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ON LINEAR PLANES

AVINASH SATHAYE

Abstract. A linear plane over a ground field k is an algebraic surface in

affine 3-space over k which is biregular to the affine plane and whose

equation is linear in one of the three variables of the 3-space. In this note we

give a concrete description of a linear plane over a field of characteristic

zero, thereby proving it to be an embedded plane, i.e. we show that by an

automorphism of the affine 3-space, it can be transformed to a coordinate

plane.

1. Introduction. Let A(n, k) denote a polynomial ring in «-variables over a

domain k, which we (geometrically) call the affine n-space over the ground

domain k. By a hypersurface in A(n, k) we mean any nonunit principal ideal,

say (/), / G A(n, k). If there is no confusion we will simply say that "/ is a

hypersurface in A (n, k)".

Now let A: be a field. A hypersurface / is defined to be

(1) a hyperplane over k in A(n, k), if A(n, k)/(f) « A(n — 1, k);

(2) a general hyperplane over k, if A(n, k)/(f + A) m A(n — 1, k) for all

A G A, where k = the algebraic closure of k;

(3) a generic hyperplane over k, if A(n, k(T))/(f — T) ta A(n — 1, k(T)),

where T is an indeterminate over k;

(4) an embedded hyperplane over k, if

A(n,k) = B[f],    where B^A(n - 1, A:);

(5) a linear hypersurface over k, if A(n, k) = B[Z], with B ?» A(n — 1, k)

and Z G A such that/ = aZ + b with a, b G B, a ^ 0;

(6) a linear hyperplane over k, if / is both a linear hypersurface and a

hyperplane.

As usual, when n < 3 we drop "hyper" and for n = 2 replace the words

surface and plane by curve and line respectively.

Now assume that either

(*)/is a hyperplane, or (as possibly stronger hypothesis)

(**)/is a linear hyperplane.

For each n > 1, the following questions arise naturally.

Q(l./j). Is/a general hyperplane over kl

Q(2./?). Is /a generic hyperplane over kl

Q(3.«) (Epimorphism problem). Is/an embedded hyperplane over A;?

-
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Note that "yes" to Q(3.«) clearly implies "yes" to Q(l.«)and Q(2.«). Also

note that for n = 1, the answer is (trivially) "yes" to all questions.

For n = 2 and char k = 0, Abhyankar and Moh gave an affirmative

answer to all questions by the Epimorphism Theorem, which is an affirmative

answer to Q(3, 2), with hypothesis (*) [AM].

For n = 2 with hypothesis (*), and char k = p i= 0, Q(3.2) and Q(2.2) are

known to have a common counterexample, namely

/ = /-x-x2pe k[x,y] *tA(2,k).

It is easy to see that the same example serves as a counterexample to Q(2.«)

and Q(3./?) in general. We point out that as yet no counterexamples to Q(1.2)

seem to be known.
With hypothesis (**) and n = 2, however, it is trivial to show that the

answer to all questions is affirmative even in characteristic p ^ 0.

In this note, we prove the first step for n = 3, by proving the

Theorem. // char k = 0, then any linear plane in A (3, k) is an embedded

plane.

I would like to thank Professor Heinzer and Mr. Gurjar for stimulating

conversations on this problem.

In [R] Peter Russell has established our Lemma 3 in any characteristic,

thereby establishing the Theorem for arbitrary field k.

2. Proof of the Theorem. First we introduce some notation to be fixed

throughout.

Notation. Write A(3, k) = C[Z] such that H G C[Z] is a linear plane

linear in Z and C « A (2, k). If K denotes the quotient field of C then

K[Z]= K[H]. Thus there is ¿retract t/,:K[Z] -> K with kernel H. Write

H = gZ-f;       gjBC.

Then tp(Z) = f/g. Restriction of i// to C[Z] gives a map C[Z] -> C[f/g]

which is the identity map on C. We denote C[f/g] « C[Z]/(H) by B. By

hypothesis B at A (2, k) « C.

The theorem will be proved, when we show H to be an embedded plane over k.

