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ON LINEAR OPERATORS ON
ORDERED BANACH SPACES

SADAYUKI YAMAMURO

The order structure of the space of al l continuous linear

operators on an ordered Banach space is studied. The main topic

is the Robinson property, that i s , the norm of a positive linear

operator is attained on the positive unit cone.

Let B be a real Banach space ordered by a closed and proper cone

B . The norm of B is said to be monotone if 0 5 a S b implies

||a|| 5 \\b\\ , absolutely monotone if -b 5 a 5 b implies ||a|| 5 ||i>|| , and a

Rtesz norm if both the norm and i t s dual norm are absolutely monotone,

where the dual B* of B is ordered by the dual cone B* defined by

B* = {/ € B* : /(a) > 0 for every a > 0} .

The cone B* is proper if and only if B+ is quasi-generating; that i s ,

B - B = B . Throughout this paper B is always assumed to be quasi-

generating.

Let i(5) be the space of a l l continuous linear operators of B into

itself. The norm on L(B) is defined by

||u|| = sup{||u(a)|| : a Z Bx} for u € L(B) ,

where B is the closed unit ball of B . Then L(B) is a Banach space
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and i t is ordered by the cone

L(B) + = {u € L(B) : u(a) > 0 for every a > 0} ,

which is closed and proper.

These notions have played essential roles in a theory developed toy

Robinson [4, 5]. He has shown, in particular, that the norm

||M||+ = sup{||u(a)|| : a Z P} for u € L(B) ,

where P = B n B , fits into the theory better than the norm of L(B)

and the equality

||M||+ = ||M|| for every u € L(B) +

holds if the norm of B is a Riesz norm.

This equality is expressed in terms of the norm and order structure of

the ordered Banach space L{B) and, therefore, better understanding of

this equality requires further investigations on the order structure of

L(B) .

To carry out this investigation, we shall use the notion of the half-

norm which has been introduced by Arendt, Chernoff and Kato [?]. As stated

above, B is a real Banach space ordered by a closed and proper cone B .

Then a half norm on B is a real-valued function N on B such that the

following conditions are satisfied:

(1) there exists a constant a > 0 such that N(a) 2 a||a|| for

all a € B ;

(2) N{a+b) < N{a) + N{b) for a, b € B ;

(3) tf(Aa) = M(a) for X > 0 and a € B ;

(U) N{a) + N{-a) = 0 implies a = 0 .

In part icular ,

N(a) = inf{||a+2>|| : b € B+}

i s a half-norm on S and 0 S N(a) 5 ||a|| . This is called the canonical

half-norm of B . Unless otherwise stated, we shall always denote by N

the canonical half-norm of S

I t has been shown in [9] that
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N(a) = sup{f(a) : f € P*} for all a € B ,

where P* = B* n B* and B* denotes the closed unit ball of B* . Since

B_£ is proper, we can define the canonical half-norm of B* :

N(f) = inf{||/+gr|| : g € B*} .

I t has been proved in [9] that

N(f) = sup{/(a) : a € P} for a l l f t B* .

We shall frequently use a simple fact that the norm of B is monotone

if and only if ||a|| = N(a) for every a (. B .

1. Order relations in L(B)

An element u of L(B) is said to be positive if u(a) > 0 for

every positive element a of B . The set of all positive elements of

L(B) is denoted by L(B) and the closed unit ball of L(B) is denoted

by L(B) . We set

P = 1 " L(B)+ .

The dual L(B) * of L(B) is then equipped with the order structure

defined by L(B) . We denote the set of all positive elements of L{B) *

by L(B)* and the closed unit ball of L(B)* by L(B)* . We set

P* = UB)* n L(B)* .

Since B is assumed to be quasi-generating, L{B) is a proper and closed
cone in £(B) . Hence the canonical half-norm

N(u) = inf{||u+u|| : v > 0}

is defined for a l l u € L{B) , and, as we have shown in [9], i t has another
expression

N(u) = sup{F(w) : F € P*} .

We define the second half-norm // on L(B) by

7J(u) = sup{//(w(a)) •. a t P} .

