
Acta Informatica 35, 875–909 (1998)

c© Springer-Verlag 1998

On linear list recursion in parallel ?

Christoph Wedler, Christian Lengauer

Fakulẗat für Mathematik und Informatik, Universität Passau, D–94030 Passau, Germany
(e-mail:{wedler,lengauer}@fmi.uni-passau.de)

Received: 27 May 1997 / Revised version: 17 March 1998

Abstract. We propose a classification for a set of linearly recursive func-
tions, which can be expressed as instances of a skeleton for parallel linear
recursion, and present new parallel implementations for them. This set in-
cludes well known higher-order functions, like Broadcast, Reduction and
Scan, which we callbasic components. Many compositions of these basic
components are also linearly recursive functions; we present transformation
rules from compositions of up to three basic components to instances of our
skeleton. The advantage of this approach is that these instances have better
parallel implementations than the compositions of the individual implemen-
tations of the corresponding basic components.

1 Introduction

Functional programming offers a very high-level approach to specifying
executable problem solutions. For example, the scheme of linear recursion
can be expressed concisely as a higher-order function. In the data-parallel
world, higher-order functions are used which represent classes of parallel
algorithms on data structures; these higher-order functions are also called
skeletons[4,6]. Well known representatives, which also happen to be lin-
early recursive, are reduction and scan (parallel prefix) with an associative
operator. If one can express one’s problem in terms of instances of skele-
tons with a known parallel implementation, the implementation of the whole
problem comes for free (although it is not guaranteed to be optimal).

? Part of this material has been presented at the Second International Workshop on Soft-
ware Engineering for Parallel and Distributed Systems (PDSE’97) [21].

876 C. Wedler, C. Lengauer

Current research focuses on the following questions:

1. How can a problem solution be expressed in terms of skeletons? The
Bird-Meertens formalism [1] is a well known framework in which a
problem, expressed as a functional term, can betransformedto a seman-
tically equivalent term. The aim is to obtain, via transformations, a term
which uses skeletons whose implementations have a lower cost [2,8].

2. What are the useful skeletons and their parallel implementations? Of-
ten, one obtains a skeleton by means of ageneralization. E.g., reduction
and scan with an associative operator are included in the class of homo-
morphic functions which match the divide-and-conquer paradigm and,
therefore, have a natural parallel implementation [5,9,17].

3. Can we optimize combinations, esp. functional composition, of skeleton
instances? In other words, is the cost of the parallel implementation
of the functional composition of some skeleton instances simply the
addition of their individual costs [18], or are therepatternsof skeleton
combinations which have parallel implementations with a lower cost [7]?
Two transformation rules with scan and reduction and with two scans
can be found in [10].

In this paper, we address (2) and (3) for a set of linearly recursive func-
tions. We generalize some existing skeletons, e.g., we present several new
parallel implementations of reduction with a non-associative operator. Addi-
tionally, we identify patterns of functional compositions of linearly recursive
functions with a better parallel implementation than the naı̈ve composition
of the individual implementation.

Quite naturally, points (1) to (3) are not independent from each other:
identifying patterns with a better parallel implementation than the naı̈ve
composition can be viewed as presenting transformation rules to obtain
from these patterns an instance of a skeleton which is specially tailored
for this pattern; this may involve defining new skeletons with good parallel
implementations (2).

We base the analysis and implementation of linearly recursive func-
tions on one common skeleton (Sect. 3.2) which specifies the call graph
of linear recursion. Specializations of this graph lead to different classes
of functions. Functions in some classes are divided further into subclasses.
Functions in a fixed subclass have common parallel implementations. Some
of the simplest subclasses (e.g., reduction) and their parallel implementa-
tions are well known; we call thembasic components. Some subclasses are
specially tailored to match simple patterns of functional compositions of
basic components; these subclasses require new parallel implementations,
which we present.

On linear list recursion in parallel 877

2 Notation

The notation we use is close to Haskell [19]. Each termt has atypeT ;
we write: t :: T . We use alson-tuples(a1, . . . , an) :: (α1, . . . , αn). The
singleton(a) is the elementa itself, the empty tuple() is the only element
of theunit type(). The set of integers fromb to t is written asb..t.

A list with elementsai :: α, for all i ∈ 0..n − 1, is written as[a0, . . . ,
an−1] :: [α]. The empty list is written as[]. A list whose head isa and
whose tail isas is written asa : as. The concatenation of two listsas and
bs is denoted byas ‖ bs.

A functionf with argument typeα and result typeβ, in shortf :: α →
β, is applied to an argumenta via f a. Function application has highest
precedence, e.g.,f a + g b is the same as(f a) + (g b). If the term for
the function type has free type variablesαi, these variables are implicitly
universally quantified and the function is said to be polymorphic.

Predefined polymorphic functions are the identity functionId :: α → α,
with Id a = a, and the projection functionsπk :: (α1, . . . , αk, . . . , αn) →
αk, with πk (a1, . . . , ak, . . . , an) = ak, where1 ≤ k ≤ n and1 < n.1

If we want to apply a function to two (or more) argumentsa1 anda2, it
can be defined in two ways. If it is defined to beuncurried, we apply function
f :: (α1, α2) → β to a pair:f (a1, a2). If it is defined to becurried, we
supply the arguments piecewise to functionf :: α1 → (α2 → β): written
as(f a1) a2. Since→ is right-associative and function application is left-
associative, this can be written asf :: α1 → a2 → β andf a1 a2.

If function f is defined to be curried, it may be applied to only a part of
the arguments; e.g., withf :: α1 → α2 → β, we may define a function
g :: α2 → β with g = f a1. In the rest of the paper, functions are normally
defined to be curried.

Each infix operation ⊕ induces the following functions, the later two
are calledsections:

(⊕) ::α → β → γ where (⊕) a b = a ⊕ b
(a⊕) :: β → γ where (a⊕) b = a ⊕ b
(⊕ b) :: α → γ where (⊕ b) a = a ⊕ b

Functions can be combined via the following functionals:

Functional composition:(g ◦ f) x = g (f x), where◦ is associative.
Functional product:(f1 × f2) (x1, x2) = (f1 x1, f2 x2), and similarly for

three or more functions.
1 The projection function is not defined on singleton tuples for the following reason:

with a = (a1, a2), we would haveπ1 (a) = a = (a1, a2) and alsoπ1 (a) = π1 a =
π1 (a1, a2) = a1, which is a contradiction. An alternative would be to make the parameter
n explicit, i.e, use function symbolsπn

k .

878 C. Wedler, C. Lengauer

FP’s construction:〈f1, f2〉 x = (f1 x, f2 x), and similarly for three or more
functions;〈 〉x = ().

3 Skeletons for linear recursion

In this section, we introduce two higher-order functions (skeletons) which
express the scheme of linear recursion. SkeletonLR, introduced in Sect. 3.1,
reflects the general form of linear recursion, but does not reveal any possibil-
ities for its parallelization. Thus, we introduce a second skeleton, skeleton
PLR for parallel linear recursion in Sect. 3.2. In Sect. 3.3, we relate in-
stances of the two skeletons with each other.

3.1 General form of linear recursion

If a linear recursive functionf is applied to an argumentx, there are two
cases:

– In thebase case, we apply functionbase to the argument.
– In therecursive case, we apply functionpre to the argument and use the

result as the argument for the functionf . Functionpost combines the
result of this recursive call with the original argumentx.

If applying functionP to argumentx returnstrue, we have reached the
base case, otherwise the recursive case.

The concept of linear recursion can be expressed by the following higher-
order function:

LR P base pre post = f where
f x = if P x then base x else post (x, f (pre x))

Example: a reduction from the left (foldl) over a listas = [a0, . . . , an−1],
informally defined by:

foldl (⊕) (as, b) = ((b ⊕ a0) ⊕ · · ·) ⊕ an−1

is formally defined by

foldl (⊕) ([], b) = b

foldl (⊕) (a : as, b) = foldl (⊕) (as, b ⊕ a)

This reduction can be defined as an instance ofLR:

foldl (⊕) = LR ((= []) ◦ π1) π2 pre π2

where pre (a : as, b) = (as, b ⊕ a)

On linear list recursion in parallel 879

3.2 The skeleton for parallel linear recursion

A key factor in executing a program in parallel is the distribution of data
across the processors. In the data-parallel model, the same function is applied
by each processor to data sets of a common type. We take this type to be the
list.