Lemma 1. Assume that k is of arbitrary characteristic p. Iffvfi are two lines

in C such that (/,, f2)C = C then there exist c, d S k such that

f2 =cfl + d,       c^ 0.

Proof. Note that the only units modulo a line are constants (nonzero

elements in the image of k modulo the line). Since/2 is a unit modulo /,, we

get

/2 = c, /■, + dv       0 ¥= c, G C, d, 6 k.

Similarly we can write

/, = c2f2 + d2,       0 ^ c2 G C, d2 G k.

Comparing degrees with respect to any choice of x,y with C = ^[^,7], we

easily see from the above two equations that

degree/, = degree f2    and    degree c, = degree c2 = 0.

The desired equation now follows.
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Corollary 1. Let h G k[x, y] = C and k' a separable extension of k.

Assume that

s

h = Jluf\     r,. >0,
i

such that w, G k'[x, y] as A(2, k') are distinct lines over k'. Moreover assume

that (u¡, Uj)k'[x, y] = k'[x, y], for i =£ j. Then there exist c¡, d¡ G k' and

u G A[x, 7] such that

(•) u, = c¡(u + d¡).

Further, TJ^ c/' = c is in k and hence

s

h = cll(« + dif.
1

Proof. From Lemma 1 we can certainly find u G k'[x, y] such that (*) is

satisfied. We start with such a choice and modify it to get it to be in A[;c, 7].

By making an automorphism of k[x, y] we can assume that the coefficient

of the top ^-degree in u is some nonzero e G k'; and replacing u by u/e we

get that u is monk iny.

We will now show that all coefficients of u except possibly the constant

term belong to k.

Let a be an isomorphism of k'/k. By a(u) we shall denote the result of

acting a on all coefficients of u.

If « G k[x, y], then we are finished with the proof. Otherwise we can

choose an isomorphism of k'/k such that a(u) J= u. By the expression of h,

we get a(u) — au + b, a, b G k'.

Since a(u), u are both monic iny, we get a = 1. Thus a(u) — u G k'.

Since this is true for any A-isomorphism of A' and since k'/k is separable,

we get that all coefficients of u but the constant term d say, belong to A.

Replacing u by u — d, we get the desired expression because c G A is

obvious by comparing the top degree coefficient of y on both sides.

Lemma 2. Let k'/k be a separable algebraic extension. If u G k[x, y}—C

C k'[x, y] is a line over A', then u is already a line over A.

Proof. Let R = k[x, y]/(u) and R' = k'[x, y]/(u). As usual, we may

assume A c R C R' and A' c R' by identifying isomorphic rings. Further,

by extending A' if necessary we may assume A' is Galois over A.

Let iiEÄbe algebraic over A. By assumption R' = k'[t] for some /. Hence

a G A'. Choose h G A[x,>>] to be some preimage of a. If a =£ 0, then h is unit

modulo (u)k'[x, y] and hence a constant modulo (u)k'[x, y], i.e.
...
(') h = u(x,y)p(x,y) + a*.        a* G k',p(x,y) G k'[x,y].

Let 0 be any A-automorphism of A'. Then applying a to (1)

(2) h = u(x,y)a(p(x,y)) + a(a*).

Subtracting (1) from (2) we conclude that w(x, y) divides a* — a(a*) in

k'[x. y]. Thus a* = o(a*). Since this holds for each a, a* is fixed by each

member of the Galois group and hence a* G A.

Thus A is relatively algebraically closed in R. It is easy to see that we can
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replace k' by some finite extension k* of k with k* C k' such that u G

/:*[x,^] is a line over k*, since we need to include in k* only the coefficients

of polynomials expressing images of x, y modulo u in terms of t and t in

terms of images of x, y modulo u. Since R is clearly normal (say by the

Jacobian criterion) we can apply (2.9) of [AEH] to get that R = k[t*] for

some /* G R. Thus u G k[x, y] is a line over A:.

Remark. // K is a field of characteristic zero and u G K[x, y] at A (2, K) is

a line over K, then there exists a v G K[x, y\ such that v is in the ring

generated by the coefficients of u and K[u, v] = K[x,y].

This version of the Epimorphism Theorem can be deduced from [AM] by

observing that v, in their terminology, is an "approximate root" of u and

hence has the above stated property.

