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The purpose of this paper is to give a characterization of linear and com-
pletely continuous transformations both on the common Banach spaces to an
arbitrary Banach space and vice versa. There is an abundant literature on
this subject. Among the earliest papers, the now famous paper of Radon [24]
should be mentioned. Here linear transformations on Lp to L" (1 <p, q< «>)
are characterized in a manner suggestive of the methods used in the present
paper. The works of Gelfand [12], Dunford [6], Kantorovitch and Vulich
[17], and Dunford and Pettis [9] contain much material on this subject
supplementary to that treated here. In the interest of completeness we have
restated a few of the results obtained by Gelfand [12], and Gowurin [13].

The principal tools used in our characterizations are certain abstractly
valued function spaces. One such space is the class of all additive set
functions x(t) on all Lebesgue measurable subsets r of (0, 1) to a Banach
space X where for all linear functionals x on X and for all subdivisions
t=(ti, rt, • • ■ , t», • • • ) of (0, 1) into disjoint sets,

If <p(t) e Lp (l/p+l/q=l), we define an integral f<pdx to be the generalized
7r-limit of the unconditionally convergent sums^,c!i((i)i;(Ti) where £ t,-. The
function U(cb) = Jcpdx so denned on Lp is a characterization of the general
linear transformation on Lp to X.

The first section is a study of the abstractly valued function spaces which
will be used to characterize the transformations. Section 2 is devoted to a
discussion of three different types of integrals needed in these characteriza-
tions. In §3 a necessary and sufficient condition for a subset of a Banach space
Y to be conditionally compact is given in terms of an arbitrary determining
manifold V in the conjugate space Y. As a consequence, if a transformation U
is additive and homogeneous on X to Fand its adjoint is completely continu-
ous on T to X, then U is completely continuous on X to Y. The section also
contains a characterization of conditionally compact sets in a Banach space
by means of a generalized base. This is applied to the spaces Lp (l^p^ °°)
in §§5 and 6. Section 4 contains the principal results of this paper, namely,
a characterization for the classes of transformations considered. In §5 we
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obtain representations by means of a kernel of the general completely con-
tinuous transformation and weakly completely continuous separable trans-
formation on L to an arbitrary Banach space. By means of this result and a
theorem due to Dunford and Pettis [9], we show that C72 is completely
continuous whenever U on L to L is weakly completely continuous. As a
further application of this work, we prove in §6 that completely continuous
transformations on the spaces Lv, lp, C, c0, Mr {f^kpS 00) to an arbitrary
Banach space are approximable in the norm by degenerate transformations.
A final section is devoted to the extension of linear transformations.

We will consider an abstract class T of elements / possessing a sigma
family 15 of subsets t of T. a(j) will be a single-valued, non-negative, com-
pletely additive measure function on 13, which need not be finite valued. It
will be convenient to designate by | r | the value a{r). X will denote a Banach
space of elements x and X its conjugate space of elements x [l, chap. 5]. We
define with Dunford [7, p. 316] a determining manifold V in X to be a closed
linear subset of X such that(*) L.U.B. [| x(x) \ \x £ X, x £ T, \\x\\ £ 1 ] = .
Mr will be the Banach space of bounded functions a{t) on an abstract class
T= [t] to real numbers having the norm ||a|| = L.U.B. [\a(t)\ 11 £ T~\. tt will
have three different meanings: type 1, tt will be a finite or denumerable set
of disjoint sets r of 13 such that 0 < | t| < °o. 7ti^7T2 will mean thatE1"1 3 Er2,
and that every set t1 e in is either a subset of some t2 e tt2 or t1 is disjoint from
every r2 £ 7T2| type 2, w will be a subdivision of T into a finite number of dis-
joint sets t £ 13 (13 need not possess a measure function). ir^Tn will mean that
each t1 e in is a subset of some t2 e 7r2; and type 3, tt will be a subdivision of the
interval (0, 1) into a finite number of intervals the maximum of whose lengths
is I ir|. iri^7T2 will mean that j 7Ti | ^ ] 7T2 [. In each case the relation ^ on the
class [tt] is transitive and compositive. The general limit of E. H. Moore-
Ii. L. Smith [20, p. 103] can therefore be defined on each of these ranges.
Limx will designate this limit.

1. Abstractly valued function spaces. We will be interested in the follow-
ing classes of functions:

Vl(X, T) = ^x{r) I L.U.B. E l*[*v>«)]| < », xetJ,
[I x[x(r)l I " ~]

x{r) I L.U.B. E < oo, *eT , 1 < q < oo,
N*-1 J

V(X) m [x(t) I \\x(r)\\ ^ M-|r|,r£l3, |r| < » ],

v*(x, r) =     I El *(*») 11 < °°, * e rj, i^t7<oo,

tT(X) m j^-„ I L.U.B.        < oo J.

0) The class of elements s satisfying the property P will be designated by [s\P\.
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For g^l (<Z = 1) tt is always to be understood as being of type 1 (type 2).
For q = \,Tb may be a finitely additive Jordan field. It will be convenient to
denote an element of one of these function classes by x.

If T is the set of positive integers, 13 the family of all subsets of T, and
if \t\ is equal to the number of integers in r, then V,(X, T) (Kq< a>) and
V°°(X) are identical with V(X, T) and v"(X) respectively. Theorems analo-
gous to Theorems 1.1, 1.2, and 1.5 have been proved for v\X, T) by Gelfand
[12].

1.1. Theorem. Ifxe V"(X, V), l^q< «>, then there exists an M such that(2)

x[x(t<)] |«~|1/9

for all x e r.
Define

P(x)
a-\\lq

on r. It is easy to show that p(x) 2^0, p(xi-r-x2) Sp{.x\) +P(x2), and that x„—>x
implies lim inf,,..«» p(x„) l^p(x). The theorem now follows from a lemma due to
Gelfand [12, p. 240].

We define a norm for the several spaces as follows:

.... (       r _ I x[x(Ti)] In1" I )
x  = L.U.B. <L.V.B.    Z    i    , \xeT},

W-l    v     w     L  x      I Til"-1   J     I )
xe F«(X, r), 1 | f < «o,

||x|| = L.U.B. [^11    I r e13, I r I < °o J , xeVx(X),

||x|| = L.U.B. |^ zZ \ *(*») |, xetJ, xe^pf, t).

1.2. Theorem. V"{X, T), 1 Sog <», is a Banach space.

It is clear that the spaces are linear normed spaces. Only the proof of com-
pleteness remains. Suppose [x„[ is a Cauchy sequence in Vq(X, T), lSg<°o.
Then for every t e 13,

I x[xh(t) - xm(r)] I'
lun -i—j-= 0

T 9-1m, n—»»

uniformly in the unit sphere of T. Hence limm,n^„o ||xm(r) — x„(t)|| =0 and there
exists an additive set function x(t) = lim«..«, x„(t). Further, if we are given x in

(2) For q = 1, we define | t \ «-1 to be identically one.
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the unit sphere of T, it, and N, then

so that x £ Vq(X, T). Finally for an arbitrary e>0 there exists Ne such that if
m, nl^Ne then \\^e. Therefore if n>Ne

Ii* - *j| = L.U.B. liimr e i^)-^U'rn s,
1*1-1,*,* Im   L   1 I Ti Ig_1 J J

Completeness for V°°(X) can be demonstrated in a similar fashion.
If X is the space of real numbers R, then T must be identical with X = R.