In this section, we propose a skeleton for parallel linear recursion which
makes the use of lists as the input and output explicit: with each recursion
step, one element of the input list is processed and one element for the output
list produced. Note that it is also allowed to pass a fixed-size argument
between the levels of the recursion. As we shall see later, this enables us to
derive different classes of possibly parallel implementations, depending on
the type of the list elements. See Sect. 3.3 for a comparison between our
skeleton for parallel linear recursion and the general form of linear recursion.

The skeletonPLR of parallel linear recursion is instantiated by providing
a functionbase which is executed in the base case, a functionpre which
computes the input value for the next recursion level and an intermediate
local value, and a functionpost which combines this local value with the
result of the next recursion level. The base case is reached when there is no
distributed data to process, i.e., when the list argument is empty.

The skeleton is defined as follows:

PLR base pre post = f where
f ([], b) = base ([], b)

f (a : as, b) = (y, z : zs)
(m, b′) = pre (a, b)
(y′, zs) = f (as, b′)

(y, z) = post (y′, m)

The data flow graph of this skeleton (Fig. 1) exposes the symmetry be-
tween the input and output and the flow of data across and inside the levels
of the recursion. We call the horizontal data flow, which stays at a fixed
recursion level,local (a, m andz in Fig. 1) and the vertical data flow, which
connects recursion levels,carried2 (b andy in Fig. 1). In order to predict
the costs of the implementations of this skeleton, we assume that the size of
the carried data is level-independent.

For example, the reductionfoldl, defined in Sect. 3.1, can be defined as
an instance ofPLR:

foldl (⊕) = π1 ◦ (PLR 〈π2, π1〉 pre1 Id)
where pre1 (a, b) = ((), b ⊕ a)

2 This data flow was calledglobal in [21].

880 C. Wedler, C. Lengauer

Fig. 1. Data flow graph of the skeleton for parallel linear recursion

All of the computation is done by the recursive application of function
pre, functionsbase and post are essentially the identity. We have only
distributed data on the input side3 (as), no intermediate local data (m = ()),
and no distributed data on the output side (zs = [(), . . . , ()]).

Note that linear recursion without distributed input is included in this
skeleton if the recursion depth is given as an argument. The base case is
reached when this argument is 0. This is due to the fact that the natural
numbers (including 0) are isomorphic to the lists with elements of unit type.

3.3 Equivalences

In this section, we consider the equivalence between an instance of the
skeleton for the general form of linear recursion and an instance of the
skeleton for parallel linear recursion.

For equivalence, there must be an isomorphismφIN and a homomor-
phism φOUT which make the following diagram commute (f1 ◦ φIN =

3 Without distributing the list argument, the best time complexity we can obtain is linear,
except in trivial cases.

On linear list recursion in parallel 881

φOUT ◦ f2 or f1 = φOUT ◦ f2 ◦ φ−1
IN):

In1
f1−−−→ Out1

φIN

x
xφOUT

In2
f2−−−→ Out2

f1 = LR P1 base1 pre1 post1
f2 = PLR base2 pre2 post2

Here are sufficient conditions on the relationship between the customiz-
ing functions passed to the source skeleton and the functions passed to the
derived skeleton, which make the diagram commute:

P1 ◦ φIN = (= []) ◦ π1 (EqPred)
base1 ◦ φIN = φOUT ◦ base2 (EqBase)

(pre1 ◦ φIN) (a : as, b) = φIN (as, (π2 ◦ pre2) (a, b)) (EqPre)
post1 (φIN (a : as, b),

φOUT (y′, zs)) = (φOUT ◦ (Id × (: zs)) ◦ post2)
(y′, (π1 ◦ pre2) (a, b)) (EqPost)

For our examplefoldl, we haveIn1 = In2 = ([α], β), Out1 = β,
Out2 = (β, [()]). The homomorphisms are defined byφIN = Id and
φOUT = π1. Note thatφOUT is no isomorphism, i.e.,f2 also returns the
length of the input list (via a list[(), . . . , ()]).

EqPred: (= []) ◦ π1 ◦ Id = (= []) ◦ π1

EqBase: π2 ◦ Id = π1 ◦ 〈π2, π1〉
EqPre: (pre1 ◦ Id) (a : as, b) = (as, b ⊕ a)

= Id (as, π2 ((), b ⊕ a))
EqPost: π2 (Id (a : as, b), π1 (y′, zs)) = y′

= (π1 ◦ (Id × (: zs)) ◦ Id) (y′, π1 ((), b ⊕ a))

The main restriction in skeletonPLR is that the recursion depth is de-
termined by the length of the input list. This is expressed byEqPred.

4 Classes of linearly recursive functions

Different linearly recursive functions have (parallel) implementations of
different quality. Our aim is to find classes of functions which have good
(parallel) implementations in common. In this section, we characterize these
classes and discuss how a function is assigned to its appropriate class. From
now on, we shall use solely skeletonPLR.

A linearly recursive function, which is specified as an instance of the
skeleton, consists of two parts: thepre part and thepost part (Fig. 1). The
only difference between thepre part and thepost part is that the carried

882 C. Wedler, C. Lengauer

data flows downwards in thepre part and upwards in thepost part (Fig. 1).
We consider only thepre part; our classification applies just the same for
thepost part.

4.1 Classifying thepre part

We classify thepre part by examining the properties of functionpre in
isolation.

Data flow: pre has two inputs and two outputs. A first classification results
from checking whether there is a data dependence from a specific input to
a specific output. There are22∗2 = 16 combinations. This classification
can probably be performed automatically.

Algebraic properties: We classify the derived programs in some classes fur-
ther by looking at algebraic properties of the functions involved. These
properties are listed for each class separately. The most important prop-
erty is associativity. In general, this classification cannot be done auto-
matically.

The following diagram depicts the choices of data flow for thepre part:

A textual representation of this diagram is given by a formula forpre:

pre (a, b) = (preE (preWE a, preNE b), preS (preWS a, preNS b))

Any functionpre with the given signature could be decomposed this way
by choosingId for preWE, preNE, preWS andpreNS. Instead, we require
these functions to be

– either an identity functionId6=() on some non-unit typeα 6= () or
– a function〈〉 from some type to the unit type().

We could always chooseId6=() if the type of the input is not the unit
type, but we prefer to choose〈〉 whenever possible, such that functionId6=()
indicates the presence and function〈〉 the absence of a data dependence.

As an example, let us considerpre (a, b) = (b, a) with a :: α and
b :: β. In this case,preE = π2, preS = π1. Instead of choosingId for

On linear list recursion in parallel 883

Table 1. Classes of thepre part

preWE, preNE, preWS and preNS and havingpreE :: (α, β) → β and
preS :: (α, β) → α, we choosepreWE = 〈〉, preNE = Idβ, preWS = Idα

andpreNS = 〈〉 and havepreE :: ((), β) → β andpreS :: (α, ()) → α.
Two functions in our formula forpre remain to be explained:

– FunctionpreE is of no interest for the classification, since its output is
not used by any input of thepre part. Thus, the computation inside the
pre part which is induced by this function is just a simplemap preE,
applied to the distributed output list; this can be parallelized trivially with
a constant execution time and a cost linear to the length of the input list
(or no time and cost at all ifpreE = Id).

– FunctionpreS is the function which determines the subclassification.
Therefore, we examine this function for each class individually in
Sect. 4.3.

4.2 Classes of thepre part

Table 1 classifies thepre part according to the alternative data dependence
patterns. The horizontal legend lists the possible data dependences of the
local input, the vertical legend those of the carried input (by icon). Each table
entry corresponds to one class, the one whose data dependence is determined
by superposition of the icons of both legends. From now on, we work with
these superpositions.