Then, since

N{u(a)) s N(u(a)+v(a)) s ||M+U||
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for a l l a € P and v € L{B) , we have

H(u) 5 N(u) £ ||u|| for all u € L(B) .

Relations among these quantities will be studied in the next section. Here

we shall give some general remarks on the order structure of L{B) .

First , we note that L{B) is not necessarily generating even when B

is a Banach la t t ice . I t is generating if and only if every element of

L{B) is "regular" in the sense of Kantorovitch [3].

Secondly, we can consider N(u*) for the dual u* of u (. L(B) only

when B£ is quasi-generating. When B* is quasi-generating,

N(u*) < N(u) is the "best we can have unless B is reflexive. However,

the second half-norm presents no such difficulties.

(1 .1 ) . ?(u) = N{u*) for every u (. L(B) .

Proof. The def in i t ion of iV(u*) ,

N(u*} = sup{tf(w*(;f)) : / € P*} ,

i s always meaningful and

N(u*) = sup{u*(f)(a) : a € P , f € P*}

= sup{/(u(a)) : a € P , f € P*}

= sup{tf(u(a)) : a (. P} = ~N(u) .

We r e c a l l tha t the norm of L(B) i s monotone i f and only i f

||u|| = tf(u) for every u 6 L(B)+ .

(1 .2 ) . If the norm of L{B) is monotone, the norms of B and B*

are both monotone.

Proof. For a € B and f i B* , we define an element a ® f of

i ( S ) by

(a ® f)(x) = f(x)a for a l l x € S .

Then ||a ® / | | = ||a||||/|| . Now suppose 0 < a < b and f (. P* . Then

0 < f l ® f 2 i ® f and, hence,

\\a\\Wf\\ = ||a®/|| < P OfII = i|i||||/|| •

Therefore the norm of B is monotone. Similarly, it can be proved that

the norm of B* is monotone.

The converse of (1.2) is not true. In contrast to this situation, the
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absolute monotonicity is a symmetric property in the following sense.

(1.3). The following conditions are equivalent:

(1) the norm of L(B) is absolutely monotone;

(2) the norms of B and B* are both absolutely monotone, that

is, the norm of B is a Riesz norm.

Proof. (1) =» (2). Suppose that -b 5 a < b and f (. P* . Then

- i ® / 5 a ® f 5 l i ® / and we have ||a|| < ||£>|| by the same argument as in

(1.2). Similarly, the norm of B* is absolutely monotone.

(2) =* (1). Suppose that -v 5 u 5 V and a € B . Then, for any

e > 0 , there exists b > 0 such that -b 5 a 5 b and ||2>|| < (l+e)||a||

(see [9]). Then

±u(a) = ±ub+a
+ u

b-a (b+a
£ v Fre + v

b-a = v(b)

and, therefore,

\\u(a)\\ s

Hence ||u|| 2 ||v|| .

There is another characterization of Fiesz norms which uses the notion

of orthogonal generation. We say that B is orthogonally generating (see

[6]) if every element a of B has a decomposition a = a+ - a such

that a+ > 0 and ||a|| = ||a++a || . Robinson [4] has observed that, if the

norm of S is a Riesz norm, the dual cone B* is orthogonally generating.

This observation turns out to be an essential one as the following result

shows. We note that u 5 v in L(B) if and only if u* 5 v* for the

duals u* and v* of u and V respectively.

(1.4). The following conditions are equivalent:

(1) the norm of B is a Riesz norm;

(2) B* and B** are orthogonally generating.

Proof, (l) =* (2). When the norm of B is a Riesz norm, the norm of

5* is also a Riesz norm. Hence (2) follows from Robinson's result cited

above.

(2) =» ( l ) . We shall prove that the norm of L(B) is absolutely

monotone. Then (1.3) will imply that the norm of B is a Riesz norm. Now
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suppose tha t ±u S V in L(B) . Let a € B and / 6 B* . We denote by

a the image of a by the imbedding of B in to B** , and l e t

a = <3 = a_ and / = f - f be orthogonal decompositions. Then

f(u(a)) = a{u*(f))
= a+{uHf+)) + a_(u*{f_)) + S+(-u*(/_)) + a_(-u*(/+))
< a+{v*(f+)) + a_(u^(f_)) + a+[v*(fj) + ajy^(/+))

Hence ||w|| < \\v\\ .