For F=eTi (|T»| < 00) it is well known that Vq(R) (1 °o) is equivalent
[1, p. 180] to the space Lg(a) of measurable functions \p(t) for which

fT\t(t)\ "da <<*> (l^q< oo) and ess. L.U.B. [|^(/)| | / £ F]< oo (g= oo). The
equivalence is defined by the transformation   U(ip) =x(j) = fiT\p{t)da for
|t| < CO.

A sum 52xn will be said to be unconditionally convergent if ex» summed
over any subsequence of the integers converges. x{r) will be called completely
additive if for any sequence of disjoint measurable sets {r„ }, y.x(t„) =xCP.t„)
where the sum is unconditionally convergent.

1.3. Theorem. Ifx £ Vq(X, V) (1 <q^ oo) and if r0is of finite measure, then
x(t) is an absolutely continuous and completely additive set function on measur-
able subsets of to.

If xe V(X, T), then

for all x £ T and all r (0 < | t| < oo). Hence ||*(r)|| g||*|| • |t| which implies
absolute continuity. Let us now consider x(t) and Vq(R) on subsets of a set r0
of finite measure. Since x[*(r)] e V"(R) it follows from the above that there
exists yp{t) £ L"(ct) for which x[x(r)]= fT\l/(t)da. Given a sequence {t„} of
disjoint measurable sets, then

x[x(zZTn)]= f   ypda^zZf        = I i[*W].

By a theorem due to Dunford [7, p. 326, Theorem 32], *(et») ~Z~lx(Tn)
which is unconditionally convergent.

It is clear that the transformation U(x) =x[x(t)] on T to Vq(R)
(i£q& oo) is linear and that || U\\ =|NI- We define Vqc(X, T) to be the sub-
space of V"(X, T) for which this transformation is completely continuous.
Because the class of completely continuous transformations on X to Y is a
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closed linear subspace of the space of linear transformations, it follows that
the same is true of V"C(X, V) in V"(X, Y). We define vqc(X, Y) (igffJS 00)
in a similar fashion.

1.4. Theorem. A necessary and sufficient condition that x belong to V°°C(X)
is that x belong to V"°(X) and that the set [x(t)/\t\ | t £ 15] be conditionally com-
pact.

This is an immediate consequence of Theorem 3.1.

1.5. Theorem. A necessary and sufficient condition that x belong to
Vyc(X, Y) is that x belong to Vl{X, Y) and that the set [x(r) \ r £ 15] be condition-
ally compact.

This again follows from Theorem 3.1.

1.6. Theorem. If F=(0, 1) and a is the Lebesgue measure function, then
for 1< q < co the following are equivalent statements:

(1) xz Vqc(X, Y).
(2) x £ Vq(X, Y) and

/"I dx[x(Io)]-]        dx[x(h)]l \"dt^0
h->o J a I       dt      Jt+h dt      Jt I

uniformly for all x in the unit sphere of T {P0 = (0, t)).

This follows from the above remarks on the equivalence between Vq(R)
and Lq and a theorem due to M. Riesz on compact sets in Lq [25].

1.7. Theorem. A necessary and sufficient condition that x belong to vqc(X, Y)
for l^q< co is that x belong to vq(X, Y) and that lim„,M En* I x(xi) | " = 0 uni-
formly in the unit sphere of Y.

This follows from a well known theorem on compact sets in lq, which for
q = 2 is due to Frechet [ll, p. 19].

If x £ vl(X, T), then lE^II = = 2■ L.U.B.„ IE»*»!! where v runs
through all finite sets of integers. If x e v1c(X, Y), we have as a corollary
to Theorem 1.7 thatZ*" ^s unconditionally convergent. Dunford has shown
that if y,x„ is unconditionally convergent, then x £ vlc{X, Y) [7, p. 326, Theo-
rem 32].

1.8. Theorem. If X is separable and if xz vl(X, Y), then x z vlc(X, X).

By hypothesis E| xn(x) \ ^\\x\\ • ||x|| for every x z X. Hence for every de-
numerable set of integers er, ^||*|| "INI ar,d is_therefore a linear
functional x„ on X. Since X is a determining manifold in X, it follows by the
above mentioned Dunford theorem that is unconditionally convergent.
In other words 'x z v1c(X, X).
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1.9. Corollary. If X is separable and there exists anx e vl(X, X) which
is not an element of v1c(X, X), then X and any separable space containing X
as a subspace are not conjugate spaces.

This permits another demonstration of the fact that c and hence C which
contains c is not a conjugate space. Let xn be the reth unit vector in c. Any
x= {a„} e I [l, p. 67]. El x(xn) I =EI a»l < 00 implies that x e vl(c, I). How-
ever E*» is obviously not unconditionally convergent.

2. Integrals. It is convenient to divide the discussion of this section into
three parts: (1) an integral involving functions <b(t) £ Lv(a) and x e Vq(X, Y)
where l/^+l/g = l and l<gS<»; (2) an integral involving functions <f>(t)
either bounded or a-measurable and essentially bounded and x e T);
and (3) an integral involving functions <p(t) e C and functions x(t) to be de-
fined.

2.1. Definition. For functions <j>(t) e Lp(a) and x e Vq(X, Y), 1 <q ^ <x>, we
define

/<bdx = lim E <t>(ti)x(ji) (tt of type 1)
«• X

whenever for some to and all tt^tto, E^(^»)x(r') ^s unconditionally convergent
for each ti e n and the limit exists.

The multiple valued function x(w) on a transitive and compositive class
[w] will be said to be a fundamental ir-sequence if for an arbitrary e>0 there
exists a ire such that for m, 712 ̂ire, \\x(tti) — x(7r2)|| Se(3).

2.2. Lemma. If [x(tt)] is a fundamental ir-sequence and U a linear trans-
formation on X to Y, then there exists an x e X such that x = linix x(w) and
U(x)=\imr U[x(ir)](*).

Choose a sequence of positive numbers en~*0. It is clear that one can ob-
tain a sequence 7r„ such that 7rn+i^7r„ and for 7r^7r„ \\x(ir) — x(irn)|| ^en. Let
x'(irn) be one of the elements of x(w„). As X is sequentially complete there will
exist an x e X such that x = Iim„ x'(ir„). But then if 7r^x„, ||x —x(7t)|| S=2e„
and likewise || U(x) — U[x(ir) ]|| ^|| -2en. Hence x = limx #0r) and U(x)
= limx U[x(tt)].

2.3. Theorem. If <b(t) e Lv(a) and x e Vq(X, Y), then f<pdx exists.

Given e>0, there exists 7re such that if 7r^7re then E^I^C^')IP|T«'| < 00
and |E*|<£(^»)— <p(tj) I p| Ti\ I ~ e for all ti e t< e tt and all t) e t) e ire where
n c t). Then

(») IfBisasubsetofX,||ß||=L.U.B. [||x|||*eB].
(4) Compare with Moore and Smith [20, p. 106].
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ZZ\ 4>{h)x[x(Ti)]
[oo "Il/p

EUWl'Inlj
and therefore approaches zero uniformly in the unit sphere of Y as n ?± °°.
It follows that 52*4>(ti)x(Ti) is unconditionally convergent. Further if tt^it,,

= L.U.B.   £ (<K*i) - *(4))*[*0<)]
it r,||i|]=i I x

^ Nl-[£l^)-*(4rk<|J=jf|ix ■ e.

Hence 52*(t>(ii)x(Ti) 1S a fundamental 7r-sequence and by Lemma 2.2
limxZW>(<t)x(ri) = ftbdx exists.

