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ON LINEAR PLANES
AVINASH SATHAYE

ABSTRACT. A linear plane over a ground field k is an algebraic surface in
affine 3-space over k which is biregular to the affine plane and whose
equation is linear in one of the three variables of the 3-space. In this note we
give a concrete description of a linear plane over a field of characteristic
zero, thereby proving it to be an embedded plane, i.e. we show that by an
automorphism of the affine 3-space, it can be transformed to a coordinate
plane.

1. Introduction. Let 4 (n, k) denote a polynomial ring in n-variables over a
domain k, which we (geometrically) call the affine n-space over the ground
domain k. By a hypersurface in A(n, k) we mean any nonunit principal ideal,
say (f), f € A(n, k). If there is no confusion we will simply say that “f is a
hypersurface in 4 (n, k)”.

Now let k£ be a field. A hypersurface f is defined to be

(1) a hyperplane over k in A(n, k), if A(n, k)/(f) = A(n — 1, k);

(2) a general hyperplane over k, if A(n, k)/(f + A ~ A(n — 1, k) for all
A € k, where k = the algebraic closure of k;

(3) a generic hyperplane over k, if A(n, k(T))/(f — T)= A(n — 1, k(T)),
where T is an indeterminate over k;

(4) an embedded hyperplane over k, if

A(n, k) = B[ f], where B~ A(n — 1, k);

(5) a linear hypersurface over k, if A(n, k) = B[Z], with B~ A(n — 1, k)
and Z € A4 such that f = aZ + b witha, b € B, a # 0;

(6) a linear hyperplane over k, if f is both a linear hypersurface and a
hyperplane.

As usual, when n < 3 we drop “hyper” and for n = 2 replace the words
surface and plane by curve and line respectively.

Now assume that either

(*) f is a hyperplane, or (as possibly stronger hypothesis)

(%) f is a linear hyperplane.

For each n > 1, the following questions arise naturally.

Q(l.n). Is f a general hyperplane over k?

Q(2.n). Is f a generic hyperplane over k?

Q(3.n) (Epimorphism problem). Is f an embedded hyperplane over k?
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Note that “yes” to Q(3.n) clearly implies “yes” to Q(l.n)and Q(2.n). Also
note that for n = 1, the answer is (trivially) “yes” to all questions.

For n =2 and char kK = 0, Abhyankar and Moh gave an affirmative
answer to all questions by the Epimorphism Theorem, which is an affirmative
answer to Q(3, 2), with hypothesis (*) [AM].

For n = 2 with hypothesis (*), and char k = p # 0, Q(3.2) and Q(2.2) are
known to have a common counterexample, namely

f=yP —x—x¥ € k[x,y] ~ A2, k).

It is easy to see that the same example serves as a counterexample to Q(2.n)
and Q(3.n) in general. We point out that as yet no counterexamples to Q(1.2)
seem to be known.

With hypothesis (x*) and »n = 2, however, it is trivial to show that the
answer to all questions is affirmative even in characteristic p # 0.

In this note, we prove the first step for n = 3, by proving the

THEOREM. If char k = 0, then any linear plane in A(3, k) is an embedded
plane.

I would like to thank Professor Heinzer and Mr. Gurjar for stimulating
conversations on this problem.

In [R] Peter Russell has established our Lemma 3 in any characteristic,
thereby establishing the Theorem for arbitrary field k.

2. Proof of the Theorem. First we introduce some notation to be fixed
throughout.

NoTATION. Write A(3, k) = C[Z] such that H € C[Z] is a linear’ plane
linear in Z and C~ A(2, k). If K denotes the quotient field of C then
K[Z] = K[H]. Thus there is a retract ¢: K[Z] — K with kernel H. Write

H=gZ-f gfeC

Then ¢(Z) = f/g. Restriction of ¢ to C[Z] gives a map C[Z]— C[f/g]
which is the identity map on C. We denote C[f/g] ~ C[Z]/(H) by B. By
hypothesis B ~ A(2, k) =~ C.

The theorem will be proved, when we show H to be an embedded plane over k.