I t follows from (l.l() that , if B and B* are orthogonally

generating (then the norm of B is a Riesz norm) , then B** is also

orthogonally generating.

Dr C.J.K. Batty has shown that (l.U) follows from the fact that B+

is absolutely dominated (see [4]) if and only if i t is orthogonally

generating.

2. The norm and the half-norms

For a € 5 and / € B* , we define an element of L{B)* by

(a, f)[u) = f[u(a)) for a l l u € L{B) .

For subsets X c B and Y cz B* , we set

(X, y) = {(a, f) : a € X and / I Y) .

For a subset Z c L(B)* , we define the polars by

2° = {u € L(S) : F(M) 5 1 for every F € Z}

and

Z°° = {F € ^(S)* : F(M) 2 1 for every u € Z0} .

The positive bipolars are defined by

Z+ = Z° n L(B)+ , Z
o+ = Z°° n £(B)* and Z++ = Z+o n

Then the following relation is obvious.

(2.1).

Another relation that always holds is the following.
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(2.2). P* = (fl1, B*)°
+ .

This relation implies that P* is contained in the convex u*-closure

(S1, B*)°° of (B1, B*) •

We now compare two half-norms and the norm on L(B) . We r e c a l l tha t

N(u) = sup{(a, f)(u) : (a , / ) € (P, P*)) ,

N(u) = s\ip{F(u) : F € P*}

and

||M|| = sup{(a, f)(u) : (a, f) € (B1, B*)} .

(2.3). The following conditions are equivalent:

(1) N(u) = ||w|| for all u € £(B)+ ;

(2) P = (P*)+ ;

(3) P is hereditary;

(!+) the norm o / £(B) is monotone.

. +Proof. ( l ) => (2) . Since P c (P*) i s obvious, suppose tha t
;p*:

u € P .

w € (P*) . Then u > 0 and tf(w) 5 1 and, hence, ||M|| 5 1 . Therefore

(2) =» (3). Since (P*) is obviously hereditary, so is P .

(3) =* (U). I f 0 5 M 5 v , then 0 S \\v\\~\ = llull^U and

||u|f1u € P . Hence ||UH"1M € P or ||u|| 5 ||y|| .

(h) •» (1) . This has been proved in [ 9 ] , Theorem 2 .3 .

(2.4). The following conditions are equivalent:

(1) ff(u) = N(u) for every u € L(B)+ j

(2) P* c (p, p<)++ .

Proof. The equality (l) is equivalent to

(P, P*)+ = (P*)+ .

Then P* c (P*)++ = (P, P * ) + + . Conversely, if condition (2) holds and

#(w) < 1 for some u € I(B)+ , then
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u 6 (P, P*)+<= (P, P*)+++ c (P*) +

and h e n c e , N(u) 51 1 . Therefore we have t h e e q u a l i t y ( l ) .

Combining ( 2 . 3 ) and ( 2 . U ) , we have t h e fo l lowing .

(2.5). The following conditions are equivalent:

(1) N{u) = ||w|| for all u £ L{B) +

(2) P = (P, P*)+ .

In relation to condition (2) in (2.U), we note that the equality

P* = (P, P*) does not hold even when B is a Banach la t t ice . In fact,

i f the equality holds, P* is hereditary and, hence, the norm of I(B)*

is monotone. This then implies that L(B) is generating.

3. The Robinson property

We define the Robinson norm \\u\\ for u € L{B) by

||«||+ = sup{||M(a)|| : a € P} .

This norm has been introduced by Robinson [4] and has been shown to play an

essential role in the theory of positive semigroups on ordered Banach

spaces. We shall say that (the norm of) B has the Robinson property if

||M||+ = ||u|| for al l u € L(B)+ .

Robinson [4] has noted that every Banach l a t t i ce , the self-adjoint part of

every C*-algebra and the predual of every f/*-algebra have the Robinson

property. In fact, he has shown that the norm has the Robinson property if

i t is a Riesz norm.

Since

| |u | | + = s u P { ( a , f)(u) : [a, f) € ( P , B*)} ,

the following statement is obvious.