2.4. Theorem. L.U.B. [\\f<bdx\\ \<p(t) e Lp(a), ||</>|| = 1 ] = ||*||.
Since x(x) e V"(R) (x(x) will be used to indicate the function x [x(t) ] £ Vq(R))

L.U.B. \ x \ cbdx   = L.U.B.   I 0<fx(x)
11*11=1 I   J 11*11=1 \J

= N*)
Therefore

L.U.B
1*1HI/c/x/x = L.U.B. £ I x j <bdx     x£ T, ||x|| = 1, IL^U =

= L.U.B. [\\x(x)\\ I xeT, ||x|| = 1] = ||x||.

One can likewise define this integral on any measurable set. We designate
the so-defined integral on r by JT(pdx. frqbdx is clearly an additive set function
on 15. Since by Theorem 2.4 H/^flxH ^||x|| • [fT\<p\ pda]Up, it follows that it is
absolutely continuous and consequently completely additive.

2.5. Theorem. If <f>(t) e Lp(a), a(T) < °o, and x £ V"{X, Y) is such that
x(t) = Jiy(t)da, then f<pdx = f'cbyda where f are both either Dunford integrals
withy(i) ejQ(E)[X, Y] [7] or Birkhoff integrals [3].

Suppose that y(t) e J£%{E) [X, Y]; then x(x(t)) = fTx(y)da for every x e Y.
It follows from the similar theorem in real variables that

x £ J c/>dxj = J (bdx(x) = ^ 4>x(y)da.

This is equivalent to the statement that <p(t)-y(t) e/^0(E)[X, Y] and
f<j>dx = f'cpyda.

On the other hand, suppose y(t) is Birkhoff integrable to the value x(t).
Then let </>„(/) =<b(t) if \<t>(t) \ Sn and vanish elsewhere. <pn(t)y(t) differs from
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<p(y)t{y) on a set whose measure approaches zero as «—Since <pn{t) is
bounded, cpn(t) -y(t) is Birkhoff integrable [3, p. 369, Theorem 17]. Moreover
it is integrable to the same value as the above Dunford integral so that
fTcbnyda = fi7<pndx. By Theorem 2.4,

'^j <j>nyda | = ||J* <t>ndx    = 11*11'    J U„|p</aJ     S Ml" f J" U NaJ •
The integrals fi7cpnyda are therefore uniformly absolutely continuous. By a
theorem due to the author [23, Theorem 6.2] <p(t) -y(t) is Birkhof! integrable
and

^ <byda = lim J <j>ndx = J 4>dx.

We will next consider 13-measurable functions <p(t) either bounded or es-
sentially bounded relative to a measure a. x(t) e Vl(X, V) is defined on all
t e 13 and in the latter case vanishes on the null sets of a. For convenience
we will limit ourselves to the former case.

2.6. Definition. For a bounded function cp{t) and x e Vl(X, T), we define

/cbdx = lim £ (j>(ti)x(Ti) (it of type 2)

whenever for t( an arbitrary element of n this limit exists.

When f<pdx exists by both Definition 2.1 and Definition 2.6, the value in
each case is the same.

The following two theorems are special cases of a theorem due to Gowurin
[13, pp. 265-266]. We omit their proofs.

2.7. Theorem. If<p(t) is bounded and x e V1(X, T), then fcpdx exists.

2.8. Theorem. L.U.B. [||/^a;|| | \ <t>(t) \ ̂ l] = |NI-
It is unlikely that much can be said about the differentiation of

x e V"{X, X) for \ Sq< °°. Pettis has constructed an x e F2c(L2, £2) [22,
Example 9.4] which has no pseudo-derivative [22, p. 300]. In §5 we demon-
strate that x e V°°C(X) (X arbitrary) and x e Vx(X) (X separable and regu-
lar) for T=Y2n (|t.-| <«) can be expressed as the Birkhoff integral of a
function on T to X.

We wish finally to consider an integral for functions </>(/-) £ C. In this
connection Gelfand [12, pp. 246-253] has introduced the abstractly valued
function classes V(X) and VC(X). V(X) is the class of all functions x(t) on
(0, 1) to X for which x[x(<)] is of bounded variation and continuous on the
left, while VC(X) is the subclass of V(X) for which the set
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(x(ti) — x(ti')) I (/,-, U) disjoint intervals]

is compact. The L.U.B, [variation of x[x(/) ]| |]x|| = l] exists and can be de-
fined to be the norm ||x[| for elements of V(X). It is easily shown that V(X)
is a Banach space having VC(X) as a closed linear subspace.

2.9. Definition. For functions <b(t) e C and x e V(X) we define

/<t>dx = lim zZ <t>(t!)[x(ti) - x(ti-i)] (it of type 3)
I'l-"0 X

whenever for t( an arbitrary element of (ti, ti^i) the limit exists.

2.10. Theorem. If <j>(t) e C and x e V(X), then f<pdx exists and L.U.B.
[||/^*||||*(o| $i]-N|.

This theorem has likewise been proven by Gowurin [13]. It is clear that
x[f<t>dx] = f<f>dx(x) so that this integral when it exists is equal to the integral
defined by Gelfand [12, pp. 259-260].

3. On conditionally compact sets in a Banach space. In this section we
will consider two different characterizations of conditionally compact sets in
a Banach space X. The first is given in terms of a determining manifold T,
while the second involves the notion of a generalized base.

3.1. Theorem. A necessary and sufficient condition that the set S= [x] be
conditionally compact is that both L.U.B. [|x(x)| |x e S]< <x> for each x eT
and U(x) =x(x) on Y to Ms(6) be completely continuous.

Let x„ be any denumerable subset of 5. Its linear closed extension Y is
a separable Banach space. Let Ti be the set of elements of Y considered as
members of the conjugate space of Y. 1\ is clearly a determining manifold
in the conjugate space of Y. The unit sphere of the conjugate space of a
separable Banach space is a compact metric space in its weak topology [l,
p. 186.]. Hence Ti contains a denumerable subset \xp} which is weakly dense
in IY The linear transformation V(x) = x„(x) on Y to m defines an equiva-
lence. It is therefore sufficient to show that the set {xp(x„)} is conditionally
compact in m. By the diagonal procedure we can obtain an w-subsequence
xp(x„') such that lim„' xp(xn') exists for every p. Moreover this limit exists
uniformly in p. For if the contrary were true there would exist a p-subse-
quence having no subsequence for which the limit existed uniformly. As

xp\\ S 1 and as U is completely continuous, this p-subsequence would have a
subsequence p' for which limP' xP'(x„') exists uniformly in p' which gives a
contradiction.

To prove the necessity we notice that the closed linear extension F of S
is a separable Banach space. Hence every bounded sequence of functionals

(6) We remind the reader that Ms is the space of bounded functions x(x) on 5 to real num-
bers.
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on Fcontains a weakly convergent subsequence [l, p. 123, Theorem 3]. Since
the subsequence is uniformly bounded in their norms the functions are equi-
continuous and therefore converge uniformly on a compact set. The same is
true for every bounded sequence of functionals on X as we are concerned only
with their values on Y. It follows that U(x) is completely continuous.

Gelfand has proved the following corollary for the case Y = X [12, p. 268].
It should be pointed out that the corollary is not true for non-separable X
as was stated by Gelfand. In his argument he falsely assumed that the func-
tionals of a weakly convergent sequence of functionals of a closed linear sub-
space of X could be extended so that the sequence converged weakly on X
(see 7.5).