LEMMA 1. Assume that k is of arbitrary characteristic p. If f,, f, are two lines
in C such that (f,, f,)C = C then there exist ¢, d € k such that

L=cff+4d c#0.
PrROOF. Note that the only units modulo a line are constants (nonzero

elements in the image of kK modulo the line). Since f, is a unit moduio f,, we
get

fHi=cfi+d, 0+# ¢, €C,d Ek.
Similarly we can write
fi=cfh+d, 0#c,e C,d,Ek.

Comparing degrees with respect to any choice of x, y with C = k[x, y], we
easily see from the above two equations that
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degree f, = degree f, and degree ¢, = degree ¢, = 0.

The desired equation now follows.
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COROLLARY 1. Let h € k[x, y] = C and k' a separable extension of k.
Assume that

such that u; € k'[x, y] =~ A2, k') are distinct lines over k'. Moreover assume
that (u, w)k'[x, y] = k'[x, y), for i # j. Then there exist ¢, d; € k' and
u € k[x, y] such that

(*) u, = c(u+d).

Further, Ilic/" = c is in k and hence
S
=cll(u+d)-
1

PrROOF. From Lemma 1 we can certainly find u € k’[x, y] such that (%) is
satisfied. We start with such a choice and modify it to get it to be in k[x, y].

By making an automorphism of k[x, y] we can assume that the coefficient
of the top y-degree in u is some nonzero e € k’; and replacing u by u/e we
get that u is monic in y.

We will now show that all coefficients of u except possibly the constant
term belong to k.

Let 0 be an isomorphism of k'/k. By o(u) we shall denote the result of
acting o on all coefficients of u.

If u € k[x, y], then we are finished with the proof. Otherwise we can
choose an isomorphism of k’/k such that ¢(u) # u. By the expression of #,
we geto(u) = au + b,a, b € k'.

Since o(u), u are both monic in y, we get a = 1. Thus o(u) — v € k'.

Since this is true for any k-isomorphism of k£’ and since k’/k is separable,
we get that all coefficients of u but the constant term d say, belong to k.

Replacing # by u — d, we get the desired expression because ¢ € k is
obvious by comparing the top degree coefficient of y on both sides.

LEMMA 2. Let k'/k be a separable algebraic extension. If u € k[x, y] = C
C k'[x,y] is a line over k', then u is already a line over k.

Proor. Let R = k[x, y]/(u) and R’ = k’[x, y]/(u). As usual, we may
assume kK C R C R’ and k' C R’ by identifying isomorphic rings. Further,
by extending k' if necessary we may assume k' is Galois over k.

Let a € R be algebraic over k. By assumption R’ = k'[¢] for some . Hence
a € k’. Choose h € k[x, y] to be some preimage of a. If a # 0, then A is unit
modulo (#)k’[x, y] and hence a constant modulo (u)k[x, y], i.e.

(1 h=u(x,y)p(x.y) +a*,  a* €Kk, p(x,y) € k'[x,y].
Let ¢ be any k-automorphism of k’. Then applying o to (1)
@) h=u(x,y)o(p(x.y)) + a(a*).

Subtracting (1) from (2) we conclude that u(x, y) divides a* — o(a*) in
k'[x, y]. Thus a* = o(a*). Since this holds for each ¢, a* is fixed by each
@ BRI tHE GBS BTOUB ard P HeEer g gegrsotse

Thus k is relatively algebraically closed in R. It is easy to see that we can
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replace k' by some finite extension k* of k with k* C k’ such that u €
k*[x, y] is a line over k*, since we need to include in k* only the coefficients
of polynomials expressing images of x, y modulo u in terms of ¢ and ¢ in
terms of images of x, y modulo u. Since R is clearly normal (say by the
Jacobian criterion) we can apply (2.9) of [AEH] to get that R = k[t*] for
some t* € R. Thus u € k[x, y] is a line over k.

REMARK. If K is a field of characteristic zero and u € K[x, y]~ A2, K) is
a line over K, then there exists a v € K[x, y] such that v is in the ring
generated by the coefficients of u and K[u, v] = K|[x, y].

This version of the Epimorphism Theorem can be deduced from [AM] by
observing that o, in their terminology, is an “approximate root” of u and
hence has the above stated property.

