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INTRODUCTION

Probability theory can be considered from the standpoint of pure
mathematics as & branch of abstract measure and integration theory,
characterized by a special terminology and special ways of posing problems.
One axiomatic foundation of probability theory from this point of view is
due to Kolmogorov [1] (for an extended treatment of probability theory on
this basis, see Cramér [1] and Frechet [1]). In the latter work elementary
events are interpreted as elements of a set E, on which a measure P, called
the probability, is defined. Random events--i.e., events for which a
probability is defined--are then P-measurable subsets of E, and random
variebles are P-measurable real functions defined on E.

The Kolmogorov theory makes possible a rigorous treatment of questions
concerning arbitrary infinite sets of random variables, To this class

belongs in particular the theory of stochastic processes. These are defined

in several ways. According to Khinchin [1], a stochastic process is a one—
parameter family of random variables. When such a system is given, to every
elementary event there corresponds & uniquely determined real function of
the parameter. Hence one may also treat the stochastic process as a set

of real functions, on which a probability measure is given. When §7 is the
set of all real functions, the two points of view are essentially equivzlent.
In this case certain difficulties arise. For instance, in order to study
the structure of the process more closely, it is necessary either to allow
the set {? to consist only of functions with certein given properties, such
as continuity or measurability, or else to consider the process as an abstract
function and assign appropriate definitions to the properties being investi-

gated. Frcm the former point of view, which corresponds to a certain degree
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to that of the ergodic theories (ef. Hopf [1], Doob [1] has proceeded to
construct a general theory of stochastic processes.

The investigations of Khinchin (1) and Cramer (2) on the correlation

theory of stationary stochastic processes essentially follow the latter
line, in which an abstract function of the parameter is treated and which
is related to the problems posed in statistical ergodic theory. These
investigations contain no general theory, but rather are applicable mainly
to special problems.

In the works cited above, an attempt was made to develop a systematic
theory in which the stochastic processes would be interpreted as functions
with values in an abstract space. There one makes the restrictive assumption,
which is nevertheless fulfilled in the most importent applications, that
all the random variables under consideration have finite variance. Thus
they are quadritacally integrable functions defined on E and thus (ef. Sz.
Nagy (1), pg. 6) can be considered as elements of a Hilbert space (in the
general sense: the dimension may not be enumerable ), provided that random
variables which differ only on a set of measure zero are not considered as
distinet (ef. Kolmogorov (2)). Then the general methods of Hilbert space,
which are particularly well adapted to the treatment of linear problems, may
be applied. One is led to a theory which is a generalization of the classical
correlation theory, as the Hilbert space is a generalizstion of a finite-
dimensional vector space. The spectral representations of a stochastic
process are of primary importance. One such representation, which decomposes
the process into pair-wise uncorrelated infinitesimal components, reflects
the structural properties of the process and is an important tool in the

investigation of its analytical properties (cf. Karhunen (2)).
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The parameter of an ordinary stochastic process is a real number which
is taken to be time in the physical end statistical interpretations. Look-
ing shead to later applications we shall generalize the statement of the
problem so that the parameter element is an arbitrary set (i.e., a point in
a multidimensional space). It no longer seems appropriate to use the term
"process," which denotes a one-dimensicnal model. Following Wiener and some
French authors, we shall use the simple term "random function,"” which is the
natural one fram our point of view. As did Cramér and Wiener, we shall main-
ly study camplex-valued rendom functions. The results hold for the most part

with little or no modification in the real case also.

In Section I we summarize the most important properties of infinite
sets of random variables, mainly following Kolmogorov [l].

In Section II we construct the Hilbert space corresponding to a given
set of random variables with finite dispersions. We reproduce several
results which are fundamental for the succeeding theory.

In Section III we treat certain vital questions about random functions
and their simplest correlation properties. In Section IV we present a nev
definition of the integral of a random function. The necessary and suffi-
cient conditions for the existence of these integrals are given and their
properties are studied.

In Section V the spectral representation of & random function is
defined. A new concept of integral is there introduced, which can be inter—
preted as an integral of a complex function with respect to a random measure

function. The concept is & generalization of Doob's definition of the integrel

of & real function Wwith respect to a differential stochastic process (Doob [1]

pg. 133). We give necessary and sufficient conditions that a spectral repre—
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sentation of a given type be possible for & given random function.

In Section VI we treat applications of stationary random functions.
The earlier results of Khinchin [1], Slutsky [2] and Cramer [3] are
completed and stationary random functions with absolutely continuous
spectra are investigated more deeply. Most of the results are analogous
to those which Kolmogorov [2] proved for stationary time series. Iater
we hope to be able to announce further applications of the theory devel-
oped here (cf. Karhunen [1], Nr. 4, and [2]; several results are stated

in the former note which are proved in the present work.
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I. GENERALITIES ON PROBABILITY FIELDS AND RANDOM VARIABLES

1. Following Kolmogorov [l], the concept of a probability field is
defined in the following manner., Let E be a set of elements ¢ and | & set

of subsets of E; the elements of the set E are called the elementary events;

while those of { are the random events. We postulate that ¥ satisfies the

following axioms:

I. E is a finitely additive set, i.e., sums, intersections and differ—

ences of two sets of the class of sets y are also sets of the same class.
In particular, ¥ contains the null set O.

‘II. v contains E.

III. To each set A in ¥ there corresponds a non-negative real number P(A).
This number P(A) is called the probability of the event A.

. P(E) = 1.

V. Let Al’ A2 cesey An"' be a denumerable number of disjoint sets of ¥,
and let their sum z:An also belong to y. Then P(Z:An) = z:P(An). Therefore
P(A) is a non-negative, completely additive set—function defined on v.

The finitely additive set ¥ along with the set function P(A) is called
a probability field.

The finitely additive set ¥ is a Borel set if all denumerable sums of
disjoint sets in ¥ belong to W.* Then ¢ contains all countable unions and
intersections of its member sets. If ¥ is a Borel set, then the corresponding
probability field is called a Borel probability field. There is a theorem
that for any given probability field there corresponds a uniquely defined
smallest Borel extension. In the sequel we shall always consider that this
extension has been realized, and hence we can limit ourselves to—Borel pro—
bability fields in this work (see Kolmogorov [1], pp. 15-16).

—_—
Tr. note: This definition of a Borel set seems incomplete. One must

further gpstulate that all countable 1ntersections and subtractions belong to V.
cf. Cramér, Mathematical Methods of Statistics, Princeton (1946),pp.13;1k.
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It is often possible and expedient to transform the originally given
probability field to & newer and simpler one in the following way: The set
E is uniquely reflected on another set E'. To the different elements of E'
correspond the different subsets of E. Each subset A' of E' has as its image
in E the set of all the elements of E which transform into elements of At,
Let ¥ be the system of all the subsets A' of E' whose images belong to y.
Then y! is also & Borel set, and we set P'(A') = P(A), where A is the image
of A', so that P'(A') is a probability function on ¥'. Hence y' and Pr(Af)
define a Borel probability field (Kolmogorov [1], pp. 19-20).

2. A unique real function x(t) defined on the base set E is called &
random variable, if for each real number a, the set of all § such that x(g) <=
beiongs to y. In other words, a random variable is a real function uniquely
defined on E which is measurable with respect to P(A). The function
F(a;x) = P(x < &) is called the distribution function of the random
varisble x. It is obviously non-decreasing and continuous to the left.

Furthermore we have the formulae:

lim F(a;x) = F(-aw3x) = O, (1.1)
a8 -—> —oo

lim F(a;x) = F(+w;x) = 1. (1.2)
a—> 40

Consider a finite set of random variables xl, x2.... X . The set

]

1, 2540 n] of all ¢ for which the inequality Xy < &5,

X, < Boseeey X < a, holds, belongs to ¥ for any choice of the real numbers

I[xi < ai; i

n
Gyy Gpseee 8o This is because the set is the intersection of the sets

[Xl < al] , [x2‘<: 32] yaees [xn < e ]. The function F(al, Bpyeeesy By
X 5 Xpseeess xn) = P[x < 8 i=1, 2.0, n] , which is defined for

all values of ey, 8oy eeey By is called the n-dimensional distribution
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(unction of the random variables Xy5 Xpyeee, X o It is non-decreasing and
continuous to the left for each variable. In analogy with the formulae

(1.1) and (1.2), we now have

lim F(al,..., Byreees B 5 Xiyeesy Xpeee, X )

ai—>-a: 1 i n
= F(8, 000, 8, 1y — @, B, _veey B 5 X pesey Xipnae, X ) = O
l l—l J l+l ) nJ l) 2 i) 2 n >
(1.3)
lim F(al, 8oseeey 85 Xis Xoyunn, xn)
8,9 40,8, + .00, B2+ @
= F(+a), +m,“., +OO; Xl, XE,..., Xn) = 1, (l'h)

It is clear that the finite sums and products of random variables are
themselves random variables. In particular, all linear combinations of
random varisbles are random variables. The distribution functions of the
generated random variables are obviously uniquely determined by those of
the original variables.

We now consider an arbitrary set of random variables Xu’ where the
index p ranges over a set M of power m., These random variables form the
base set E in the m—dimensional Euclidean space RM. If m is finite, then
RM is a finite dimensional space; if m is denumerable, then RM is the space
of all real number sequences, if m is the power of the continuum, RM is the
space of all real functions of a real variable. In the sequel we shall prin-
cipally consider sets M which are at the most of the power of the continuunm.

Consider the transformetion of the set RM to a new basic sef E'; we wish

to specify the corresponding probability field. If m is finite and equal to n,
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it is easily seen that y consists of all Borel sets of R = R° , and that

the correspondings probability function P(A') is uniquely specified by know—
ledge of the n—dimensional distribution function F(al,...,an;xl,...,xn).
However, when m is infinite, the problem becomes more complicated. Next we
consider subsets of RM which are defined by a finite number of inequalities
a; = xui = bi(i=*,2,...,n), where n and the indices n, are arbitrary, and
&y and bi denote arbitrary real numbers, 8y < bi' The sets which are fcrmed
by countable sums and intersections of such subsets are called Borel sets in
the space RM. All of these Borel sets form a Borel system of sets, which

can be transformed into the system y'. Then the following fundamental theoren
holds (Kolmogorov [1] p.27):

The knowledge of all the finite-dimensional distribution functions
F(al,az,...,an; xl,xz,...,xn) uniquely defines the probability function P(A')
for all sets of §'. Every system of such distribution functions which are
symmetrical in the pairs (ak, ka) and which satisfy the conditions

F B, ,8,0008., +60, +00y0aey +P0: X ,X  yeeesX  yeeesX )
( l’ 2) J l, J p 2 “l’ “2) 2 “i’ > pn

(1.5)

= Fla,,8,,000,8:5 X 5% ,00e,X )
e 1y e, My

for i < n, defines a probability function P(A') on ¥'! which satisfies axioms
I-v,

3. If x and y are two random variables, then obviously the probability
P(x=y] = P[x-y = 0] is defined, because x-y is a random varisble. If
P[i:y] = 1, then x and y are called equivalent. Two equivalent random
variables have the same distribution function: F(e;x) = F(e;y). 3In the
sequel—when not explicitly stated to the contrary—we shall consider equive—

lent random variables as being identical and therefore simply write x=y.
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This is permitted because equivalence is a commutative and transitive property.

Two sets of random variables [x#} and [yu} are considered equivalent if
their elements are pairwise equivalent: xu = yu. If the sets under considera—
tion are countable, it follows from their equivalence that P{xu = yu for

all u] = 1, This is because the subset of E defined by the property

[x

5]
= = " ¢ 1’ = =

[xl yl1, [x2 Yols eees and for each of the latter sets, Ptgl = ylw =1,

i !
o L < -

yp for all u] is the intersection of the countable sequence of sets

If on the other hand the given sets are non-denumerable, then P*.Lxu = yu for

all u; need not even be defined, or be equal to unity. However in most

-~

cases a non—denumerablerset of random variables can be replaced by an equi-
valent set. This is due to the fact that such sets in most applications can
be considered as idealizations of an arbitrary number of finite sets, and for
the latter sets the equality always holds. The passage to an equivalent set
means only that in this case one substitutes one idealized scheme for another.
In order to illustrate the problem, let us consider the following example:
Let y be a given random variable. We construct a set of generated random
variables, in which we choose the set of all real numbers for the index-set M,

and for each u
0, if y # ¢
my if y =

When the distribution function of y is continuous, for each u, P(y=) =0

and hence P[xuso} =1, P{xuz;iz = 0. The set {xul is equivalent to the set
L J L J

[x'u] , Where x'u = 0. Hence P[x‘1 = x'p for all u] = P[y # p for all pj =

If the basic variable y is the observable, and the relation between y and the

.
set [xp | is that of this problem, then the transformation to the equivalent

-
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set [x'u] is obviously not permitted. However, if we consider the variables
x“ as our observables, then each observable will almost certainly—i.e,, with
probability l—be equal to zerc. Hence if the relation between these generatsd
variables and the basic variable y is not known to us, we must obviously view
the scheme {xtp] as the only natural one.

The problems with which we shall concern ourselves in the sequel are
2lways such that the given sets of random variables can be considered basic;
i.e., it will be assumed that the knowledge of the distribution functions is
all the information which we possess about the structure of the set. An
important question is then to decide if there exists & set of random variables
which is equivalent to the original set and whose elements have a certain
property B. If the answer is affirmative, we say that the 6riginal set almosﬁ
certainly has the property B. If for instance each element of the set is
almost certainly bounded, then we say that the entire set is almost certainly
bounded, because obviously there exists an equivalent set whose elemeats
are simultaneously bounded. (It is evident that one can alsc construct
ecuivalent sets for which this does not hold.)

4, Given a sequence of random variables xl,xe,...,xn,... « It can Dbe
proved (cf. Kolmogorov [l], p.30, for instance) that the set A of elementary
events for which the sequence converges always belongs to the system of sete .
Thus it is meaningful to speak of the probability of the convergence of this
gsequence, In particular, if this probability is unity, we say that the
sequence almost certainly converges. Then there also exists one (up to equi-
vaience) uniquely defined random variable x, such that P[ X = n%imhxn}

is equal to unity., We then simply write x = 1lim X, and say that the

n—a
sequence almost certainly converges to Xx.
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When there exists a random variable x which has the property that for
arbitrarily small € > 0, the probability F an -x| > € l] goes to zero
as n-— oo, one says that the sequence XysXpyeee,X 500 CODVETEES to % in
probability. x' is uniquely determined (up to equivalence). Any almost
certainly convergent series also converges in probability to the same limit.
However, a sequence may converge in probability without converging with
probability 1; it may even diverge with probability one. For convergence
in probability it is necessary and sufficient that for arbitrary positive

& and € there exist an g, ¢ 2 such that
2
P“xm—xnl > e] < s

so long as both m and n > ng .