3.2. Corollary. A necessary and sufficient condition for a subset S of a
separable Banach space X to be conditionally compact is that all weakly conver-
gent sequences of functionals of Y on X converge uniformly on S.

Every bounded sequence of functionals on X contains a weakly conver-
gent subsequence [l, p. 123, Theorem 3]. By hypothesis this sequence con-
verges uniformly on 5 and hence the transformation U(x) = x{x) on Y to Ms
is completely continuous. By Theorem 3.1 5 is conditionally compact. The
necessity argument is similar to that used in Theorem 3.1.

The following lemma will permit us to prove that the corollary can not be
extended to non-separable spaces even if, in its statement, Y is replaced by X.
We now suppose T to be the class of all positive integers t and 15 the family
of all subsets r of T.

3.3. Lemma. If ßn(r) are bounded and finitely additive set functions on 15 to
real numbers, and if lim„ ßn(r) = 0for all t e 13, then lim„ £<| ßn(t) \ = 0.

Suppose the lemma to be false. Then there exists an e>0 such that
lim sup„ 521\ ßn(t) I >e. Now /3n0)—>0 as »—>oo. Hence we can choose two
increasing sequences of integers TV; such that Eat,4"1-1! ßni(t) \ ^e and
£f*'-I|j8n<0)| +zZNi+l\ßni(t)\ <e/8. Let us consider for the moment as a pri-
mary block some subset u of Ni^t<Ni+1 for which ||3n,'(t,)| >e/2. 52Tt 1S
then divided into a denumerable set of disjoint blocks. Since a denumerable
set has an infinite number of disjoint denumerable subsets and since ßn(r)
is bounded, there will exist a denumerable subset of blocks 7Ti such that, on
any of its subsets ir, | ßni(-n-) | ^e/8. The same argument gives a denumerable
subset tt2 of Tri such that, on any of its subsets tt, \ ßn*(ir) | ^e/8. Likewise we
can find a denumerable subset ttp of irp-x such that on any of its subsets tt,
I ßnv{ir) I ^e/8. Clearly rv ttp. Let tto consist of the wth block of irn for all n.
If 7To contains the block r*, then there exists qkz^k such that

Qh

0"*(To)  =  I^tTi-I.) + /3"*(TfTo).
t-1
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Therefore

I ßnk(rr0) I ^ I |8"»(t*) I - e/S - e/8 £ e/4.

Since tto contains a denumerable number of such blocks, /3"(?ro) does not ap-
proach 0, which is contrary to our hypothesis.

As Hildebrandt [14] has shown, to every x e m there corresponds a unique
additive bounded set function ß(r) on all sets of integers such that for all
x £ m, x{x) = frx{t)dß. If xn(x) = fTx(t)dß" converge weakly to zero on m, then
ßn(r)—»0 for all r £ 15. We therefore have the following

3.4. Corollary. If xn(x) = jTx(t)dßn converge weakly to zero on m, then
1Zt\ßn(t)\-^0 asn-Kx,.

3.5. Example. Let S be the set of unit vectors xp in m. If x„ converges
weakly to xo, then yn = xn — xq converges weakly to zero. As above yn{x)
=fTx(t)dßn and £«| ßn{i) | -^0 as n—>°o. Therefore yn(xP)=ß"(p)—>0 uni-
formly in p. In other words, x„(xp)—>Xo(xp) uniformly in S.

3.6. Theorem. If U is additive and homogeneous on X to Y and U is com-
pletely continuous on Y to X, then U is completely continuous on X to Y.

As Dunford [7, p. 317, Theorem 18] has shown, this hypothesis is suffi-
cient to make U a linear transformation on X to Y. Let S be the image under
U of X\, the unit sphere of X. y(U{x)) is then a linear transformation on Y
to Mxr Given any sequence [y„[ in the unit sphere of Y, there exists a sub-
sequence n' such that U(yn') converges in X. Hence yn>(U(x)) = U(yn>)(x)
converges in Mxv We can now apply Theorem 3.1 with S= U(Xi). S is con-
ditionally compact and hence U is completely continuous.

We will now give a second characterization of conditionally compact sets
in a Banach space(s). II will be a general range of elements tt transitive and
compositive with respect to the relation Ur will be a set of completely
continuous transformations on X to X defined on II with the properties:
(1) For every x e X, Iim„ UT{x) exists and is equal to x. (2) There exists a posi-
tive number M such that || Uj[\ ^ M for all x £ II. When the UT are in addition
degenerate^), such a class of transformations is called a generalized base of X.

3.7. Theorem. Necessary and sufficient conditions that a set ScX be con-
ditionally compact are

(1) L.U.B. [||*|||*e5]< oo,
(2) lim* || U*(x)— x\\ =0 uniformly in S.

If we suppose S to be conditionally compact, then given e>0, there exists

(6) Dr. T. H. Hildbrandt suggested Theorem 3.7 as a generalization of the author's applica-
tion of it to L".

(') A degenerate transformation on X to Y is a linear transformation on X to a finite di-
mensional subspace of Y.
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X\, X2, • • ■ , xn c X such that for any x e S there is a k for which \\x— Xk\\ <e.
For the set aft, x2, ■ ■ ■ , x„ there exists a ire such that if ir^We, then
|| Ur(xk) — Xk\\ ̂ e. Therefore if x e S and 7t^7re,

\\UT(x) - x\\ ^ \\Ux(x - xk)\\ + \\Ur(xk) - xh\\ + \\xk - x\\ ^ e(2 + M),

which proves the necessity.
The sufficiency argument is as follows: Given e>0, there exists w, such

that || c7,e(ac) —x|| <e/3 for all x e S. As UTe is completely continuous and as
L.U.B. [||*|| I x e S] < oo, it follows that there exist Xi, Xz, ■ ■ • ,x„ c S such that
for any x e S there is a k for which || U*e(x) — £7x<(jCk)|| =^e/3. Therefore

||x - xk\\ g II*— £/Te(*)|| + \\U*.{x — xfc)|| + |](7ri,0i) — xk\\ Ik e.

S is therefore totally bounded or, its equivalent, conditionally compact.
Theorem 3.7 gives a characterization of conditionally compact sets in X

which contains as a special case that given by Kolmogoroff [18 ], Tamarkin
[26], and Tulajkov [27]forV>(a) where F=(0, 1) , a is the Lebesgue measure,
and 1 ̂ p < oo. In this case II is the set of integers and

ft   r t+1ln
Un{4>) = — I       <b(s)ds (4>£L?).

2 «7 t-l/n

For l<£<oo, [Un(4>) 11|#|| ^ 1 ] is uniformly bounded and equi-absolutely
continuous, and therefore is conditionally compact in Lp. For p=l,
[Un(4>) I \\<t>\\ i£ 1 ] is of uniform bounded variation, and therefore is condi-
tionally compact in L. Finally ||t7»||gl for l^p<cc. The conclusions of
the theorem are consequently valid.

Theorem 3.7 can also be applied to the spaces Lp(a) (1 ^pS 00) where T
is an abstract class of elements. For 1 ̂ p < oo , let tt be of type 1 and contain
only a finite number of disjoint measurable sets (n, r2, ■ • • , t„). Xt will denote
the characteristic function of the set t. Finally we define Ur on Lp(a) to
Lp(a) to be

um = E rr*,
w \Ti\

For £=oo, let 7t be of type 2 and contain the disjoint measurable sets
(ti, t2, • • • , t„). Then Vr on L°°(a) to L°°(a) will be

where o\- is some set of finite measure contained in n. The UT clearly define a
generalized base for Lp(ct).