Thus in the above Lemma 2, we can find © € k[x, y] such that
k'lu, v] = k'[x, y]. Writing x,y as polynomials in u, v over k' and taking
“trace” it is easy to check that then k[x, y] = k[u, v].

LEMMA 3. With the basic notations introduced at the beginning of this section
we get the following. If char k = 0, then there is an embedded line u in C over k
such that

s
g=cll(u+d), r>0,
1

where ¢ € k and {d,} are distinct elements algebraic over k.

ProOF. First suppose that the result is already true when k is replaced by
its algebraic closure, say k’. In view of Corollary 1, ¥ may be assumed to be in
k[x, y] and in view of Lemma 2, u is an embedded line over k. Thus we may
assume that k is algebraically closed.

Let OU = {M,, ..., M.} be the set of all maximal ideals in C containing f,
g. Clearly B/M,B ~(C/M)[Z])~ k[Z]. Hence by the Epimorphism
Theorem [AM] each M;B is an embedded line over k (in B). Let u,B = M,B.
Clearly g has a factorization in B,

5
g = Hu,"', r,> 0.
1

Also, it is clear from w,B = M,B that (u,, w)B = B, ifi#j.

The expression for g follows by applying Corollary 1 (with k = k’). It
remains to check that u is already a line over k in C.

Choose A € k such that u + A = u + d, fori = 1,...,s. We see that the
image of f/g modulo (¥ + A)B is contained in the image of C modulo
C N (u+ A)B, and hence B/(u + A\)B = C/(u + NC.

Now u + A is clearly an embedded line over k in B ~ 4 (2, k), and hence
we get

B/(u+AB=~A(l,k)~ C/ (u+ ANC.
Then u + A is an embedded line in C over k and hence so is u.

., LEMMh;;\ ?‘Let ‘b‘e as bltn themc”onclus:o/n f Le¢nma 3. Let v € C such that
i[of or cop! Ig restrictiol ply to redistribution; see p://www.ams. ng journal-i ermso use
%T yj C;Zefyf—ao ao+ -+ +a,v” a € k[u]. Then:

(1) a, is a unit in k[u] modulo g.
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) ay, . .., a, are nilpotent in k[u] modulo g.

PROOF. Let k' be the algebraic closure of k. Clearly, we only need to show
that

(1*) a, & (u+ d)k'[u],fori=1,...,s; and
2% a € (u+d)k[u],fori=1,...,sandj=2,...,n

Since the hypothesis about f, g, ¥ and H is unchanged if k is replaced by k’
we may assume that k = k', i.e. k is algebraically closed.

Let, as in Lemma 3, M, = (u + d)B N C and let M* € C[Z] be the
preimages of M, under . Then it is clear that

M} = (u+d,gZ ~ f)C[Z] = (u + d, ))C[ Z].
Hence we get that
M,=(u+d,f)C=Mrn C.

Thus f generates a maximal ideal in C modulo(u + d4;) and hence the image
of f in the canonical homomorphism C — C/(u + d,) is a ring generator of
C/(u + d;) over k. Since image of v has the same property (1*) and (2*) are
easily seen.

REMARK. In the above proof, if we simply assume ¥ € C to be a line over k&
(not necessarily embedded, as may happen in characteristic p # 0) then we
still get that the image of f modulo (¥ + d) in C is a ring generator.

Moreover, if Q (1, 2) could be answered in the affirmative in characteristic
p # 0, then one could modify Lemma 3 to prove that ¥ + 4, is a line in
k[x, y] over k (if k is algebraically closed).

Now let S be any ring and S[V] a polynomial ring over S. A sequence. (c,,
¢y - -5 C,) in S is said to be a generator sequence if

(1) ¢, is a unit in S, and

2)c,, ..., c, are nilpotent in S.

LEMMA 5. Let S[V] be as above and let h = cq+ ¢,V + - + ¢, V" E
S[V] where (cy, ¢y, ...,c,) is a generator sequence. Then there exists a
generator sequence (0, cf, ..., c¥) in S and some ¢ € S such that

h=ct(V+c)y+- - +cXx(V+o)

In other words,

h = (V + c) (unitin S[V])
and hence
(V + ¢) = h (unit in S[ V)).

