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Abstract. We propose a classification for a set of linearly recursive func-
tions, which can be expressed as instances of a skeleton for parallel linear
recursion, and present new parallel implementations for them. This set in-
cludes well known higher-order functions, like Broadcast, Reduction and
Scan, which we calbasic componentdMany compositions of these basic
components are also linearly recursive functions; we present transformation
rules from compositions of up to three basic components to instances of our
skeleton. The advantage of this approach is that these instances have better
parallel implementations than the compositions of the individual implemen-
tations of the corresponding basic components.

1 Introduction

Functional programming offers a very high-level approach to specifying
executable problem solutions. For example, the scheme of linear recursion
can be expressed concisely as a higher-order function. In the data-parallel
world, higher-order functions are used which represent classes of parallel
algorithms on data structures; these higher-order functions are also called
skeletong4, 6]. Well known representatives, which also happen to be lin-
early recursive, are reduction and scan (parallel prefix) with an associative
operator. If one can express one’s problem in terms of instances of skele-
tons with a known parallelimplementation, the implementation of the whole
problem comes for free (although it is not guaranteed to be optimal).

* Part of this material has been presented at the Second International Workshop on Soft-
ware Engineering for Parallel and Distributed Systems (PDSE’97) [21].
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Current research focuses on the following questions:

1. How can a problem solution be expressed in terms of skeletons? The
Bird-Meertens formalism [1] is a well known framework in which a
problem, expressed as a functional term, catrdresformedo a seman-
tically equivalent term. The aim is to obtain, via transformations, a term
which uses skeletons whose implementations have a lower cost [2, 8].

2. What are the useful skeletons and their parallel implementations? Of-
ten, one obtains a skeleton by means géaeralizationE.g., reduction
and scan with an associative operator are included in the class of homo-
morphic functions which match the divide-and-conquer paradigm and,
therefore, have a natural parallel implementation [5,9, 17].

3. Can we optimize combinations, esp. functional composition, of skeleton
instances? In other words, is the cost of the parallel implementation
of the functional composition of some skeleton instances simply the
addition of their individual costs [18], or are thepatternsof skeleton
combinations which have parallel implementations with a lower cost [7]?
Two transformation rules with scan and reduction and with two scans
can be found in [10].

In this paper, we address (2) and (3) for a set of linearly recursive func-
tions. We generalize some existing skeletons, e.g., we present several new
parallel implementations of reduction with a non-associative operator. Addi-
tionally, we identify patterns of functional compositions of linearly recursive
functions with a better parallel implementation than thivea@omposition
of the individual implementation.

Quite naturally, points (1) to (3) are not independent from each other:
identifying patterns with a better parallel implementation than thigena
composition can be viewed as presenting transformation rules to obtain
from these patterns an instance of a skeleton which is specially tailored
for this pattern; this may involve defining new skeletons with good parallel
implementations (2).

We base the analysis and implementation of linearly recursive func-
tions on one common skeleton (Sect. 3.2) which specifies the call graph
of linear recursion. Specializations of this graph lead to different classes
of functions. Functions in some classes are divided further into subclasses.
Functions in a fixed subclass have common parallel implementations. Some
of the simplest subclasses (e.g., reduction) and their parallel implementa-
tions are well known; we call thetmasic componentSome subclasses are
specially tailored to match simple patterns of functional compositions of
basic components; these subclasses require new parallel implementations,
which we present.
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2 Notation

The notation we use is close to Haskell [19]. Each terhas atype T
we write:¢t :: T. We use alsm-tuples(ay,...,a,) = (ai,...,a,). The
singleton(a) is the element itself, the empty tupl€) is the only element
of theunit type(). The set of integers fromito ¢ is written ash..t.

A list with elementss; :: «, foralli € 0..n — 1, is written agao, . . .,
an—1] = [af. The empty list is written a§. A list whose head is and
whose tail isas is written asa : as. The concatenation of two listss and
bs is denoted byis + bs.

A function f with argument typex and result types, in shortf :: o —

0, is applied to an argument via f a. Function application has highest
precedence, e.gf,a + gb is the same a$f a) + (gb). If the term for
the function type has free type variables these variables are implicitly
universally quantified and the function is said to be polymorphic.

Predefined polymorphic functions are the identity funciion: o — «,
with Id @ = a, and the projection functions, :: (a1,..., %, ..., ) —
ag, With 7, (ay, ..., ag, ..., a,) = ap, wherel < k < nandl < n.t

If we want to apply a function to two (or more) argumeatsandas, it
can be defined intwo ways. Ifitis defined toloecurried we apply function
f = (oq,a2) — PG toapair:f (a1, az). If it is defined to becurried, we
supply the arguments piecewise to functipn: «; — (ag — [3): written
as(f a1)ag. Since— is right-associative and function application is left-
associative, this can be written s:: a1 — ao — S andf ay as.

If function f is defined to be curried, it may be applied to only a part of
the arguments; e.g., with :: a1 — as — §, we may define a function
g as — Bwith g = f ay. In the rest of the paper, functions are normally
defined to be curried.

Each infix operation @ _ induces the following functions, the later two
are calledsections

(@®):a— 0 — v where (@)ab = a®b
(a®):: B — v where (a®)b = a®b
(@®b):: a — v  where (Bb)a = a®b

Functions can be combined via the following functionals:

Functional composition{g o f) z = ¢g (f =), whereo is associative.
Functional product:(fi x f2) (1, x2) = (f1 21, f2 z2), and similarly for
three or more functions.

! The projection function is not defined on singleton tuples for the following reason:
with a = (a1, a2), we would haver; (a) = a = (a1,a2) and alsor: (a) = m1a =
m1 (a1,a2) = a1, which is a contradiction. An alternative would be to make the parameter
n explicit, i.e, use function symbots;, .
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FP’s construction:( f1, f2) = (f1 x, f2 =), and similarly for three or more
functions;( )z = ().

3 Skeletons for linear recursion

In this section, we introduce two higher-order functions (skeletons) which
express the scheme of linear recursion. SkelétBnintroduced in Sect. 3.1,
reflects the general form of linear recursion, but does not reveal any possibil-
ities for its parallelization. Thus, we introduce a second skeleton, skeleton
PLR for parallel linear recursion in Sect. 3.2. In Sect. 3.3, we relate in-
stances of the two skeletons with each other.

3.1 General form of linear recursion
If a linear recursive functiorf is applied to an argument, there are two
cases:

— In thebase casegwe apply functiorbase to the argument.

— Intherecursive casgwe apply functiorpre to the argument and use the
result as the argument for the functigh Functionpost combines the
result of this recursive call with the original argumeant

If applying functionP to argument: returnstrue, we have reached the
base case, otherwise the recursive case.

The concept of linear recursion can be expressed by the following higher-
order function:

LR Pbaseprepost = f where
fx =if Pxthenbasex elsepost (x, f (prex))

Example: areductionfromthe left§ldl) overalistus = [ag, . . ., an—1],
informally defined by:

foldl () (as,b) = (b& ag) @ -+-) & an_1
is formally defined by

foldl (®) ([J,b) = b
foldl (@) (a : as,b) = foldl (®) (as,b® a)

This reduction can be defined as an instance Bf

foldl (®) = LR ((= []) om1) m2 pre m
where pre(a : as,b) = (as,b® a)
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3.2 The skeleton for parallel linear recursion

A key factor in executing a program in parallel is the distribution of data
across the processors. Inthe data-parallel model, the same functionis applied
by each processor to data sets of a common type. We take this type to be the
list.