Thus in the above Lemma 2, we can find v G k[x, y] such that

k'[u, v] = k'[x,y]. Writing x,y as polynomials in u, v over k' and taking

"trace" it is easy to check that then k[x, y] = k[u, v].

Lemma 3. With the basic notations introduced at the beginning of this section

we get the following, //char k = 0, then there is an embedded line u in C over k

such that

s

g-cII(k +4/'.       r„>0,

where c G k and {d¡} are distinct elements algebraic over k.

Proof. First suppose that the result is already true when k is replaced by

its algebraic closure, say k"'. In view of Corollary 1, u may be assumed to be in

k[x, y] and in view of Lemma 2, u is an embedded line over k. Thus we may

assume that k is algebraically closed.

Let <ÜÍL = {Mv . . . , Ms} be the set of all maximal ideals in C containing/,

g. Clearly B/M,B at {C/M¡)\Z\ at k[Z]. Hence by the Epimorphism

Theorem [AM] each M¡B is an embedded line over k (in B). Let u¡B = M¡B.

Clearly g has a factorization in B,

s

g = Il up,       r¡ > 0.
i

Also, it is clear from utB = MtB that («,, u)B = B, if / #/,

The expression for g follows by applying Corollary 1 (with k = k'). It

remains to check that u is already a line over k in C.

Choose A G k such that u + X =£ u + dt; for i' = I, . . . , s. We see that the

image of f/g modulo (u + X)B is contained in the image of C modulo

C n (u + X)B, and hence B/(u + X)B = C/(u + X)C.
Now u + A is clearly an embedded line over k in B at A (2, k), and hence

we get

B/(u +X)BatA(\,k)at C/ (u + X)C.

Then u + X is an embedded line in C over k and hence so is u.

Lemma 4. Let g be as in the conclusion of Lemma 3. Let v G C such that

k[u, v] = C. Let f = a0 + axv + • • • + anv", a¡ G k[u). Then:

(1) ax is a unit in k[u] modulo g.
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(2) a2, . . . , an are nilpotent in k[u] modulo g.

Proof. Let A' be the algebraic closure of A. Clearly, we only need to show

that

(1*) a, 2 (u + d¡)k'[u], for/ = 1, . . . , s; and

(2*) aj G (« + d¡)k'[u], for i = 1, . . . , s andy = 2, . . . , n.

Since the hypothesis about/ g, u and H is unchanged if A is replaced by A'

we may assume that A = A', i.e. A is algebraically closed.

Let, as in Lemma 3, M, = (u + d¡)B n C and let M? G C[Z] be the

preimages of M, under ^/. Then it is clear that

M* = (u + d,gZ-f)C{Z-\ -(«+ <,/)C[Zj.

Hence we get that

M, = (w + ¿„/)C = M* n C.

Thus/generates a maximal ideal in C modulo(« + d¡) and hence the image

of / in the canonical homomorphism C —» C/(w + d¡) is a ring generator of

C/(u + d¡) over A. Since image of u has the same property (1*) and (2*) are

easily seen.

Remark. In the above proof, if we simply assume u G C to be a line over A

(not necessarily embedded, as may happen in characteristic p =£ 0) then we

still get that the image of/modulo (u + d¡) in C is a ring generator.

Moreover, if Q(\, 2) could be answered in the affirmative in characteristic

p ¥= 0, then one could modify Lemma 3 to prove that u + d¡ is a line in

k[x, y] over A (if k is algebraically closed).

Now let S be any ring and S[ V] a polynomial ring over 5. A sequence (c0,

c,, . . . , c„) in S is said to be a generator sequence if

(1) c, is a unit in S, and

(2) c2, . . . , cn are nilpotent in S.

Lemma 5. Let S[V] be as above and let h = c0 + cxV + ■ ■ ■ + cnV G

S[V] where (c0, c,, . . . , c„) is a generator sequence. Then there exists a

generator sequence (0, cf, . . . , c*) in S and some c G S such that

h = c*(V + c) + ■ ■ ■  + c*(V + cf.