€

If the sequence X)) Xgy eeey X

a# v+ CODBVErges to x in probability, then

the series of the corresponding distribution funetions f(a;xn) converges to

the distribution function F(a,x) of x at every point of continuity of F(a;x).
A sub—sequence which converges with probability one can be chosen

from any sequence which converges in probability. The limit of the sub--

sequence is the same as that of the original sequence {for various concepts

of convergence of random variables, see Frechet [l] pp. 158 £F).

5. If the abstract integral (cf. for instance, Saks [1])

GG

E E

exists, it is said that the random varieble x has the expectation

E(x) = fde(x) (1.6)
E
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If F(a;x) is the distribution function of x, we also have

(oSS
E(x) = d[-adaF(a;x),
-_— OO
where the latter integral is understood in the Stieltjes sense.

X" and lxln are also rendom variables for integer n_ . If the integral

J 112050

E

is finite, then E(x") and E(Ixfm) are defined and finite for O <m < n.
E(|x|°) = 0 if and only if x = O.

6., If x' and x" are two random variables, then x = x' + ix" defines
a complex random variable. The conjugate random variable x' — ix" will
be denoted by X, as is usual. The expectation E(x) is understood
E(x') + iE(x").

A sequence of complex random variables X, = xl' + ixl",
x, '+ ixg", ceey X = xn' + ixn" is said to converge with probebility
one (or in probability) if both sequences x.°', X,'s x5', coey

1

", converge with probability one( or in

X ', eeoand x.", x." X
n ? . 1 2 X0 0 e X

probability). The same criterion for convergence in probability holds

as was the case above for real functions, since

Ix ]xm - xn‘ < lxm' - xn'] + Ixm" - xn" .

n_x,l
m n

If E(lx[z) is finite, we have

E(lee) = E(x'e) + E(x"a)
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and hence E(x'2), E(x"?), E(x') end E(x"2) are finite, and so E(x) ‘exists,
For arbitrary random variables x and y and complex numbers & and b,

it is obvious that
E[[ax + bylg] = |a|?E(|x]|?) + &b E(xy) + ab E(Xy) + Ib[zE(ﬁy} ) = o.

Ir E(|x|2) and E(|y|?) are finite, it follows that E(xy) is also finite.
Now taking a = E( Iylg), b = -E(xy), by a simple computation [directly for

E(|y|2) > 0, but also for general E(}yig):’
E(|x|)E(|y12) - [EG) |2 = o.

The Schwarz inequality also holds

EGT)| = VE([x|2)E(]y]3). (1.7)

The equality holds if and only if there exist numbers a and b such that
ax + by = O.

We also note that, from the obvious inequality
E(|x]|?) = f |x|2ap = jlx]gdP > ¢%p {[xi = ax (2 > 0)
{
E x| = a ’

the Chebychev inequality follows for complex x also:

p{m = a> = E_(lfzif_) | (a > 0) (1.8)
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II. LINEAR SETS OF RANDOM VARIABLES

7. Let [Xu1 be a given set of real or complex random variables. The
d

“

set of all finite linear combinations

n

c X
Z k HE

k=1

is called the real (complex)

of the X, with real (complex) coefficients e,

linear hull L of the set[xp].

In the sequel we primarily treat complex sets, but the resulting
theorems generally hold for real sets also.

L is obviously a linear set, i.e., if x and y belong to L, then the
linear combination ax + by is also an element of L.

We now assume that E([xule) is finite for every u. Then E(Xu) is
also defined and finite., We can take E(xu) = 0 without loss of generaiity.
Then, for each element z of L, E(Izlg) is finite and E(z) = O.

The non-negative number + VE(|z|€) is called the norm of z aad is
Izl
lz || =0 that P<z = o}

denoted by | z

0 if and only if z = O, and it then follows from

1 so that z is equivalent to 1.

For arbitrary y and z in L, E(yz) is defined and finite, by the Schwar:z

inequality, and
B2 | = vl - el

We define the distance between the elements y and z by the expression

. This is permissible since ily —z| = O if and only if y = z,

Hy—z‘- t

and the triangular inequality holds

ly = 2l = Iy =wll + llwv-2ll.
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In fact
r )l
ly = z]] 2 . EL](y —w) + (v = z)|2j
[ 7 . 1 i |
= Efly -w|®] + EE{R(y =) (v —z)] +El|lv-2z|?
. o . N . r
= iy =Wl o+ jwe-zl f-2()y —wil Jiw =z -'ELR(Y - w)(w-z2)
“ - L '

where R is the real part of the appropriate random variable, By the Schwarz
inequality, the expression in the brackets <j> is non-negative, whence the

triangular inequality follows.

..+ Of random variables

We say that a sequence Xy Xpy eee; X
converges in the mean to the random variable x, written x = (l.i.m. X,
n—sec
if lim [[x - x| =0. The following Lemma holds (Cramér [2], Fréchet [1],
n-co
Levy [1])
Lemma 1: In order that a sequence of random variables Xyp Xpy erey Xy oo

with finite norms converge in the mean, it is necessary and sufficient that

for every £ there exist an n. such that igxm _'Xnié < ¢ for allmn > n.

(the Cauchy convergence condition), If l.i.m. x  1is denoted by x, then
n—yco

x| is finite andlixié = 1lim lixn{i, E(x) = lim E(xn). If two sequences

n—=~

Xys Koy seey Xy e and Y7 Yps eees ¥y, ... converge in the mean to the

random variables x and y respectively, then E(xy) = lim E(xn§h).

Proof: If x =1l.i.m. X, then for sufficiently large n- and

» 1
n,m > ne, (X - xil < 5 € and ]]xn -xl] < %-E . By the triangular

inequality, Hxm - X < € . The Cauchy condition is also necessary.

nll

Assume the converse, i.e., that the Cauchy condition is fulfilled. By the

Chebychev inequelity
€2
P [xm-—xnl>n <;]_§ for m,n >n€,n>0.

i)
)
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If £=n-3andn =n_ , we have

8,1 €

P{[xm - xni > q} < B for m,n > D, n°

The given sequence thus converges in probability to a unique rancom variable

X. We assert that ||x|| is finite and that x = l.i.m. x « From the given

sequence we can choose the sub—sequence X, X 5 esey X 5, sees Which converges

n n
1 2 k
to x almost certainly, i.e., at each point of & sub-set Q of the whole space

E, with P(@) =1. For N >n > n€ , from the Cauchy condition

€’ "k
2 2 e 2
jlxnk —XNI dP = jlxnk -—le dP = llxnk —-xNH < € ,
Q E
and in particular
lim inf ffxn - lezdP< EE .
X =0 Q Kk

Now it follows from Fatou's lemma (cf. Saks [l], p.29) that

[ lim |x_ - XN|2€1P = lim inf []x —xN}QdP < 62 .
- n - n V
Q k->co kK k—»00 Q k
ey . . 2 2
In addition, since 1lim |x -—xNI = |x —xN[ ,
kK—>co nk
Q
r 2 2
J’ |x - XNI ap < g7 .
Q

Because P(Q) = 1, P(E-Q) = O, and we finally obtain .
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I S [P * N ey

E Q E-Q
=‘ﬂx—ﬁﬁﬂ<i€2
Q

or ||x - xN§|§; € for N > ne . This means that x = l.i.m. x .
n—3C

Furthermore ||xi| < [@xNi} + ||x - XNEE < l[xN|§ + E. HXNII is finite,

and therefore so is ||x|| . By the triangular inequality, [|x|] - IEXN”

= ilx - xNH < £, and sollxl[ = 1im ||x ll. If x = l.i.m. X
n—sco ° n—co

y = l.im. y , obviously x+y = 1l.i.m. (xn + yn)’

n o n n —»co
X+ iy = 1l.i.m. (x_ + iy ) and therefore

n-> o n n
- 1 ° 2 2 17 2 .2 .
RE(xy) = 5 [Hx+y[} —|lxl| —|]y]l‘] = n{ifﬁ5 {Hxn+yhi; = lx i =iy,

= 1lim RE(xy ) ,
n-—>o

() = & [lheety ]2 flxll 2 fly] 2]

1}

27
!
J

i

L1 . 2 2 . =
R e EN T P R B R CRA
n —soo n—» oo

With this the lemm= is proved.

8. To the hull L we now add all the random varizbles which are limite

o
2

in the mean of convergent sequences in L. The set formed in this way is called

the closed linear hull of <%4> and is denoted by L2.

§
i
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The set L, forms a Euclidean space, i.e., the following conditions hold:

2
A, L2 is a linear space: & linear combination with complex (or real)

coefficients cf two elements of L2 is still an element of LZ‘
B, Scalar multiplication is defined in LE’ when we view E(xy) as the

scalar product of x and y. The following rules hold: E(ax*y) =

aB(xy), E{(xl+x2)§] = E(xly) + E(x2§), E(xy) = E(yX). Furthermore
E(xx) = E(|x|°) >0 for x # 0, and E(xX} = E(|x|°) =0 for x = O.
The norm llx![ is defined as the square root of the product E(xX).
Iix—yl{ is understood as the distance between two elements x and y.

C. L, is complete (with respect to convergence in the mean), i.e., the

2
Cauchy convergence condition holds.

Only condition C must be proved. Let Xys Xpy eeey Xy eee be a sequence

in L2 which converges to x in the mean. We must show that x is an element

of LE' Since X, is an element in LE’ it can be represented in the form
X, = l.i.m. xﬁk), where xél), x§2), e, xik), ..+ are elements of L. Then
kK =00 ~
it is obvious that x = l.i.m. x(n), where x(l), x(c), x(n), «.. 8re elements
D e n 1 2 n
of L. Hence by definition, X is an element of LE'

The elements 205 Zoy eees 2, of L2 are called linearly dependent if there

exist constants Cis Coy veey Cp» not all equal to zero, such that

n
E: CpZy = 0. Otherwise Zys Zpy eeey Z, 8TE said to be linearly independent.
k=1

Two elements x and y are called orthogonal, in symbols x Ly, if
E(x?) = 0. Correspondingly, two subsets Sl and SE of L2 are called

orthogonal, in symbols Sl L 52, if each element of Sl is orthogonal tc

each element of Sg.
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From this discussion it is seen that the general theorem for Euclidean
spaces can be developed for L, (ef. for instance Sz. Negy [1]).

S. A subset S of Ly is called a base for L, if the finite linear
combinations §:ckyk (ykE'S) are dense in Ly, i.e., for each x in L, and
each £ > 0, there exist a finite set of elements yl, Yor eees yn of S

and corresponding constants Cis Cos eees Cf such that

% 'i%yk,

k=1

< &, Since L is dense in L,, the set {XP'}iS & base of L,.

The smellest possible power of a base of L2 is called the dimension of

LE(Dim L2). Dim L2 cannot in any case be greater than the power of the set
{x?}, or what is the same thing, the power m of the index set M. If m is
£inite and the XH are linear independent, then Dim L2 = m. L2 then has

the same structure as the usuval m—dimensional Euclidean space Rm. It

Dim L, is countably infinite, L, is a Hilbert space (cf. von Neumenn [1],
Stone [}]). In both cases L2 is separable, i.e., L2 contains a countably
infinite dense subset (this set is obtained by forming all the countably
infinite linear combinations with rational coefficients of the elements of

a denumerasble base). If Dim L2 is non—denumerable, L. is naturally non—separsble,

2

Lemma 2: If y L 2 for each z ina base, y = 0. For each £ > 0

oo

there is an element y€ in Lg, such thatlly—yéll < £ and Xf = zdckzk,
where each Zy is an element of the base, Then E(y§é.) = 0 and hence

2 2 2 2 2 - 2 2
Ivll® = Al by 5 = vl o lPemely ) = vyl < €7,

whence ||y|| < € for each £ > 0 and hence y = O.
Corollary: If E(yli) = E(yEE) for every z in a base, then y, = y,.

Since E[(yz—yl)z] = E(ygz) -— E(ylz) = 0, Yo -y = 0.
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A system D of elements is called orthonormal if for two elements y and
z of D,

_ O, ¥y # 2
E(yz) = & =

2
v l:y=z

If D is & base of L., then it is called complete.

2}
Let{zx Sbe an orthonormal system, which need not be countable, and ¥
be an arbitrary element of L2. It le, zxz,...zX are distinct, then the Bessel
n

inequality holds:
n

n
Iy 1% - Z:llE(yzxng - iy - :‘/;1 - Bz, )z, 1P = o

Hence it follows that ZE: [E(yzx )12 always converges in the sense that at

; i

i
most a countable number of terms are different from zero and by an arbitrary
ordering of the terms the limit of the partial sums exists. Furthermore,

s—ﬁ(yig)zx converges in the mean in the same sense as above. In fact, since
n

N -
I /. E(yzx )zx Il < llyll for arbitrary z, » at most & countable number
. i “i i
i=1
of the terms 'of the series in question can have a positive norm and therefcre
be difierent Irom zero. Let 2, , Zy ,...,Z4 ,... be the corresponding el:-
n

rents of {Zx} taken in arbitrary order. The convergence of the series

\

(o 2] n n
— _ il _

Z |E(yz )|2 implies that || Z E(yz. )z “2 - N Rz )12 <
%1 . X3 0%y P X5

i=1 i=m {-m

ifn >m >n _andn is taken large enough.

€ €
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Clearly
Y - Z E(yz, )z, 1 {Z}} .
L X b
If the system ﬁ%%} is complete, then y = j{: (yE&)zx . This series is
X

then called the expansion of the random variable y in terms of the ortho-—

normal system {Zx} .

One can show that L always contains & complete orthonormal system

2
and that its power equals Dim L2. If Dim L2 is finite, the proof is trivial.
If Dim L2 is countably infinite, then one can construct the system from a
countable base by means of the orthogonalization process of E. Schmidt, If
L2 is not denumerable, it is necessary to apply the well-ordering principle
and define the orthogonal system by transfinite induction (Lowig [I]).

We wish to avoid the well-ordering principle in the sequel and therefore
will not enter more deeply into this question.

10. Let S be some subset of L The linear hull of its elements,

o°
which is also a subset of L2’ will be written (S). Precisely as was done
above with L, (S) can be augmented to be & Euclidean space. Such & subset
of L2 which forms a Euclidean space is called a subspace in LE' In particular,
E{] is the subspace spanned by S. Obviously S is a base of E{}. If, z .L.S,
where z is an element of L2, then clearly Z.J, (s) and z _l_ Eﬂ.

The following lemma (F. Riesz [1]) is fundamental to our further work.
As in the case with Lemma 4 below, it holds without restriction on the
dimension of L2’ and can be proved without use of the well—orde¥ing princirple.

Lemma 3. If S is not & base of L,, there exists an element z in L2

27
different from zero, such that z _L.[S].
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Due to the importance of the theorem, we sketch the proof due to
F. Riesz: Let x be an element not contained in [S] and let @ be the distance

- T in 0
between x and [8]: 4 = ymg‘[S_] [|x=y|l. Let Y13 Yps eeey Yps oo De a

sequence in [S] such that Hx—ynH ~» d. This series converges in the mean

*
to an element y of [S], and

it = Bl # o 2t ®

' ’ Y Yn Xy, Xy

e
y Y
mn 1 2.1 2 .2

T S Al S R el e

Vot : Vo ¥y
because m2 = is an element of [S] and therefore! X - m2 21| > a.

i
Y n *

Since |[xy || —>ave get || 7 , —0. Obviously || x—y*|| = 4.