In this section, we propose a skeleton for parallel linear recursion which
makes the use of lists as the input and output explicit: with each recursion
step, one element of the input list is processed and one element for the output
list produced. Note that it is also allowed to pass a fixed-size argument
between the levels of the recursion. As we shall see later, this enables us to
derive different classes of possibly parallel implementations, depending on
the type of the list elements. See Sect. 3.3 for a comparison between our
skeleton for parallel linear recursion and the general form of linear recursion.

The skeletor? L R of parallel linear recursionisinstantiated by providing
a functionbase which is executed in the base case, a funcgiea which
computes the input value for the next recursion level and an intermediate
local value, and a functiopost which combines this local value with the
result of the next recursion level. The base case is reached when there is no
distributed data to process, i.e., when the list argument is empty.

The skeleton is defined as follows:

PLRbaseprepost = f where

f([,0) = base(]],b)
fla:asb) = (y,z : z8)
(m,V') = pre(a,b)
(¥, zs) = f(as,b)
(y,2) = post (y',m)

The data flow graph of this skeleton (Fig. 1) exposes the symmetry be-
tween the input and output and the flow of data across and inside the levels
of the recursion. We call the horizontal data flow, which stays at a fixed
recursion levellocal (a, m andz in Fig. 1) and the vertical data flow, which
connects recursion levelsarried? (b andy in Fig. 1). In order to predict
the costs of the implementations of this skeleton, we assume that the size of
the carried data is level-independent.

For example, the reductiofvidl, defined in Sect. 3.1, can be defined as
an instance oPLR:

foldl (@) =710 (PLR <7T2,’/T1) preq Id)
where pre; (a,b) = ((),b ® a)

2 This data flow was calledlobalin [21].
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a:as b Y z:28

level 0 O——» pre 1 post ———»O

level 1 O—.-.—> pre  ——®=  post —-———»O

level n Q—*——-» base ——.PO

Fig. 1. Data flow graph of the skeleton for parallel linear recursion

All of the computation is done by the recursive application of function
pre, functionsbase and post are essentially the identity. We have only
distributed data on the input sitlgus), no intermediate local datan( = ()),
and no distributed data on the output side £ [(), ..., ()]).

Note that linear recursion without distributed input is included in this
skeleton if the recursion depth is given as an argument. The base case is
reached when this argument is 0. This is due to the fact that the natural
numbers (including 0) are isomorphic to the lists with elements of unit type.

3.3 Equivalences

In this section, we consider the equivalence between an instance of the
skeleton for the general form of linear recursion and an instance of the
skeleton for parallel linear recursion.

For equivalence, there must be an isomorphig and a homomor-
phism ¢oyT which make the following diagram commuté;(c ¢in =

% Without distributing the list argument, the best time complexity we can obtain is linear,
except in trivial cases.
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douUT © f2 O fi = PouT © f2 0 Pry):

I?’Ll L) Out1
fi = LR P basey prej posty
¢INT P)OUT fo = PLR basey pres posts
Inz L) Out2

Here are sufficient conditions on the relationship between the customiz-
ing functions passed to the source skeleton and the functions passed to the
derived skeleton, which make the diagram commute:

Piogin = (= [))om (EQPRED)
base; o pin = ¢ouT o basesy (EQBASE)
(pre1 o éiv) (a @ as,b) = ¢ (as, (72 0 prez) (a,b)) (EQPRE)

posti (pin (a @ as,b),  (¢ouT o (Id x (: zs)) o posts)

dour (v,28)) (), (w1 0 prea) (a,b)) (EQPosT)

For our examplefoldl, we haveln; = Iny = ([a], ), Out; = S,
Outy = (5,[()]). The homomorphisms are defined byy = Id and
doouT = m1. Note thatpoyr is no isomorphism, i.e.f; also returns the
length of the input list (via a list), . . ., ()])-

EQPRED: (=[)omold = (=) om
EQBASE: ﬂ'QOId = 7l'10<7T2,7T1>
EQPRE: (pre1old) (a : as,b) = (as,b®a)
= Id (as,m ((),b® a))
EqQPosT: 7o (Id (a : as,b),m (v, 25)) = ¢/
= (mo(Id x (: 2s8))olId) (v, m ((),b® a))

The main restriction in skeletoRL R is that the recursion depth is de-
termined by the length of the input list. This is expresse®yPRED.

4 Classes of linearly recursive functions

Different linearly recursive functions have (parallel) implementations of
different quality. Our aim is to find classes of functions which have good
(parallel) implementations in common. In this section, we characterize these
classes and discuss how a function is assigned to its appropriate class. From
now on, we shall use solely skeletdtl R.

A linearly recursive function, which is specified as an instance of the
skeleton, consists of two parts: thee part and theost part (Fig. 1). The
only difference between thgre part and thepost part is that the carried
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data flows downwards in there part and upwards in theost part (Fig. 1).
We consider only the@re part; our classification applies just the same for
thepost part.

4.1 Classifying thepre part

We classify thepre part by examining the properties of functigne in
isolation.

Data flow: pre has two inputs and two outputs. A first classification results
from checking whether there is a data dependence from a specific input to
a specific output. There a@8*? = 16 combinations. This classification
can probably be performed automatically.

Algebraic properties: We classify the derived programs in some classes fur-
ther by looking at algebraic properties of the functions involved. These
properties are listed for each class separately. The most important prop-
erty is associativity. In general, this classification cannot be done auto-
matically.

The following diagram depicts the choices of data flow forghe part:

pPrens PTENE
pPree
prews prewe

pres

A textual representation of this diagram is given by a formulgfar.

pre (a, b) = (preE (pT(fWE a, PreéNe 5)7107’65 (preWS a, prens b))

Any function pre with the given signature could be decomposed this way
by choosingld for prewg, prene, prews andpreyns. Instead, we require
these functions to be

— either an identity functiorid_., on some non-unit type # () or
— a function() from some type to the unit typg.

We could always chooskl., if the type of the input is not the unit
type, but we prefer to choogewhenever possible, such that functibiy.
indicates the presence and functipthe absence of a data dependence.

As an example, let us considgre (a,b) = (b,a) with a :: « and
b :: B.In this casepreg = w9, pres = 1. Instead of choosingd for
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Table 1. Classes of there part

> A 3 >

—— Map —Mismatch—
! Sequential Sequential || Map Reduction Reduction || Map
> —Mismatch— Shift Shift || Map
:b Broadcast Broadcast || Map Scan Scan || Map

prewe, prene, prews andpreys and havingpreg (o, ) — [ and

pres :: (o, 3) = «, we choos@rewe = (), prene = Idg, prews = Id,

andprens = ( and havepreg :: ((),3) — [ andpres :: (a,()) — «a.
Two functions in our formula fopre remain to be explained:

— Functionpreg is of no interest for the classification, since its output is
not used by any input of there part. Thus, the computation inside the
pre part which is induced by this function is just a simplep preg,
applied to the distributed output list; this can be parallelized trivially with
a constant execution time and a cost linear to the length of the input list
(or no time and cost at all freg = 1d).