(3.1). The norm of B has the Robinson property if and only if

P = (P, B*)+ .

Note that the equality P = (p, B*) does not imply the mcnotonicity

of the norm of L(B) , which is equivalent to that P is hereditary,

because (P, £*) is not contained in L(B) * . The monotonicity of the
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Robinson norm has simpler character.

(3.2). The following conditions are equivalent:

(1) the Robinson norm is monotone;

(2) the norm of B is monotone;

(3) ff(u) = ||M||+ for all u € L(B)+ .

Proof. (1) =» (2 ) . We f i r s t note t h a t

Ik ® fll+ = N(f)\\a\\ for a € 5 and f € B* .

Since 0 5 a 5 b and f > 0 imply 0 5 a ® f s i > ® / , w e have

IkII s \\b\\ .

(2) =* (3). Since N(a) = ||a|| for every a € S , we have

||u(a)|| = iv(w(a)l for u 2 0 and a > 0 . This implies tf(w) = ||u|| for

u > 0 . Since iV is monotone, i t i s evident that (3) implies ( l ) .

We shall say that (the norm of) B has the Robinson* property i f

||u*|| = ||w*|| for every u € L(B)+ +

Since ||u*|| = ||u|| , th i s i s equivalent to ||u*|| = ||w|| for every

u € L{B)+ •

(3.3). (l) If the norm of B has the Robinson property, the dual

norm is monotone.

(2) If the norm of B has the Robinson* property, then it is

monotone.

Proof. (1) follows from ||<2 ® / | | + = tf(f)|k|| for / > 0 , and (2)

follows from \\(a ® f)*| |+ = ||/||ff(a) for a > 0 .

Now, i f the norm of B i s monotone, we have, by (3 .2) , the following

rela t ion:

H(u) = \\u\\+ 5 N{u) 5 ||u|| for u € L(B)+ .

If we recall that N{u) = ||u|| for a l l u € L(B) i f and only if the norm

of L{B) is monotone, the following statement follows immediately from

(2.U) and (3.3).

(3.4). The following conditions are equivalent:

(l) the norm of B is monotone and has the Robinson property;
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(2) the norm of L(B) is monotone and P* c (p, p*)

(3) the norm of B has the Robinson and Robinson* property.

Since Riesz norms are monotone, the norm of B has the Robinson and

Robinson* proper t ies i f i t i s a Riesz norm.

A norm on B i s cal led an order norm i f

||a|| = N(a) V N(-a) for a l l a 6 B .

Robinson [5] has proved that the norm of B has the Robinson property if

it is an order norm and the dual norm is monotone. The converse is in fact

true and it follows immediately from (3-3) (l).

(3.5). Let the norm of B be an order norm. Then it has the

Robinson property if and only if the dual norm is monotone.

We shall have a more general version of this result in §7.

4. The Robinson property in the duals

Throughout this section, we assume that B is quasi-generating and

normal, so that B is generating. Then the positive cone L(B*) of

L{B*) is proper under the canonical ordering. The second dual B** of B

is also ordered canonically. The positive unit cone of B** is denoted by

P** . For f € P* and ? € P** , we set

(/, 5) (10 = Z{Hf)) for every V € L(B*)

and

(P*, P**) = {(/, O : f € P*, 5 6 P**} .

The the positive polar (P*, P**) is, by definition,

(P*, P**)+ = {V > 0 : (f, £,){V) 5 1 for (/, 5) € (P*, P**)} .

The space B is imbedded in B** and, hence, P is imbedded in P** .

We denote the image of P in P** by this imbedding by the same P .

Then we have the following relation.

(4.1). (P*, P ) + = (P*, P**)+ .

Proof. It is obvious that (P*, P ) + => (P*, P**)+ . To prove the

converse, suppose that V € {P*, P) . Then, for f € P* , we have

V(f) € P° . It has been proved in [9] that P°° = P** when the second
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polar i s taken in B** . Hence $[v(f)) 5 1 for every £, € P** , or

V € (P*, P**)+ .