The only difference between the first and the second column and, sim-
ilarly, between the third and the fourth column, is the additional data de-
pendence from the local input to the local output in the second column,
expressed as an additional independent “computation” ofmap Id.

Let us now comment on the individual entries of Table 1.

4.2.1 Mismatch, Map and Shift.First we look at the entries representing
Mismatch, Map and Shift. Their data flow between two successive levels is
depicted again in Fig. 2.

884 C. Wedler, C. Lengauer

Fig. 2. Specific data flows (Mismatch, Map and Shift)

Mismatch.We start with an informal explanation of the two cases of mis-
match of the carried data flow:

, : This case covers the upper right of Table 1; see Fig. 2(a). There
is a carried output ofpre at leveli but no according input at leveli + 1.
Since the carried output is only used bypre of the next level (and the
base) case and this input is not used, there is no “real” data dependence to
the carried output which contradicts the data dependences for this class.

, : This case covers the mismatch on the left in the table; see
Fig. 2(b). There is a carried input ofpre at level i but no according
carried output at leveli − 1.

Map and Shift. Next we discuss the classes which we do not consider any
further:

: This case covers the upper left of the Table 1. Functions of this class
return the result([(), . . . , ()], ()), which conveys no information.

: This is the second entry of the first row; see also Fig. 2(c). These
functions are simplymap Id, i.e., there is nothing to do (or just the
map preE, mentioned above).

, : The functions of this class perform a shift; see Fig. 2(d). Data
flows from the local input at leveli to the local output at leveli+1. These
functions have trivial parallel implementations with a constant execution
time.

4.2.2 Sequential, Broadcast, Reduce and Scan.The remaining classes are
the most interesting ones. Their data flow between two successive levels is
depicted again in Fig. 3.

A näıve implementation of a function in these classes is the sequential
one with a time complexity ofO(n). In Sect. 5, we present good parallel im-

On linear list recursion in parallel 885

Fig. 3. Specific data flows (Sequential, Broadcast, Reduce and Scan)

plementations for subclasses of these classes; the subclasses are determined
by algebraic properties of the functionpreS.

4.3 Subclasses of thepre part

All functions in classes Map and Shift have trivial parallel implementations,
so there is no need for a subclassification. Sequential, Broadcast, Reduction
and Scan are the remaining classes to be considered. As mentioned in the
introduction, parallel implementations of simple representatives in these
classes are well known. They are characterized by algebraic properties of
the functions given as an argument to the skeleton (pre in our skeletonPLR,
or more specifically,preS, see Sect. 4.1). The other subclasses are tailored
to match simple combination patterns of basic components.

In Sect. 4.3.1 we list thesebasic components, in Sect. 4.3.2 we present
an example of a combination pattern and show how this pattern leads to a
new subclass, in Sect. 4.3.3 we list the subclasses of Reduce and Scan, in
Sect. 4.3.4 we list the subclasses of Sequential and Broadcast. As mentioned
in Sect. 4.2, functionpreS determines the subclassification. All classes have
an additional subclass which we do not discuss any further: functions in
these subclasses are instantiated by functionpreS with none of the listed
properties. For these functions we simply take the naı̈ve (sequential) imple-
mentation.

We have identified—and are describing here—optimized subclasses for
composition patterns of up to three basic components in the classes Sequen-
tial and Broadcast and up to two components in the classes Reduce and
Scan.

4.3.1 Basic Components.The simple representative of class Sequential is the
identity function, which we will not discuss. The simplest representatives
of the three remaining interesting classes are calledbasic componentsand
are defined by the following equations, where⊕ is associative:

886 C. Wedler, C. Lengauer

Fig. 4. Basic components

copyn b = (b, [

n︷ ︸︸ ︷
b, . . . , b])

red (⊕) (as, b) = b ⊕ a0 ⊕ · · · ⊕ an−1

scan (⊕) (as, b) = (red (⊕) (as, b), [b, b ⊕ a0, . . . , b ⊕ a0 ⊕ · · · ⊕ an−2])

Figure 4 lists the three basic components in our box notation. A box which
is adorned with a function symbol or name represents a special instance of
pre, which uses this function symbol or name.

In order to get the input values of the basic components in the composition
to the right places, we introduce a (generic) function which modifies the
nesting structure of its argument. We denote the regrouping operator by
···
↓↓
···

. Above the operator we write the input structure, below the modified

structure. Rather than providing a formal definition, we illustrate the usage

of
···
↓↓
···

by two examples:

(2,1)
↓↓

(1,2)
((a, b), c) = (a, (b, c)) and

(2,3)
↓↓

(1,2,2)
((a, b), (c, d, e)) = (a, (b, c), (d, e))

4.3.2 Example of a combination pattern: scan and red.In this section we
look at a typical example of a functional composition of skeleton instances:
applyingscan with an associative operator⊕ to a list, then applyingred
with the same operator to the result:

(Id × red (⊕)) ◦ (2,1)
↓↓

(1,2)
◦(scan (⊕) × Id) ◦ (1,2)

↓↓
(2,1)

It turns out that this composition can be expressed in terms of a single
reduction and an efficient parallel implementation can be found if⊕ is
commutative; see Sect. 5.

It is quite clear that, on most parallel machines, a single reduction is much
faster than a scan followed by a reduction—even if the function which is
applied at each node of the reduction tree is slightly more complicated in

On linear list recursion in parallel 887

Table 2.Subclasses of Reduction and Scan

Functiong Conditions Reduction Scan
g (a, b) ⊕ is associative Undirected Red. Simple Scan

= b ⊕ a red (⊕) scan (⊕)
g (a, (b1, b2)) ⊕ is associative SR-Reduction SS-Scan

= (b1 ⊕ a, b2 ⊕ b1) and commutative foldl g scanl g
g (a, (b1, b2)) ⊕ and⊗ are assoc. SR2-Reduction SS2-Scan

= (b1 ⊗ a, b2 ⊕ b1) ⊗ distributes over⊕ foldl g scanl g

former case than in the latter. The execution time and the cost of both the
specialized and the naı̈ve implementation belong to the same complexity
class.

Let us now see, with the help of our box notation, which kind of reduc-
tion we end up with: combiningscan andred in the way described above
is depicted by two columns of boxes—the left column representsscan, the
right red. In contrast, the functional description above uses backward com-
position (operator◦). If we combine the two boxes in each row, we get a
data dependence from the left and top to the bottom. Our classification table
reveals that this data dependence is characteristic for a reduction:

Now, we have to find the operatorg which is subject to the special
reduction:

where b = (b1, b2)
g(a, (b1, b2)) = (b1 ⊕ a, b2 ⊕ b1)

Note that this functiong is not associative—thus,red with its parallel
implementation cannot be used! For this pattern, we have to introduce a
special subclass of Reduction: SR-Reduction; see Table 2. All names of the
subclasses presented in the next two sections reflect the patterns which they
represent: ‘C’ stands for Copy, ‘R’ for Reduction and ‘S’ for Scan.

4.3.3 Subclasses of Reduction and Scan.Functions in the classes Reduc-
tion and Scan have a local and a carried input. Thus, the functiong which
determines the subclassification is exactly the binary functionpreS:

g (a, b) = preS (a, b)

Table 2 lists different forms of functiong with their corresponding sub-
classes of Reduction and Scan.

888 C. Wedler, C. Lengauer

Table 3. Subclasses of Sequential and Broadcast

Functiong Conditions Sequential Broadcast
g b = b Identity Copy

Id copyn

g (b0, b1) ⊕ is associative CR-Accum. CS-Broadcast
= (b0, b1 ⊕ b0) gn broadcastn g

g (b0, b1, b2) ⊕ is associative CSR-Accum. CSS-Broadc.
= (b0, b1 ⊕ b0, b2 ⊕ b1) and commutative gn broadcastn g

g (b0, b1, b2) ⊕ and⊗ are assoc. CSR2-Accum. CSS2-Broadc.
= (b0, b1 ⊗ b0, b2 ⊕ b1) ⊗ distributes over⊕ gn broadcastn g

4.3.4 Subclasses of Sequential and Broadcast.Neither class Sequential nor
class Broadcast has a local input. Thus, the function which determines the
subclassification is:

g b = preS ((), b)

Despite the fact that this function is not binary, associativity again plays
a key role in the subclassification of the classes Sequential and Broadcast.
Table 3 lists different forms of functiong with their corresponding subclasses
of Sequential and Broadcast.