— Functionpreg is the function which determines the subclassification.
Therefore, we examine this function for each class individually in
Sect. 4.3.

4.2 Classes of thpre part

Table 1 classifies there part according to the alternative data dependence
patterns. The horizontal legend lists the possible data dependences of the
local input, the vertical legend those of the carried input (by icon). Each table
entry corresponds to one class, the one whose data dependence is determined
by superposition of the icons of both legends. From now on, we work with
these superpositions.

The only difference between the first and the second column and, sim-
ilarly, between the third and the fourth column, is the additional data de-
pendence from the local input to the local output in the second column,
expressed as an additional independent “computationiqfId.

Let us now comment on the individual entries of Table 1.

4.2.1 Mismatch, Map and Shiftirst we look at the entries representing
Mismatch, Map and Shift. Their data flow between two successive levels is
depicted again in Fig. 2.
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level 4 j level i — 1 L) level 1 > level ¢ WL)
level i + 1 j level 1 \9 level © + 1 > level 1 + 1 W\»
(a) Mismatch (b) Mismatch (c) Map (d) Shift

Fig. 2. Specific data flows (Mismatch, Map and Shift)

Mismatch.We start with an informal explanation of the two cases of mis-
match of the carried data flow:

R LY _I: This case covers the upper right of Table 1; see Fig. 2(a). There
is a carried output gfre at leveli but no according input at leveh- 1.
Since the carried output is only used pbse of the next level (and the
base) case and this inputis not used, there is no “real” data dependence to
the carried output which contradicts the data dependences for this class.
L
L, _: This case covers the mismatch on the left in the table; see
Fig. 2(b). There is a carried input @f-e at leveli but no according
carried output at level — 1.

Map and Shift. Next we discuss the classes which we do not consider any
further:

: This case covers the upper left of the Table 1. Functions of this class
eturn the result[(), ..., ()], ()), which conveys no information.

—_

>

|: This is the second entry of the first row; see also Fig. 2(c). These
functions are simplynapId, i.e., there is nothing to do (or just the
map preg, mentioned above).

W

R L¥_I: The functions of this class perform a shift; see Fig. 2(d). Data
flows from the local input at levélto the local output at leveéH-1. These
functions have trivial parallel implementations with a constant execution

time.

4.2.2 Sequential, Broadcast, Reduce and Stae.remaining classes are
the most interesting ones. Their data flow between two successive levels is
depicted again in Fig. 3.

A naive implementation of a function in these classes is the sequential
one with atime complexity aP(n). In Sect. 5, we present good parallel im-
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svel 4 ovel 4 = wel 3 wel 4 -

level 7 ! level ¢ ) level 4 o level 1 ~

level 7 4 1 feveli +1 | M feveli+1 ovel >

evel 1 + ! evel 1 + ! evel ¢ + Y level 1 + 1 ~
(a) Sequential (b) Broadcast (¢) Reduce (d) Scan

Fig. 3. Specific data flows (Sequential, Broadcast, Reduce and Scan)

plementations for subclasses of these classes; the subclasses are determined
by algebraic properties of the functignes.

4.3 Subclasses of tlpge part

All functions in classes Map and Shift have trivial parallel implementations,
so there is no need for a subclassification. Sequential, Broadcast, Reduction
and Scan are the remaining classes to be considered. As mentioned in the
introduction, parallel implementations of simple representatives in these
classes are well known. They are characterized by algebraic properties of
the functions given as an argument to the skeletoaif our skeletonlP LR,

or more specificallypres, see Sect. 4.1). The other subclasses are tailored
to match simple combination patterns of basic components.

In Sect. 4.3.1 we list thedmasic componentsn Sect. 4.3.2 we present
an example of a combination pattern and show how this pattern leads to a
new subclass, in Sect. 4.3.3 we list the subclasses of Reduce and Scan, in
Sect. 4.3.4 we list the subclasses of Sequential and Broadcast. As mentioned
in Sect. 4.2, functiopres determines the subclassification. All classes have
an additional subclass which we do not discuss any further: functions in
these subclasses are instantiated by funghiers with none of the listed
properties. For these functions we simply take thie@éequential) imple-
mentation.

We have identified—and are describing here—optimized subclasses for
composition patterns of up to three basic components in the classes Sequen-
tial and Broadcast and up to two components in the classes Reduce and
Scan.

4.3.1 Basic Component§he simple representative of class Sequential is the
identity function, which we will not discuss. The simplest representatives
of the three remaining interesting classes are cdliesic componentand

are defined by the following equations, wherés associative:
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b b b

> >
Idy 0 mr 0 mr

> a a >
Idwy : ar ' by

(a) copy, (b) red (D) (¢) scan (b)

Fig. 4. Basic components

—
COPYn b = (ba [ba SRR b])
red (®) (as,b) = bDag® -+ D ap—1

scan (®) (as,b) = (red (®) (as,b),[b,b® ag,...,bHag® -+ ® an—2])

Figure 4 lists the three basic components in our box notation. A box which
is adorned with a function symbol or name represents a special instance of
pre, which uses this function symbol or name.

In orderto getthe input values of the basic components in the composition

to the right places, we introduce a (generic) function which modifies the
nesting structure of its argument. We denote the regrouping operator by

11. Above the operator we write the input structure, below the modified
structure. Rather than providing a formal definition, we illustrate the usage
of 1| by two examples:

(2,1)
W ((a,b),¢) = (a,(b,c)) and

(12)
(2,3)
H ((a’ b)v (C) d, 6)) = (CL, (b, C), (da 6))
(1,2,2)

4.3.2 Example of a combination pattern: scan and tedhis section we
look at a typical example of a functional composition of skeleton instances:
applying scan with an associative operatay to a list, then applyinged
with the same operator to the result:

(2,1) (1,2)

(Id x red (®)) o 14 o(scan (&) x Id) o 4|
(1,2) (2,1)

It turns out that this composition can be expressed in terms of a single
reduction and an efficient parallel implementation can be found i
commutative; see Sect. 5.

Itis quite clear that, on most parallel machines, a single reduction is much
faster than a scan followed by a reduction—even if the function which is
applied at each node of the reduction tree is slightly more complicated in
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Table 2. Subclasses of Reduction and Scan

Functiong Conditions Reduction Scan

g(a,b) @ is associative Undirected Red.  Simple Scan
=bda red (@) scan (D)

g (a, (b1,b2)) @ is associative SR-Reduction SS-Scan
= (b1 D a,bs ®b1) and commutative foldl g scanl g

g (a, (b1, b2)) @ and® are assoc.  SR2-Reduction SS2-Scan
= (b1 ®a,ba ®b1) ® distributes overd foldl g scanl g

former case than in the latter. The execution time and the cost of both the
specialized and the ha implementation belong to the same complexity
class.