Next we consider a correspondence between L{B) and L(B*) . For

u € L(B) , the dual u* belongs to L{B*) and i t i s u*-u*-continuous,

tha t i s , i f \f^} i s a net in B* such tha t A ( a ) "* 0 for every

a € S , then {u*(/^l} i s a net in B* such that w * ( / J ( a ) •* 0 for

every a € 5 . Conversely, i f 7 € £(5*) i s u*-u*-continuous, we can

find VA € L(B) such tha t \\Vj = \\V\\ by

V(f)(a) = f(^(a)) for all (a, f) € (5, B*) .

Furthermore, V^ > 0 if and only if 7 2 0 .

(4 .2 ) . The following conditions are equivalent:

(1) ~N(u) = ||u|| for every w € L(B) +

(2) N(V) = ||F|| / o r every positive and w*-w*-continuous element

V of L(B*) .

Proof, ( l ) =* ( 2 ) . Let V be a p o s i t i v e and w*-u*-cont inuous

element of L{B*) . Then V*. € L(B) . Hence, by t h e assumpt ion ,

»(*%) = 11̂ *11 • Now suppose t h a t V € (P*, P**)+ . Then, by ( U . l ) ,

V € {P*, P)+ and, h e n c e , VA € ( P , P * ) + . Therefore VA € P by ( 2 . 5 ) ,

t h a t i s , | |VJ| < 1 . Then, again by ( 2 . 5 ) , we have lf(V) = ||K|| .

(2) =* ( 1 ) . For u € L(B)+ we have ff(u*) = ||u*|| . Hence, by ( l . l ) ,

we have N(u) = ||M|| .

An immediate c o r o l l a r y i s t h e fo l lowing .

(4 .3) . if H(V) = \\V\\ for every V € L(B*)+ , then ~N(u) = \\u\\ for

every u £ L{B)

The following i s another immediate corol lary . In view of (3 .3 ) , the

assumption tha t the norms of B and B* are monotone i s not r e s t r i c t i v e .

(4 .4) . Suppose that the norms of B and B* are montone.

(1) The norm of B has the Robinson property if and only it has the

Robinson* property.

(2) If the dual norm has the Robinson property, then the norm of B

has the Robinson property.
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5. The ^-decompositions

As a preparation for obtaining another sufficient condition for the

Robinson property, we shall introduce the notion of tf-decomposability and

give some of i ts basic properties.

When B is a Banach lat t ice or the self-adjoint part of a C*-

algebra, we always have

N(a) = \\a || for every a € B ,

where a denotes the "positive part" of a . Hence, in these cases,

every element has a decomposition a = a -a such that a > 0 ,

N(a) = ||a+|| and N(-a) = \\a_\\ .

In general we call B N-deeomposable if every element of B has an

iV-decomposition, that i s , a = a+ - a_ with a+ > 0 , N(a) = ||a+|| and

N(-a) = \\a || . An element may have more than one .^-decomposition.

However, a positive element a (. B has a unique ^-decomposition

(a, 0) .

If B is iV-decomposable, B is obviously generating and,

furthermore, the norm of B is monotone because N(a) = ||a|| for every

a € B . Hence S* is also generating.

(5.1). The following conditions are equivalent:

(1) B* is N-decomposable;

(2) for every a £ B and f € B* ,

f(a) 2 N(f)N{a) + N(-f)N(-a) .

Proof. (1) =» (2). Let f = f+ - f be an ^-decomposition of

f € B* . Then, for each a € B ,

f(a) = f+(a) + fj-a) S ||f+||ff(a) + ||/_||ff(-a)

5 N(f)N(a) + fH-f)N(-a) .

(2) =* (1). Let f € B* and set

q(a) = !l(f)N(a) and r(a) = f(a) + N(-f)N(a) .

Then we have

0 2 q(a) + r(-a) for a l l a € B .

Therefore, by the double Hahn-Banach theorem [9] , there exists g € B*
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such t h a t g(a) S q{a) and g(a) 5 r(a) fo r every a d B . Then f+=9

and / = g - f supply an iV-decomposition of f .

As t h e fo l lowing r e s u l t shows, B* i s iV-decomposable i f B i s

^-decomposable .

(5.2). The following conditions are equivalent:

(1) B is N-decomposable;

(2) (i) B* is N-decomposable,

(ii) aP - 3P is closed for every a > 0 and 3 > 0 .