4. Linear transformations. In the following discussion for 1 5|/> < oo, x will
be of type 1; while for p = <*>, it will be of type 2. Lp (1 ^p < oo) will be of the
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space Lp(ct). Lx will be either (a) the space of bounded 13-measurable func-
tions, or (b) the space of 13-measurable functions essentially bounded relative
to a measure a with x(t) e Vl(X, Y) vanishing on null sets in the latter case.
1/^+1/2-1.

4.1. Theorem. The general form of the linear transformation U(<j>) on Lp
(1 SpS oo) to X is

U(4>) <j>dx

■where x e Vq(X, Y) and \\ U\\ = \\x\\

If x £ V"(X, Y) then it follows from Theorems 2.3, 2.4, 2.7, and 2.8 that
f<pdx is a linear transformation on Lp to X with ||     = ||x||.

To demonstrate the converse, let Xr(t) be the characteristic function of
t £ 13 for I t| < oo. We define

x{r) = U[xr(t)].

x(t) is obviously additive on sets r of finite measure. For p = l,

\\U\\ = L.U.B. [|x[t/(»]j = \ U(x)[<f>]\ I ||*|| = 1, ||*|| = 1]
ü(x)[xA= L.U.B.. |^

rl|*(i= L.U.B.

\x\\ = 1, te13, I tI < oo J

r £13, I t I < oo J .

Therefore x e VX(X) and || f/|| = ||x||. For 1 <p< oo, we define, for a given w
and {a,} e lp, cp(t) =ai\ Ti\ ~llp when t e n. Then

||*|| = || |*Na}1/P= {EkH1/p = lkll.

OiX(n)u{4>) = E*(/i)x(T,-) = E (ttu).

Finally

in L FT \nV" \x\\ = l, x e r

it, x £ r, x]

, tt, ö £ lp,       = lj

= i] = 114
x||. For p = oo,
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\\U\\ = L.U.B. ^| zZ*(ti)*[*(tt)]    xsT,      = 1,77, \<b(k)\ ^ l]

= L.U.B. |^ E| x[x(r,)]\    xeT, \\x\\ = 1, ttJ = ||x||,

x e Vl(X, T). To each <b(t) e i> and tt we associate the multiple valued func-
tion **(/•) = *(t,-) for t e t< where <i e t,. Then <7S = limx 0X in Lp and by Lemma
2.2 and Theorems 2.3 and 2.7

77(0) = lim f/(*T) = J (j>dx.

For p = <x> Theorem 4.1 has been demonstrated by Gowurin [13, pp. 265-
266].

4.2. Corollary. V"(X, T) is equivalent to V«(X, X), lgpg ».

By Theorem 4.1, F3(Ar, T) is equivalent to the space of all linear trans-
formations on Lp to X for all T.

4.3. Theorem. The general form of the completely continuous transformation
U(4>) on Lp (l^p^ «s) to X is

7/(0) = I *rfa;

where x £ V"C(X, T) and || Z/|| = ||x||.

This is an immediate consequence of Theorems 3.6 and 4.1.

4.4. Corollary. Vqc(X, T) is equivalent to V"C(X, X), l^q^ oo.

4.5. Theorem. The general form of the linear transformation U(x) on X to
V"(R) (Kq< oo) where T^zZZiU (.\u\ < oo) is

U(x) = x{t) [x]

where xe V(X, X) and \\ U\\ =p||(8).

It is clear that X e V"(X, X) defines such a transformation and that
|| U\\ =||*||- Conversely, if U is linear on X to V"(R), then its adjoint U de-
fines a transformation on VP(R) or its equivalent Lp(a) to X. By Theorem 4.1

U(<f>) = J <bdx

where <p e 7>(a), £ £ F«(X, X), and ||U\\ = \\x\\. Since <f>[U(x)]=f<pdx(x) for
every* e Lp{a), it follows that E/(#) =x(t) [x] and || £7|| = \\Ü\\ =p||.

(8) Compare with Kantorovitch and Vulich [17, pp. 133-135].
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4.6. Theorem. The general form of the completely continuous transformation
U(x) on X to Vq{R) (1<3< «,) where T=52<ZiTi ([t.-J < oq) is

U(x) - x(r)[x]

where x e V"C(X, X) and || £/|| =[|i||.

The argument used in Theorem 4.5 applies here if we note that U is neces-
sarily completely continuous [l, p. 101, Theorem 4]. The reference is now
made to Theorem 4.3 instead of Theorem 4.1.

If T= (0, 1) and a is the Lebesgue measure, then the general form of the
linear (or completely continuous) transformation on X to Lq (1 <<?< °o) is

U{x) = — x(l\) ■ [x]
dt

where I e Vq(X, X) (or Vqc(X, X)),\\ U\\ = p|| and 1$ = (0, t). This is a slightly
stronger result than that found by Bochner and Taylor [5, pp. 941-944,Theo-
rems 8.1 and 8.4].

A linear transformation on Lp to Lp', where a is the Lebesgue measure
on (0, 1), is characterized by a function K(s, r) for which

— I   Hs)K(s, I0)dsELq
dt J o

for every \p e Lq' (7'0= (0, /)). If in addition the transformation is completely
continuous, then K(s, t) also satisfies the condition

lim  f I — f ip{s)K(s, l\)ds~\    - — f Hs)K(s, ll)ds~\ \dt=0
h~o "a I dt J o Jt+h    dt J a At\

uniformly for all \p e L9'.
We leave the proof of the following theorems to the reader. Except for

the space c0, the argument is a special case of the above. Gelfand has discussed
the space c [12, pp. 272-275]. It is convenient to denote the space c0 by the
symbol

4.7. Theorem. The general form of the linear [or completely continuous]
transformation U(a) onlp (l^p^ °°) to X is

U(a) = zZa*xi
where x e v"{X, V) [or x e vqc(X, V) ] and \\u\\ = ||*||.

4.8. Corollary. v«(X, T) [or vqc(X, V)] is equivalent to v"(X, X) [or
v\{X, X)] (lgggoo).

4.9. Corollary. If X is either weakly complete or a separable conjugate
space, then any linear transformation on cQ to X is completely continuous.
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x e v1(X, X) implies that x e v1c(X, X) according to a theorem of Orlicz
[21, pp. 244-247] and Theorem 1.8. The conclusion follows from Theorem

4.10. Theorem. The general form of the linear [or completely continuous]
transformation U(x) on X to lq (1 ^q< «) is

U(x) = (**<*)}

where x e v"(X, X) [or 'x e Vc(X, X)] and \\ U\\=\\x\\.

4.11. Corollary. If X is either weakly complete or a separable conjugate
space, then any linear transformation on X to I1 is completely continuous.

We conclude this section with some considerations about linear transfor-
mations on C to X. It follows from Theorem 2.10 that 77(0)= f<pdx where
<b £ C and x e V(X) is a linear transformation on C to X with || t/|| =||x||.
Gelfand [12, p. 283] has shown that the general form of a completely con-
tinuous transformation on C to X is

where x £ VC(X) and =||LT||. When X is weakly complete, Gelfand has
shown this to be the general form of the linear transformation on C to X
where now x e V(X). It might be added that Gelfand's method will show this
to be true for all conjugate Banach spaces X.