Let us now see, with the help of our box notation, which kind of reduc-
tion we end up with: combiningcan andred in the way described above
is depicted by two columns of boxes—the left column represetfats, the
rightred. In contrast, the functional description above uses backward com-
position (operatop). If we combine the two boxes in each row, we get a
data dependence from the left and top to the bottom. Our classification table
reveals that this data dependence is characteristic for a reduction:

S

scan (@) | red (@) | = Y{2¥Y 1 = PR . reduce g
(@) |red (@)] = P

ﬁ A 4 !]jr

32A 20§
Now, we have to find the operatgr which is subject to the special
reduction:

Z)

2)

b by by

_ b:(bl,bg)
ST R BT (g, (b, ba)) = (b © a, by @ by)

Note that this functiory is not associative—thused with its parallel
implementation cannot be used! For this pattern, we have to introduce a
special subclass of Reduction: SR-Reduction; see Table 2. All names of the
subclasses presented in the next two sections reflect the patterns which they
represent: ‘C’ stands for Copy, ‘R’ for Reduction and ‘S’ for Scan.

4.3.3 Subclasses of Reduction and Séamctions in the classes Reduc-
tion and Scan have a local and a carried input. Thus, the fungtiahich
determines the subclassification is exactly the binary fungties:

g (av b) = pres (a7 b)

Table 2 lists different forms of functiog with their corresponding sub-
classes of Reduction and Scan.
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Table 3. Subclasses of Sequential and Broadcast

Functiong Conditions Sequential Broadcast
gb=1» Identity Copy
Id copyn

g (bo, b1) @ is associative CR-Accum. CS-Broadcast
= (bo, b1 ® bo) q" broadcasty, g

g (bo, b1,b2) @ is associative CSR-Accum.  CSS-Broadc.
= (bo, b1 ® bo, b2 @ b1) and commutative q" broadcasty, g

g (bo, b1,b2) @ and® are assoc. CSR2-Accum. CSS2-Broadc.
= (bo, b1 ® by, b2 ® b1) & distributes overd q" broadcasty, g

4.3.4 Subclasses of Sequential and Broadddsither class Sequential nor
class Broadcast has a local input. Thus, the function which determines the
subclassification is:

gb=pres((),b)

Despite the fact that this function is not binary, associativity again plays
a key role in the subclassification of the classes Sequential and Broadcast.
Table 3 lists different forms of functiopwith their corresponding subclasses
of Sequential and Broadcast.

5 Implementations

We specify a parallel implementation by describing its processor network,
the flow of data through the network and the operation (function) which
is executed on each processor. Here we describe the primitives for these
networks informally. Appendix A contains their Haskell definitions with
their time and cost complexities.

The time and cost complexities we state are based on the following
assumptions:

— The size of the carried and local data is constant.

— The execution time oft and® is constant.

— Sending a datum of constant size from one processor to any other pro-
cessor takes constant time and is independent from communications be-
tweenother processors (this applies for EREW-PRAM machines). The
communication patterns in the implementation primitives of Appendix A
are restricted such that this assumption also applies for, e.g., a hypercube.

In our implementations, one operation is performed on each processor
per computation. This fact gives us a choice of two options:
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=

. We can either stick to the implementation we propose,

2. or we can aggregate several operations on one processor, following
Brent's Theorem [16], without an asymptotic penalty in time but with a
reduced cost.

We analyze the optimal asymptotic complexity with respect to each of
the following objective functions:

time(n): execution time (choice 1 or 2).

costprent(n): product of time and number of processors (choice 2). Brent's
Theoremimpliesthat(n) = #operations(n)/time(n) processors can
execute the same algorithm in tif@&¢ime(n)). Brent's cost s therefore
O(time(n) x p(n)) = O(#operations(n)).

pipe(n): lag time between the outputs of two successive computations. For
choice 1 thistime is of)(1); then we say that the implementation allows

pipelining.

In the following examples, our illustrations always depict choicgipd(n)
= 1), but we state the cost of choice 2.

In the rest of this section, we present only new parallel implementations.
For each subclass, we state also the combination patterns which can be
transformed into an instance of the current subclass.

5.1 Reduction

For all functions in the subclasses of Reduction which are listed in Table 2,
we havetime(n) = O(logn), costgrent(n) = O(n) andpipe(n) = O(1).
This is done by using a tree-like processor network and applying some
functionnode (different ones for different subclasses) on each node which
receives the input from its children on the left and provides the output to its
parent on the right. The distributed input(with a function applied to each
element) consists of the values at the leaves, the output is the value at the
root.

The trees used in this subsection can mapped easily onto a hypercube
without a time penalty. Thus, our given complexities also apply to hypercube
architectures.

5.1.1 Undirected Reductiofunctions in this subclass are well known (and
often simply called “reduction”). They are given by:

foldl g (as,b) where g(a,b)=(b®a), & isassociative

Functions in this subclass are instances of the basic component “R”.
A parallel implementation is well known and given by the higher-order
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function reduceR, which is instantiated with the associative operator
The computation traverses a left-right tréeréeUp ) with the values of
its leaves given by the distributed inpui:

reduceR (@) (as,b) = b@IrtreeUp  nodeas

where node(sy, s2) = (s1® s2)

If the operators is also commutative, we can traverse an odd-even tree
instead of a left-right tree (with same functiende).

An example computation of a function of this subclass is the sum of all
elements in a list. Witlp = +, as = [2,5,9,1,2,6,9, 3], b = 0, the result
is 37.

red(+) ([2,5,9,1,2,6,9,3],0) = 37

\
An

H

[}

7

ik

(=20 BN iV
|

W |

5.1.2 SR-Reductioffrunctions in this subclass are given by:

foldlg (as, (b1,b2)) where g(a,(b1,b2)) = (b1 ® a,bz @ by),
@ is associative and commutative

This subclass is a target subclass for a pattesr@f andred:

nERENR
(2,1) (1 2)

foldlg = (Id x red (®)) o 41 o(scan (®) x Id) o |
(1,2) (2,1)

<€

A parallel implementation is given by the higher-order function
reduceS R, which is instantiated with the associative and commutative op-
erator® and its neutral element,. The computation traverses an odd-even
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tree petreeUp ) after the initialization of its leaves with a special ini-
tialization for the first leafihapHdTI); see Appendix A for the primitives
oetreeUp andmapHdTI:
reduceSR (®) 14 (as, (b1,b2)) = (b1 ® y1, b2 ® y2)

where (y1,92) = oetreeUp node as’

and as’ = mapHdTl leaf_hdleaf_tl as

and leaf_hds = (s,b1)

and leaf_tls = (s,1g)

and node((s1,t1), (s2,t2)) = (51 B s2,t1 B t1 Bty Bta P s1)

An example computation of a function of this subclass is the sum of the

prefix sum of a list. Withe = +, as = [2,5,9,1,2,6,9,3], bp = 0 and
by = 0, the result is120.