Proof. (l) =» (2). Let (a , a ) be an ^-decomposition of a i B .

Then, for f € B* ,

f(a) = /(a+) + (-f)(a_) 5 ff(f)||a+|| + ff(-/)||a_||

5 N(f)N(a) + N(-f)N(-a) .

The re fo re , by ( 5 - 1 ) , 5 * i s ^-decomposable . Next , t o prove (2) (ii),

suppose t h a t a = ob - &c , b € P , e € P and a ->• a . Let

(a , a ) be an ^-decompos i t ion of a . Then, s i n c e

| |a+ | | = N(a) = l i m il?(a ] , It [a ) S iv(ab ) 2 a ,

and

||a || = N(-a) = lim s[-a) , n[-a) S ff(0eJ = 6 ,
n-KO

where have a € aP and a € BP • Hence aP - 3P is closed.

(2) =* (1). Suppose that there exists a (. B such that

a £ ff(a)P - tf(-a)P . Since N(a)P - N(-a)P is closed and convex, there

exists f € B* such that

f(a) > sup{f(x) : x € N(a)P-N(-a)P]

= N(f)N(a) + N(-f)N(-a) ,

which is a contradiction. Hence <z € N(a)P - N(-a)P for every a € B and

therefore S is tf-decomposable.

Condition (2) (ii,) is satisfied by al l Banach latt ices and also the

self-adjoint parts of C*-algebras because they are ^-decomposable.

Furthermore, al l the duals satisfy this condition because of

u*-compactness of P* . Therefore
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(5.3). B* is N-decomposable if and only if B** is

N-decomposable.

An ordered Banach space B will be called N-decomposable if every

element a £ B admits a decomposition a = a -a such that a+ € B

and N(a) = \\a+\\ . We have proved in [9] that B* is ^-decomposable if

and only if the norm of B is monotone.

(5.4). The following conditions are equivalent:

(1) B is N^-decomposable;

(2) (i) the norm of B* is monotone,

(ii) P - B is closed.

Proof. (1) =» (2). I t has been proved in [9] that the norm of B* is

monotone if and only if, for any a € B and e > 0 , there exist a+ € B

such that a = a - a_ and \\a || 2 (l+e)||a|| . When B is If -

decomposable, the condition is satisfied with e = 0 . To prove that

P - B i s closed, suppose that b - c •> a for b € P and c € B
+ n n n n +

Let (a , a ) be an N -decomposition of a . Then, since N\a-b J •* 0

and N[b ) S I , we have #(a) * 1 , or equivalently, a+ € P . Therefore

a € P-B+ .

(2) =» ( l ) . The norm of B* is monotone if and only if

p* = B* n (P*-B*) .

The polar (B* n (P*-B*))° of the right-hand side coincides with P - S+ ,

and

(P*)° = 5(/V) = {x € S :

Hence B(N) = P - B and, since P - B is closed, we have

B(N) = P - B+ ,

which exactly means that B is N -decomposable.

This, in particular, implies that the norm of B* is monotone if the

norm of B is monotone.

6. Spaces of type (N, p)

We set
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y (a) = [N{a)P+N{-a)P)1/p for a € B

and

V>p(/) = {N(ff+N(-f)P)1/p for / € B* ,

where 1 5 p 2 °° . We include the case when p = °° :

yoo(a) = N{a) V N(-a) for a € S

and

^(.f) = #(/) V #(-/) for f (. B* .

Furthermore, we set

V*(f) = sup{/(a) : Vp(a) 2 l} for / € B*

and

V (a) = sup{/(a) : V (f) ̂  l} for a € B .

The following relations are obvious.

(6.1). (i) \ija) < y (a) £ y^a) for a € S .

(ii) y m 5 y m s y,(f) for / € B* .
a> p J.

( i i i ) y*(/) < y*(/) 5 y*(/) for f t. B* .
1 p °°

(iv) y (a) < y (a) s yoo(a) for a £ B .

(v) u (a) = N{a) for a € 5 + ; u(f) = il/(f) for / € B* .

(vi) y#(a) 5 ||a|| for a € S+ ; y*(/) 5 | | / | | for f ( S* .