It is easy to give an example of a linear transformation on C to X which
does not have this general form. Let U be the identity transformation on C
to C and suppose that it does have this form. Then <p(s) = 77(0) = f<p(t)d\p((s).
As this holds for all <p £ C, \pt(s)=c (s>t) and \pt(s) = l+c (s<t), which is
contrary to ipt(s) £ C for fixed t. Because of the above remark, this again
shows that C is not a conjugate space.

The following theorem gives a characterization for linear transformations
on C to X:

4.12. Theorem. A necessary and sufficient condition that U be a linear trans-
formation on C to X is that there exist a sequence of step functions xn e V(X) such
that limn^oollxnll =|| U\\ and

4.7.

Making use of the Bernstein polynomials
n

4>(t) = lim zZC?<t>(r/n)tr(l - t)n~r
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in C. If we apply a device due to Hildebrandt and Schoenberg [15, p. 318],
then

n

U(4>) = lim £*(r/»)£7[Cr»/'(l - t)n~r] = lim Un(<t>)
n—*°o  r=o n—»«

where Un{4>) = f<pdxn, xn(t) being defined to have the jump i/[C"f(1 — /)n_r]
at r/w and to be constant elsewhere. Now

= \\u[\ZC?<p{r/n)n\ - ,)»~']|| ̂  ||t7||-|W|.
Therefore ||*„|| =|| Un
that lim,^ ||x„|| =11 U\

g|| C7||. In general, however, lim inf„..M || Un\\ .s=?|| U\\ so
|. Since *„ does define a linear transformation, the suffi-

ciency argument is obvious [l, p. 80, Theorem 5].
5. Linear transformations on L. In this section we obtain representations

by means of a kernel of the general completely continuous transformation
and weakly completely continuous separable transformation on L to an arbi-
trary Banach space X. By means of this result and a theorem due to Dunford
and Pettis [9], we show that U2 is completely continuous whenever U on L
to L is weakly completely continuous. Special cases of Theorems 5.3 and 5.4
have been proved by Gelfand [12]. More recently Dunford and Pettis [9]
have obtained special cases of Theorems 5.3, 5.4, and 5.5.

In this and the following section, Lp will be the space Lp(a) where T is
the sum of a denumerable number of sets t e 15 of finite measure, tt will be
defined as at the end of §3. x{t) on T to X will be said to be weakly measur-
able if x(x(/)) is measurable for all x e X. We define BX(X) to be the class of
weakly measurable point functions x(i) on T to X whose values are essen-
tially contained in a separable conditionally weakly compact subspace of X.
With norm

||*|| = ess. L.U.B.t [||x(0||],
B°°(X) is a Banach space. The set of functions x(t) e B°°(X) which take on a.e.
a conditionally compact set of values will comprise the subspace BXC(X) of
B"(X).

Integration with respect to a real valued measure function a will be real-
ized by means of the Birkhoff integral [3]. Since x(i) for x e BX(X) is a.e.
contained in a separable subspace of X, x(t) is integrable on all sets r e 15 of
finite measure [22, Theorems 1.1 and 5.3, Corollary 5.11].

5.1. Lemma. If x e Bx(X), then

||*|| = L.U.B. "    0 < I r I < oo, TE15J.

Since x(i) is essentially contained in a separable subspace X' of X, it is
clear that there exists a denumerable set of linear functionals {x„} c X each
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of norm one such that L.U.B. [| x„(x) \ = ||x|| | n, x e X']. Therefore

fTx(t)da= L.U.B. 0 <  t  < oo, te13

r I fiTxn(x(f))da I,, "1= L.U.B, j^—- 0 < I r| < oo, Te 13, «J.

Let t„= [<| \xn(x(t))\ >A]. Clearly |t„| =0. t0= [/| ||x(/)|| >A, x(t) e X'] is
contained in XT« and hence is of measure zero. On the other hand for every
e>0, there exists an n such that ess. L.U.B.( | xn(x(i)) \ >A — e. It follows that
ess. L.U.B.(||x(0|| =A.

5.2. Theorem. Vxc(X) is equivalent to BXC(X). The equivalence is defined
by U(x(t)) =x(t) = firx(t)da on BXC(X) to VXC{X).

It follows from Lemma 5.1 that U is an isometric transformation.
By the definition of the Birkhoff integral, given any null set To,
S= [x(t)/|t| |0<|t| <°°, r e 13] is contained in the convex extension of
[x(7)|i£ T — To]. Therefore S is conditionally compact. By Theorem 1.4,

x(r)=U(x(t))e V°C(X).

We next prove the converse. Let x(t) e Vxc(X). x(x(t)) is then a com-
pletely additive set function on all measurable subsets of any set of finite
measure. By the Radon-Nikodym theorem there exists /4(7) e BX(R) such
that x(x(t)) = fiTfx(t)da for all r £ 13 of finite measure. As above this de-
fines an isometric transformation V on BX(R) to V°°(R). By definition,
[x(x(t)) I x £ X, |lx|l^l] is conditionally compact in VX(R). Therefore
P=[fx{t)\x e X, ||x||i=l] is conditionally compact in BX(R). Defining Z7,
as in §3, it follows from Theorem 3.7 that lim, U*(fx(t)) =fx(t) uniformly in P
in the topology of BX(R).

v(ur(fi(t))) = Z
T

Then

* [x(<Ti) ] . .
—j-!—■ t-t,

lim V(U,(f*(f») = V(fi(t\)

uniformly in P. This implies

v>    X(ai)   i I(1) lim 2^ "j-r I T-r, I = x(t)
* T I   0~i I

in V"°c(X). Define x*(t) =x(<r,)/|<r,-| for / et,-; and x„(t) = fix*(t)da. Then
xr(t) eB°°c(X);
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1—!      X(ffi)    . .
M = Z T-rlr-nl = U'xr(t)).

Xri(t)-Xri(t)\\r"'iX)

&e. Since B\(X) is
By (1), given e > 0, there exists a we such that for 7Ti, 7t2 ̂  ?re,
^e. According to Lemma 5.1, ess. L.U.B.t \xTX(f) — #,.,(*)
a Banach space, it follows from Lemma 2.2 that there exists an x(t) e BXC(X)
such that lim, xT(t) =x(t) in BXC(X). Then x{t) =lim, U(xT{t)) = U{x{t)).

5.3. Theorem. Fä« general form of the completely continuous transformation
U onLto X is

U(<p) = j <b(t)x(t)da

where x e BXC(X) and \\ U\\ = ||#||.

According to Theorem 4.3, U(<p) = fcp(t)dx where x(t) e V°c(X) and
\\U\\ =||*(t)||f"(x>. By Theorem 5.2 there exists an x(t) e BXC(X) such that
x(r)=frx(t)da for all r £ 13 of finite measure and H^WlU^tx) =||*(r)||f"(x)
= || U\\. Further by Theorem 2.5, fr<b(t)dx= fT<p(t)x(t)dct for all r £ 13 of finite
measure. Now F=ZT« where |t;| < °o and t,-t, = 0 if t9*j. Given e>0, one
can obtain an unconditionally convergent sum of the type y^.i<b(t,)x(ti) | t'|
((t*) is a subdivision of r,-, tj £ rj) which approximates fTi<p(t)x(t)da to within
e/2* and such that each of its finite partial sums is within e/2{ of some
fT(p(t)x(t)da for tCt<. Since by Theorem 2.4, \\fT4>(t)x(t)da\\ ̂ \\x\\fT\<p(t)\da,
it follows that the resulting subdivision of T furnishes an unconditionally con-
vergent sum which approximates fr(j>(t)dx to within e. f t<p{t)x(t)da therefore
exists and is equal to fT<p(t)dx.