2,1 1,2
((Id x red (+)) o Eui o(scan (+) x Id) o Eu;) (as, (0,0))
1,2 2,1

with its constituents
scan (+) ([2,5,9,1,2,6,9,3],0) = (37,[0,2,7,16,17,19, 25, 34])
red (+) ([0,2,7,16,17,19,25,34],0) = 120

(18,9) P (22,26)
H 4,1 (15,23) (37, 120)

5.1.3 SR2-Reductiofunctions in this subclass are given by:

foldl g (as, (b1, bs))

where g (a, (b1,b2)) = (b1 ® a,ba ® by),
@ and® are associativey distributes overp

This subclass is a target subclass for a pattexe@h andred:

[
(2,1) (1,2)

foldlg = (Id x red (®)) o 14 o(scan (®) x Id) o 1
(1,2) (2,1)
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Aparallelimplementation is given by the higher-order functieduce.S R2,
which is instantiated with the associative operatbi@nd® and the neutral
elementl s, of ®. The computation traverses a left-right tréeréeUp )
after the initialization of its leavesr(ap):

reduceSR2 (®) (®) 1g (a, (b1,b2)) = (b1 @ y1,b2 ® (b1 @ y2))
where (y1,y2) = IrtreeUp  node (mapleaf as)
and leafs=(s,1g)
and mnode ((s1,t1), (s2,t2)) = (51 @ s2,t1 B (51 ® t2))

FunctionreduceS R2 is similar to Cai’s and Skillicorn’s implementation
of functionrecur-reducg2] which is used to compute linear recurrences.
An example computation of a function of this subclass is the sum of the
prefix sum of a list. Witht = +, ® = x, as = [2,5,9,1,2,6,9,3],by = 1
andb; = 0, theresultisl1173.

2,1 1,2
((Id x red (+)) o (¢¢) o(scan (x) x Id) o (u)) (as, (1,0))
(1,2) (2,1)

with its constituents

scan (%) ([2,5,9,1,2,6,9,3],1) = (37,[1,2, 10,....],29160)
red (+) ([1,2, 10,90, 90, 180, 1080, 9720],0) = 11173

( (5.1) (10,3)
(1,1) (9, 10) (90.103) |

2.1) t

(6.1) (12,3) |

(9,1) t A{

(3.1) (27,10) (324,123) | (29160, 11173) |

5.2 Scan

For all functions in the subclasses of Scan which are listed in Table 2, we

havetime(n) = O(logn), costgrent(n) = O(n) andpipe(n) = O(1).

Note that we do not provide extra implementations for SS-Scan and SS2-
Scan. Implementations for functions in these subclasses are constructed
from the implementations of functions in the subclass Simple Scan.
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5.2.1 Simple Scarrunctions in this subclass are well known (and often
simply called “scan” or “pre-scan”). They are given by:

scanl g (as,b) where g(a,b) = (b@a), & isassociative

Functions in this subclass are instances of the basic component “S”.
There are two well-known ways to implement a simple scan:

— A two-phase scan (up-sweep and down-sweep) is appropriate for tree
architectures [15].

— A single-phase scan is appropriate for hypercube and butterfly architec-
tures [3].

5.2.2 SS-Scarkunctions in this subclass are given by:

Scanlg ((IS, (bla b2)) where g(a’ (bla bZ)) = (bl D a, b2 S bl)u
@ is associative and commutative

The new part of the elements in the distributed output (vs. the result of
a simple Scan) can be computed by:

I e o e e
1,2) (2,1)
(Id x mapma) o (scanl g) = 11 o(Id X scan (®))o | o
(2,1) (1,2)

1,2
(scan (@) x Id) o (u)
(2,1)

This pattern uses two implementations of a scan in a pipeline.

5.2.3 SS2-Scafrunctions in this subclass are given by:

scanl g (as, (b1, b2))
where g(a, (b1,b2)) = (b1 ® a, by @ by),
@ and® are associativep distributes overd

The new part of the elements in the distributed output (vs. the result of
a simple Scan) can be computed by:

WEENES R WA W
PR E B % g

(1,2) (2,1)

(Id x mapmg) o scanl g = 11 o(Id x scan (®))o || o
(2,1) (1,2)

(1,2)

(scan (®) x Id) o |}

(2.1

This pattern uses two implementations of a scan in a pipeline.
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5.3 Sequential

In this class, we apply function to the carried input: times. Remember
that n, the depth of the recursion, is still determined by the list of local
inputsas = [(),™times ()]. For all subclasses of Sequential shown in Ta-
ble 3, except Identity, we use a processor network Wi processors

in a row fepeat ) which computes the result wittime(n) = O(logn),
costgrent(n) = O(logn) andpipe(n) = O(1).

A row of processors can be mapped easily onto any processor network
without a time penalty. Thus, our given complexities also apply to other
architectures.

We assume. to be a power of. For other values, we have to use more
complex computations (which are similar to the computations used in class
Broadcast).

5.3.1 CR-Accumulatiorizunctions in this subclass are given by:
g" (bg,b1) where g (bg,b1) = (by,b1 B by), @ isassociative

This subclass is the target subclass for a pattero@j andred:

A 2 o [dw ar
(2,1)
g" = (Id x red (®)) o 1. o(copy, x Id)
(1,2)

A parallel implementation is given by the higher-order functienC' R
which is instantiated by the associative operator

accCR (®) (n, (b, b1)) = (b, b1 & repeat node (logyn) by)

where nodes =s® s

This method is the one used for the efficient evaluation of powers [13,
Sect. 4.6.3].

5.3.2 CSR-Accumulatiofunctions in this subclass are given by:

g" (bo,b1,b2) where g (bg,b1,b2) = (bo, b1 @ by, ba & by),
@ is associative and commutative

Instead of commutativity it sufficesthae. by =e®---®e, by =e@ - --
@eorb; = 1g.
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This subclass is a target subclass for a pattedof, scan andred:

9w dv_|bv [bw

1,2,1
g" = (Id x Id x red (®)) o( H )o(Id x scan (@) x Id) o
(1,1,2)
(2,1,1)
1 o(copy, x 1d x 1d)
(1,2,1)
A parallel implementation is given by the higher-order functienC'S R,
which is instantiated with the associative and commutative opegator

accCSR (@) (n, (bo, b1,b2)) = (bo, b1 & y1,b2 B y2)
where  (y1,y2,-) = repeat node (logyn) (bo, b1, bo)
and node (s,t,u) = (s ® s, t Gt D u,udududu)
—_———
4

An example computation of a function of this subclas$J§ (3 + )
with result 52. We havey = +,n = 8, by = 1, by = 3 andby; = 0.

1,2,1

((Id x Id x red (+)) o ( 1 )o(Id x scan (+) x Id) o
(171’2)

(27171)

W o(copy, x Id x 1d)) (1,3,0)
(17271)

with its constituents

scan (+) ([1,1,1,1,1,1,1,1],3) = (11,[3,4,5,6,7,8,9,10])
Ted (+) ([3747576777879, 10],0) — 52

[ 1,3.1) M 2,74 F{({.18,16) F{(8,52.64) |

5.3.3 CSR2-AccumulatioRunctions in this subclass are given by:

g" (bo,b1,b2) where g (bg,b1,b2) = (bo, b1 ® bo, b & by),
@ and® are assoc distributes overd

This subclass is a target subclass for a patterevpf, scan andred,
similar to CSR-Accumulation.
A parallel implementation is given by the higher-order functienC'S R2
which is instantiated by the associative operatp@End®:

accCSR2 (®) (®) (n, (bo, b1, b2)) = (bo, b1 @ y1,b B y2)
where (y1,y2) = repeat node (logy n) (by, b1)
and node (s,t) = (s® s,t D (t® 3))
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5.4 Broadcast

In this class, we apply functiopto the carried input times and return a list
of intermediate results and the final result whose implementation is known
from the previous section. For all subclasses shown in Table 3, we use a
tree-like processor network with processors which computes the result
with time(n) = O(logy n), costgrent(n) = O(n) andpipe(n) = O(1). At
each node, a function is applied which receives the input from its parent on
the left side and provides two outputs to its children on the right. The carried
inputb is the input for the root; the list of intermediate results is composed
of the values at the leaves.