REMARK. The reason to call (¢, ¢}, . . ., ¢,) a generator sequence is that the
corresponding h = ¢5 + ¢,V + - - - + ¢, V" is a ring generator of S[V] over
S.

If his a ring generator then it is easy to check that (cg, ¢y, ...,¢,) is a
generator sequence. To see the converse, let T be an indeterminate over S[V].
Apply the Lemma to h — T and S[T] in place of h and S, to get some
ljeegm ogc[aq]‘g]n St TPoH orediggugen: (thtq/_/w%ﬂs[oTj][rvﬂ-Frms-of-use

Leto: S[V][T]— S[T] be defined by 6(V) = —c,0(T) = Tand o(s) = s
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for s € S. The restriction of o to S[V]is an S-isomorphism taking s to T. It
follows that S[V] = S[hA].

Proor. For any generator sequence (eg, ..., e,) in S we define a new
generator sequence (7(ep), . . . , 7(e,)) as follows.

Let e = eye; . Write 7(V) = V + e. Then A(V) has a unique expression

h(Vy=e,+ef(V+e)+ - - +e(V+e), e ES.

We define (7(ep), . . ., 7(e,)) = (e, . . ., €,), which can be checked to be a
generator sequence.

By iteration of 7 on (¢, . . ., ¢,) We see that for large enough m we have,

T™(ce) =0, 7™(V)=V + ¢ forsomec € S.

The proof is done by taking (¢f,...,c¥H) = (t"(cp), ..., 7™(c,)) and

V+c=1t").

COROLLARY 2. Let T be an indeterminate over C[Z]. Let ®: C[T]Z]
— C[TII(f + T)/g] be the unique epimorphism which is identity on C[T) and
carries Z to (f + T)/g. Clearly ® has kernel H — T.

Let C = k[u, v] as in Lemma 4. Then there exists ¢ € k[u, T] such that
v+c=P(f+T)+ Qg where P= P(T), Q = Q(T) € C[T].

PROOF. Apply Lemma 5 with S = k[u, T)/g, V =vand h = f + T; using
Lemmas 3 and 4 to check the hypothesis.

COROLLARY 3. In the notation of Corollary 2 let z* = ®(Z), v* = v + c.

Then we have
®(C[T][Z]) = k[T, u, Pz* + Q].

PROOF. Let R = k[T, u, Pz* + Q]. Since g € k[u] C R we get that v*
= g(Pz*+ Q) € R. Also write f+ T = b} + bf(v*) + - - - + b¥(v*)"
where b* € k[T, u] and b € (g)k[T, u], as obtained by the application of
Lemma 5 performed in Corollary 2. Then

n
z* =X b*g"""(Pz* + Q)'ER
0

since g, b¥g~' € k[T, u] C R.
It is now clear that
®(C[T][Z]) = ®(k[u,v, T, Z]) = k[u, 0, T, z*] = k[u,v*, T,z*] C R.

Since the opposite containment is clear, the proof is finished.
PrROOF OF THE THEOREM. We claim that

C[Z] = k[H,u,P(H)Z + Q(H)]
and this will clearly establish the theorem. For proof, let F € C[Z]. Then
there exists a polynomial F*(X, Y, Z) € k[X, Y, Z]~ A(3, k) such that
O(F) = F¥(T, u, Pz* + Q).
But then using ®(7T) = ®(H) we get that
®(F - F*(H,u,P(H)Z + Q(H))) =0,

Licei\seeor copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



LINEAR PLANES 7

F— F*H,u,P(H)Z + Q(H)) = (H — T)F**,

where F** € C[T]Z].

Putting T = H on both sides we get F = F*(H, u, P(H)Z + Q(H)). The
claim now follows.

REMARK. The above proof can be easily generalized to the following
criterion for embedded hyperplanes. Let T be an indeterminate over A4 (n, k).

H € A(n, k) is an embedded hyperplane over k < A(n, k)[T)/(H — T)
~A(n - 1), k[T) o A(n, k[T))/(H — T)~ A(n — 1, k[T)).

This also provides an alternative definition (4) in the introduction.
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