Let y be an arbitrary element of [S:l + For each complex c, y* + cy belonss

to [5], and ||x — (y* + ey)ll = g, i.e.,

0 = laly e || 5517 = <& [(x5")F) - cE[y(ey™)]

+ oFll vl

It is easily seen that for each ¢ this is possible, because E[y(x-y*)] = 0.
For arbitrary y in [S], y L x—y%, 1.e., x—" L [S], so that x—y" is the
desired element.

Let Sl’ 82, ey Sn’ «+. be pairwise orthogonal subspaces. The subspace
spanned by the system {Sl’ S, eeny 5, ...} is denoted by Sl(+')52(+)...(+)

Sn(+). Sl(+)82(+)...(+)Sn(+)... therefore consists of those elements of L.

which can be r ed in the f cent N £,
ch can be represent e form Zyﬂ (y,€8,) with converzent ). Hyll
n n
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If M and N are subspaces and N is a subspace of M, then the set of
the elements of M which are orthogonal to N is called the orthogonal com—
plement of N in M; it is written M(-)N. M(-)N is obviocusly & subspace.
M = N(+) [M(-)¥]. To prove this let N(+)[M(-)N] be denoted by S; S is then
a subspace of M. If S were not dense in M, then there would be an element z
in M different from zero such that z_l_ S. Then z would be orthogonal to K,
and z would therefore be an element of M(—)N and also an element of S, which
is impossible because z_l_ S. S is therefore a base of M, and because it
is & linear closed subspace it must coincide with M,

From this discussion it follows that every element y of M can be

represented in the form z = 2 +2,, with z. from N and 25 from M(-)N. This

1 1
v s 3 - ] 1 t -
representation is unique, since if zl+z2 = zl +z2 with zl and zl from N,
t - = r . —_o 1 — 1 T
z, and z,' from M(-)N, it follows that z2,~2, 25-2. . 2z;—%," is simul
taneously an element of N and M(-)N and therefore zl—zl' =0; i.e.,
- ' _ 1
Zy =290, 25 = 25 .

The uniquely defined element zq is called the projection of y on N
and is written PNy. PNy depends only upon y and N and is independent of the
special choice of the subspace M. PN(x+y) = PN(x) + PN(y), which follows

almost directly from the definition of PN' Since PNy_L PL (_)Ny,
2 B
E(yF.y) = E(Py-Py) = |[||P yll2
N NY °N N :

If M is a subspace and N is a subspace of M, M = N+ [M(-—)N], and
Py = PN(y)+PM(_)Ny. Therefore PN(PMy) = PN(PNy) + PN(PM(-)Ny)’_ and

since N_L M(-)N,

P (Fyy) = PByly),
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11. A complex-valued function A(x) defined on & subset S of L, is
called a linear operation if for arbitrary x and y in S and complex numbers
e and b, A ax+by) = ar(x)+dr(y), so long as ax+by is an element of S,

A can be uniquely extended to (S) if for z = ax+by (x and y in S), we define
A(z) = ar(x)+br(y). The definition is unique, since it follows that if

Z = a.X.+4b = 8.X.+b

1X1¥01¥y = BpXatboy,, and if by £ 0,

! oy 85 8 1 &2
ye = _Xl + ‘—yl - —-X2 and X(YE) = _k(xl) + ——*(Yl) - —X(X,\) J
b2 b2 b2 b2 b2 b2 c
i.e., alx(xl) + blx(yl) = ael(xz) + bek(ye).

A(x) is said to be bounded if there exists & number k such that for

. If Mx) is bounded and continuous, then

every x in (8), |aMx)| =x]||x|
M=) =M= = [Mx )| = k[|x=x]||; i.e., if x = 1.im.x  and
A(x) is defined, then A(x) = 1imx(xn).

Proposition 1. If X is defined on (S) and is bounded, it can be uniquely
extended to [S] and remains bounded on [S].

Proof: Let x = l.i.m.x with x £(S). Since [Mx ) - Mx,) |

= M= )| = k|[x = x ||, then limr(x ) exists. We also see that

from the equality l.:‘L.m.xn = l.i.m.xn', it follows that limk(yn)

lim)»(xn'), we can define A(x) = limk(xn). rMx+y) = limk(xn+yn) N

it

limi{x ) + limM(y ) = Mx) + My) end [Mx)]| = lim I).(xn)] = limk”xnll

k|| x||, and therefore AM(x) is linear on [S] and is bounded.
Fer arbitrary z€L2 it is clear that A(x) = E(xz) is a bounded linear
operation defined on L2’ and z is uniquely defined by A(x). Conversely,

the following is true (F. Riesz [1]):
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Lemma 4: If 3(x) is a bounded linear operation defined on a subspace
S, then S contains one and only one element z* such that A(x) = E(xz*) for
each xE 8.
Proof (after F. Riesz): The uniqueness of z¥* is clear. It suffices
to prove its existence. The set of x for which A(x) = O is obviously a
subspace M of S. M is either the whole space, in which case a(x) = E(x.0),

or else S contains an element z # O which is orthogonal to M. Then we set

z* = IH(?; . z; the equation Mx) = E(xz¥) holds as well for x = z as for
b2

eny element xXtM. If x is aerbitrary in S, then x' = x-ez also belongs to M,

for ¢ = %&f—g—, because A(x') = A(x)-cMz) = 0. Then we have A(x) = p(x'+cz) =

Mx') + ex(z) = E(x'2%)+E(cz.2%) = E(xz¥).

2

be weakly convergent to x if for each z{Le, E(xz) = lim E(an). The
npe
limit x is unique. For convergence in this sense it suffices to con-

12. A sequence X9 Xy eeey X9 eee of elements of L, is said to

sider a base of L, instead of arbitrary z{L,.
If xn converges to x in the mean, then by Lemma 1 it converges

weakly to x.
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III. RANDOM FUNCTIONS

13. 1et T be an arbitrary set. To each element t of T let there corres—
pond & uniquely defined real (complex) random function x(t). x(t) is then
called a real (complex) random function of argument t. T is called the domain
of definition and the set of random variables {?(t)} is the range of x(t).

Two random functions x(t) and y(t) are said to be equivelent, if they
both have the same domain and if x(t) = y(t) for every t. It is obvious
that x(t) and y(t) have the same range.

To each elementary event { in the probability field on which x(t) is
defined, there corresponds a real or complex function x(t;¢). Each such
function is called a realization of the random function x(t). If the reali-
zations themselves are elementary events, we say that the random function is
directly defined. The set E of the elementary events is a subset of the
space RY (c.f. para. 3). IfE = RT, i.e., if every real function defined on
T is a realization of x(t), then x(t) is called a general random function.

If x(t) is general and directly defined, by paragraph 3 the probability
measure P on E is defined by the system of all of the finite-dimensional
distribution functions F(al, 8yy weey B x(tl), x(tz), ceey x(tn)). How-
ever, if the realizations of x(t) all possess some restrictive property &,
such as measurability, continuity, etc., i.e., if x(t) is not general, so
that E is a proper subset of RT, then the definition of the probsbility
measure is somewhat more difficult. Following Doob, one can begin with a
measure P¥ defined on RT. Let 5% be a P¥ measurable subspace of RT. Then
one can construct a measure P on E, considering subsets S of E which can
be expressed in the form S = E*S¥, Doob has shown (Doob [l] rr. 109-110),

that one can set P(S) = P*(S¥), if every P* measurable subset of RY containing
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E has P* measure 1, i.e. if E is of outer P¥ measure 1. The set E, along
with the probability measure E defines a non-general rendom function xe(t),
which is obviously equivalent to the corresponding generszl random variable.

Conversely, let x(t) be a directly or indirectly defined random function,
all of whose realizations possess the property €. xe(t) defines a system of
finite dimensional distribution functions F(al, By eeey 8 xe(tl), xe(tg),
cees xe(tn)). Hence xe(t) defines & measure P* on RY. It is easily shown
(Doob and Ambrose [1]) that the set E of the realizations of x (t) has outer
P¥-measure 1. Let x(t) be a general random function and P¥ be the corresprond-
ing probability measure on RT. We assume that there exists & random function
xeﬂt), all the realizations of which possess the property €, and which is
equivalent to x(t). Since the same probability measure is obviously defined
by equivalent random functions, then by the discussion above the set of rezli-
zations x_(t) has outer P¥-measure 1. We say that & general random function
x(t) possesses & property with probability one, if there exists a subset E
of RT with outer P¥ measure 1 all of whose elements possess the property E.
it follows from the discussion above that this is the case if and only if
there exists a random function, equivalent to x(t), all of whose realizations
nossess the property € (cf paragraph 3).

We shall not distinguish betweenrn equivalent functions in the seguel.
Therefore, we cannot directly investigate particular properties of the resli-
zations. If we wish to do so, we must first show that there exists a randow
function, equivalent to the given function, whose realizations possess the
desired property. Then we investigate the random function specified in this
way.

Note that our definition of the random variable coincides essentially

with Wiener's. The concept of a general directly defined randon function is
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the same as Khinchin's concept of a stochastic process. Doob was the first
to treat non-general directly defined random variasbles. Doob and Ambrose [l]
have exhaustively studied the connection between these different concepts.
1k, As we did before, we shall assume throughout that {x(t)} is de-
fined and finite for every t in T. The closed linear hull of the range {x(t)}
of x(t) is called the linear space corresponding to the random function x(t)
and is written L2(x)’ or simply L, if no confusion results.
The real (or camplex) function
r(s,t) = E {x(e)XTTT}, (3.1)
defined on T x T(l) is called the correlation function of x(t). By the Schwarz
inequality, 1t is finite for all s and t in T. Obviously,
r(s,t) = r(t,s) (3.2)

and in particular

r(t,t) = “x(t)“2 2 0. (3.3)
Since |
n n 2
> w(tt)ea, =Y Tax(e)l" 2 0 (3.1)
i,3=1 i=1

for arbitrary t; and arbitrary complex a,, r(s,t) is a positive definite (or
semidefinite) Hermite function. Conversely, it can be shown that any such
function can be taken to be the correlation function of some randon function
(ef. Kninchin [1] ).

15. The random function x(t) is called separsble if LE(X) is separable.
If x(t) is separable, then there exists a finite or denumerable orthonoimal

system 2y, Zpy +eey Z ee- in La(x) such that for every t

x(t) =§zkfk(t) with £, (t) = E{zkx(t)},

(l)T x T denotes the set of couples {s,tdﬂ where s,t,£T.
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where the sum, if infinite, converges in the mean. Furthermore, from
 Lemma 1 we have
Y ”‘ \
E{x(s)x(t) = E LZ z,f, () S 2, £, (1)) = S'f ()T, TE) ,
i " k %
so that the bilinear representation
r(s,t) = 2 £,(s)5,(¢) (3.6)
k

holds for the correlation function. The series converges in the usual
sense for all s and t. Conversely, if fl(t)’f2(t)’ ...,fk(t),... are
finite functions defined on T, and the series 2:‘fk(t)|2 converges through-
out T, it is easily seen that (3.6) defines a positive-definite Hermite
function on T x T. If 21’22""’Zk"' is an orthonormal system of random
variables)(3.5) defines a separable random function. Therefore, r(s,t) is
the correlation function of a separable random function if and only if it
can be represented in the form (3.6) and the serielefk(t)‘2 converges

for every t in T.

16. Let T be a topological space. A random function defined on T is
continuous in the mean, (continuous, for short) at the point t if for every
¢ > 0 there exists a neighborhood De(t) of t, such that for every s in
De(t) x(s) - x(4)= e. If x(t) is continuocus at every point of the set
S, it is said to be comtinuous on S.

Theorem 1. The random function x(t) is continuous on the set § 1if and
only if the correlation function r(s,t) is continuous at every diagonal
point (t,t) of the set S x S; a posteriori r(s,t) is continuous at every
point of the set S x S.

Proof: We have
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Iix(s) - x(’c):2 = r(s,s) - r(s,t) - r(t,s) + r(t,t);

from the continuity of r(s,t) at the point (t,t), the continuity of x(t)
at the point t follows. Conversely, let x(t) be continuous on S. If t and

v are two arbitrary points of S, then for arbitrary s and u in T,

ir(s,u) - r(t,v) l=| E ‘FX(S)—(—E) >- E {X(t)f(Tv_M
. . g

JC U S By _
glE {x(s}x(u)}x— E lﬁ(s?x(vi}l+lE 1?(s)x(v{} - E{%(t)x(v{f’
=|E {x(s) [x(u) - x(v}]}l-r‘E {Ex(s) . x(tﬂ x(v?}l
é{x(s)ﬁ-]lx(u) - x(v}ll+n x(s) - x(t?“-”x(v?l%

Choosing s and u such that ||x(s) - x(t) ||<€ and ||x(u) - x(v)ll<e, we

nave [|x(s)ll <[lx(t) || +] x(s) - x(£)| = |x(£) || + €. Therefore |r(s,u) -
rit,v)) = [l x@) |l + €] e +llx@) [le = [ =) | +1 x(v) 1]+ e+ &

Yence, r(s,t) is continuous at the point (t,y). Since this is an arbitrary

noint in S x S, r(s,t) is continuous at every point of S x 5.

Theorem 2. Let the domain T of the random function x(t) be separable

--i.e., T contains a dense, enumerable set of points--and x(t) be continuous
in T. Then x(t) is separable. For the set tl’tQ""’tn"" is dense in T,

and x(tl), x(tg),...x(tn) forms & base of L2(x) since s(t) is continuous.

17. Consider a set of random variables xl(t), xg(t),...,xn(t) with the
same domain T. We denote the closed linear hull of the sum of their
dpmains by I'E(xl’xz’ ceey xn,...).

The function

rm(s,t) = E {xm(s)xniti} (3.7)
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is called the cross=-correlation function of xm(t) end xn('b). Obviously,
rmn(s,t) = rnm(t,s)- (3.8)

If the random function xn(t) is continuous at the point 'bo, then the

function rmn(s,t) (m=1,2,...) is continuous at every point (s,to), because

; {xm(s) x_n-(—t)} " E {Xm(s)xn(to)} = “‘xm(s)”' len(t) - Xn(to)ll
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IV. THE INTEGRAL OF A RANDOM FUNCTION

18. let the space T be the domain of the random function x(t), and
define a measure 7 such that T is the sum of a finite or denumersble number
of T-measurable subsets of finite measure.

We say that the random function x(t) is 7-measurzble =-- or simply
measurable if no confusien is possible =-- if the function E{zm} is
t-measurable for every z in La(x) (ef. Seks [1] pp. 12-18, where the
measurability property of real functions is treated. A complex function is
naturally considered measureble if the real and imeginary parts are measur-
eble.)