5 Implementations

We specify a parallel implementation by describing its processor network,
the flow of data through the network and the operation (function) which
is executed on each processor. Here we describe the primitives for these
networks informally. Appendix A contains their Haskell definitions with
their time and cost complexities.

The time and cost complexities we state are based on the following
assumptions:

– The size of the carried and local data is constant.
– The execution time of⊕ and⊗ is constant.
– Sending a datum of constant size from one processor to any other pro-

cessor takes constant time and is independent from communications be-
tweenother processors (this applies for EREW-PRAM machines). The
communication patterns in the implementation primitives of Appendix A
are restricted such that this assumption also applies for, e.g., a hypercube.

In our implementations, one operation is performed on each processor
per computation. This fact gives us a choice of two options:

On linear list recursion in parallel 889

1. we can either stick to the implementation we propose,
2. or we can aggregate several operations on one processor, following

Brent’s Theorem [16], without an asymptotic penalty in time but with a
reduced cost.

We analyze the optimal asymptotic complexity with respect to each of
the following objective functions:

time(n): execution time (choice 1 or 2).
costBrent(n): product of time and number of processors (choice 2). Brent’s

Theorem implies thatp(n) = #operations(n)/time(n) processors can
execute the same algorithm in timeO(time(n)). Brent’s cost is therefore
O(time(n) ∗ p(n)) = O(#operations(n)).

pipe(n): lag time between the outputs of two successive computations. For
choice 1 this time is ofO(1); then we say that the implementation allows
pipelining.

In the following examples, our illustrations always depict choice 1 (pipe(n)
= 1), but we state the cost of choice 2.

In the rest of this section, we present only new parallel implementations.
For each subclass, we state also the combination patterns which can be
transformed into an instance of the current subclass.

5.1 Reduction

For all functions in the subclasses of Reduction which are listed in Table 2,
we havetime(n) = O(log n), costBrent(n) = O(n) andpipe(n) = O(1).
This is done by using a tree-like processor network and applying some
functionnode (different ones for different subclasses) on each node which
receives the input from its children on the left and provides the output to its
parent on the right. The distributed input (as with a function applied to each
element) consists of the values at the leaves, the output is the value at the
root.

The trees used in this subsection can mapped easily onto a hypercube
without a time penalty. Thus, our given complexities also apply to hypercube
architectures.

5.1.1 Undirected Reduction.Functions in this subclass are well known (and
often simply called “reduction”). They are given by:

foldl g (as, b) where g(a, b) = (b ⊕ a), ⊕ is associative

Functions in this subclass are instances of the basic component “R”.
A parallel implementation is well known and given by the higher-order

890 C. Wedler, C. Lengauer

function reduceR, which is instantiated with the associative operator⊕.
The computation traverses a left-right tree (lrtreeUp) with the values of
its leaves given by the distributed inputas:

reduceR (⊕) (as, b) = b ⊕ lrtreeUp node as

where node(s1, s2) = (s1 ⊕ s2)

If the operator⊕ is also commutative, we can traverse an odd-even tree
instead of a left-right tree (with same functionnode).

An example computation of a function of this subclass is the sum of all
elements in a list. With⊕ = +, as = [2, 5, 9, 1, 2, 6, 9, 3], b = 0, the result
is 37.

red (+) ([2, 5, 9, 1, 2, 6, 9, 3], 0) = 37

5.1.2 SR-Reduction.Functions in this subclass are given by:

foldl g (as, (b1, b2)) where g(a, (b1, b2)) = (b1 ⊕ a, b2 ⊕ b1),
⊕ is associative and commutative

This subclass is a target subclass for a pattern ofscan andred:

foldl g = (Id × red (⊕)) ◦ (2,1)
↓↓

(1,2)
◦(scan (⊕) × Id) ◦ (1,2)

↓↓
(2,1)

A parallel implementation is given by the higher-order function
reduceSR, which is instantiated with the associative and commutative op-
erator⊕ and its neutral element1⊕. The computation traverses an odd-even

On linear list recursion in parallel 891

tree (oetreeUp) after the initialization of its leaves with a special ini-
tialization for the first leaf (mapHdTl); see Appendix A for the primitives
oetreeUp andmapHdTl :

reduceSR (⊕) 1⊕ (as, (b1, b2)) = (b1 ⊕ y1, b2 ⊕ y2)
where (y1, y2) = oetreeUp node as′

and as′ = mapHdTl leaf hd leaf tl as

and leaf hd s = (s, b1)
and leaf tl s = (s, 1⊕)
and node((s1, t1), (s2, t2)) = (s1 ⊕ s2, t1 ⊕ t1 ⊕ t2 ⊕ t2 ⊕ s1)

An example computation of a function of this subclass is the sum of the
prefix sum of a list. With⊕ = +, as = [2, 5, 9, 1, 2, 6, 9, 3], b0 = 0 and
b1 = 0, the result is120.

((Id × red (+)) ◦ (2,1)
↓↓

(1,2)
◦(scan (+) × Id) ◦ (1,2)

↓↓
(2,1)

) (as, (0, 0))

with its constituents

scan (+) ([2, 5, 9, 1, 2, 6, 9, 3], 0) = (37, [0, 2, 7, 16, 17, 19, 25, 34])
red (+) ([0, 2, 7, 16, 17, 19, 25, 34], 0) = 120

5.1.3 SR2-Reduction.Functions in this subclass are given by:

foldl g (as, (b1, b2))
where g (a, (b1, b2)) = (b1 ⊗ a, b2 ⊕ b1),

⊕ and⊗ are associative,⊗ distributes over⊕
This subclass is a target subclass for a pattern ofscan andred:

foldl g = (Id × red (⊕)) ◦ (2,1)
↓↓

(1,2)
◦(scan (⊗) × Id) ◦ (1,2)

↓↓
(2,1)

892 C. Wedler, C. Lengauer

A parallel implementation is given by the higher-order functionreduceSR2,
which is instantiated with the associative operators⊕ and⊗ and the neutral
element1⊗ of ⊗. The computation traverses a left-right tree (lrtreeUp)
after the initialization of its leaves (map):

reduceSR2 (⊕) (⊗) 1⊗ (a, (b1, b2)) = (b1 ⊗ y1, b2 ⊕ (b1 ⊗ y2))
where (y1, y2) = lrtreeUp node (mapleaf as)
and leaf s = (s, 1⊗)
and node ((s1, t1), (s2, t2)) = (s1 ⊗ s2, t1 ⊕ (s1 ⊗ t2))

FunctionreduceSR2 is similar to Cai’s and Skillicorn’s implementation
of functionrecur-reduce[2] which is used to compute linear recurrences.

An example computation of a function of this subclass is the sum of the
prefix sum of a list. With⊕ = +, ⊗ = ∗, as = [2, 5, 9, 1, 2, 6, 9, 3], b0 = 1
andb1 = 0, the result is11173.

((Id × red (+)) ◦ (2,1)
↓↓

(1,2)
◦(scan (∗) × Id) ◦ (1,2)

↓↓
(2,1)

) (as, (1, 0))

with its constituents

scan (∗) ([2, 5, 9, 1, 2, 6, 9, 3], 1) = (37, [1, 2, 10, . . .], 29160)
red (+) ([1, 2, 10, 90, 90, 180, 1080, 9720], 0) = 11173

5.2 Scan

For all functions in the subclasses of Scan which are listed in Table 2, we
havetime(n) = O(log n), costBrent(n) = O(n) andpipe(n) = O(1).
Note that we do not provide extra implementations for SS-Scan and SS2-
Scan. Implementations for functions in these subclasses are constructed
from the implementations of functions in the subclass Simple Scan.