In other words,

h = (V + c)(unit inS[V})

and hence

(V + c) = h (unit in S[V]).

Remark. The reason to call (c0, c,, . . . , cn) a generator sequence is that the

corresponding h = c0 + c, V + ■ ■ ■ + cn V" is a ring generator of S[ V] over

5".
If « is a ring generator then it is easy to check that (c0, c,, . . . , cn) is a

generator sequence. To see the converse, let T be an indeterminate over S[ V].

Apply the Lemma to h — T and S[T] in place of h and S, to get some

c G S[T] such that h - T G (V + c)S[T][V].

Let a: S[V][T]^> S[T] be defined by a(V) = -c,a(T)= Tanda(i) - i
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for 5 G S. The restriction of a to S[V] is an S-isomorphism taking h to T. It

follows that S[V] = S[h].
Proof. For any generator sequence (e0, . . ., eg) in S we define a new

generator sequence (r(e0), . . . , r(en)) as follows.

Let e = e0e,_1. Write t(V) = V + e. Then 6(F) has a unique expression

A(K) = e'0 + e\( V + e) + ■ ■ ■ + e'„( V + e)n,       e[ G 5.

We define (r(e0), . . . , T(e„)) = (e'0, . . . , e'n), which can be checked to be a

generator sequence.

By iteration of t on (c0, . . . , cn) we see that for large enough m we have,

Tm(c0) = 0,    rm(V)=V+c    for some c G 5.

The proof is done by taking (c¡, ...,<?*) = (rm(c0), . . . , rm{cn)) and
F+ c = Tm(K).

Corollary 2. Lei T ¿>e a« indeterminate over C[Z]. Let $: C[T][Z]

—» C[7,][(/+ 7")/^] ¿>e //¡e unique epimorphism which is identity on C[T] and

carries Z to (/ + T)/g. Clearly $ /¡as kernel H — T.

Let C = k[u, v] as in Lemma 4. Then there exists c G k[u, T] such that

v + c = P(f+ T) + Qg where P = P(T), Q = Q(T) G C[T).

Proof. Apply Lemma 5 with S = k[u, T]/g, V = v and h = f + T; using
Lemmas 3 and 4 to check the hypothesis.

Corollary 3. In the notation of Corollary 2 let z* = <Ï>(Z), v* = v + c.

Then we have

4>(C[r][Z]) = Ar[r, », Pz* + Q].

Proof. Let /? = k[T, a, Pz* + 0]. Since g G A:[w] c R we get that t>*

= g(Pz* + 0) G R. Also write /+ 7 = b% + b*(v*) + • • • + b*(v*)"

where b* G /:[7, u] and 6^ G (g)^[T, w], as obtained by the application of

Lemma 5 performed in Corollary 2. Then

„
z* =^b*g'-l(Pz* + Q)'G R

0

since g, b$g~x G k[T, u] c R.

It is now clear that

$>(C[T][Z]) = Q(k[u,v, T,Z]) - fe[M,o, T, z*] = fc[«,'©•, T,z*] c R.

Since the opposite containment is clear, the proof is finished.

Proof of the Theorem. We claim that

C[Z] = k[H,u,P(H)Z + Q(H)]

and this will clearly establish the theorem. For proof, let F G C[Z]. Then

there exists a polynomial F*(X, Y, Z) G k[X, Y, Z]atA(3, k) such that

$(F) = F*(T, u, Pz* + Q).

But then using 0(7) = $(//) we get that

<S>(F- F*{H,u,P(H)Z+Q(H)))=0,

i.e.
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F - F*(H, u, P(H)Z + Q{H)) = (H - T)F**,

where F** G C[T][Z].

Putting T = H on both sides we get F = F*(H, u, P{H)Z + Q(//)). The

claim now follows.

Remark. The above proof can be easily generalized to the following

criterion for embedded hyperplanes. Let T be an indeterminate over A (n, A).

H G A(n, k) is an embedded hyperplane over k<=>A(n, k)[T]/(H - T)

^A((n- \),k[T])^A(n,k[T])/(H- T)^A(n- 1, k[T]).
This also provides an alternative definition (4) in the introduction.
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