The odd-even tree used in this subsection can be mapped easily onto a
hypercube without a time penalty. Thus, our given complexities also apply
to hypercube architectures.

5.4.1 CopyThe only function in this subclass iga = a. Two parallel
implementations are given by:

broadcC (n,b) = IrtreeDn  node (logy n) b
= oetreeDn node (logy n)b
where  nodes = (s, s)
5.4.2 CS-BroadcasEunctions in this subclass are given by:
broadcasty, g (bg,b1) where g (bo,b1) = (bo,b1®by), @ is associative

This subclass is a target subclass for a pattedvef andscan:

fol— = | o]
9w |72 Idw -{jv
(2,1)
(Id x mapme) o broadcast, g = (Id x scan (®)) o | o(copy, x Id)
(1,2)

A parallel implementation is given by the higher-order functiooadcC'S,
which is instantiated with the associative operatoiThe computation tra-
verses an odd-even tregefreeDn ), the result is extracted from the values
of its leaves hap):

broadcC'S (®) (n, (by, b1)) = mapleaf zs’
where zs' = oetreeDn node (logy 1) (bo, b1, bo)
and node (s, t,u) = ((s,t,u ®u), (s,t B u,udu))
and leaf (s,t,-) = (s,t)

The carried result is the result of a CR-Accumulation.
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5.4.3 CSS-Broadcasgtunctions in this subclass are given by:

broadcasty, g (bo, b1,b2) where g (bg,b1,b2) = (bg, b1 ® by, b2 B by1),
@ is associative and commutative

Instead of commutativity it sufficesthae. by =e®---®Pe,by =e@ - --
Georb; = 1g.
This subclass is a target subclass for a pattedof, scan andscan:

=
9y - T3 1 ka’-*ark’-(at\’
(1,2,1)
(Id x Id x mapms3) o broadcast,, g = (Id x Id x scan (®))o I o

(1,1,2)

2,1,1
(Id x scan (@) x 1d) o A s
(1,2,1)

(copyn x 1d x 1d)

A parallel implementation is given by the higher-order function
broadcC'S'S which is instantiated by the associative and commutative op-
eratord and its neutral elemert,. The computation traverses an odd-even
tree petreeDn ), the result is extracted from the values of its leaves. Part
of the result is already known from the CS-Broadcast and combined with
the new oneZip ):

broadcCSS (&) 1g (n, (bo, b1, b2)) = zip join (old, new)

where jOin((yanl)a(‘g?ﬂ - = ’U])) = (y()’ylaw@s)
and old = broadcC'S (®) (n, (bo, b1))
and new = oetreeDn node (logy n) (14, b1, bo, 1, b2)
and node (s,t,u,v,w)
=((s,tBtDu,udududDu,vdv,w),
(sPtDv,tDtOU,UDUDUDU,UDUDV DV, Ww))
2 4 2 2

The carried result is the result of a CSR-Accumulation.
An example computation of a function of this subclass is

[ oB+d)lie 0..7} with result [0, 3,7, 12, 18,25, 33, 42]. We have
@=+,n:8,b0:1,b1:3andb2:O.

1,2,1
((Id x Id x scan (+)) o W )o(Id x scan (+) x Id) o
(1,1,2)
(2,1,1)
W o(ecopy, x Id x 1d) (1,3,0)
(1,2,1)
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with its constituents

scan (+)([1,1,1,1,1,1,1,1},3) = (11,[3,4,5,6,7,8,9,10])
scan (+) ([3,4,5,6,7,8,9,10],0) = (52,[0,3,7, 12,18, 25,33, 42])

[ (0,3,1,0,0) (0,7,4,0,0) | (0,18,16,0,0) | (0,52,64.0,0) |
Kl (3,7,4,2,0) M(3,18,10,4,0)\ (3,52,64,8,0) |

\T (7,18, 16, 8,0) ‘ (7,52,64,16,0) |

1(12,18,16,12,0) ‘ (12,52,64,24,0) |

(18,52, 64, 32, 0)
(25,52, 64.40, 0)
(33,52, 64,48, 0)
(42,52, 64, 56, 0)

5.4.4 CSS2-Broadcadtunctions in this subclass are given by:

broadcasty, g (bo, b1,b2) where g (b, b1,b2) = (b, b1 ® by, ba ® by),
@ and® are associativey distributes overp

This subclass is a target subclass for a pattervpf, scan andscan,
similar to CSS-Broadcast.

A parallel implementation is given by the higher-order function
broadcCCS2, which is instantiated by the associative operatorand ®
and the neutral elemert, of . The computation traverses an odd-even
tree petreeDn ), the result is extracted from the values of its leaves, part
of the result is already known from the CS-Broadcast and combined with
the new oneZip ):

broadcCSS2 (®) 1g (®) (n, (b, b1,b2)) = zip join (old, new)
where  join (yo,y1) (s, - - v) = (Yo, y1,v & 5)
and old = broadcCS (®) (n, (bo, b1))
and new = oetreeDn node (logy n) (1g), b1, bo, b2)
and node (s,t,u,v) = ((s,t® (t @ u),u ®u,v),
td(s@u),td (t@u),u®u,v))

The carried result is the result of a CSR2-Accumulation.
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6 Combinations ofpre and post parts

In Sect. 4, we have classified thee part whose carried data flows down-
wards and mentioned that the same could be done fqrdkepart whose
carried data flows upwards. In this section we look at combinations of the
pre and thepost part.

Some combinations are trivial (Sect. 6.1), whereas more complicated
ones (which are shown in Sect. 6.5) use the decomposition of both parts into
basic components (Sect. 6.2).

6.1 Trivial combinations of thpre andpost part

An instance of skeleto® L R for parallel linear recursion is a trivial com-
bination of apre and apost part if the computation is just performed in one
part.

With a trivial post part, i.e., if the computation is just performed in the
pre part, the functional argumepbst for the skeletonP L R is the identity
function. For these combinations, we can use the implementations presented
in Sect. 5. Here are the boxes for classes Sequential, Broadcast, Reduction,
and Scan with a trivigbost part:

~ LY ~ A

> > > >
Iy |4 Id Iw |4 Id F‘nr + Id _ﬂr + Id
~ A ~ ~
> > ~ > >
Iv Id v Id A 4 Id mr Id
Sequential Broadcast Reduction Scan

Next, we depict thepre and thepost part by one row instead of two.

With a trivial pre part, i.e., if the computation is just performed in the
post part, the functional argumentre for skeletonPLR is the identity
function. For these combinations, we can use the reverse of the implemen-
tations presented in Sect. 5. Imreverseimplementation the input and/or
output list has to be provided in the reverse order. Here are the boxes for
classes Sequential, Broadcast, Reduction, and Scan with a prieiglrt:

[y A h "~
+ +| | o+ >+ >
Idv g Idw g Idw g Idw g
Sequential Broadcast Reduction Scan

6.2 Decomposition into basic components

There are two equivalent points of view: (1) we can just combineptbe
andpost part, with data flowing downwards in th@e part and upwards
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in the post part, or (2) we can decompose both parts into basic compo-

nents and combine those, with data flowing, possibly, in both directions.

