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ON LINEAR TRANSFORMATIONS PRESERVING
THE PÓLYA FREQUENCY PROPERTY

PETTER BRÄNDÉN

Abstract. We prove that certain linear operators preserve the Pólya fre-
quency property and real-rootedness, and apply our results to settle some
conjectures and open problems in combinatorics proposed by Bóna, Brenti
and Reiner-Welker.

1. Introduction

Many sequences encountered in various areas of mathematics, statistics and com-
puter science are known or conjectured to be unimodal or log-concave; see [7, 30, 32].
A sufficient condition for a sequence to enjoy these properties is that it is a Pólya
frequency (PF for short) sequence, or equivalently for finite sequences, that its
generating function has only real and non-positive zeros. It is often the case that
the generating function of a finite PF -sequence has more transparent properties
when expanded in a basis other than the standard basis {xi}i≥0 of R[x]. Therefore
it is natural to investigate how PF -sequences translate when expressed in various
bases. This amounts to studying properties of the linear operator that maps one
basis to another. A systematic study of this was first pursued by Brenti in [6]. This
is also the theme of this paper.

In Section 3 we will study linear operators of the type

φF =
n∑

k=0

Qk(x)
dk

dxk
,

where F (x, z) =
∑n

k=0 Qk(x)zk ∈ R[x, z]. Here we will give sufficient conditions
on F for φF to preserve the PF -property. The results attained generalize and
unify theorems of Hermite, Poulain, Pólya and Schur. In this section we will also
give a sufficient condition for a family of natural R-bilinear forms to preserve the
PF -property in both arguments. This generalizes results of Wagner [10, 35, 36].

An important linear operator in combinatorics is the operator defined by E(
(
x
i

)
)

= xi, for all i ∈ N. In Section 4 we will prove that whenever a polynomial f of
degree d has non-negative coefficients when expanded in the basis {xi(x+1)d−i}d

i=0,
the polynomial E(f) will have only real, non-positive and simple zeros.
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In the remainder of the paper we use the theory developed to settle some con-
jectures and open problems raised in combinatorics. In Section 5 we prove that
the numbers {Wt(n, k)}n−1

k=0 of t-stack sortable permutations in Sn with k descents
form PF -sequences when t = 2, n − 2, thereby settling two new cases of an open
problem proposed by Bóna [2, 3].

In Section 6 we prove that the q-Eulerian polynomials An(x; q), defined by Foata
and Schützenberger [16] and further studied by Brenti in [9], have only real zeros
for all integers q. This settles a conjecture raised by Brenti. Here we also continue
the study of the W -Eulerian polynomials, defined for any finite Coxeter group W ,
and the q-analog Bn(x; q), initiated by Brenti in [8].

In Section 7 we prove that the h-vectors of a family of simplicial complexes
associated to finite Weyl groups defined by Fomin and Zelevinski [17] are PF , thus
settling an open problem raised by Reiner and Welker [28].

2. Notation and preliminaries

In this section we collect definitions, notation and results that will be used fre-
quently in the rest of the paper. Let {ai}∞i=0 be a sequence of real numbers. It is
unimodal if there is a number p such that a0 ≤ a1 ≤ · · · ≤ ap ≥ ap+1 ≥ · · · , and
log-concave if a2

i ≥ ai−1ai+1 for all i > 0.
An infinite matrix A = (aij)i,j≥0 of real numbers is totally positive, TP , if all mi-

nors of A are non-negative. An infinite sequence {ai}∞i=0 of real numbers is a Pólya
frequency sequence (PF -sequence) if the matrix (ai−j)i,j≥0 is TP . Thus a PF -
sequence is by definition log-concave and therefore also unimodal. A finite sequence
a0, a1, a2, . . . , an is said to be PF if the infinite sequence a0, a1, a2, . . . , an, 0, 0, . . .
is PF . A sequence {ai}∞i=0 is said to be PFr if all minors of size at most r of
(ai−j)i,j≥0 are non-negative. If the polynomials {bi(x)}d

i=0 are linearly indepen-
dent over R and r ∈ N we define the set PFr[{bi(x)}d

i=0] to be

PFr[{bi(x)}d
i=0] = {

d∑
i=0

λibi(x) : {λi}∞i=0 is PFr},

and PF [{bi(x)}d
i=0] =

⋂∞
r=1 PFr[{bi(x)}d

i=0].
The following theorem characterizes PF -sequences. It was conjectured by Schoen-

berg and proved by Edrei [15]; see also [22].