Theorem 3. Let x(t) and y(t) be measursble rendom functions, & and
b complex constants and f(t) a measurable function. Furthermore, let
xl(t),xa(t),...,xn(t),... be a sequence of measursble random Punctions which
converges in the mean to the random function x_(t) for 211 t. Then the
random functions ax(t) + by(t),f(t)x(t) and x _(t) are measurable.

Proof. Iet z be an arbitrary element of Iz(x,y). We can write
2 =12z, + z, vhere z ¢ L2(x), and z, € Lg(x,y) (=) L2(x). Then E {z:?(ﬂ} ==
E{ch_(?)} + E {ZE;Z'E—)} = E{zl;(?)} , so that E{zx(—t)J is & measursble
function. Similarly, E {Z&TE?} and finally gE{%;I%j} + SE{;QFEﬂ -

Eﬂ;zLEax(t) + by(t)}} is measurable., Since every element of Lg(ax + by) is
obviocusly an element of lz(x,y), by the definition ax(t) + by(t) is measu-
gble.
_ —_ — [
If E{zx(t)} is measurable, then so is £(t)* E(zx(t)y =E Yzf(t)x(t) ,

from which the measurability of f(t)x(t) follows.

As is shown above, E{zX, > is measurable for every z in Lg(x 93X, 5000,
(t) 1’72

X ;...) and each n. From Lemma 1, E{zx (t) :lmE{zx (‘t)} .
n ) g n
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From a well-known theorem in the theory of functlons of real variables (ef. Saks fl]
p. 15), the measurability of E{zxmltS}, and hence of xm(t), follows. (It is easily

seen that each zeLE(xm) is an element of L2(xl, KppeoesXppeeo)o)

”Theorem 4, x(t) is measurable if and only if the correlation';ﬁnction
r(s,t) is & measursble function of t for every fixed s.

Proof. The necessity of the condition follows directly from the defi-
nition r(s,t) —'E}{%(s)x(t The sufficiency is seen in this way: First

let z be an element of the linear hull L(X of {%(t)> z —-z:: akx(t ).

E{zx(t)} akE{x(t )x(t)} ; akr(tk,t) (k.0)

1s measurable, since it is a linear combination of the measurable functions

Then

r(tlt), r(tz,t), ceey r(tn,t). Any z€L2(x) can be expressed in the form

= l.i.m.z, vhere ZysZps eves Zpy e belong to L(x). Then E {let$f=
nN-——>» o

%Ez]3§%éﬂz)}. Since every E{zﬁE(%f} is measurable, so is E{ZE(EF}. By the
definition x(t) is seen to be measurable.

19. Now we wish to define the definite integral of a random function
on & T-measurable set S. Following Slutsky [l] and Doob [1] (ef. also Doob
and Ambrose [l]), one can investigate the measurability of the realization:.
If almost all the realizations are measurable and theilr integrals on S con-
stitute a random variable, the integral of the random function can be defined
by this random varisble. Note that it is not sufficient to assume that x(t)
is measurable with probability one. In this case the integrals of almost
8ll the realizations exist, but they need not constitute & random variable in

the probability field (Slutsky's definition is deficient in this respect). This

definition leads to a fairly complicated development. This can be avoided
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by following Cremér's procedure. Instead of considering the individual
realizations, one treats the limit in the mean of the random function
defined by the Riemann sums. Cramér's definition requires the continuity
of the random function; it has no meaning for & discontinuous random func-
tion--especially if T is not a topological space. We shall present a very
general, and yet simple, definition which requires only the measurability
ot the random function in the sense given ebove.

Theorer 5. Let x('t) be a measurable random function and S a t-measurable

subset of T. If E {zx(t)} possesses a finite definite integral on S for each

z € L2, end if the expression

2
Nzl

f E {zﬁl a-(t) (k.1)
S J

is bounded, L, contains a uniquely defined X(S), such that for each z ¢ L2,

E{ZX—(—S_)} == jE{zm} ar(t) (k.2)
S ,

Proof: For convenience we write

Ig(z) = f E {zf(ﬂ} a<(t). (. 3)

S
Then obviously
IS(a.zl + bze) - aIS(zl) + bIS(zz)
end, if m is the upper bound of the expression (4.1)

'Isfz)l < mflz]

Is(z) is & bounded linear operation on L,. By Iemms L4 there exists a
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uniquely defined element X(S)€L2 such that :{zst)} = Is(z).
let sl and 32 be disjoint sets, so that for each z, if x(sl) ard X(Sz)

exist

E{%XZSl + Sz?} :=Isl+sg(z):: Isl(z) + Isa(z) ==E{}x(sl%} +'E{%XZSQ?} .

From the corollary to Lemma 2
X(sy + 8,) = x(s;) + X(8;)

Therefore X(S) is an additive random set function defined on a system of
r-measursble subsets of T. We call X(S) the definite integral of x(t) on
S, and denote it by
x(s) :jx(t)dzr(t) (k)
S
It is easily verified that the definite integral has the usual properties

f

“S.+S s

/rx(t)df(t) = [ x(t)a-(t) +f x(t)d- (%),
1*5 1 Sp

j[xl(t) + xe(t)]df(t) = j xl(t)dr(t) + f xe(t)dT(t),
s s S

[ ex(vyar(v) = a] x(t)at(v), (1.5)
s S

j 0.d1(t) = 0
s

provided that the integrals on the right exist.
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We have

E{X(Sﬁﬂ%&z 152 {X(Sl)] _£ E {X(Sl)}Tt)} dc(t)
2

2 Sy Sy

=f E%(t)m} az(t) ::f Isl[x(t)] ar(t) :——-f d"r(t)f E{x(t)x—@?} dx(s)
5 51

S S

2 1 e 1

N -
= d1(t)| r(t,s)dr(s) = d1(t) | r(s,t)dr(s) _ r(s,t)ar(s)dar(t),
e [ [[

and therefore

E{[ X(t)d’f(t)[!‘i(t)d\'(t)} 34[ r(s,t)dr(s)dar(t) (4.6)
Sp 1%

51
end in particular

l£X('b)d'r(t)” ZV£j;r(S:t)dT<S)dT(t> . (%.7)

The finiteness of the integral

‘é’jr(s,t)d'r(s)dr(t) (4.8)
S

is necessary for the existence of the integral (k.lt). We shall show that
this condition is also sufficient. It remains to be shown that the expres-
sion (4.1) is bounded. Next we note that the integral (L4.8) must be, in
every case, real and positive. This is clearly seen when the integral is
approximated by the eppropriate sums, and it is noted that r(s,t) is a posi-

tive definite function. Now let z be an arbitrary element of I?. We write

£ () =E {’z’.x(t)}, x (t) = - _HT:!TQ— £ (t).
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Clearly, zj_ xZ(t), and so

1 £, (e), (%)

rlot) — Ela(aixe)) = b (e =

il

from vhich follows
f -
élr(s,t)dv(s)df(t) sf,s[E{xz(s)xz(w}af(s)af(t)

2

f (v)ar(t) \

S

f (s)f (t)d (s)az(t) >
H”H 57S |

N
because the integral of E{xz(s)xzity is positive (as is integral (4.8)).

ﬁ fmxz‘(?))aﬂw ;‘:/Hr(at)m(s)dr(t) , (4.9)
S S

S

We also obtain

and the assertion is proved.

If the integral (k.L) exists, we say that x(t) is integreble on S.
From the ebove, we have

Theorem 6. The random function x(t) is integreble on the set S if and
only if its correlation function r(s,t) is finitely integrable on the set
S x S.

x(®)]| 2 2(8)

20. Let £(t) be a real, T-measurable function, such that

for almost all t, i.e., for all t except & set of 1-measure zero. Ve have

Ir(s,t)l

that

“x(s)“ “x(t)” < £(s)£(t) for almost all s and t. Then it follows

fIA

fjr(s,t)d-r(s)d*r(t) < gflf(s)f(t)df(s)th(t) :Uf(t)ch(t)
S S

S

n

ard by (h.?),
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" ﬁc(t)dr(t) “ < f;'(t)dr(t) . (4.10)
S S

In particular, if n x('t)“ itself is measurable, we can set f(t) :H x(t)“ s

and thus we obtain

j;c(t)dr(t)
S

< jﬂi(t)[[dr(t)- (k.12)
5

Theoren 7. Let xl(t), xa(t), vees xn(t), ... be a sequence of measurasble

rendom functions which converges in the mean for all t. Assume furthermore,

that there exists a real function f(t), integrable on the set S, such that for
every n and almost every t “ xn(t)" < £(t). Then x(t) = i:i.;m.xn(t) is inte-
grable on S, and the sequence

jxl(t)d'r(t), jxg(t)d'q(t), cees f{n(‘b)d'r('t), (k.12)
S S

is weakly convergent to lx(t)d'r(‘b). If the convergence of the sequence
xl(’c),XE(t),...,xn(t),... is uniform in S, then

jx(‘t)dr(t) - 1.1.m.fxn(t)a¢(t).

S n - “g

Proof: from Lemma 1, || x(t)]| == lim Hxn(t)“; £(t) for almost all t.
By Theoren 3 and (4.10) x(t) is integrable on S. Furthermore, ILemn= 1

holds for all z in L2 and almost all t.
|E {zx(t)}l = m' E{zx (t)} l-‘}i'zi
n =
n+ «

holds for all z in I‘? and almost all t. By a well-known theorem of lebesgue

£(t).

(cf. Saks [1], p. 29), it now follows E {zx—(Tt-)} is integrsble on S and that
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n3w

By our definition of the integrael of a random function it follows for each

2 in L2 —_———
E{z fx(t)d'r(t)} === 1im E {z jxn(t)dT(t%,

S na S
i.e., the sequence (4.12) converges weakly to g[x(‘l:)d-r('i:). Now let the

sequence of random functions converge uniformly. Then there exists & number
n_ such that for every t, || x () - x (£)]]| < e, 80 long as m, n >n_. We

choose a set 5_ of finite mass T(Se) , such that

P(t)ar(t)< €
S-S€

This is possible, since T is the sum of a countable number of subsets of

finite measure, and therefore we can write

lf(t)d'r(t) =

vwhere each Sn has finite measure. Then we can set Se == Sl + 82 + ees + Sn’

’rf‘tdrt
4 (t)ar(t)

n

i Il

1

=)

if n is taken sufficiently large. Then by (k.10) we have

!!][xm(‘t)d‘r(t) — fxn(t)dr(t) “ ~“£ (xm(‘t) - xn(t))df(t}ll < e- T(Se)
€

5 S
€ €

and |
M ) - éf | B0 I<| Sf HOE |+ Sf ngnma.f(t)f

=2 j £(t)ar(t) = 2 e.
5-5,
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Then it follows that

ém(mf(t) - £ x(Bar(v)]<| ls x,(£)ax(t) - le x,(t)ax(s)]

+1 f x (t)dc(t) - f x (£)ar(t) | = (x(s,) + 2)- ¢
: 8-S
S—Se €
The last assertion follows from Cauchy's cenvergence cendition.
21. A measursble random function x(t) is of class zero, if for each

measursble subset S of T

jx(t)dr(t) =0

5
From the definition of the integral it follows that E{zx?% vanishes
almost everywhere for all z in 1.2 It is easily seen that x(t) is of class
zero if end only if r(s,t) venishes for almost all s in T. A typical example
is a random function whose range consists of mutually orthogonal elements, so

that r(s,t) =0 4f & #t.

Theorem 8. A separgble class-zero random function vanishes almost
e\;erywhere.

Proof: Separability implies that 12 contains & countable base 295 Zps
eeesZ seess Iet S Dbe the set of t for which E{ znm} does not vanish.
Since each Sn is empty, so is the union S = Z Sn- For every t not contzined

in 5, E{anzt}s = 0 for all n, and so x(t) = O.
Let T be a topological space and T a measure defined so that the neighbor—

hoods of T be empty. Then & class—zero function defined on T is either dis-

continuous at every point, or equal to zero. In fact, let x(to) # 0.
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If x(t) were continuous at t = to’ there would be & neighborhood D, of to

such that |x(t) - x(to)”< € for every t €D, and then
2
h%@&ﬂﬂ}hﬁxﬁ&“-%eﬁ

Choosing €<“x(to)", IE{X(tO)x(t)} l> O for every teD,. This is impossitle,

since E{x(to)x(ﬂ} vanishes almost everywhere.
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V. SPECTRAL REPRESENTATION OF RANDOM FUNCTIONS

22. Let R be an arbitrary set of elements a. Define & measure ¢
on R such that R is the union of & countable number of subsets of finite
measure. Define a random set function Z(S) on the class of all the
measurable subsets of R so that (a) Z(S) is additive, i.e., for two

disjoint sets Sl and 52

z2(s, + S,) = z(sl) + 2(s,) (5.1)

and (b) for any two measurable sets S, and 82
E {Z(sl)_z(s"e")} _E {z(sz)z(sl)} - e(sp8,). (5.2)

A random set function which satisfies these two conditions is called
a random spectral function. From condition (b), for two distinct sets

S, end S, z(sl)L z(sz). Set 8, =5, =S in (5.2), resulting in

2
lz(s)|” = & (5). (5.2)
Let sl: Sgc: P ot Snc:... and S = lim sn be
n-yo
measurable sets of finite measure. Then

z(s) = 1.1.m.2(s)). (5.4)
n-—y O

Since § = lim S5_ it follows (cf. Saks [1] p. 19) thate(S) = lim o (Sn) and
0 n-—y 0
n— 0o

l2(s) - 2(s)||? =|lz(s=s)|° = a(s-s,)—o.
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One can show that a spectral function can oe constructed for any set K
of the above type, sO that our definition is never vacuous.

in

Fiy

22, Ve now wish to de the integral with respect to the spectral

&)

function %(8) of a complex function f(a) defined ou K;

jf(a)dﬂ(a) (

I

i
.

A

~

We now assume that f(a) is bounded and O (R) is finite. It is well know:
(ci Seks {1]) pp 14,30) that f(a) may be uniformly spproximated by & se-

quence fl(a), f.(2)ye0es fn(a),... of measursble functions which assume

o
[t

only a finite number of different values on R. Let the values of f_ (&)

]

\ \ A\
- n; v.(n . s A C 5
be v(n’ V£ foe0e H< ! and the corresponding sets, on which these valuss

1 7 7'z n
. (o) (n n o . .
are assumed, D<l/’ i 2),..., Sé ). We form the finite sums
‘n
N
= (@),
e
Sy - v (S, ).
(r ) = L : k/ (5.6
T \
LYy (5.2)
¥
2 ‘N
~ ! /- AY
oo 12 §Q po(n)" L (ngs (2.7
lii-(*..,,)l L iV, C\Sl' Je vt
= Al “
We wish to prove that the sums {5.6) converge to a d=finite limit in . (8)
ol

with increasing n.