On linear list recursion in parallel 893

5.2.1 Simple Scan.Functions in this subclass are well known (and often
simply called “scan” or “pre-scan”). They are given by:

scanl g (as, b) where g(a, b) = (b ⊕ a), ⊕ is associative

Functions in this subclass are instances of the basic component “S”.
There are two well-known ways to implement a simple scan:

– A two-phase scan (up-sweep and down-sweep) is appropriate for tree
architectures [15].

– A single-phase scan is appropriate for hypercube and butterfly architec-
tures [3].

5.2.2 SS-Scan.Functions in this subclass are given by:

scanl g (as, (b1, b2)) where g(a, (b1, b2)) = (b1 ⊕ a, b2 ⊕ b1),
⊕ is associative and commutative

The new part of the elements in the distributed output (vs. the result of
a simple Scan) can be computed by:

(Id × map π2) ◦ (scanl g) =
(1,2)
↓↓

(2,1)
◦(Id × scan (⊕)) ◦ (2,1)

↓↓
(1,2)

◦

(scan (⊕) × Id) ◦ (1,2)
↓↓

(2,1)

This pattern uses two implementations of a scan in a pipeline.

5.2.3 SS2-Scan.Functions in this subclass are given by:

scanl g (as, (b1, b2))
where g(a, (b1, b2)) = (b1 ⊗ a, b2 ⊕ b1),

⊕ and⊗ are associative,⊗ distributes over⊕
The new part of the elements in the distributed output (vs. the result of

a simple Scan) can be computed by:

(Id × map π2) ◦ scanl g =
(1,2)
↓↓

(2,1)
◦(Id × scan (⊕)) ◦ (2,1)

↓↓
(1,2)

◦

(scan (⊗) × Id) ◦ (1,2)
↓↓

(2,1)

This pattern uses two implementations of a scan in a pipeline.

894 C. Wedler, C. Lengauer

5.3 Sequential

In this class, we apply functiong to the carried inputn times. Remember
that n, the depth of the recursion, is still determined by the list of local
inputsas = [(), n times. . . , ()]. For all subclasses of Sequential shown in Ta-
ble 3, except Identity, we use a processor network withlog n processors
in a row (repeat) which computes the result withtime(n) = O(log n),
costBrent(n) = O(log n) andpipe(n) = O(1).

A row of processors can be mapped easily onto any processor network
without a time penalty. Thus, our given complexities also apply to other
architectures.

We assumen to be a power of2. For other values, we have to use more
complex computations (which are similar to the computations used in class
Broadcast).

5.3.1 CR-Accumulation.Functions in this subclass are given by:

gn (b0, b1) where g (b0, b1) = (b0, b1 ⊕ b0), ⊕ is associative

This subclass is the target subclass for a pattern ofcopy andred:

gn = (Id × red (⊕)) ◦ (2,1)
↓↓

(1,2)
◦(copyn × Id)

A parallel implementation is given by the higher-order functionaccCR
which is instantiated by the associative operator⊕:

accCR (⊕) (n, (b0, b1)) = (b0, b1 ⊕ repeat node (log2 n) b0)
where node s = s ⊕ s

This method is the one used for the efficient evaluation of powers [13,
Sect. 4.6.3].

5.3.2 CSR-Accumulation.Functions in this subclass are given by:

gn (b0, b1, b2) where g (b0, b1, b2) = (b0, b1 ⊕ b0, b2 ⊕ b1),
⊕ is associative and commutative

Instead of commutativity it suffices that∃e. b0 = e ⊕ · · · ⊕ e, b1 = e ⊕ · · ·
⊕e or b1 = 1⊕.

On linear list recursion in parallel 895

This subclass is a target subclass for a pattern ofcopy, scan andred:

gn = (Id × Id × red (⊕)) ◦ (1,2,1)
↓↓

(1,1,2)
◦(Id × scan (⊕) × Id) ◦

(2,1,1)
↓↓

(1,2,1)
◦(copyn × Id × Id)

A parallel implementation is given by the higher-order functionaccCSR,
which is instantiated with the associative and commutative operator⊕:

accCSR (⊕) (n, (b0, b1, b2)) = (b0, b1 ⊕ y1, b2 ⊕ y2)
where (y1, y2,) = repeat node (log2 n) (b0, b1, b0)
and node (s, t, u) = (s ⊕ s, t ⊕ t ⊕ u, u ⊕ u ⊕ u ⊕ u︸ ︷︷ ︸

4

)

An example computation of a function of this subclass is
∑7

i=0(3 + i)
with result 52. We have⊕ = +, n = 8, b0 = 1, b1 = 3 andb2 = 0.

((Id × Id × red (+)) ◦ (1,2,1)
↓↓

(1,1,2)
◦(Id × scan (+) × Id) ◦

(2,1,1)
↓↓

(1,2,1)
◦(copyn × Id × Id)) (1, 3, 0)

with its constituents

scan (+) ([1, 1, 1, 1, 1, 1, 1, 1], 3) = (11, [3, 4, 5, 6, 7, 8, 9, 10])
red (+) ([3, 4, 5, 6, 7, 8, 9, 10], 0) = 52

5.3.3 CSR2-Accumulation.Functions in this subclass are given by:

gn (b0, b1, b2) where g (b0, b1, b2) = (b0, b1 ⊗ b0, b2 ⊕ b1),
⊕ and⊗ are assoc.,⊗ distributes over⊕

This subclass is a target subclass for a pattern ofcopy, scan andred,
similar to CSR-Accumulation.
A parallel implementation is given by the higher-order functionaccCSR2
which is instantiated by the associative operators⊕ and⊗:

accCSR2 (⊕) (⊗) (n, (b0, b1, b2)) = (b0, b1 ⊗ y1, b2 ⊕ y2)
where (y1, y2) = repeat node (log2 n) (b0, b1)
and node (s, t) = (s ⊗ s, t ⊕ (t ⊗ s))

896 C. Wedler, C. Lengauer

5.4 Broadcast

In this class, we apply functiong to the carried inputn times and return a list
of intermediate results and the final result whose implementation is known
from the previous section. For all subclasses shown in Table 3, we use a
tree-like processor network withn processors which computes the result
with time(n) = O(log2 n), costBrent(n) = O(n) andpipe(n) = O(1). At
each node, a function is applied which receives the input from its parent on
the left side and provides two outputs to its children on the right. The carried
input b is the input for the root; the list of intermediate results is composed
of the values at the leaves.

The odd-even tree used in this subsection can be mapped easily onto a
hypercube without a time penalty. Thus, our given complexities also apply
to hypercube architectures.

5.4.1 Copy.The only function in this subclass isg a = a. Two parallel
implementations are given by:

broadcC (n, b) = lrtreeDn node (log2 n) b

= oetreeDn node (log2 n) b

where node s = (s, s)

5.4.2 CS-Broadcast.Functions in this subclass are given by:

broadcastn g (b0, b1) where g (b0, b1) = (b0, b1⊕b0), ⊕ is associative

This subclass is a target subclass for a pattern ofcopy andscan:

(Id × map π2) ◦ broadcastn g = (Id × scan (⊕)) ◦ (2,1)
↓↓

(1,2)
◦(copyn × Id)

A parallel implementation is given by the higher-order functionbroadcCS,
which is instantiated with the associative operator⊕. The computation tra-
verses an odd-even tree (oetreeDn), the result is extracted from the values
of its leaves (map):

broadcCS (⊕) (n, (b0, b1)) = mapleaf zs′

where zs′ = oetreeDn node (log2 n) (b0, b1, b0)
and node (s, t, u) = ((s, t, u ⊕ u), (s, t ⊕ u, u ⊕ u))
and leaf (s, t,) = (s, t)

The carried result is the result of a CR-Accumulation.