1/p
Since ^ S p < 2 ryoo when 1 5 p 5 °» , it is easy to see that

y , y* and y are all equivalent continuous norms on the spaces where

they are defined. We also have the following relations.

(6.2). Vp(a) = sup{/(a) : v*(f) < l} and

P\f(a) : y#(a) syp(f) = suP{
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Proof. Since \*Aa) - sup{/(a) : \i*(f) 5 l} i s obvious, we only need

to construct h 6 B* such tha t \i*(h) 5 1 and h(a) = y (a) . For t h i s

purpose we take f € P* and g € P* such that f(a) = N(a) and

g'(-a) = N(-a) (see [6 ] ) . Now suppose tha t p < °° and set

Then h(a) = y (a) and

u * W = sup{?J(x) : u (a:) 5 i }

= 1 .

When p = °° , for the same / and g as above, we have !*£(/) - 1 ,

\i£(g) 5 1 and \ija) = f(a) V g(a) . Hence

Vja) S sup{f(a) : y*(/) < 1} .

The second equal i ty can be proved in the same manner.

We sha l l always denote p / (p - l ) by q . When p = 1 or p = °° ,

then i? = °° or q = 1 respect ively.

(6 .3 ) . ( l ) For any a+ € 5 sue/z t?zo:t a = a -a ,

up(a) s y*(a) + _

(2) For am/ f+ € B* such that f = f+ - f_ ,

u p ( / ) S y*(/)

Proof. Choose f and g , and define ?2 in the same manner as in

( 6 . 2 ) . Then h(a) = y («) and

Vq(hf = N(hf + ff(-^)<?

If
Therefore V> ( a ) - ^A^) •

Next l e t a = a+ - a_ and a+ € B+ . Then, for / € S* ,
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f(a) = fta+) + (-/)(a_) 5 ff(/)||a+|| + N(-f)\\a_\\

I t then follows that pj(a) 5 (||a+||P+||a_||P)1/p .

When p = oo and. q = l , the relation we need to prove is

uja) 5 MJ(a) 5 ||a+|| v ||a_|| .

To prove this we take / € P* such that /(a) = N(a) . Then, since

P1(f) = N{f) £ 1 by (2.1) (vi), we conclude that N{a) i u*(a) .

# §

Similarly, N(-a) 5 y (a) , and, therefore, M Ĉa) £ P,(a) • The proof for
u

p.(a) S ||a || V ||a || is the same as above. Thus (l) has been proved and

(2) can be proved similarly.

As a corollary, we have the following relations.

(6.4). ( l) Suppose that B is N-decomposable. Then

Vp(a) = J(a) for all a € B .

(2) Suppose that B* i s N-decomposable. Then

V if) = V*(f) for all f € B*

Proof. We only need to take iV-decompositions (a , a_) or ( / , / )

in the right-hand sides of (2.3).

We say that B is of type (N, q) i f ||<z|| = ]i (a) for a l l a € B .

Then (2.4) implies the following.

(6.5). (l) Suppose that B is N-decomposable. If B* is of type

(N, q) , then B is of type (N, p) .

(2) Suppose that B* is N-decomposable. If B is of type

{N, q) , then B* is of type (N, p) .

Next we consider the relations between the spaces of type (N, <*>) and

of type (N, 1) . The following facts are fundamental.

(6.6). (1) ||a|| < P1(a) for every a € B if and only if B* is
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positively generated, that is, B* cz p* _ p* .

(2) llfH < Vx(f) for every f € B* if and only if Bx is positively

quasi-generated, that is, B cr P - P .

Proof. Suppose that ||a|| 5 V (a) for a l l a € B . Then B(u ) c s

where B (y ) = {a € S : u (a) 5 l} . Since we have B(U )° = P* - P* for

the polar B (y ) ° of S (y ) , we can conclude that B* c P* - P* .

Conversely, i f B* is positively generated and / € S* there exist

/ + € P* such that f = f+ - f_ •

(a) = f+(a) - fja) 5

and hence, ||a|| 5 V^a) .

We can prove (2) in a similar manner by using the relation

Bh/j = P~^T , where B U / | = la € B : y^(a) 2 l | .