Implementations that we develop for (2) are also implementations for (1).
Our method in the rest of this section is as follows:

1. We decompose the subclasses into basic components, i.e., we remember
that specific subclasses are targets for combinations of basic components.

2. We note that the implementations of Sect. 5 can be used for trivial com-
binations of thepre andpost part.

3. We show that the carried data flow of some basic components can be
reversed from downward to upward without affecting the result. We
obtain a combination of basic components with a downward carried data
flow followed by basic components with an upward carried data flow.

4. We combine the basic components with a downward carried data flow
in the pre part and the basic components with an upward carried data
flow in the post part. This combination can use the implementation of
the original subclass of item 1.

6.3 Example: CSR-Accumulation

Section 5.3.2 presents an implementation for a CSR-Accumulation in the
pre part. As mentioned in Sect. 6.1, this implementation can be used for a
combination with a triviapost part:

W L; n 7y
Idy jr ar Id

Note that the last basic component in fire part is a reduction with an
associative operatap. This means that we can reduce from the right rather
than from the left. Thus, we can reverse the carried data flow of the last
basic component from downward to upward, which means that this basic
component belongs to thpost part (we have a CS-Broadcast in tire part
and an undirected reduction in thest part):

N

s-\b+g

Idy_|Dw

According to Sect. 6.1, the reverse implementation can be used for a
combination with a trivialpre part. Since we have no input and no out-
put list (more precisely, just lists with elements of the unit type), there is
nothing to reverse, i.e., we can use the original implementation for a CSR-
Accumulation:
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'y ~ 3
+ R
Idy Id r’@ ﬁff)

The first basic component in tip®st part distributes the same value to
all places of its output. It does not matter whether it is forwarded from the
bottom or from the top. Thus, we can reverse the carried data flow of the first
basic component from upward to downward, which means that this basic
component belongs to tigre part (we have a copy in thgre part and an
SR-Reduction in theost part):

L,_*__J‘r,.J

[dw D b

It turns out that the implementation of Sect. 5.3.2 can be used for all
combinations of the basic componentsy, scan, andred with different
directions of the carried data flow.

6.4 Example: CSS-Broadcast

Section 5.4.3 presents an implementation for a CSS-Broadcast prehe
part. As mentioned in Sect. 6.1, this implementation can be used for a com-
bination with a trivialpost part:

~
| + >
Ly _NV Dy Id

The last basic component in tipee part is a scan, whose carried data
flow cannot be reversed without changing the result.

According to Sect. 6.1, the reverse implementation can be used for a
combination with a triviapre part:

3 Ju _J‘
[dw + Id r'“.) R(D r’

The first basic component in ti®st part distributes the same value to
all places of its output. It does not matter whether it is forwarded from the
bottom or from the top. Thus, we can reverse the carried data flow of the first
basic component from upward to downward, which means that this basic
component belongs to th@e part:

N> 4+ J},J;,

Idw D 53]
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The lastbasic componentinthest partis ascanwhose carried data flow
cannot be reversed without changing the result. Thus, no implementation
of Sect. 5 can be used to implement the following combination of basic
components:

W WiIne
Idw av +€Br’

The implementation of this “reflecting” broadcast is given in Sect. 6.6.

6.5 Basic components in tipee andpost part

Table 4 lists combinations of basic components ingheand thepost part
for which we offer efficient implementations.

In Sects. 6.3 and 6.4, we have seen that a specific implementation can
be used for different combinations of thee and thepost part.

In each row of Table 4, the first entry names the implementation we can
use for the combinations of basic components inpgireeand thepost part,
depicted by the following entries in the row.

The implementations we use are either the ones presented in Sect. 5, their
reverses (mentioned in Sect. 6.1), or an extra implementation if necessary
(motivated in Sect. 6.4, presented in Sect. 6.6).

The first combination in each row is always a trivial combination of a
pre and apost part, except in the row for the extra implementation. The

fact that the same implementation can be used for different combinations

is indicated by the symbof&, X, and™, see Sect. 6.3 and Sect. 6.4 for

details.

6.6 Implementation: CSrS-Broadcast

In this subsection, we propose an implementation for a functional compo-
sition of a CS-Broadcast and then a simple Scan from the right (the reverse
direction!). This composition can be viewed as a broadcast and is given by:

scan (®) (w2 (broadcasty, g (a,b)),c)
where g (a,b) = (a,b®a), @ isassociative and commutative
Instead of commutativity it sufficesthae.by =e®---Pe,by =ed---

@e or by = 1g. This pseudo subclass is a target subclass for a pattern of
copy, scanl andscanr:

WE RN WRWEN

Jv |b Idy [(Dw |D
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Table 4. Implementations for thpre andpost part

may be used by:
Implementation pre + post pre + post
Undirected Red. ~ + 1 = T 1
SR(2)-Reduction —1'\9jr +1 ass W'K» Hw)
...(post part) "¢ + J}»-J“
[ All Scans parts are implemented independently ]
Identity l + 1
CR-Accum. ‘L'\»ﬁ" + 1 ass "L,)r.J“
s M RE
CSR(2)-Accum. ,,L’j}'j, o1 = "K»«JVL» N
s BEET ¢ T PEH
Copy VLy + > d ! + ur’
CS-Broadcast wk’er, + >
...(post part) ! + “fr—frb d ‘t\» + J‘f>
CSS(2)-Broade. Rﬁswb +—s
...(cxtra impl.) "K>-\"¥>+-J“f>
... (post part) I “r«»—jr»-jf» L > +J}>J}>

ass . . .

% equality, since @ and ® are associative

1d L .

=: equality, since copy,, copies the same value

=" equality, since functions in class Sequential do not collect or distribute values

A parallel implementation is given by the higher-order function
broadcC SrS whichisinstantiated by the associative and commutative oper-
ator® and its neutral elemernt;. The “r” in “CSrS” stands for “reflecting”.
The computation traverses an odd-even toegtréeDn ), the result is ex-
tracted from the values of its leaves. FunctonadcC SrS combines (with
zip ) one part of the result, which is given by the CS-Broadcast previously
described and which we calld, with another part, which we catlew.
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The computation is defined by:

broadcCSrS (@) 1g (a,b,c) = zip join (old, new)
where jOin((y(]v y1)7 (87 = =y = w)) = (yOa Yy, w S S)
and old = broadcCS (&) (n, (bo, b1))
and mnew = oetreeDn node (n, (0g, b, a,0g,c))
and h (s, t,u,v,w)
=((sdtdu,tdtdu,udududu,ududvduv,w),
(s@uv,tdtdu,udududu,vduv,w))
2 4 2

The carried result is the result of a CSR-Accumulation with argument
(a,b,c).

An example computation of a function of this subclass is
(Y521 (3+4) | i € 1..8] with the result 0f49, 45, 40, 34,27, 19, 10, 0]. We
have® = +,n=8,by = 1, by = 3 andby = 0.