On linear list recursion in parallel 897

5.4.3 CSS-Broadcast.Functions in this subclass are given by:

broadcastn g (b0, b1, b2) where g (b0, b1, b2) = (b0, b1 ⊕ b0, b2 ⊕ b1),
⊕ is associative and commutative

Instead of commutativity it suffices that∃e. b0 = e ⊕ · · · ⊕ e, b1 = e ⊕ · · ·
⊕e or b1 = 1⊕.

This subclass is a target subclass for a pattern ofcopy, scan andscan:

(Id × Id × map π3) ◦ broadcastn g = (Id × Id × scan (⊕)) ◦ (1,2,1)
↓↓

(1,1,2)
◦

(Id × scan (⊕) × Id) ◦ (2,1,1)
↓↓

(1,2,1)
◦

(copyn × Id × Id)

A parallel implementation is given by the higher-order function
broadcCSS which is instantiated by the associative and commutative op-
erator⊕ and its neutral element1⊕. The computation traverses an odd-even
tree (oetreeDn), the result is extracted from the values of its leaves. Part
of the result is already known from the CS-Broadcast and combined with
the new one (zip):

broadcCSS (⊕) 1⊕ (n, (b0, b1, b2)) = zip join (old, new)
where join ((y0, y1), (s, , , , w)) = (y0, y1, w ⊕ s)
and old = broadcCS (⊕) (n, (b0, b1))
and new = oetreeDn node (log2 n) (1⊕, b1, b0, 1⊕, b2)
and node (s, t, u, v, w)

= ((s, t ⊕ t ⊕ u, u ⊕ u ⊕ u ⊕ u, v ⊕ v, w),
(s ⊕ t ⊕ v, t ⊕ t︸ ︷︷ ︸

2

⊕u, u ⊕ u ⊕ u ⊕ u︸ ︷︷ ︸
4

, u ⊕ u︸ ︷︷ ︸
2

⊕ v ⊕ v︸ ︷︷ ︸
2

, w))

The carried result is the result of a CSR-Accumulation.
An example computation of a function of this subclass is[∑i−1
j=0(3 + j) | i ∈ 0..7

]
with result [0, 3, 7, 12, 18, 25, 33, 42]. We have

⊕ = +, n = 8, b0 = 1, b1 = 3 andb2 = 0.

((Id × Id × scan (+)) ◦ (1,2,1)
↓↓

(1,1,2)
◦(Id × scan (+) × Id) ◦

(2,1,1)
↓↓

(1,2,1)
◦(copyn × Id × Id) (1, 3, 0)

898 C. Wedler, C. Lengauer

with its constituents

scan (+) ([1, 1, 1, 1, 1, 1, 1, 1], 3) = (11, [3, 4, 5, 6, 7, 8, 9, 10])
scan (+) ([3, 4, 5, 6, 7, 8, 9, 10], 0) = (52, [0, 3, 7, 12, 18, 25, 33, 42])

5.4.4 CSS2-Broadcast.Functions in this subclass are given by:

broadcastn g (b0, b1, b2) where g (b0, b1, b2) = (b0, b1 ⊗ b0, b2 ⊕ b1),
⊕ and⊗ are associative,⊗ distributes over⊕

This subclass is a target subclass for a pattern ofcopy, scan andscan,
similar to CSS-Broadcast.

A parallel implementation is given by the higher-order function
broadcCCS2, which is instantiated by the associative operators⊕ and⊗
and the neutral element1⊕ of ⊕. The computation traverses an odd-even
tree (oetreeDn), the result is extracted from the values of its leaves, part
of the result is already known from the CS-Broadcast and combined with
the new one (zip):

broadcCSS2 (⊕) 1⊕ (⊗) (n, (b0, b1, b2)) = zip join (old, new)
where join (y0, y1) (s, , , v) = (y0, y1, v ⊕ s)
and old = broadcCS (⊕) (n, (b0, b1))
and new = oetreeDn node (log2 n) (1⊕, b1, b0, b2)
and node (s, t, u, v) = ((s, t ⊕ (t ⊗ u), u ⊗ u, v),

(t ⊕ (s ⊗ u), t ⊕ (t ⊗ u), u ⊗ u, v))

The carried result is the result of a CSR2-Accumulation.

On linear list recursion in parallel 899

6 Combinations ofpre and post parts

In Sect. 4, we have classified thepre part whose carried data flows down-
wards and mentioned that the same could be done for thepost part whose
carried data flows upwards. In this section we look at combinations of the
pre and thepost part.

Some combinations are trivial (Sect. 6.1), whereas more complicated
ones (which are shown in Sect. 6.5) use the decomposition of both parts into
basic components (Sect. 6.2).

6.1 Trivial combinations of thepre andpost part

An instance of skeletonPLR for parallel linear recursion is a trivial com-
bination of apre and apost part if the computation is just performed in one
part.

With a trivial post part, i.e., if the computation is just performed in the
pre part, the functional argumentpost for the skeletonPLR is the identity
function. For these combinations, we can use the implementations presented
in Sect. 5. Here are the boxes for classes Sequential, Broadcast, Reduction,
and Scan with a trivialpost part:

Next, we depict thepre and thepost part by one row instead of two.
With a trivial pre part, i.e., if the computation is just performed in the

post part, the functional argumentpre for skeletonPLR is the identity
function. For these combinations, we can use the reverse of the implemen-
tations presented in Sect. 5. In areverseimplementation the input and/or
output list has to be provided in the reverse order. Here are the boxes for
classes Sequential, Broadcast, Reduction, and Scan with a trivialpre part:

6.2 Decomposition into basic components

There are two equivalent points of view: (1) we can just combine thepre
andpost part, with data flowing downwards in thepre part and upwards

900 C. Wedler, C. Lengauer

in the post part, or (2) we can decompose both parts into basic compo-
nents and combine those, with data flowing, possibly, in both directions.
Implementations that we develop for (2) are also implementations for (1).

Our method in the rest of this section is as follows:

1. We decompose the subclasses into basic components, i.e., we remember
that specific subclasses are targets for combinations of basic components.

2. We note that the implementations of Sect. 5 can be used for trivial com-
binations of thepre andpost part.

3. We show that the carried data flow of some basic components can be
reversed from downward to upward without affecting the result. We
obtain a combination of basic components with a downward carried data
flow followed by basic components with an upward carried data flow.

4. We combine the basic components with a downward carried data flow
in the pre part and the basic components with an upward carried data
flow in thepost part. This combination can use the implementation of
the original subclass of item 1.

6.3 Example: CSR-Accumulation

Section 5.3.2 presents an implementation for a CSR-Accumulation in the
pre part. As mentioned in Sect. 6.1, this implementation can be used for a
combination with a trivialpost part:

Note that the last basic component in thepre part is a reduction with an
associative operator⊕. This means that we can reduce from the right rather
than from the left. Thus, we can reverse the carried data flow of the last
basic component from downward to upward, which means that this basic
component belongs to thepost part (we have a CS-Broadcast in thepre part
and an undirected reduction in thepost part):

According to Sect. 6.1, the reverse implementation can be used for a
combination with a trivialpre part. Since we have no input and no out-
put list (more precisely, just lists with elements of the unit type), there is
nothing to reverse, i.e., we can use the original implementation for a CSR-
Accumulation:

On linear list recursion in parallel 901

The first basic component in thepost part distributes the same value to
all places of its output. It does not matter whether it is forwarded from the
bottom or from the top. Thus, we can reverse the carried data flow of the first
basic component from upward to downward, which means that this basic
component belongs to thepre part (we have a copy in thepre part and an
SR-Reduction in thepost part):

It turns out that the implementation of Sect. 5.3.2 can be used for all
combinations of the basic componentscopy, scan, andred with different
directions of the carried data flow.

6.4 Example: CSS-Broadcast

Section 5.4.3 presents an implementation for a CSS-Broadcast in thepre
part. As mentioned in Sect. 6.1, this implementation can be used for a com-
bination with a trivialpost part:

The last basic component in thepre part is a scan, whose carried data
flow cannot be reversed without changing the result.