For arbitrary n and m, obviously

- :
(@) - gl 5 = sl®) EZiS$ﬁ>:= 2: s£n>- s§n>'



T-131
L6

and therefore

I i
RN S S (SO N o A N
i "‘("‘h/ = \In/ { =14 Vi "—(Si ) - Vj Z"\Dj ’ I
=1 3=1
T I Nm Nn
g
R o S RN NI SN S IR ON &
£ i i J Lo 37 i
i=1 j=1 =1 =1
NOX

DT T <o) =] s -

o
L]
]
Ce

L]
]

m, o E
= (m> V(n> 2 (l’f"/ (n>
Ez: §:$V1 3 | o(sy 857
i=1 3-1
e
r n - (
= - - I2) . @ n,
SN | atery) - gyeg ] sy )
i=1 j=1
(m)  (m)
wvhere &, 3

5 is any element of the set Si « 5

of the sequence fl(a}, fE(a}, cees fn(a), «es, We have ]fm(a) - fn(a)l

for every a, so long as m, N = N

. 3y the uniform convergence

<<

m

Then
Y I
) m n
Izt ) - 1l < 2{: eec(sim)' 5
i=1 =1

jn)) = ¢%o(n).
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Since o (R) is finite, the sequence I(fl), I(f2)’ cee I(fn), ... converges
to a definite limit I(f) due to the Cauchy convergence condition.

In the special case where f(a) = lim fn(a) = 0, from (5.6) and Lemmsa 1,
”1(1’)“ = un |1(e,) || = 0 ana |1(e) | = 0. 1t forl0ws airectiy tnat 1(¢)
is independent of the particular choice of the approximating functions. In
fact, if lim fn(a) = lim rn' () = £(a), we have n l.i.m. I(fn) - l.i.m.
I(fn')“ = 1 | (s, - (e, ') “ = un| x(r_ - £") u = 0, and 1.im. I(f)) =
l.i.m. I(fn'). Then we can define

ff(a) d2z(a)=1.i.m. I(fn) (5.8)

N0
R

(Cf. Doob [1] , pp 131-133).
It follows directly from (5.6) that the expression (5.8) possesses

the usual properties of an integral

St +e@) az (&) = [ zGa)az(a) + [ ela)az(a), (5.9)
’ R

R R
§ f(a)az(a) = jf(a)dz(a) + Sf(a)dZ(a), (5.10)
R+ RZ R, R,
J oaze) =0, J1aze) = 2(m); (5.11)
R R
Rl and R2 in (5.10) are measurable, disjoint subsets of R.

By the definition of the usual Lebesgue integral, (5.7) leads to

[1)] 2 - 130 | 165, |2 - 1n Z |, @ | % (s - Rf\f(a)!aaa(a),

n—po

and hence

”f £(a)az(e)] 2 - flf(a)l 240 (a). T (5.12)
R R
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Applying (5.12) end the formula

B R A A LR R GO bl L i1l

by a simple computation we obtain

2 { rehze) Jalahze)} - Jr@ia@ace) - (5.13)
R R

In perticular, if g(a) is the characteristic function of & measurable subset
Sof R (i.e. g(a) =1 ifa ¢ S,g(a) = 0 if a€R - S), then (5.11) and (5.13)
result in

e{z(s) - [ f(a)az(e)} - grf-'(—a—)dc—(a). (5.14)

R

If S, and S2 are two measurable subsets of Rl it is easily seen that

1l

E fsf t(a)az(a) Je(@)z@@)} - § f@elalac(e)
\ S

2 SI‘SB

In particulsr,

f f(a)az(a) L Sg(a)dz(a), irs .85,=0. (5.15)
5, : S,

2. We now extend the definition of the integral (5.5) so that we assume
only that the integral (5.16) is finite, even if ‘f(a)[ is not bounded

or ¢ (R) is not finite:

Yee)| 2acv(e) . (5.16)
R

o«©

First let \f(a)l be bounded. Let R = ) R, vhere the sets R are

n=i

disjoint and all are of finite measure. We now write simply

,_)ﬂf(a)dz(a) = i y f(a)iz(a) .
R R,
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The right-hand integrals are defined in the paragraph sbove. By (5.15),

they are mutually orthogonal and by

oc |
]

’Sﬁaﬂx@)
RY\.

|

=l

2_§ f\f(a)\eacr(w - Hr(a)i 2ac(a)
nl R R

the series converges in the mean.
1

]
Now let |f(a)| be unbounded, and consider the sets Ry , Ry , ---,

1]
Rn 5 «.. defined by the inequalities
\ﬂﬂl<l,l§ P@w< &.“,n-lg‘ﬂﬂw<m.“

These sets are obviously disjoint and, due to the measurability of f(a),
1
measurable. For each Rn ’
§ £(a)az(a)
Ry,
is defined. Then we can write

S te)azta) = U J#(adaz(e)
] ,

n= R‘n.

where the series converges in the mean.
It is easily verified that the limits in the above definitions are
independent of the special choice of the approximating sequence of sets

Rl’ RE’ ey Rn’ «.. OT Rl', R2 3 oo Rn', ... and so the definitions are
unique. The properties of the integral stated previously remain true for
the extended definition.

Equation (5.12) shows that it is essential that the integral (5.16)
be finite.
25. We consider the set J\.E(R) of all complex (real) functions defined

on R which are quadratically integrable with respect to o . Two functions
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f(a) and g(a) of this set will be considered identical if they coincide

almost everywhere with respect to o, i.e. if
, 5 o
jﬂ‘f(a) - g(a)‘ do(a) =0 _]
R

It is well known (cf. Sz. Nagy [1} , p 6, for instance) that ‘/\'E(R) is

a Euclidian space if the scalar product is defined by
§£(a)glalac(a)
R

and the distance by

”f -8 ” =\/£|f(a) - g(a) ‘2 do (a) (5.17)

The theorems of §2 for L, hold imtact for j\z(R).
According to (5.5), to each element of /\,(R) there corresponds &
uniquely determined element of L2(Z). We wish to show conversely that to

each element of LQ(Z) there corresponds & unique element of A 2(R). If 2
N

is a member of L(Z), this is trivial, since for z = ; cy Z(Sk),
xf

f(a) = ¢ for a ¢ S (5.18)

k

is the desired function. If z is an arbitrary element of L2(Z), there

exists a sequence of elements 2,, 25, ...y 2 .. in L(Z) such that

n’ °

z =1li.m z. To each z  there corresponds a function fn(a) defined by

n-—sox

(5.18), such that

z_ = 5 fn(a)dz(a) .

n
R

By (5.9) and (5.12),

“ 2 -z 2. EYifm(au) - fn(a.)lzdo-(a) - “ £ - fn” 2. (5.19)
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The sequence {fn} convergences in the mean if { zn} does. By the

Riesz-Fischer theorem (cf. Jessen [1] , p 80), there exists a quadratically
3

integrable function f(a) (with respect to o) such that ” £ - t]|—o.

It 1s easily seen that

2 = [ #(a)az(a) (5.20)

R
From Eq. (5.19), it is obvious that f is uniquely determined by z for

erbitrary Zn and z, in L2(Z). The same equation shows that the transforma-
tion defined between AZ(R) and I.2(Z) by (5.20) is isometric. Thus we have

Theorem 9. Equation (5.20) defines a one-to-one isometric transforma-
tion between the linear spaces L2(Z) and J\z(R).

The representation (5.20) of the set L2(Z) is called a spectral repre-
gentation. If in particular R is the set of &ll positive integers and ¢ (s)
is the number of elements in S, (5.20) results in the special expansion of
the elements of L2(Z) into & complete orthonormal system Z(1), z(2), ...,

Z(n), ... (cf. paragraph 9).

26. let f(t,a) be a complex function defined on TxR and quadratically
integrable on R with respect to & for every t€T. Then

x(t) = J (s, a)az(a) (5.21)
R

is a function defined on T whose range lies in L2(Z). It follows that
Lg(x) < LE(Z). In order that Le(x) = 1.2(2), it is necessary and sufficient
that the set {f(t, a)} o Of functions f(t, a) in R, obtained by allowing

t to assume all values in T, form & base forA-2(R). This is so

because then and only then is {x(t)} ¢ & base for 1.2(Z). {f(t, a)} T
is a base for L2(R) if and only if it is orthogonal to no element of /\2(R).

-
i.e., measure—preserving
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This means that there exists no function @ (a) quadratically integrable

with respect to o , such that \@ll = 1 and
j f(t, a)p(a)ic-(a) = O for every t in T (5.22)
R

By (5.13), the correlation function of the random function (5.21)

is
r(s, t) = | £(s, 8)i(t, a)ac(a) . (5.23)

27. Now we wish to investigatg under what conditions a spectral function
in R can be found corresponding to a given random function x(t), such that
{(5.21) hold. We already know that a necessary condition is that (5.23)
hold for the correlation function r(s, t) of x(t). We shall show that this
condition is also sufficient.

Theorem 10. If the representation (5.23) of the correlation function
r(s, t) of x(t) is valid, then there exists & spectral function Z(S) de-
fined on R for which (5.21) holds. L2(x) = LE(Z) if and only if there
exists no function 90 (2) quadratically integrable with respect to < such
that
flsﬂ(a) |2a0(a) = 2 (5.23)
R
which satisfies condition (5.22).

Proof: First assume that there exists no function P (a) possessing
the stated properties.

Let S be an arbitrary measurable subset of R of finite measure o (s).
Ve define on operation a'(as on L(x) by

n

fs(z) =f ;\: ckf(tk, aJdo(a), if z = ) ckx(tk). (5.24)
S k=l Rt
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and show that &, s is unique, linear, and bounded.

(1) XOS is unique - Let
n ‘n' 1
z = Z ckx(tk) =3 c'kx(’ck ) .
k=l k=
Then for every t, by (5.23),

E {zx(t)}

]

é; ¢ E {X(—t)x(tk)} = :z’l Cy g‘m)f(tk,a)do'(a)

R

}E '\ E {R?)x(t‘k)} = i ey ff(t,a)f(t'k,a)d o(a)

k=l w=l R

and consequently
Jf(t,a){ Z ckf(tk,a) - z c'kf(t'k,a)}do-(a) =0
k= Rl

Denoting the expression in brackets { } by ¢ (a), we have our assump-

tion
2
Jipe) | 2ac(a) = 0
R
By the Schwarz inequality,

2< [ace) J
s S

9 (a)|%ac(a) = 0O,

[ 9 @ar(a)
S

and

fgﬁ (a)dac(a) =[ i ckf(tk,a.)dcr(a) -f i c'kf(t'k,a)da’(a) =0
S S ksl S kel

fraom which the uniqueness of o?"s follows.
(2) o?as is linear. Let

z, = ‘i ck(l) X(tk(l))r 2, = }i ck(2)x(tk(2)).
=1 oy

*x
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And so
c?"s(blz1 + b2z2) = ygblz' ck(l)f(tk(l),a) + b, Y ck(a)f(tk(e),a)} de(a)
9 R=l foel

= blf yLzlc:k(l)f(‘l‘.k(l),e.)da-(a) + b, S ick(z)f(tk(e),a)do-(a)
g W 5 n

= bl fs(zl) + b2 xs(zz)'

(3) o?”s is bounded. It follows from the Schwarz inequality that
‘o?‘s(z)l2 =3URZ: ckf(tk,a)dw(a)|2§g(s)jlg ckf(tk,a)l2do—(a) .
- $ '
By (5.23),
5' lz ckf(tk,a,)\2do(a)_§_ ; Iickf(tk,a)l% o(a)
S ke k=)

= jiciE:jf(ti,a)f(tj,a)dv(a) = WZ ciétj ; f(ti,a)f(tj,a)do-(a)

R sl LS

]

z‘ cic_jr(ti,tj) = E {;; cic_jx(ti)x(tj)}

2 {

and consequently

f

g;ckx(tk)le} = U z“ ¢

()| < Vel | 2

Since o (S) is finite, X s is bounded.
f g can be extended to be a bounded linear operation on Lz(x). By

Lemma b, L2(x) contains a unique element Z(S) such that for every z ¢ Lz(x),

Ef 22(8) } = K4(2) (5.25)
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Thus we obtain a random set function which is defined for every measurable
S of finite measure. Z(S) is additive, clearly X o , g = £ +-st

1 2 1 2
if S, and S, are disjoint measurable sets, and consequently for all ze.Lz(x),

E {22(5] + 5,) } = Ts, +5,(2) = g, (2) + s, ()

E{z [2(s)) +2(s,)] ;

= E'{zi?glji + E { Zizgg)}

whence it follows that Z(Sl + S2) Z(Sl) + Z(Sz).

We now write
n

fz(a) =V ckf(tk,a), ifz= ) ckx(tk). (5.26)
k= R=]

By (1), fz(a) is unique almost everywhere in R. By (5.24), for all

z € L{x)
Fe) = | £, - 1,k (@),  (5.27)
S R

where es(a) is the characteristic function of the set S. If y = ) bkx(sk)
k=1

is a second element in L(x), we have

e

- bicjr(si’tj)

L=t

E(yz)

[~

E{ ibkx(sk) \Z ckx(tk)} =
k=1 k=]

f - bicjf(si,a)f(tj,a)dc"(a)

g L b f(s,,a) P cjf(t'j,a)do-(a)

"

and therefore
E(yz) = 5fy(a)fz(a)dcr(a) . . (5.28)
R

In particular, for y = z we obtain

Izl 2 - ﬂfz(a)! 2ac(a). (5.29)
R
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If z is any element in L2(x), then z = l.i.m. z where z € L(x). From
e N
(5.29), it follows that

£, (a) - £, (a)\ado'(a.).
m n

In paragraph 25 it was shown that the sequence f (a), £, (a), ...
1 2

£, (a),... tends toward a limit in the mean fz(a). Since
n

O?Z(z‘) = 1im o?‘s(zn) = lim jfz (a)ac(a) = jfz(a)do—(a)
n S

N—p 0 n-o6¢ S

end, if y = l.i.m. y,, ¥, € L(x),

"

E(yz) = lim E(ynin) = 1im ffy (2)r, (2)ac (a)

n - 0 n-+ R n n

S £ (a) f(a)d o (&)
R Y z

and the Egs. (5.27),(5.28) and (5.29) hold for arbitrary y and z in L2(x).

Consider the expression of 4(x(t)). By (5.27), on the other hand
(x(8)) = J £(t,a)e,(a)a (o)
R
and from (5.25) and (5.28), on the other hand
o‘(’s(x(t)) = E{x(t)i@)} = j f(t,a)fz(s)(a)d c(a).
£

For all t,

jf(t,a) [fz(s)(a) - es(a)} do(a) = 0

R
and furthermore, almost everywhere on R

fz(s)(a) = f;(s)(a) = es(a).
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and finally
E{z(s,)z2(s,)} = j’esl(a)esa(a)ao-(a) = o (s, - S,).
R

Thus Z(S) is a spectral function.
The range of Z(S) is a base of Le(x), for otherwise there would
exist an element z € L,(x), different from zero, such that zl 2(8) for

every S of finite measure. Then for all S,
E{22(8) } = I4(z) = ffz(a)do—(a.) =0,
S

and consequently fz(a) = O almost everywhere in R and thus by (5.29)
Ifz[i= O. Then it must also be true that Le(x) = L2(Z).