5.4. Theorem. The general form of the weakly completely continuous separa-
ble transformation on L to X is

U(<b) = J 4>(i)x(f)da

where xeBx(X) and \\ U\\ = \\x\\.

According to Theorem 4.1, U(<p) — f<p(t)dx where x(r) e VX(X) and
|| f/|| = ||*(t)||f°°(X). If Xr(t) is the characteristic function of r e 13 for | t| < co,
then x(r) = U(xT(t))- As U is weakly completely continuous and separable, it
is clear that S= [x(t)/\t \ \ 0 < |r| < °o ] is conditionally weakly compact and
is contained in a separable linear closed subspace Y of X. Hence there exists
a sequence {xn \ cX which when considered as elements of F are dense in
the unit sphere of a determining manifold in F. By the Radon-Nikodym theo-
rem there exists for each ielan fx(t) e Bx(R) such that x(x(t)) = fTfx(t)da
for all t e 13 of finite measure. As in Theorem 5.2, let x be a finite subdivision
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of T into disjoint measurable sets (ti, t2, • • • , t„), let Oi^n such that
0<|o-i|<°o, and let x*(t) =x(oi)/\oi\ for ten. Then for every x e X,
lim, =f£(t) in B°°(R). There will therefore exist a set {?r„} such that
I Xi(x*„(t)) — ft ft) I <l/n on T — crn (\<r„\ = 0) for all Hence for each i,
*«(*,n(0)^/i,(0 uniformly on T — cr0 where ö"o=Z<r" (\°~o\ =0). For a given t,
*,„(/) is contained in 5. A subsequence will therefore converge weakly to an
element of F [l, p. 134, Theorem 2]. We arbitrarily define x{t) to be the weak
limit of one such subsequence. Clearly Xi{x(t)) =lim„ Xi(xrn(t)) =fSi(t) on
F-o-o. As I *,■(*(<)) I ̂  U on T-o-0, and x{t) £ Y, it follows that \\x(t)\\ ^ LT
on T — cto- Further Xi(x(t)) is measurable, Fis separable, and the sequence Xi
is dense in the unit sphere of a determining manifold in F if the Xi are con-
sidered as elements of F. From this one can easily show that x(t) is weakly
measurable. As x(t) is contained in the sequential weak closure of S,
[x(t) 1t e T] is conditionally weakly compact(9). Therefore x(t) £ B°°(X). Now
*<Wr)) = Jrfxft)da — fTXi(x(t))da for all t e 15 of finite measure. As {xi\ is
total in F, it follows that x(t) = fTx(t)da for all t of finite measure [23, Theo-
rem 5.3]. By Lemma 5.1 ||*(0|U"(X) = ||*(t)||f"(X) =|| C/||. The remainder of
the argument is identical to that used in Theorem 5.3.

We remark that Theorem 5.4 is applicable to any separable linear trans-
formation on I to a regular Banach space since the unit sphere of a regular
space is weakly compact.

In the following theorem and corollary, T need not be the sum of a de-
numerable number of sets t e 15 of finite measure.

5.5 Theorem. If U is a weakly completely continuous transformation on L
to an arbitrary Banach space X, then U takes conditionally weakly compact sets
into conditionally compact sets.

It is sufficient to show that for any conditionally weakly compact se-
quence {(/>„}, { U(cpn)} is conditionally compact. The sequence {*„} is con-
tained in a separable subspace L' of L essentially defined on a class T' c T
which is the sum of a denumerable number of sets of finite measure(10). Let
U' on L' to X be identical with U on L'. As L' is separable, V is a separable
weakly completely continuous transformation on V to X. Theorem 5.4 is
applicable, and hence by a theorem due to Dunford and Pettis [9, p. 547,
Theorem 4] U' takes conditionally weakly compact sets into conditionally
compact sets. Since \<t>n\ is conditionally weakly compact in L', this con-
cludes the proof.

(s) W. L. Chmoulyan has shown that the weak sequential closure of a weakly compact
subset of a Banach space is itself weakly compact. See Communications de l'Institut des
Sciences Mathematiques et Mechaniques de l'Universite de Kharkoff et la Societe MathS-
matique de Kharkoff, (4), vol. 14 (1937), pp. 239-242.

(10) One can readily obtain this result by employing an argument similar to that used by
Dunford [8, p. 644].
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5.6. Corollary. If U is weakly completely continuous on L to L, then U2 is
completely continuous.

U takes the unit sphere in L into a conditionally weakly compact subset
of L, and by Theorem 5.5 its iterate takes this subset into a conditionally com-
pact subset of L. In other words U2 is completely continuous.

A uniform mean erogodic theorem for weakly completely continuous
transformations on L to L is easily obtainable by means of Corollary 5.6
and a mean ergodic theorem due to Kakutani [16] and Yosida [28].

6. On completely continuous transformations. In this section we make
further application of our study, demonstrating that each completely con-
tinuous transformation on any of the spaces Lp, lp (1 ^p^ «>), C, c0, MT to
an arbitrary Banach space X can be approximated in the norm by degenerate
transformations (see footnote on p. 526). The notation is that of §5.

For x e V{X) (Kg < °o) we define

, v     v  *(t,)   I Ix*{t) = 2^, "j—[— I t-n \ ;
x      I Ti\

and for x e V°°(X) we define

xt(t) = 2 T~T' I T'T<\         (<r< < r*' I **l < 00)•*     I °i I
Clearly xrz VC(X).

6.1. Theorem. If xe V"C(X) (1 <g^ °o), then lim, ||*T — *|| =0.

By definition, the set [x(x(t)) \ \\x\\ ^ 1 ] where * £ Vqc(X) is a condition-
ally compact subset of Vq(R). If we use the usual isometric correspondence
between Vq(R) and L", it follows immediately from Theorem 3.7 that

lim ||*. - *|| = lim L.U.B. [\\x(xr) - *(*)]| | \\x\\ ^ l] = 0.
X X

6.2. Corollary. If U is a completely continuous transformation on Lp to X
(l^p< <x>),then

(1) U(<p) = f<pdx where x £ V"C(X),
(2) If L7x(</>)=Ex/ri^a-*(ri)/|ri| (K/><«o) or if C7.(0) =£r/T<0do

•*(<r,-)/|<r,-| (p = l),then lim, || 17,- £7|| =0.

This is a consequence of Theorems 4.3 and 6.1.
For notational convenience, we write co=/°°.

6.3. Theorem. If U is a completely continuous transformation on lp
(1 <^p^ oo) to X, then

(1) [7(a) =Zf-ia«'X> wÄere x £ f 5C(X),
(2) if U„{a) =XX,a<*,-,       lim„ || [7n- [7|| =0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1940] LINEAR TRANSFORMATIONS 537

For p = oo, this is a consequence of Theorems 1.7 and 4.7. For 1 fip < 00,
the theorem is a special case of Corollary 6.2.

6.4. Theorem. If x z Vlc(X), then there exists a non-negative ß{r) z V1{R)
such that

lim E 7~ ß(T'Td = X
, ß{Ti)

where it is of type 2.