According to Sect. 6.1, the reverse implementation can be used for a
combination with a trivialpre part:

The first basic component in thepost part distributes the same value to
all places of its output. It does not matter whether it is forwarded from the
bottom or from the top. Thus, we can reverse the carried data flow of the first
basic component from upward to downward, which means that this basic
component belongs to thepre part:

902 C. Wedler, C. Lengauer

The last basic component in thepost part is a scan whose carried data flow
cannot be reversed without changing the result. Thus, no implementation
of Sect. 5 can be used to implement the following combination of basic
components:

The implementation of this “reflecting” broadcast is given in Sect. 6.6.

6.5 Basic components in thepre andpost part

Table 4 lists combinations of basic components in thepre and thepost part
for which we offer efficient implementations.

In Sects. 6.3 and 6.4, we have seen that a specific implementation can
be used for different combinations of thepre and thepost part.

In each row of Table 4, the first entry names the implementation we can
use for the combinations of basic components in thepre and thepost part,
depicted by the following entries in the row.

The implementations we use are either the ones presented in Sect. 5, their
reverses (mentioned in Sect. 6.1), or an extra implementation if necessary
(motivated in Sect. 6.4, presented in Sect. 6.6).

The first combination in each row is always a trivial combination of a
pre and apost part, except in the row for the extra implementation. The
fact that the same implementation can be used for different combinations

is indicated by the symbolsass= , Id=, and
seq
= , see Sect. 6.3 and Sect. 6.4 for

details.

6.6 Implementation: CSrS-Broadcast

In this subsection, we propose an implementation for a functional compo-
sition of a CS-Broadcast and then a simple Scan from the right (the reverse
direction!). This composition can be viewed as a broadcast and is given by:

scan (⊕) (π2 (broadcastn g (a, b)), c)
where g (a, b) = (a, b ⊕ a), ⊕ is associative and commutative

Instead of commutativity it suffices that∃e. b0 = e ⊕ · · · ⊕ e, b1 = e ⊕ · · ·
⊕e or b1 = 1⊕. This pseudo subclass is a target subclass for a pattern of
copy, scanl andscanr:

On linear list recursion in parallel 903

Table 4. Implementations for thepre andpost part

A parallel implementation is given by the higher-order function
broadcCSrS which is instantiated by the associative and commutative oper-
ator⊕ and its neutral element1⊕. The “r” in “CSrS” stands for “reflecting”.
The computation traverses an odd-even tree (oetreeDn), the result is ex-
tracted from the values of its leaves. FunctionbroadcCSrS combines (with
zip) one part of the result, which is given by the CS-Broadcast previously
described and which we callold, with another part, which we callnew.

904 C. Wedler, C. Lengauer

The computation is defined by:

broadcCSrS (⊕) 1⊕ (a, b, c) = zip join (old, new)
where join((y0, y1), (s, , , , w)) = (y0, y1, w ⊕ s)
and old = broadcCS (⊕) (n, (b0, b1))
and new = oetreeDn node (n, (0⊕, b, a, 0⊕, c))
and h (s, t, u, v, w)

= ((s ⊕ t ⊕ u, t ⊕ t ⊕ u, u ⊕ u ⊕ u ⊕ u, u ⊕ u ⊕ v ⊕ v, w),
(s ⊕ v, t ⊕ t︸ ︷︷ ︸

2

⊕u, u ⊕ u ⊕ u ⊕ u︸ ︷︷ ︸
4

, v ⊕ v︸ ︷︷ ︸
2

, w))

The carried result is the result of a CSR-Accumulation with argument
(a, b, c).

An example computation of a function of this subclass is
[
∑8−1

j=i (3+ j) | i ∈ 1..8] with the result of[49, 45, 40, 34, 27, 19, 10, 0]. We
have⊕ = +, n = 8, b0 = 1, b1 = 3 andb2 = 0.

((Id × Id × scanr (+)) ◦ (1,2,1)
↓↓

(1,1,2)
◦(Id × scanl (+) × Id) ◦

(2,1,1)
↓↓

(1,2,1)
◦(copyn × Id × Id)) (1, 3, 0)

with its constituents

scanl (+) ([1, 1, 1, 1, 1, 1, 1, 1], 3) = (11, [3, 4, 5, 6, 7, 8, 9, 10])
scanr (+) ([3, 4, 5, 6, 7, 8, 9, 10], 0) = (52, [49, 45, 40, 34, 27, 19, 10, 0])

7 Conclusions

The skeletal approach aims at a plug-in style of parallel programming. In
developing skeletons, one is seeking popular patterns of parallelism and
communication which one can offer to programmers as building blocks for

On linear list recursion in parallel 905

larger parallel programs. Our contribution is to look at combinations of some
of the most basic building blocks and optimize them further. We obtain these
optimizations by staying in the world of linearly recursive functions and by
classifying special cases of linear recursion in a table which we then use in
our analysis.

Our targets have been compositions of the skeletons Broadcast, Reduc-
tion and Scan. We have looked at three cases: (1) that the carried data flow
downwards, i.e., to deeper levels of the recursion, (2) that it flows upwards
and (3) the combination of both directions which occurs in linearly recursive
functions.

Good parallel implementations require the binary operator subject to a
reduction or scan to be associative. When combining these targets, additional
algebraic properties, such as commutativity or distributivity are sometimes
required.

Elsewhere, patterns of recursive functions, also on lists, have been studied
in the Dutch STOP project [14]. There, general linear recursion is captured
by the notion of a hylomorphism. Similar to our work, the STOP project led
to valid transformations for the composition of these patterns. However, the
transformations serve not for the identification of better parallel implemen-
tations but as a starting point for extending the STOP theory to data types
other than lists. We have concentrated on lists, have identified cases in which
our transformations improve the quality of the parallel implementation and
have derived the improved implementations.

Transformations for optimizing compositions have also be considered
elsewhere, mostly by improving the distribution of the data or using pipelines
as in To’s Ph.D. thesis [20]. Our optimization is based on the algebraic
properties of the functions involved.

We have chosen the paradigm of functional programming, but the skeletal
approach applies also to imperative programs. The advantage of the func-
tional paradigm is that program transformations can be checked more di-
rectly, via equational proofs. We have implemented our solutions in Haskell
[19]. Just like, e.g., the Glasgow Haskell compiler compiles Haskell into C,
the parallel implementations of our skeletons will have to be in a language
like C with MPI calls. Here, we have not addressed this issue, but we are
working on it in the domain of divide-and-conquer recursions [11,12].

Acknowledgements.This work is partially supported by grants from the ARC and PRO-
COPE exchange programs of the DAAD. Thanks to D. K. Arvind, L. Bougé, M. I. Cole, J. T.
O’Donnell, S. Gorlatch and C. Herrmann for helpful discussions. The anonymous referees
were helpful in improving the presentation.

906 C. Wedler, C. Lengauer

References

1. R. S. Bird: Lectures on Constructive Functional Programming. In: Broy (ed) Contruc-
tive Methods in Computing Sciences (Internat. Summer School 1988, Marktoberdorf
Germany),Vol 55 of NATO ASI Series F, pp 150–216. Berlin Heidelberg New York:
Springer 1989

2. W. Cai, David B. Skillicorn: Calculating recurrences using the Bird-Meertens formal-
ism. Parallel Processing Letters, 5(2):179–190, 1995

3. B. Carpentieri, G. Mou: Compiley-time transformations and optimization of parallel
divide-and-conquer algorithms. ACM SIGPLAN Notices, 26(10):19–28, 1991

4. M. I. Cole: Algorithmic Skeletons: Structured Management of Parallel Computation.
Research Monographs in Parallel and Distributed Computing. Pitman 1989

5. M. I. Cole: Parallel programming with list homomorphisms. Parallel Processing Letters,
5(2):191–204, 1995

6. J. Darlington, A. Field, P. G. Harrison: Parallel programming using skeleton functions.
In: A. Bode, M. Reeve, G. Wolf (eds) Parallel Architectures and Languages Europe
(PARLE’93), Lecture Notes in Computer Science, Vol. 694, pp 146–160, Berlin Hei-
delberg New York: Springer 1993