We must still prove that (5.21) holds. By (5.25) and (5.27) we have
for all S and ¢

§ #(e,a)a (o)

S

i}

E{x(£)2(8) } = Tg(x(t))

and by (5.1k)

Jet,0)a0(a) .

R

E{jf(t,a)dz(a) ;(E)}
R
Thus for all S,
Bfx(6)2(8)} = B} [ £(t,0)2(2)2(8) ]
R

Since the range of Z(S) is a base of I?(x), the corollary to Lemma 2 results
in Eq. (5.21).

We next consider the case in which there exists at least one function
¢ (2) which satisfies condition (5.22) and which does not vanish almost

everyvwhere. We denote the closed linear hull of the set { £(t,a) }T
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by A2(f). Then @l /\z(f), so that the set /\2(R)(—) /\.2(1‘) is not
empty (our notation will correspond to that used in s 2). Let
{g(t,a)} p e & base of AE(R)(_) /\E(f)’ where the arbitrarily chosen
parameter t assumes all values in a certain set T'. T' is so chosen
that it contains no element in common with the set T.

a(s,t) = fs(s,a)g(t,a)dv(a)
R

defines a positive-definite Hermite function on T' x T'. One can then
construct a random function y(t) on T' with the correlation function
a(s,t) (cf. para. 1). Obviously, the corresponding probability field
F' can be chosen in such a way that it has no elementary event in comma
with the probability field corresponding to x(t).

We now join the probability fields F and F' together and denote
the resulting field by F x F'. The randam events of F X F'belong to the
set A x A', with A in F and A' in F', and the corresponding probability
- measure is defined by P(A x A') = P(A)P(A'). Both the random functions
x(t) and y(t) belong to the field F x F'. Thus on F x F' we can define

a random function w(t) with domain T + T', if we write

x(t) for t € T

w(t) =
y(t) for t ¢ T

Furthermore, defining f(t,a) = g(t,a) for te T', the correlation function

of w(t) is

p(s,t) = j f(s,a)f(t,a)d o(a) .
R
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In fact, if s,t €T, p(s, t ) = r(s,t); s,te T, p(s,t) = a(s,t). If

seT, teT', p(s,t) = O since f(s,a) | g(t,a) and

y(t)ap )

E

B{e(s WD) = E {x(e ()} = | x(ey(eler = [ x(edar
ExE’

I
'\,3

where E(E') is the set of elementary events in F(F'). In all cases,
p(s,t) = E { W(S);E;)j .

Now {f(t,a)} roqe 18 & base of A (R), because 2(t,a)f g 1s &
vase of /\,(f) and {f(t,a)} g = {&(t,8) } o is & base of A ,(R)(=)A,(F); -
A2(R) = Az(f)(+)(/§.2(R)(—-)/\2(f)). Hence /\E(R) contains a function

@ (a) with the properties

fe(t,8)plalic(a) =0 foralltinT+ T
R

and
2
[jete)|Pac @) =
R
By the part of the theorem proved above, there exists a spectral function
2(S) with L2(Z) = L2(w) = La(x) (+) La(y) such that

w(t) = ff(t,a)d.Z(a) .
R

If t€ T we have the representation (5.21). It cannot be true that
Lz(x) = L2(Z), since by paragraph 26, {f(t,a)} p would not be a base of

_/\.2(R) - hence the theorem is proved.

28. The measures O and € together define & measure on the product set
T x R (cf. Saks [1] , pp 82-87, and Jessen {1“: , pp 42-56). 1If the
function f(t,a) is integrable on T x R, then according to Fubini's

theorem the order of integration with respect to T and ¢ may be
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interchanged. Then, there results

Theorem 11: If the function f(t,a) is measurable on T x R, then
§0 is the randam function x(t) defined by (5.21). x(t) is integrable
on T if and only if

J f £(t,a)d v (t)‘gd ~(a)
K T

is finite,in which case

r 7
(t)at (t) = || |£(t,8)a 7 (t)] az(a) . (5.30)
[x J]Jrtan s e

T

Proof: By (5.28), for every z¢ L2(x),
E {zx(_t)} = 5fz(a)f(t,a)ds‘(a) )
R

By Fubini's theorem, E { ZX(f)} is measursble for all z. By (4.2) it

follows further that for all S of finite measure,

- [ fremar @) | ax )

T LS J

Similarly,

E{Z(S) J'f

R

i
S

Now, by the Schwarz inequality,

J [ff(t,a)d r(t)} ao(a)

S T

-

5 I
f(t,a)dr(t)J az2(a)l= || [2(t,0)a7 (t) ao(e)
J s Lr ]

- A

ff(t,a)d“((t)J ac (a) .

L

[ £ta)av )% (a) .
/

Voo J
/
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The left-hand integral is finite, and by Fubini's theorem

!

-

2

J U foaae () ax) - [| [ fEekar )] ao).
T S J g 7

Consequently

E{Z(S)zj(t)dr (t)} = E {z(s)gjuf(t,a)m(t)Ju(a)} ,

if o (S) is finite. Since the range of Z(S) is & base of L?(x), Eq. (5.30)

follows from the corollary to Lemma 2.

29. let g(a) be a function which is quadratically integrable on every
measureble subset S of R of finite measure o (S).
Then it is obvious that

z'(s) = f g(a)az(a) (5.31)

S

is a spectral function, corresponding to the measure

F(s) = [

S

gla)|Pa(a) . (5.32)

If the function f(a) is quadratically integrable on R with respect to

6’, then
J sz @) - Jr@istenate) , (5.33)
R

is true. This is easily seen if the first integral is approximated
according to its definition by a sequence of finite sums.
If g(a) is different from zero almost everywhere with respect to

o, then one can set

e (a)

£(e) = <@
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in (5.33). Then

o - | 2
N

and consequently L2(Z') = LE(Z)' If in particular, !g(a) \ = 1, then

by (5.32) o (s) = o(8).

30. We now wish to consider some simple examples of spectral represen-

tations. The following § contains further applications of Theorem 10.
(1) Ilet x(t) be a random function whose correlation function is

given by (3.6). Then there exists an orthonormal system {zk'} such that

the representation
x(t) = ) zkfk(t)
3

is valid. Referring back to paragraph 15, it follows that x(t) is separable
if and only if there exists a bilinear representation (3.6) for r(s,t).

(2) Llet T be the camplex plane and r(t) an entire analytical function,
whose derivatives of all orders are real and non-negative at t = O. Then

for all t,

c,. t

§, 2.k
L Sk

r(t) =

=0

=

holds, where the ¢, are real., Then r(s%) is & positive-definite Hermite

function. If it is the correlation function of the random function x(t),

then since

)

Ty - 5 k 'k
r(st) = ¢, 8 ¢t

k=0
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we have the representation

& k
x(t) = Zo ez, b,

=

where {-Zk} is a complete orthonormal system in L2(x). Hence there exists

no sequence of complex numbers {‘?k} with ; l’l IL = 1 such that

In both of the above examples R is the set of all positive integer
and o (S) is the number of elements in S.
(3) Let T be the real line. By £ (t) we denote a random function

with the following properties:

“§(b) - f(a)“ 2. \b - a.l for all a and b,
§@a) - E(c)Li(b) - ¢(a), fa<b Zc=a, (5.34)
£@() =0

It follows from these conditions that f(s)_L €(t) - &(s), if O<s<t
or t<s<0, and £(s) | £(t) if s<0<t. Furthermore, we obtain r(s,t) =
r(s,s) = “ é(s)” e _ “ £(s) - E(0) H2 if 0<s <t or t<s<O0, and
r(s,t) = 0 if s<0<t. Consequently

0, if s - t £0

I‘(S,t)= ¢
1 |sl, if s - t >0 and |s|<|t

We can write

r(s,t)=% “s|+|t|-is-tH. (5.35)
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It is seen that
+c0 + 00
_1 sin° A& 112 - g8 | em2i7s
ISl -ﬁ- 7 d)\ = 7-? 5 dh
Ry A - hA
+
N T L eirs _ -ids
= == - d A
2m A‘
- o0
and similarly
+ 0
] L J‘z _elrt -t i
21w A* ’
)
+aO
1 o - eili(s-t) _ e-i/l(s-t)
] s -t \= 21 2 dA .
A
-0
Then it follows that
+ R
1 p . lAB _ g-its _ At -ddt s At -ids  idt
r(s,t) = o > aA
-od R
c A A P
1 l_eiks_e-i t+ei s'e-itd;{
-3 Z
A A
w 12 At
L (a-etHa-etth
20 2 *
A
-
Therefore we cen write
+0
iXs ixt
_ 1 [ e -1 e -1
I'(S,'t) - 2’.{ {m i)\ i)\ d}‘ (5-36)

By Theorem 10 there exists & spectral function Z(S) defined on the real

line, corresponding to the usual lLebesgue measure, such that

+ O ir)\
T(t) = == je W RPR
in
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The rendom function
A
§*(&) = ) az()

obviously has the properties (5.34). It is easily seen that 7z(s) is
uniquely defined by i*( d) for all Lebesgue - measurable sets.
1f £(1 ) is & function which is quadratically integrable on the real

line, then the integral

{2002 (2 (5.37)
can be simply defined by means of
Jeag ) = Jra) (5.38)
-0 -0
Then
~ it
5 =;L.5 # -1 000y . .
W- gk | ST (5.39)

One can show that the comverse to (5.39),
1 j‘e-ikt
ot o 1t

also holds. Thus it is necessary only to approximate the integral (5.40)

E¥(N) = - =1 4 %) (5.40)

by the corresponding finite sums, to express thetvalues by means of (5.39),
and then to pass to the limit.

If £ (t) is bounded on the interval (0,1), one obtains a finite sum
instead of the integral (5.39). Wiemer [1] defined his "Fundamental Random
Function" by means of these sums (cf. also Doob [11 , PP 134-139). BHe
assumes that the random coefficients of the sum are normally distributed
and pairwise independent, and proves that €(t) is continuous with probability
one (the same result follows from the single assumption that the coefficients

are pairwise independent.)



=g

We hope to return to similar questions in the future.

Considering ¢ (t) only for positive values of t, one obtains r(s, t)

":22" l:i 8 + t‘ -|s -t J , and an easy computation shows
+ oo
r(s,t) =T2—]‘ sin As szin/\t a (5.11)
A
o
By Theorem 10, we have
o0
- |2 sin At * >
?(t) -J:P 5 ﬁ d.}l (/l) (t=0) > (5.’42)

-]

vhere 5,"(A) is defined for A Z O and bas the properties (5.34).

The representation (5.42) is real, i.e. if €(t) is real, so is El*(l_).
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VI. STATIONARY RANDOM FUNCTIONS

a. General Properties

31. Iet T be the real line and 1 the lebesgue measure defined on T.

A random function x(t) defined on T is called stationary if for each h,

~—

E {x(s + h)lm}r—- E{x(sﬁ)} (6.1

i.e., if the correlation function r(s,t) is a function of s - t only (Khinchin
1
[1], Cramer [2]).( )

for every s we have
r(t) = r(-t5 = E{x(s + ﬂxisi} (6.2)

and in particular

2 >

x(s) = r(0)=0¢>0 (6.3)

By Theorem 4, x(t) is measurable if and only if r(t) is a measurable
function. Then it follows from Theorem 1 that x(t) is continuous if and only
if

lim r(t) = r(0) = & (6.4
t»0

If condition (6.4) is satisfied, r(t) is continuous for all t (kKninchin [1] e
Thus one may note that a (wide-sense) stationary random process is continuous

at every point or discontimuous at every point.
32. Let

n ]
z = ckx(tk) (6.5)
L

(l)Tr. Note: This property is usually taken to define the class of
processes stationary in the "wide-sense."

Instead of r(s,t) we shall simply write r(s - t). By (6.

1)
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‘be an element of L(x). Then

n
Tz = Z ¢, x(t, + h) (6.6)
k=1

also defines an element of L(x). One can easily show that Thz is unique

(cf. para. 27). If y and z are elements in L(x), then obviously

T @y + bz) = ey +bTz, (6.7)

and by (6.1)
B(T,yT z) = E(yz). (6.8)

As a special case of (6.8), we have

Tz )= 2| (6.9)

Finally, from (6.5) and (6.8)

'ﬂh_‘_kz = Th('I‘kz) = Tk(Thz) PR

Go i)

The transformations T of the set L(x) are linear and measure-preserving and
h

form a group. It follows from (6.9) that

Tz = 1.i.m. Thzn, z in L(x), z=1.i.m z

n -» 0o n - o
uniquely defines Th for every element of Ig(x). By Iemms 1, the forrmlas
(6.7), (6.8), (6.9) and (6.10) remain valid. The extended transformation

T, are therefore unitary (cf. Nagy [l], pe 36).
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Since

x(t) = Ttx(O)

instead of steadying the stationary random veriable x(t), one may study the
properties of the corresponding group of unitary transformations Tt (cf.
Doob (l}, p. 123-12L; Hopf [l], p. 56-65; Kolmogoroff [2]). It appears
simpler and more natural in many respects to work &irectly with the given

random functions, although it is also useful to apply the transformation group.

33. Up to here we have considered only stationary continuous randorm
functions. Many of their properties remain true for the more general class
of measurable stationary random functions. The following theorer: shows the
correspondence between the two classes.

Treorem 12: Every measursble stationary random function x{t) can be
uniguely decomposed into two orthogonal stationary components xs(t) and
x (t)

x(t) = xs(t) + xo(t), (6.11)

such that xs(t) is continuous and xo(t) is of zero-order.

Proof: It is easily seen that the decomposition is unique. If we hal

26 = x D)+ x, Py =2, B +x Po,

then the zero-order function xo(g)(t} - xo(l>(t} = xgl)(t) - xgg)(t) would

be continuous, which is impossible according to paragraph 2l.
In order to prove the possibility of the decomposition, consider the

random function
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v
X (u,v) =4/-x(t)dt

u

(vhen T is the Lebesgue measure, we write dt instead of dt(t)). Obviously

I?(X) is & subspace in Ly(x). Iet xs(t) be the projection of x(t) on L_(¥):

xs(t) = PLE(X)X('I:),

xo(t) = x(t) - xs(t) = PLg(x)(—)LQ(X)x(t)'

Then xs(t) and xo(t) are orthogonal. We shall show that they satisfy the

conditions of the theorem.

1. xs(t) and xo(t) are stationary. Iet T be the transformation group de—

fined in the previous paragraph. Then

Thxs(t) = ThPLg(X)x(t) = PLE(ThX)Thx(t) = PLg(ThX)x(t + h).

