, there exists an edge in

GV, UVit1]. Such a partition can be computed by starting with each vertex in its own set, and repeat-
edly merging consecutive sets that have no edge between them. Bor 8ll there is no edge in any

G[Vi UVi4g], as otherwise it would be nested with an edgé&iNi,1 UVi2]. Thus for each &< j < 2,

W =U{Vi:i=] (mod 3} is an independent set, afdo, Wi, Wo} is a 3-colouring ofG. O

The next lemma shows that, in terms of the maximum number of edges, arch layouts behave very
differently from stack and queue layouts. Even 1-arch layouts may have a quadratic number of edges.

Lemma 10. The maximum number of edges in a k-arch layout with n vertices is at most

kn(n+42) —k(2k+1)
2(k+1) ’

1)

which is attainable wheneverkl divides n— k.

Proof. Let G be ak-arch graph witi vertices and the maximum number of edges. By The¢re@ i,
almost(k+ 1)-colourable. That is, there is a S®€ V(G) of at mostk vertices such thab \ Sis (k+ 1)-
colourable. Each vertexe Sis adjacent to every other vertex®) as otherwisés is not edge-maximal.
The (k+ 1)-colourable graph with the maximum number of edges is the comfHetel)-partite graph
with partitions whose sizes are as equal as possible. GBhi&is this graph. When the partitions have the
same size we obtain the most edges. HéreSis obtained fronK,_x by removingk+ 1 vertex-disjoint
copies of the complete graph on—k)/(k+ 1) vertices. Thus the number of edges is

(g) _(k+l)<(n—k)£(k+ l)) 7

which is easily seen to reduce [g (1). O

6 Biconnected Components

Clearly the stack-number (respectively, queue-number) of a graph is at most the maximum stack-number
(queue-number) of its connected components. Bernhart and Kaihen [4] proved that the stack-number of
a graph is at most the maximum stack-number of its maximal biconnected compdecks (We now

prove an analogous result for queue layouts.

Lemma 11. Every graph G has queue-numhgr(G) < 1+ max{gn(B) : B is a block of G.

Proof. Clearly we can assume th@tis connected. LeT be theblock-cut-treeof G. That is, there is
a node inT for each block and for each cut-vertex @f Two nodes ofT are adjacent if and only if
one corresponds to a blo& and the other corresponds to a cut-vereandv € V(B). T is a tree, as
otherwise a cycle ifT would correspond to a single block @& RootT at a node corresponding to an
arbitrary blockR of G.

Consider a cut-vertex of G. The block containing that corresponds to the parent nodevaf T is
called theparentblock ofv. The other blocks containingare callecchild blocks ofv.
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There are no nested edges in any breadth-first vertex orderindldl]. Let o be a breadth-first vertex
ordering of T starting atR, such that cut-nodes af with a common parent blocB are ordered iro
according to their order in the given queue layouBof

Now create a vertex orderingof G from o, as illustrated in Figurg|4. Specifically, delete franall
the nodes corresponding to cut vertice&pfeplacer by the given queue layout & and for each block
B # Rwhose parent node ifi corresponds to a cut verteof G, replace the node ia that corresponds
to B by the given queue layout &\ v.

An edge ofG that is incident to a cut-vertexand is contained in a child block efis called ajump
edge According to the above algorithm, a cut-vertex®is positioned within its parent block m Thus,
if two non-jump edges are nested, then they are in the same Bloakd are nested in the given queue
layout of B. Since the blocks are separated, non-jump edges can inherit their queue assignment from the
queue layout of their block.

Since the edges af are not nested, and by the choice of ordering for cut-noddswith a common
parent block, jump edges are not nested, and thus can form one new queue. Thus the total number of
queues is as claimed. O

T =1 [eee] [eee] [ | | | |
VOW XUy VW XYy Vv

Fig. 4: Constructing a queue layout &ffrom queue layouts of the biconnected components.of

7 A Bound on the Queue-Number

Malitz [76] proved that the stack-number of aredge graph i©(,/m). The exact bound is in fact {2m.

Heath and Rosenberg [59] (see also Shahrokhi and_Shi [95]) observed that an analogous method proves
that queue-number ©(,/m). We now establish this result using a simplified version of the argument of
Malitz [[/6] and with an improved constant.

Theorem 4. Every graph G with m edges has queue-nuntiigG) < e,/m, wheree is the base of the
natural logarithm.

Proof. Letn=|V(G)|. Let o be a random vertex ordering & For all positive integerk, let A be the
event that there existskaedge rainbow iro. Then the probability

im = (1) () 25
R —

—— ——
@ @ )

where:
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(1) is an upper bound on the numberkeédge matchingh,

(2) is the number of vertex positions anfor M, and

(3) is the probability tha with fixed vertex positions is a rainbow.
Thus

K n! 2Ki(n—2k)!  (2m)
P{Ak} < F (Zk)!(n_zk)!' n! - (Zk)! ’

k _
By Stirling’s formula, P{Ac} < (%‘) . Letko = [ey/m]. Thus,P{A,} > 1— (%)(e ™'~ 0. Thatis,
with positive probability a random vertex ordering haskgeedge rainbow. Hence there exists a vertex

ordering with noko-edge rainbow. By Lemn{g G has a queue layout with — 1 < e,/mqueues. [
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