By the definition of V\{X), S= [x(x(t)) \\\x\\ S 1 ] is a conditionally com-
pact subset of F1(i?). Hence there exists the sequence [*»|||*»|||1,
» = 1, 2, ■ ■ • ] such that x„(x(r)) is dense in 5. Let /3„(r) be the absolute
variation of x„(x(t)). Define ß(r) =Ei" (1/2")0„(t). Clearly ß(r) z Vl(R) and
I ßn(r) I 2n\ß(r) I. x„(x(r)) is therefore absolutely continuous with respect to
ß(r). The class of all elements of F1(7?) absolutely continuous with respect
to ß(r) form a closed linear space AC(ß). Let ir= (ti, t2, ■ ■ ■ , r„) be of type 2
and such that (3(^)^0 (i=\, 2, • • • , n). Define

U*Mt)) = E ^rr^-r*)
• P(r,)

on 4C(/3) to AC(ß). Then || 17,|| gl. By a theorem due to Bochner [4, pp.
780-783] limT 77t(7(t))=7(t) for all y(r) z AC(ß). By Theorem 3.7,
lim, Ut(x„(x(t))) = x„(x(t)) uniformly in n and hence

lim
, ß[Ti)

= lim L.U.B. [||t7,[xn(x(r))] - x„(x(r))|| ] = 0.

6.5. Corollary. If U is a completely continuous transformation on Mr
[or 7,°°] to X, then

(1) 7/(0) = fcbdx where x z Vlc(X),
(2) there exists a ß(r) z V1(R) such that if

^ SrA>dßUM) = E LS~V<rl),

then lim, || 77,— f/|| =0.

This is a consequence of Theorems 4.3 and 6.4.

6.6. Corollary. If 77 is a completely continuous transformation on C to X,
then 77 is approximable in the norm by degenerate transformations.

According to a result of Gelfand's [12, p. 283], U{<p)=f<pdx where
xzVe{X) and |]x|| =|| 7/|| (seeend of §2). Now lim(.(+ x(x(t)) and lim(,r x(x(t))
exist by virtue of x(x(t))'s being of bounded variation. Since the values as-
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sumed by x(t) form a conditionally compact set, it follows that x(t+) and x(t~)
are defined for all t. Let 15 be the Jordan field of sets r generated by all open
intervals and points of (0, 1). If t consists of the disjoint sets [(at, br), • ■ * ,
(a^, bn~); C\, ■ ■ • , cm], define

n m

x(t) = E [x(bi) - x(a{)] + zZ [x(ci) — x(a)\.

Clearly x(r) e V](X), 17(0) =lim» £^(<<)*(t<) (tt of type 2), and || £7|| =||*||-
The remainder of the argument follows from Theorem 6.4.

We remark that in Theorems 6.1, 6.4 and Corollaries 6.2, 6.5, 6.6 the
7r-limit can be replaced by a sequential limit.

The problem of approximating completely continuous transformations on
X to certain spaces F by degenerate transformations has been investigated
by Maddaus [19]. He shows that this is possible whenever there exist de-
generate transformations Vn such that limn,x V„(y) = y for all y e Y

Let Y be a Banach space possessing a generalized base, 77T (see §3). Sup-
pose 77 is a completely continuous transformation on X to Y. Then the set
S=[U(x)\x z X, ||x||i£l] is conditionally compact. By Theorem 3.7
limx UT(U(x)) = U(x) uniformly for all x £ X for which ||x|| jgl. It follows
that limT || 77T(r7) — 77|| =0. As UT(U) is a degenerate transformation, this
gives Maddaus's result in a slightly more general form.

7. On the extension of linear transformations. If 77 is a linear transforma-
tion on X to Y and Z contains X as a proper subspace, then a linear transfor-
mation T7i on Z to Fsuch that 77(z) = U\(z) for all z e X is called an extension
of 77. Any Banach space Y can be imbedded(u) in a space of type Afr(12).
We will designate such a space which contains For its image under an equiva-
lence by Mr = Y.

7.1. Theorem. The general form of the linear transformation Uon X to MT
is

U(x) = [*,(*)]

where \\U\\ = L.U.B. [||x<|| 11 e T\.
For every t z T there exists a linear functional ät such that ät(a) =a(t).

Let xt= U(at). Then a(i) =üt[U(x)]=xt(x) and

||77|| = L.U.B. [|ä([r/(x)]| = \ xt(x)\ I te T, ||*|| £ l] - L.U.B. [||it|| | tt T],
7.2. Corollary. ^4«y linear transformation U on X to Mr has an extension

Uion Z?X to MT such that \\ U\\ = || Z7i||.
(u) By an imbedding of Y into a subspace Z of M we shall mean that Y is equivalent [l,

p. 180]toZ.
(12) Let r^Ti, the unit sphere of some determining manifold in Y. Then U(y) = y(y) on

Fto Mt defines an equivalence between Fand a subset of Mr-
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By the Hahn-Banach theorem [l, p. 55, Theorem 2], xt has a norm pre-
serving extension zt on Z. Ui{z) — [z((z)] is the required extension.

7.3. Corollary. If Y is isomorphic with Mr, then any linear transforma-
tion 77 on X to Y has an extension on Z to Y.

As Y and Mr are isomorphic [l, p. 180] there exists a biunique and bi-
continuous linear transformation V on Y into the entire space Mr- VU is
then a linear transformation on X to Mr which by Corollary 7.2 has the ex-
tension (VU)i on Z to Mr- It is clear that VU)i is the required extension
on Z to Y.

7.4. Corollary. Any linear transformation U on X to Y has an extension
on Z s X to Y if either of the following is true:

(1) There exists a projection transformation^3) P on Z to X.
(2) There exists a projection transformation P on Mr => Y to Y.

If (1) holds then Ui = UP is the required extension on Z to Y. If (2) holds
and Ui is the extension of Corollary 7.2 on Z to Mr ^ Y, then PU\ is the re-
quired extension on Z to K

In view of Corollary 7.4, the existence of projection transformations on
spaces Mr Y to Y assumes importance in the study of the extension of
linear transformations. As yet we can give only negative results in this direc-
tion.

Fichtenholtz and Kantorovitch [10, p. 92] have proved that there does
not exist a projection transformation on Mr to C where T=(0, 1) and C is
the space of continuous functions on (0, 1). Banach and Mazur [2, p. Ill]
have shown that for a separable space Y whose conjugate space is not weakly
complete there does not exist a projection transformation on C to any im-
bedding of Y in C. Consequently there exists no projection transformaton
on Mr Y to an imbedding of Y which is contained in an imbedding of C
in Mr => Y.

If there existed a projection transformation on the space Ci of functions
on (0, 1) having only discontinuities of the first kind to C then the methods
of Gelfand [12, p. 281 ] would show that the identity transformation on C
to C could be expressed in the form U{<p) = f<pdx where x e V(X). The ex-
ample at the end of §4 shows that this is not the case. Therefore there exists
no projection transformation on Mr 3 C to an imbedding of C which is con-
tained in an imbedding of C\ in Mr 3 C.

7.5. There exists no projection transformation on m to c.

If there existed a projection transformation P on m to c, then any weakly
convergent sequence of linear functionals {äp} on c corresponds to a se-

(ls) A projection transformation P is a linear transformation with the property that P2 = P-
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quence of extensions [xp = P(dp)} which is weakly convergent on m. Now
äp(a) = a(p +1) — a(p) converges weakly to zero on c. Using the notation of
Corollary 3.4, we have xp(x) = JTx(t)dßp and 52 < I ßp(t) I —>0- Since xp(a) = ap(a)
= a(p+l)—a(p), it follows that ßp(p +1) = 1 = -ßp(p) which is contrary to
the above. There can therefore exist no projection transformation on m to c.
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