However,
v ¥+h
r [
ThX(u,v) :J/ x(t +h)dt = | x(t)at = X(u + h, v + h),
U ﬁ;h

80 Ié(ihx) = lé(X). Then we obtain

x(t + h) = xs(t +h)

Th}{s (‘t) = PLE (X)

and by (6.8)
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x (o + ETETET | = 2l (VT - B (0|

Since xs(s) _]_ xo(t), we have

E{xo(s+h)xo(t+h)}= E {}(sﬂl).x_(:t:k:)}- E {xs(s+h)xs(t+h}}

= Ix(s)x - Ecsx }= rx s)x \
{()“(%7} B e (5T} = By (T

(2) xs(t) is continuous--by (4.2) and (6.2), for all u and v such

that |t - s| = |v - ul,

-

—_ 7 !
‘E {[x(s) - :»((1',)-}){(u1,v);L I=| E{X(S)X(u,v)JL - E{gf(t)x(u,vh)\
v v s=-u t-u
=f r(s-w)dw -j( r{t-w)daw ,= j"r r(w)dw --’:r r(w)aw
u u 5=V Jt-v
t-u t-v

+ t - s

fr(w)dw‘ =2 &

5=V

==’fr(w)dw
s-u

E%(t)XZu,v)} is a continuous function of t. Thus it follows that E{X(tzi_}
It

is continuous for all z of L(X). Now let z be any member of LE(X>'

z = leiem. 2z, zne L(X), then the sequence of continuous functions
n -

E%{(t)il}, ELx(t)EE}, veey E{x(t)in},... converges uniformly to the funciion

E x(t)ir; , which is therefore continuous. We have used

..

E{f{(t)i}r - E{f{(tﬁn}

<=l
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Since x_ (t) l xo(t), then for the correlation function rs(t) of x_ (t),

I" — JR— |
rs(t) = Fixs(t)xs(oj)}= E{x(t)xs(O)J 1‘

Because xs(o) is an element of 12(X R rs(t) and therefore xs(t) are continuous.
(3) xo(t) is of zero-order. For arbitrary a end b, the integral

b

on(t)dt

belongs to LQ(X)(-)LE(X) if xo(t) belongs to this space. Since

b R b b
J xo(t)d“b = | x(t)at - | xs(t)dt = X(a,b) - . xs(t)dt
a Ja Ja Ja

belongs to LE(X) also, it must vanish identically. C.E.D.

1f x(t) is separeble, so is xo(t). By Theorenm 8, xo(t) vanishes almost
everywhere. Since “xo(t)ll is a constent, this is possible only if x (t)
vanishes identically. Conseguently,

Theorem 13: A measurable, stationary random function is separable if
and only if it is continuous.

3k, Khinchin[l]has shown that the statistical ergodic theorem holds for

continuous stationary rendom variables (cf. Hopf [l] , p. 28), i.e., that

v
i.im. 1 f x(t)at (€.22)

Iv—Ul=——® v —~ u u

exists.

It followes from Theorem 12 that the ergodic theorem still holds if one assumes

that x(t) is measurable rather then stationary, 1f the integral is defined

by 84 (Khinchin did not state what he understood by thé integral in (€.12).
The Khinchin theory depends upon a spectral theory of the correlation

function, which we shall further consider below. Here we wish to prove

the ergodic theory by another method without the aid of the spectral



representation.

Hopf

s
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The basic ideas of the proof are due to F. Riesz (cf.

{l?, p. 23). In addition to their clarity, they possess the advantare

that the continuity of the random functions need not be assumed.

Let x(t) be a measurable stationary random function.

y(t,h) = x(t +h) - x(t) (6.13)
is also a measurable stationary random function of © for all h. So long &s
|v - ul = |n}, we have
v v v v+h u+h
5 y(t,h)dt =fx(t+h)dt —f x(t)at =fx(t)d -,f x(t)dt
“u u u v T
end consequently
v v+h u+h
i I
[ \ [ l | (’ hl 2hc
— t)at)i + || x(t)at.> <
| y(t,h)at | = J x(t) | l‘; (t) ;5]=m.
“u v “u ~
For all h,
v
l.ium.  —— | y(t,h)at = o. (6.1%
v-ul >0 7"
u
Since Tty(s,h) = y(s + t,h) by (6.13) and (6.€), we also obtain
v
l.i.m. 1 - -
lv-u| 5 © v-u f Tyy(s,h)at = 0
u
n
\
for all values of s and h. More generally, for every element y = L;»CkY(sk’hk>
k=1

of L(y)

Then,
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s
v
1
wi.ﬂi_;n: em— / T, ydt = 0. (6.15)
u

The same equation holds for every yeha(y). ‘Therefore , for every y there exists s
£ - - <
{ Y¢€L(y) such that ||y - 3 I<€. By (6.9) we also have | %y A || € and

therefore

v v

1 1
v-u/Ttydt 'v—.‘z/'-‘-’tycdt <&
u u
from which the assertion follows:
Let
x, (t) = P x(t). (6.16)

2(y)

It follows from (6.13) that I.2(Tty) = Lz(y) , and therefore
Tlxl(s) = PLZ(Tty)Ttx(s) = PLe(y)x(S +1) = xl(s +t)

By (6.8), xl(t) is stationary. Furthermore,

xl(t) = Ttxl(o) .

Since xl(O) is an element of Lz(y) , from (6.15) we have

(v-ul—=>o ¥

v,
l.i.m. } ~ /xl(-x;)at = 0. (6.17)

We write

xz(t) = x(t) - xl(t) - PLg(x)(—)Lz(y)x(t)'

Since x2(t)_LL2(y) , We have
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0= E{y(t,h)@'i:’f} = E{x(t + h):‘;;(ﬂ} - E{x(t)igﬁ)'}

= E{“(t + h)’?e_(—;’-)} - llxz(t) ” g
Because x(t) is obviously stationary, so is lee(t)n and thus E{x(t + h)xa(t)}

is a constant. Consequently for all s and t
E{x(s)x2<t5; = E{x(s)xelof}.

It follows from Lemms 2 that xe(t) = xz(o), and denoting xe(o) by z,

x(t) = xl(t) + z,, zoj.xl(t). (6.18)
Then fram (6.17), v
ki v [ st e
u

This completes the proof of Khinchin's theorem.
d
Slutsky[ has given the representation (6.18) for continuous x(t).
His proof is essentially the same as Kolmogorov's.

35. If x(t) is stationary, so is e-i)‘tx(t) for reel A. Then we have

E{e-iA(S*‘h)x(s +n) e IMER (4 - ) } = 1Ns-t)y {X(s +n)x(t + h5}

= E{e'“sx(s)e'“’“x(t) }

By (6.19) we have the existence of

v

Dol _L1 [ ik
R el e O (6.20)

u

By (6.18), e—l)'tx(t) - z, and therefore x(t) - zlel)‘t are stationary and

hence
z,0x(t) - eri)'t. (6.21)
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Because

v
-iA
lim L e ™3t =0  for AFO
|V-u|->oov - g

we obtain, for A# O

v

. -ix -1

lim 1 f e txl(t)dt = Li.am o 1 / e My (t)at = Z ).
Iv-ul 2" - U fv-ul >«

u

It follows from (6.18) that zy L2y, It ve consider e 1 % (t) instead of

x(t), we obtain the more general result

zal zy,, vhend £l (6.22)
n
x(t) - E zr.;.kel;\}t{c is stationary by (6.21) and (6.22), and theretore
k=1
n
iixt
zamlx(t) - 2 :z,\k e % (n =1,2,...,n)
k=)
Then it follows that
n 2 n 2
i)k't
x(t) - k§=1 Z g € = o - k§=1 Za|| 2 O

Hence z, can be different from zero for at most a denumerable number of

values of A.

We denote these values by 7\1, ?»2, ...,’)»',n, ... Then the series E Za e
k

i&}_t

~

converges, and

x(t) - Z z Ay e:Mkt

k
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is stationary (ef. Slutsky [2] , vhere the corresponding result for real

x(t) is proved using Khinchin's method).

Obviously,
v
1 -iat _ 1 -1At
Thv_u/e x(t)dt ~—————v-u/e x(t + h)dt
u u
v+h
iMh 1 -iAt
=e e / e x(t)dt
uth
snd therefore,
iAh
= . .2
T2, =€ 2, (6.23)

These two equations uniguely determine zleLg(x) to within a numerical

factor. Then it follows from (6.23)
E[Thz/\xltj} = eiM"E{zsztw .

However, by (6.8)

E[Thsz(ff} = E{zl—_;icm} = E{ZAM} .
For all h, it is true that
E{z}‘ﬂ—;] = e-imE{zAmj

and consequently

E{——z—lf—— x<h5 =e-ilh.

E {z A—f(_O_)-}
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Z
A
By lemms 2, ——————— 1s uniquely defined by this equation.

{ ¢!
E-izxx(O%f
It follows from the above that z, (to within a scale factor) is the only
element in he(x) invariant under T (cf. Hopf M , p. 21-25).
Every number A for which Z is different from zero is called an

eigenfrequency of the stationary random function x(t). We have seen

that the number of eigenfreguencies is finite or countable.

b. The Cramér Representation

36. We consider a continuous random function x(t) with correlation
function r(t), which must also be continuous. For arbitrary real a and b
and for an arbitrary function @ (t) continuous in the open interval (a,b),

by (k.7) we have

~
a 8

b b L o »
f;'r(s—t)cp(s)w(t)dsat = l,’ [cp(t)x(t)dt[g 2=o.
a

By a well-known theorem of Bochner's flj it follows (cf. Khinchin 1

that r(t) may be represented in the form

+ OO
r(t) = _j.eiktdF(k) (6.2L)

- O

where F(A) is a real non-decreasing function of bounded variation.

Since r(0) = 02,

F(+=) - F(-70) = o°. (6.25)

Conversely, for every function of the form (6.24),

+ i 4
a F n irt, -iat =t -
NG ] i 3 = _flx ixg, ' dF(A) = o.
o T(ty-tylagay = | e ¢ 8,8, 0F(A) =/ | > ek

J=1 Ji,d=1 » k=1



s0, that by paragraph 14, every such function can be considered as the
Set

o(s) = fﬂap(x).

s
so that we can write

+ 0 e
.
r(s-t) = j eihs, eiktdc(A)
by use of (6.24).

According to Theorem 10, there exists a spectral
function Z(S), corresponding to the measure o(S), such that

x(t) = ,( eixtdz(k)

(6.26)
(Cremér [3] ). Writing

-~ A0 A+0

z\) =3 az) ¢ ez |
L -0 +0

we obtain using (5.3),

(6.27)
2
z(d) - 2(a) |

= F(b) - F(a), 1f b 2 a.

(6.28)
At the points of discontinuity of F(A), we define

F(A) =

s
|
i

] 4

_F(x-o) + F(K+O)E

Let @(A) be any function quadratically integrable with respect
to F(A) and possessing the property

(,+CD
] Mo (N)ar(n) = 0
- @

(6.29)

correlation function of a continuous stationary random process ( Khinch

in

T-131
9
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identically in t. Then, for any trigonometric polynomial P(R),
o+ @
FP(A)P(A)AF(A) = O« (6.30)
-

let (a, b) be an arbitrary interval. Since o(A) is quadratically
integrable, one may choose a number m such that

.- m A4

| 2 1 2

o) [Tar() + | Je(d) (T aF(N) =<

- @ + m
and - m—a<b<=m. It is well known that there exists a uniformly bounded

2

sequence of trigonometric polynomial Pl(k), PZ(K), ceey Pn(%), coo

which converges to unity for — m=<A<s and converges to zerc for b<=A<m as
well as for — m=<Ai=<a. Each Pn(x) is quadratically integrable with respect
to F()) by (6.25), and therefore

+ m b

un P (Ne(N)AF(A) = @(N)ar(a).

n—o -~
-m a

holds. The function Pn(%) may be chosen so that Pn(h) =2, for instance,

for any n and all values of A, Then the Schwarz inequality holds

- m -n - n
e (e(ar() 2 = kar() e(n) Z ar(n)<b
J B / o

- @ - - o

2 2
a:

we have
.’-m

B (Ae(ar() <20

i
i
{

P4
-

and similarly
+
(e, (000ar <207 .

+ m
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According to (6.30),

+ m
| By (Ne(MaF(R) = b ot

-m
and consequently
/b -+ m

JeMar() | = 1m | B (Ne(MIF() =k ol

: ns@ -m

a
Since £ can be chosen arbitrarily smell, it follows that

b

fcp(?\)dFO\) =0

a

for all & and b and thus @(A) = O almost everywhere with respect to F(A).

For all ¢(\) with the property (6.29) we have
+ 00

J o(A)  2ar(r) = 0 .

Consequently fram Theorem 10

L,(2) = Ly(x). (6.31)

37. The converse of (6.26) holds:

+ t
-iAt
7(A) = 1.i.m. §%= j l:f%g___ x(t)at . (6.32)
t 200 v
-1
Then by Theorem 11,
o+t + 00
Ve . +'t - 1
-iNt -int
1 i l-e _ 1 j l-e iut 7
o x(t)at - [2/4; — e dtJd.L(u)
-t - @®
+

= ?’(A: Hy £)az(u).
- &
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where + t

!
1 | l-e ipt ';’
W{)\; By t) = 5— | it e Hrat

-t
for all values of A and t bounded, and thus by (6.25) ¥ is quadratically

integrable with respect to F(p). We have

/‘+t 1"% ( )
i -iAt Cdpt i(pen)t
. . 1 l-e iut R l e -e
lim YA, py *) = lin 5= e Hfat = 1im 5= | T dt
£t o tDw t o0 “/1
-t -t
r':’. t
_ 1 / eipt_e-ipt_(ei(p-x)t_e-l(u-x)t)
= lim 5= | 51T at
t 2o =/ J
-t
+
L | sinpt - sin (u-A)t 40
27 | t
- m/

-]2—', if p=2A=0o0r 0 = p=A

=4 0, if u=0, p=Aor p=A = 0 or p=0, p=A

'
O -
[ ad
]

p=A=0oro0

"

-
\

>

-1, if O=p=A

Denotinz these limits by Ap{\, p), we have

‘,+ oo
R LA (T % ar(u)
-
.+ 00
= J“‘t }I;nm'q/(?‘: B) - IP()\: K, t) |2 ar(p) = O.

- 00
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It now follows from Theorem 9 that

+ 0o + @
- r

Lim, YO, £)az(2) = | YO, wez() [
t — o I

~

- o -
-2 {z(h+o) + z(x-o)1 -1 (z(+o) + Z(-O)} = 2(A).
2 172 )

Hence formula (6.32) is proven.

38. Consider the expression (6.20). By Theorem 11 and (6.26) we

have
v /_+Fd> v 1
1 -t T A ieea)s
= ‘le x(t)at —// | 7= J e dt J az(u)
u S . u
4+ @
= j Z(u-A, u, v)az(p).
- QO
where
-V T i AN
| : 1AV u
1 it e e, IENFO
X(A, u, v) = = © at = - IN(v-u)
g : 1 , if AN=0

u

for all values of A, u and bounded v. X(A, u, v) is thus quadratically

integrable with respect to F(A).

We can write

fo, 1 A 0
X(A) = 1imX (N, u, v) =7
'v-u 900 '1, if A=0.