1,2,1
((Id x Id x scanr (+)) o ( 1 )o(Id x scanl (+) x Id) o
(1,1,2)
(2,1,1)
1 o(copy, x 1d x 1d)) (1, 3,0)
(1,2,1)

with its constituents

scanl (+) ([1,1,1,1,1,1,1,1],3) = (11,[3,4,5,6,7,8,9,10])
scanr (+) ([3,4,5,6,7,8,9,10],0) = (52, [49,45,40,34,27,19, 10, 0])

(15,18, 16,12, 0) -{ (49, 52,64, 56, 0) |
(11,18, 16.8,0) }{(35,52,64, 48,07
(6,18,16,4,0) 1 {(40,52,64,40,0) ]
(0.18.16.0.0) M (31,52, 61,32.0) ]
(37,52,64, 21,07
V(19,52,64,16,07]

[ (10,52,64,8,0) |

\
[ (0,52,64,0,0) |

[ (0,3,1,0,0) (4,7,4,2.0)
(0,7,4,0.0)

|

7 Conclusions

The skeletal approach aims at a plug-in style of parallel programming. In
developing skeletons, one is seeking popular patterns of parallelism and
communication which one can offer to programmers as building blocks for
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larger parallel programs. Our contribution is to look at combinations of some
of the most basic building blocks and optimize them further. We obtain these
optimizations by staying in the world of linearly recursive functions and by
classifying special cases of linear recursion in a table which we then use in
our analysis.

Our targets have been compositions of the skeletons Broadcast, Reduc-
tion and Scan. We have looked at three cases: (1) that the carried data flow
downwards, i.e., to deeper levels of the recursion, (2) that it flows upwards
and (3) the combination of both directions which occurs in linearly recursive
functions.

Good parallel implementations require the binary operator subject to a
reduction or scan to be associative. When combining these targets, additional
algebraic properties, such as commutativity or distributivity are sometimes
required.

Elsewhere, patterns of recursive functions, also on lists, have been studied
in the Dutch STOP project [14]. There, general linear recursion is captured
by the notion of a hylomorphism. Similar to our work, the STOP project led
to valid transformations for the compaosition of these patterns. However, the
transformations serve not for the identification of better parallel implemen-
tations but as a starting point for extending the STOP theory to data types
other than lists. We have concentrated on lists, have identified cases in which
our transformations improve the quality of the parallel implementation and
have derived the improved implementations.

Transformations for optimizing compositions have also be considered
elsewhere, mostly by improving the distribution of the data or using pipelines
as in To's Ph.D. thesis [20]. Our optimization is based on the algebraic
properties of the functions involved.

We have chosen the paradigm of functional programming, butthe skeletal
approach applies also to imperative programs. The advantage of the func-
tional paradigm is that program transformations can be checked more di-
rectly, via equational proofs. We have implemented our solutions in Haskell
[19]. Just like, e.g., the Glasgow Haskell compiler compiles Haskell into C,
the parallel implementations of our skeletons will have to be in a language
like C with MPI calls. Here, we have not addressed this issue, but we are
working on it in the domain of divide-and-conquer recursions [11,12].
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Appendix: Implementation Primitives

In this section we list the main part of the Haskell modatl@enLR which
defines the primitives used in Sect. 5. To avoid name clashes with func-
tions defined in the Haskell librariPrelude.hs , we userepTimes ,
maplList , andzipPair instead ofrepeat , map, andzip .

The following functions are used from the Haskell libréselude.hs

fst (a,b) =a

snd (a,b) =0

head (a : as) =a

length [ai,...,a,] =n

splitAt  k[a1,...,ak, agi1,- -, an)
= ([a1, ..., ak], [akt1s- -, an])

FunctionsmapList , mapHdTI, and zipPair can be executed with
time(n) = O(1) on O(n) processors with the assumption that the func-
tional argument has a constant execution time.

FunctionsoetreeDn and oetreeUp describe computations on an
odd-even tree whose structures are depicted in the examples of Sect. 5.1.2
and Sect. 5.4.3. On architectures which provide these communication struc-
tures, e.g., on hypercubes, the parallel time i®iflog ), wheren is the
length of the input/output list. The number of operations i®im).

FunctionlrtreeUp  describes a similar computation on a left-right tree
whose structure is depicted in the example of Sect. 5.1.3.
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--- "Sequential" Functions

-- Apply function(1) number(2) times, initial argument is (3)
repTimes :: (a->a) -> Int -> a -> a
repTime s f k a

| k == a

| k>0 repTimes f (k-1) (f a)

| otherwise = error "PrimLR.repTimes: negative argument"

-- Repeatedly apply function(1) until predicate(2) returns
-- True, initial argument is (3)

repUntil :: (a->a) -> (a->Bool) -> a -> a
repUntil f pred a
| pred a = a

| otherwise = repUntil f pred (f a)

-- Check whether list(1) has length 1. Using ((=1) . length)
-- instead is slow

isSingleton :: [a] -> Bool

isSingleton [_] = True

isSingleton _ = False

--- "Parallel" Functions with ParTime = O(1)

-- Apply function(1) to all elements in list(2).
- Prelude.map not only works on lists.
mapList :: (a->b) -> [a] -> [b]

maplList _ ] =1
maplList f (azas ) = f a: mapList f as

-- Apply function(1) to head, function(2) to all elements in

-- tail of list(3).

mapHdTI :: (a->b) -> (a->b) -> [a] -> [b]

mapHdTI fa fas (a:as) = f a a : mapList fas as

mapHdT _ _ [] = error "PrimLR.mapHdTI: empty list"

-- Apply uncurried binary function(1l) to all elements in

-- lists(2), pairing elements at same position.

- Prelude.zipWith :: (a->b->c) -> [a] -> [b] -> [c]

zipPair :: ((a,b)->c) -> ([a],[b]) -> [c]

zipPair _ ({1.0) =1

zipPair f (a:as,b:bs ) = f (a,b) : zipPair f (as,bs)

zipPai r _ _ = error "PrimLR.zipPair: unequal length of lists"
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--- Tree functions: Left-Right, Odd-Even, ParTime = O(log n)

-- Go down left-right tree of depth(2), starting at root with
-- element(3), apply function(1) at each node to compute
-- the values for the two children.
IrtreeDn :: (a->(a,a)) -> Int -> a -> [a]
ItreeD n f k a = repTimes (step f) k [a]

where step _ [] =1

step f (a:as) = let (b1,b2 ) =fa
in bl : b2 : step f as

-- Go down odd-even tree of depth(2), starting at root with
-- element(3), apply function(1) at each node to compute
-- the values for the two children.
oetreeDn :: (a->(a,a)) -> Int -> a -> [a]
oetreeD n f k a = repTimes (step f) k [a]
where step f as = maplList (fst . f) as ++
mapList (snd . f) as

-- Go up left-right tree, starting at leaves with list(2),

-- apply function(1) at the children to compute the value for
-- each node.

IrtreeUp :: ((a@,a)->a) -> [a] -> a

IrtreeUp f as = head (repUntil (step f) isSingleton as)

where step _ ] =1
step f (al:a2:as ) = f (al,a2) : step f as
step _ [] = error

"PrimLR.IrtreeUp: length of list is no power of 2"

-- Go up odd-even tree, starting at leaves with list(2),
-- apply function(1) at the children to compute the value for
-- each node.
oetreeUp = ((a,a)->a) -> [a] -> a
oetreeUp f as = head (repUntil ((zipPair f) . split)
isSingleton as)
where split as = splitAt (div (length as) 2) as