We can now characterize those spaces of type (N, °°) whose duals are

of type (N, 1) .

(6.7). Let B be of type (N, °°) . Then the following conditions

are equivalent:

(1) B* is of type (N, l ) ;

(2) B is positively quasi-generated;

(3) B* is N-decomposable.

Proof. (1) =* (2) . B* i s of type (ff, l ) i f and only i f

ll/ll = ^ ( f ) for every f € B* . Hence (6.6) implies that B± i s

pos i t ive ly quasi-generated.

(2) °* (3) . By the Grosberg-Krein theorem (see [2] and [ 6 ] ) , every

f € B* admits a Jordan decomposition

f=f+-f_, f± € B* and ||/|| = | |/+| | + II/JI .

I t i s obvious tha t N(f) £ | | / + | | and iy(-f) 5 ||f_|| . However, by (6 .6 ) , we

have Il/H S N(f) + iV(-/) . Therefore N(f) = \\fj and W(-/) = | | /_| | . In
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other words, Jordan decompositions are ^-decompositions when B is

positively quasi-generated.

(3) =* ( l ) . This follows immediately from (6.5).

REMARK. Suppose that B has an order unit e such that ||e|| = 1

and i t s norm is of the form

IMI = infU > 0 : -Ae 5 a 5 Xe} .

Then

N(a) = infU > 0 : a 5 Xe} ,

and B is of type (N, <*>) . For every a € B ,

a = *(IHkKz) - h(\\a\\e-a) ,

and, hence, B is positively generated. Therefore B* is of type

(N, l) and the Jordan decompositions are ^-decompositions. Since B is
f «)

positively generated, Bdi^) = B c p - P . However B(\im) = Bhr =P - P .

Therefore P - P is closed. Note that the decomposition of a ,

a+ = h(\\a\\e+a) and a_ = %(||a||e-a) ,

is an orthogonal decomposition and

||a|| = ff(a) V N{-a) = ||a++a_|| = ||a+|| v ||a_|| .

However these are not enough to conclude that (a+>
 a ) is an

/^-decomposition of a . Note also that the equality

a = N{a)e -

shows that B is N -decomposable and, hence, P - B+ is closed.

7. The Robinson property and spaces of type (N, p)

The connection between the Robinson property and the spaces of type

(N, p) is based on the following fact, which is a generalized version of

(3 .5 ) .

(7.1). Suppose that every f 6 B* admits a decomposition

f = / + - f_ such that f+ > 0 and

\\f+\\H(a) + WfjN(-a) < HflllMI for all a 6 S .
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Then N(u) = \\u\\ for all u € L(B) + if and only if the dual norm is
monotone.

Proof. Let u € i ( S ) + , a i B and f d B* . Then

f{u(a)) = f+{u(a)) + fju(-a))

< \\f+\\N{u(a)) + ||/_||iv(M(-a)) .

Suppose that the dual norm is monotone. Then there exist b > 0 and

o 2 0 such that

bn > a , e^ 2 -a , ||Z?J| 5 ff(a) + l /n and HêH < N(-a)

Then, since u > 0 ,

f{u{a)) 5 ||f+||ff(u(2>J) + ||

Therefore we have ||w|| 5 V̂(w) and, hence, ||w|| = N{u) . Conversely, if
||w|| = N{u) for a l l u € L(S) , the norm of L{B) is monotone. Therefore
the dual norm is monotone.

As a corollary, we have a sufficient condition for the Robinson
property.

(7.2). Suppose that B is of type {N, p) and B* is
N-deaomposable. Then B has the Robinson property.

Proof. By (6.5) the dual norm i s of type (N, q) and, for an

^-decomposition f = f - f of f € B* , we have

WfjN(a) + \\f_\m-a) = «{f)Ha) + N(-f)N{-a)

S iHf)q+H-f)q)1/q{Ha)P+N(-af)1/p = H/HNI .

Furthermore, since the norm of B is monotone, we have N(u) = ||w|| for

u € L(B) . Therefore S has the Robinson property.

I t follows from the remark at the end of the previous section that the

space whose norm is an order unit norm has the Robinson property.
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