%X(\) is quadratically integrable with respect to F(A). As in the above

paragraph, we obtain
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8L
/+ o0 .+ Q@
l.i.m. f X(u-A, u, v)az(u) = © X(p-A)az(p) = z(M+0) - z(7-0). I
V-u— o - 60
Consequently
z, = 2(M0) - Z(A-0) (6.33)

and by (6.28)

'z, 1 2 = F(M0) - F(2-0). (6.34)

Thus the eigenfrequencies of x(t) are the points of discontinuity of F(A).
Multiplying both sides by the scalar quantity x(0) = z(+®) - z(-o),

it follows from equations (6.32), (6.33) and (6.20) that

o+ t
1 [ 1-eiM
F(A) - F(0) = 1lim = | 1T r(t)dt, (6.35)
t-> ) - t-/’
F(M0) - F(A-0) = 1in = [ e r(t)at. (6.36)
jv-ul> o0 i
u_/

At every point of discontinuity in (6.35), we set

F(\) = 3 [F(%+O) + F(A-0) |.

39. If r(t) is real, instead of (6.24) we can write

(o)
r(t) = | cos MAG(A) © o (6.37)
-/

0
where

G(A\) = F(A) - F(-2) (6.38)
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\ (Khinchin [1]). It follows from (6.37) that

e o}

-

r(s-t) = J (cos As cos At + sin As sin At)dG(A). ‘
o

By Theorem 10, there exist two spectral functions Zl(k) and ze(x) such that
2, ) dz,00,1 2,0 2 = 1z,(0) 2 = 60) (6.39)

and the representation

R w .’w

x(t) = j’cos xtazl(x) + ; sin xtdzg(x) (6.40)
0 o]

.
holds for x(t) (DoobL3}, he takes the lower limit of the integral to be
- c0o. This is not convenient, because then Zl(A) and Zz(k) are not

uniquely defined). It is easily shown that
Lg(x) = LE(Z]_)(+) L::_;(Zz)

1f x(t), rather than r(t), is real, it follows from (6.32) that

z(-A) = -Z2(A).

By an easy computation we obtain

it

j> zl(x) Z(A) - z(-A) = 2 RzZ(}),

BRAY

i [z(x) + z(-x)} = - 2IZ(A\),
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and thus
+ t
) ,r
| z,(A) = Li.m. V. Siﬁ}‘t x{t)dt,
1 tooo /1)
g -t
j [_+ t
i |
- 2,(0) = L.im. -1-: i }LSES—)‘E x(t)at. (6.41)
N £t /(/ J
-t
From equations (6.20) and (6.26),
. v
i I'/-
i ] H
2 27 (M0) - 2, (A-0) = 1.ium. === |x(t) cos At at,
N 1l 1 v-u |
| v -y~ J
i u
)
i v
i 1 ; .
'z = 2. (M0) = 2 (A-0) = l.i.m. L x(t) sin At at. (6.L42)
: A 2 2 v-u
S |V-ul—> 0 J
u

Slutsky [2] has proved the existence of the right-hand integrals (ef. J{35).

40. From the above results and Theorem 12, we directly obtain
Theorem 13: Every complex measurable stationary random function x(t)

can be expressed in the form

18

x(t) = zg + zkei.)\kt + xl(t) + Xo(t) _ (6.43)

k

i
o]
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If x(t) is real, the representation may be written
X
—_ ' " L
x(t) = zZ + 214 (zk cos Nt + 2z, sin th) + xl(t) + xo(t) (6.43)
k=1

¥
t

k
xo(t) are all stationary and mutually orthogonal; xl(t) is continuous and

int "
The components Zs 2,© N (or z, cos At and z, sin Met)s xl(t) and
possesses no €igenfrequency, and xo(t) is of zero-order. The eigen-

frequencies )‘k are the points of discontinuity of the distribution function

F(A) defined in (6.35), while the random variables z, (z;{, z,

) are
defined by (6.20) ((6.1;2)) .

If x(t) is continuous and F(A) is purely a step function, then by (6.2L)
r(t) is an almost periodic function of Bohr's. By the above theorem and

(6.34) we obtain

el e
x(t) - \L zkei)‘kt e . x(t) 2 —X z, *2
k=0 =0
®
=F(+ ) - F(- @) - \ [F(?ka) - F(KK-O)J = 0,
k=0

so the components xl(t) and xo(t) of (6.43) vanish and

FA—

k=0

®
x(t) = y zkei)\kt' ‘

Because r(t) is almost periodic, by & well-known theorem of Bohr's [l} for every

€ > 0, there is & positive number £(€) such that for each integer, n, there
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exists a point t in the interval (nf(€), (n+1)£(€)) such that

{r(O) - r(t)i = %E@

Since

(x(s+t) - x(s)] @ = 2r(0) - 2R(t) = 2| v(0) - r(t)]

it is true for all s that

I x(s+t) - x(s) < €,

and x(t) is almost periodic in the mean (in the sense of Bohr). Ome can
show that x(t) is,with probability one, an almost periodic function of
Besicovitch (Slutsky[2]).

If conversely x(t) is almost periodic in the above sense, we note

that F(A) must be a pure step function. Thus we have

Theorem 14. A continuous stationary random function x(t) is almost
periodic in the mean (in the sense of Bohr) if and only if the distribution

function defined by (6.35) is purely a step function.

c. Stationary Random Functions with Absolutely Continuous Spectra

40. Continuous stationary random varisbles with absolutely continucus
distribution functions F(A) constitute an important class. We say that such
o function possesses an absolutely continuous spectrum.

We wish to investigate this class of functions more closely. We shall

assume
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A
F(A) = IF' (A) ar (6.4k)
6]
where F'(K) is almost everywhere equal to the derivative of F(A). Then
by (6.24) we have
+

r(t) = eri*‘F'(x) an (6.45)

- GO

By the well known Riemann-lebesgue theorem it follows that

lim r(t) = O (6.46)
t—-w
Conversely, the representation (6.45) is known to hold if, for example,
r(t) monotonically tends toward zero or if r(t) is integrable on the
interval (- c0, @) and is of bounded variation on every finite interval
(cf. Bochner il}).
Since F(A) is non-decreasing, one may assume that F'(k) is never—negative.

Then the function

£(A) = +“N/F'(x) (6.47)

is real and quadritically integrable on the interval (- oo, o). By

Plancherel's theorem (cf. Bochner[l]) £()\) has a Fourier transform

A

g(a) = loiom. —= / 12 e )an. (6.18)
A-o00 V2l
- A
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The function g(a) is quadratically integrable on ( - oo, oo ). Obviously,

the Fourier transform g (&) of the function f _(A) = 1At £()\) is equal
& t

to g(a+t). By the well known Parseval Theorem
+

; gt(a)g(a)da = J,ft(x)f(is aa
- ® - 00

and by (6.47) it follows that

+ 0O + 0o + 0O
f glast)gla)ia = | e 2 an [ 1Mz' () an. (6.19)

- @ - 00

fl
(-

|
8

By (6.45) we have the representation for r(t)

f+ © ____
r(t) = | gla+t)e(a)da. (6.50)

- O

Conversely, of the correlation function of the continuous stationary random
function x(t) can be represented in the form (6.50), x(t) has an absolutely

continuous spectrum. Then g(a) is quadratically integrable since

+
J 1512 = =(0)
-

If £(\) is the Fourier transform of the correlation function; and F'(A) is set

equal to ]f(k)!g, equations (6.49) and (6.45) hold.
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Tt follows from (6.50) that
+ @ I + OO
r(s-t) = ,[ g(a+s-t)g(a)da = ,[ g(a+s)g(a+t)da.
- M -
By Theorem 10 the representation of x(t),
+
x() = [ slardad e, (6.51)

- ©

is valid, where the random function.g(a) satisfies the conditions (5.34).
let @(a) be a quadratically integrable function on (- @, + 00), and

yy(x) be its Fourier transform. By the Parseval theorem we obtain

+ 00

J[g(a+t)¢(a)da = ‘[ eixtf(K)y/(%)dk. (6.52)

-

Because the functions £(A) and?/(k) are quadratically integrable, f(K)yf(R)
is absolutely integrable and defined uniquely almost every where by its

Fourier transform (6.52) (cf. Bochner(l}, p. 47). Thus it follows that

L
the expression (6.52) vanishes for all t if and only if

f(x)yf(k) =0

t
almost everywhere. If 1f(k)[2 = F (A)=0 almost everywhere, this is

possible only ifVY(K) and therefore @(a) vanish almost everywhere. However,
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' t
if F (A) = 0 on a set M of positive mass, then one can chooseyy(%) # O on

M, anng(k) = 0 otherwise, such that

+ O + 00 ‘
f |o(a)]%aa =fl Yra) fan = 1
- @® -

Fram the above and Theorem 10, it follows that Ly( §) = Ly(x) 1f and only

]
if F (A) = O almost everywhere.

hi, We say that the spectrum of a stationary continuous random
function is complete if there is no set M of positive Lebesgue measure such

that

Let @(t) be an absolutely integral random function on (- oo, + 00)

which does not vanish almost everywhere. We consider the expression

+

fq)(t)x(t) dt.

-
By (4.7) and (6.24),

+ OO + 0O + O

eemwa 2 [ [ s Gintoma

- - @ - 00

+ +,00 + 0O 3

o _+,00 i
N f j i j ei?‘(u'v)dF()\);‘« o(u)o(v)dudv.
a - 00

- - 5
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Since the convergence is &bsolute and uniform, the order of the
integrations can be reversed. Then we obtain
+ 00 +@®
f o(t)x(t)at [ j ,jﬂu (u)du>< fe'“%(v)av}ap(x)
- o - % -
+ o
12
Y AT IEO (6.53)
- @

where ¢(t) denotes the Fourier transform ofyl()‘).

If the spectrum of x(t) is camplete, the last expression is always
positive. If the spectrum is not complete, there is a set M of positive
measure such that (dF(X) = O. One can choose %’(% % 0 on M,gj(%)
elsewhere, such that (6.53) is equal to zero without ¢(t) vanishing almost
everyvwhere. Thus we see that the spectrum of x(t) is complete if and only
if there exists no absolutely integrable function ¢(t), not vanishing

almost everywhere, such that

+ 00
J,[cp(t)x(t)dt =0 (6.54%)

- o0
From (6.54) it follows more generally that

+ 00

fcp(t)x(sﬂ: )at =

-

for all values of s.
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As a result of this and the previous paragraph, we have

Theorem 15: A continuous stationary random function can be expressed
in the form (6.51) if and only if its spectrum is absolutely continuous.
L2(§.) = Lz(x) if and only if the spectrum is complete. The latter condition
is equivalent to this: that there exist no function o(t), absolutely
integrable on the interval (- o0, + 00) and not vanishing almost everywhere,
which possesses the property (6.54).

L2, The representation (6.51) can obviously be considered as a
generalization of the method of moving averages, which is often used in
mathematical statistics for the treatment of stationary time series (cf.
Wold [1], for instance). Particularly important is the special case in
which x(t) depends only upon the "earlier" values of the auxiliary process
§.(a). We must reformulate the expression (6.51) somewhat in order to

give a precise meaning to "earlier". If we denote

§,(a) =€)

we can write

+ 00

xe) = [ s, € (s-e) (6.55)

- Q0

Now we consider the values x(t) and‘gl(t) to be "simultaneous,” and say tizl
.§]Kt-a) is "earlier™ than x(t) if a=0. We wish to investigate under
what conditionsjgl(t-a) and g(a) may be chosen such that only positive

values of a appear in (6.55), i.e., that g(a) disappears for a<O.
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Let £(\) be the Fourier transform of g(a). We bave seen that f(A) must

satisfy the condition
)2 =F () (6.56)

It is necessary to ascertain when f(A) may be chosen such that its Fourier
transform vanishes for negative values of the argument. The following
theorem holds (Paley and Wiener[l}, Theorem XII):

Let @(A) be a real non-negative function which is quadretically
integrable on the interval (- co, + co) and which does not vanish almost
everywhere. A necessary and sufficient condition for the existence of a
function g(t), which vanishes for t=t_ and vhich possesses a Fourier

transform f(A) satisfying the conditionif(k){ = p(N\), is that the integral

+ QO

[ logw(A | ar

- l+k2

be finite,

Setting @(A) = F (7), we obtain the necessary and sufficient condition

1+A

‘ © + @
Jf |10g F2(7\2| Q= % fi_lof‘__ﬂ%gl\)_‘ A\ <e (6.57)
- 00 - 00

in order that g(a) in (6.55) may be chosen such that it vanishes for

a<0, Thus we have



Theorem 16.

x(t) may be represented in the form

(o o]
«e) = [as, &, (t-0)
0
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In order that the continuous stationary random function

(6.58)

where_gg(t) satisfies conditions (5.34), it is necessary and sufficient

that the spectrum of x(t) be absolutely

+CD'
logF gk}l
1+R2

- 00

-

/ an

converge.
When the conditions of the theorem

x(t) is also complete.

43. Examples. -(1) S=t
A
Fr(A) = —— ¢ 2 .
Then
+ @
N
1 it 2
r(t) = e dA =
yaiT
- @
Setting
_1 N
£(0) VP () = (277) T ¥

continuous and that the integral

are satisfied, the spectrum of

(6.59)

N ld.l\J

(6.60)

o ¢
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we obtain

2
+ 00 + 0 A — 5

ros 3 o
g(t) = —=— | eMean - 2 )F f M B gy I 2 ot
V2 e

00

A

J
(¢ 0} -

By theorem 15, a stationary random function with the correlation function

(6.60) may be represented in the form

b — r_+ @ ,
x(t) ;\/72':J e'(a+t) df(a)- (6.61)
- o

Since F'(k):=0 everywhere, Lg(x) = L2(§.). The integral

s+,
[ l1og F ()| an =L
2 2

- o 1+A -

diverges, so that by Theorem 16 x(t) may not be represented in the form (6.58).

(2) let
! 1l 1
F(A\) = = . (6.62)
77 142
Then + 00
it |
1 el -t
r(t) = = an = e 'V, . (6.63)
T 1+)\2
- @

Setting
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1
£(\) = 'VF_- T+FiA

It is seen from an easy computation, that the

cbviously £(A) 2 = F ().

Fourier transform of f(A) is

f i?\t Voe ™t ir t=0
g(t) = dA =
)\-—>oo T“‘\/— 1+1A 0 , if t=o.

A stationary random function with correlation function (6.63) can be

represented in the form
w
x(t) =N3f e‘ada§1(t-a)- (6.64)
0

It follows from (6.62) that the conditions of Theorem 16 are fulfilled

(3) Let
1 -
o= s ILAE i
F (M) =4 7 _ (6.65)
lo , itn=TT
Then
+77 ,_
5 Tit  -/lit
_ 1 irt e -e _ sinyt
r(t) = 5= e "YaA = SIE == (6.66)

Setting £(A) =VF (A), we obtain
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A stationary random function x(t) with correlation function (6.6%)

can be expressed in the form

+ @

s s +
x(e) = S8 6 fe) (6.67)

- 00

By 6.65 the spectrum of x(t) is not camplete. By Theorem 15 Lg(x) is &
proper subset of Le(ét), so that no unique inversion of (6.67) exists.

Hence by Theorem 16, x(t) may not be represented in the form (6.58).
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