7. S. Gorlatch: Stages and transformations in parallel programming. In: M. Kara, J. Davy,
D. Goodeve, J. Nash (eds) Abstract Machine Models for Parallel and Distributed Com-
puting (AMW’96), pp 147–162, IOS Press 1996

8. S. Gorlatch: Systematic efficient parallelization of scan and other list homomorphisms.
In: L. Bouǵe, P. Fraigniaud, A. Mignotte, Y. Robert (eds) 2nd European Conference
on Parallel Processing (Euro-Par’96), Vol. 2, Lecture Notes in Computer Science, Vol.
1124, pp 401–408, Berlin Heidelberg New York: Springer 1996

9. S. Gorlatch: Systematic extraction and implementation of divide-and-conquer paral-
lelism. In: H. Kuchen, S. Doaitse Swierstra (eds) 8th Int. Symposium on Program-
ming Languages: Implementations, Logics, and Programs (PLILP’96), Lecture Notes
in Computer Science, Vol. 1140, pp 274–288, Berlin Heidelberg New York: Springer
1996

10. S. Gorlatch. Optimizing Compositions of Scans and Reductions in Parallel Program
Derivation. Fakulẗat für Mathematik und Informatik, Universität Passau May 1997

11. C. A. Herrmann, C. Lengauer: On the space-time mapping of a class of divide-and-
conquer recursions. Parallel Processing Letters, 6(4): 525–537, 1996

12. C. A. Herrmann, C. Lengauer: Transformation of divide & conquer to nested parallel
loops.
In: H. Glaser, P. Hartel, H. Kuchen, (eds) 9th Int. Symposium on Programming Lan-
guages: Implementations, Logics, and Programs (PLILP’96), Lecture Notes in Com-
puter Science, Vol. 1292, pp 95–109, Berlin Heidelberg New York: Springer 1997

13. D. E. Knuth: The Art of Computer Programming, Vol. 2: Seminumeral Algorithms.
Addison-Wesley (2nd ed) 1980

14. E. Meijer, M. Fokkinga, R. Paterson: Functional programming with bananas, lenses,
envelopes and barbed wire. In: J. Hughes (ed)
5th Conference on Functional Programming Languages and Computer Architecture
(FPCA’91), Lecture Notes in Computer Science, Vol. 523, pp. 124–144, Berlin Hei-
delberg New York: Springer 1991

15. J. T. O’Donnell: A correctness proof of parallel scan. Parallel Processing Letters.
4(3):329–338, 1994

16. M. J. Quinn: Parallel Computing: Theory and Practice. McGraw-Hill (2nd edn.) 1994
17. D. B. Skillicorn: Foundations of Parallel Programming. Cambridge: Cambridge Uni-

versity Press 1994

On linear list recursion in parallel 907

18. D. B. Skillicorn, W. Cai: A cost calculus for parallel functional programming. J. of
Parallel and Distributed Computing. 28:65–83, 1995

19. S. Thompson: Haskell: The Craft of Functional Programming. Addison-Wesley 1996
20. H. W. To: Optimising the Parallel Behaviour of Combinations of Program Components.

PhD thesis, Imperial College, University of London, Sept. 1995
21. C. Wedler, C. Lengauer: Parallel implementations of combinations of broadcast, reduc-

tion and scan. In: G. Agha, S. Russo (eds) 2nd Int Workshop on Software Engineering
for Parallel and Distributed Systems (PDSE’97), pp 108–119., IEEE Computer Society
Press, 1997

Appendix: Implementation Primitives

In this section we list the main part of the Haskell modulePrimLR which
defines the primitives used in Sect. 5. To avoid name clashes with func-
tions defined in the Haskell libraryPrelude.hs , we userepTimes ,
mapList , andzipPair instead ofrepeat , map, andzip .
The following functions are used from the Haskell libraryPrelude.hs :

fst (a, b) = a

snd (a, b) = b

head (a : as) = a

length [a1, . . . , an] = n

splitAt k [a1, . . . , ak, ak+1, . . . , an]
= ([a1, . . . , ak], [ak+1, . . . , an])

FunctionsmapList , mapHdTl , and zipPair can be executed with
time(n) = O(1) on O(n) processors with the assumption that the func-
tional argument has a constant execution time.

FunctionsoetreeDn and oetreeUp describe computations on an
odd-even tree whose structures are depicted in the examples of Sect. 5.1.2
and Sect. 5.4.3. On architectures which provide these communication struc-
tures, e.g., on hypercubes, the parallel time is inO(log n), wheren is the
length of the input/output list. The number of operations is inO(n).

FunctionlrtreeUp describes a similar computation on a left-right tree
whose structure is depicted in the example of Sect. 5.1.3.

908 C. Wedler, C. Lengauer

---===
--- "Sequential" Functions
---===

-- Apply function(1) number(2) times, initial argument is (3)
repTimes :: (a->a) -> Int -> a -> a
repTime s f k a

| k == 0 = a
| k > 0 = repTimes f (k-1) (f a)
| otherwise = error "PrimLR.repTimes: negative argument"

-- Repeatedly apply function(1) until predicate(2) returns
-- True, initial argument is (3)
repUntil :: (a->a) -> (a->Bool) -> a -> a
repUntil f pred a

| pred a = a
| otherwise = repUntil f pred (f a)

-- Check whether list(1) has length 1. Using ((=1) . length)
-- instead is slow
isSingleton :: [a] -> Bool
isSingleton [_] = True
isSingleton _ = False

---===
--- "Parallel" Functions with ParTime = O(1)
---===

-- Apply function(1) to all elements in list(2).
-- Prelude.map not only works on lists.
mapList :: (a->b) -> [a] -> [b]
mapList _ [] = []
mapList f (a:as) = f a : mapList f as

-- Apply function(1) to head, function(2) to all elements in
-- tail of list(3).
mapHdTl :: (a->b) -> (a->b) -> [a] -> [b]
mapHdTl fa fas (a:as) = f a a : mapList fas as
mapHdTl _ _ [] = error "PrimLR.mapHdTl: empty list"

-- Apply uncurried binary function(1) to all elements in
-- lists(2), pairing elements at same position.
-- Prelude.zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipPair :: ((a,b)->c) -> ([a],[b]) -> [c]
zipPair _ ([],[]) = []
zipPair f (a:as,b:bs) = f (a,b) : zipPair f (as,bs)
zipPai r _ _ = error "PrimLR.zipPair: unequal length of lists"

On linear list recursion in parallel 909

---===
--- Tree functions: Left-Right, Odd-Even, ParTime = O(log n)
---===

-- Go down left-right tree of depth(2), starting at root with
-- element(3), apply function(1) at each node to compute
-- the values for the two children.
lrtreeDn :: (a->(a,a)) -> Int -> a -> [a]
lrtreeD n f k a = repTimes (step f) k [a]

where step _ [] = []
step f (a:as) = let (b1,b2) = f a

in b1 : b2 : step f as

-- Go down odd-even tree of depth(2), starting at root with
-- element(3), apply function(1) at each node to compute
-- the values for the two children.
oetreeDn :: (a->(a,a)) -> Int -> a -> [a]
oetreeD n f k a = repTimes (step f) k [a]

where step f as = mapList (fst . f) as ++
mapList (snd . f) as

-- Go up left-right tree, starting at leaves with list(2),
-- apply function(1) at the children to compute the value for
-- each node.
lrtreeUp :: ((a,a)->a) -> [a] -> a
lrtreeUp f as = head (repUntil (step f) isSingleton as)

where step _ [] = []
step f (a1:a2:as) = f (a1,a2) : step f as
step _ [_] = error

"PrimLR.lrtreeUp: length of list is no power of 2"

-- Go up odd-even tree, starting at leaves with list(2),
-- apply function(1) at the children to compute the value for
-- each node.
oetreeUp :: ((a,a)->a) -> [a] -> a
oetreeUp f as = head (repUntil ((zipPair f) . split)

isSingleton as)
where split as = splitAt (div (length as) 2) as