Theorem 2.1. Let {ai}∞i=0 be a sequence of real numbers with a0 = 1. Then
it is a PF -sequence if and only if the generating function can be expanded in a
neighborhood of the origin as

∑
i≥0

aiz
i = eγz

∏
i≥0(1 + αiz)∏
i≥0(1 − βiz)

,

where γ ≥ 0, αi, βi > 0 and
∑

i≥0(αi + βi) < ∞.

A consequence of this theorem is that a finite sequence is PF if and only if its
generating function is a polynomial with only real non-positive zeros.

Let f, g ∈ R[x] be real-rooted with zeros: α1 ≤ · · · ≤ αi and β1 ≤ · · · ≤ βj ,
respectively. We say that f interlaces g, denoted f � g, if j = i + 1 and

β1 ≤ α1 ≤ β2 ≤ · · · ≤ βj−1 ≤ αj−1 ≤ βj .
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We say that f alternates left of g, denoted f � g, if i = j and

α1 ≤ β1 ≤ · · · ≤ βi−1 ≤ αi ≤ βi.

If in addition f and g have no common zero, then we say that f strictly interlaces
g and f strictly alternates left of g, respectively. We also say that two polynomials
f and g alternate if one of the polynomials alternates left of or interlaces the other.
We will need two simple lemmata concerning these concepts. A polynomial is said
to be standard if its leading coefficient is positive.

Lemma 2.2. Let g and {fi}n
i=1 be real-rooted standard polynomials.

(i) If for each 1 ≤ i ≤ n we have either g � fi or g � fi. Then the sum
F = f1 + f2 + · · · + fn is real-rooted with g � F or g � F , depending on
the degree of F .

(ii) If for each 1 ≤ i ≤ n we have either fi � g or fi � g. Then the sum
F = f1 + f2 + · · · + fn is real-rooted with F � g or F � g, depending on
the degree of F .

Proof. The lemma follows easily by counting the sign-changes of F at the zeros of
g; see, e.g., [37, Prop. 3.5]. �

The next lemma is obvious.

Lemma 2.3. If f0, f1, . . . , fn are real-rooted polynomials with f0 � fn and fi−1 �
fi for all 1 ≤ i ≤ n, then fi � fj for all 0 ≤ i ≤ j ≤ n.

The following theorem is a characterization of alternating polynomials due to
Obreschkoff [24] and Dedieu [13].

Theorem 2.4. Let f, g ∈ R[x]. Then f and g alternate (strictly alternate) if and
only if all polynomials in the space

{αf + βg : α, β ∈ R}
have only real (real and simple) zeros.

An immediate but non-trivial consequence of this theorem is

Corollary 2.5. Let φ : R[x] → R[x] be a linear operator. Then φ preserves the
real-rootedness property (real- and simple-rootedness property) only if φ preserves
the alternating property (strictly alternating property).

We denote by N the set of natural numbers {0, 1, 2, . . .}. The symmetric group
of bijections π : {1, 2, . . . , n} → {1, 2, . . . , n} is denoted by Sn. A descent in a
permutation π ∈ Sn is an index 1 ≤ i ≤ n− 1 such that π(i) > π(i+1). Let des(π)
denote the number of descents in π. The Eulerian polynomials, An(x), are defined
by An(x) =

∑
π∈Sn

xdes(π)+1 and satisfy (see e.g. [11])∑
k≥0

knxk =
An(x)

(1 − x)n+1
.

The binomial polynomials are defined by
(
x
0

)
= 1 and

(
x
k

)
= x(x−1)···(x−k+1)

k! for
k ≥ 1.

In several proofs we will implicitly use the fact that the zeros of a polynomial are
continuous functions of the coefficients of the polynomial. In particular the limit
of a sequence of real-rooted polynomials is again real-rooted. For a treatment of
these matters we refer the reader to [23].
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3. A class of linear operators preserving the PF -property

For any polynomial F (x, z) =
∑n

k=0 Qk(x)zk ∈ R[x, z] we define a linear operator
φF : R[x] → R[x] by

φF (f) :=
n∑

k=0

Qk(x)
dk

dxk
f(x).

In this section we will investigate for which F ∈ R[x, z] the linear operator φF

preserves the real-rootedness and the PF -properties.
We will need some terminology and a theorem from [5]. For ξ ∈ R let Tξ :

R[x] → R[x] be the translation operator defined by Tξ(f(x)) = f(x + ξ). For any
linear operator φ : R[x] → R[x] we define a linear transform Lφ : R[x] → R[x, z] by

Lφ(f) := φ(Tz(f))

=
∑

n

φ(f (n))(x)
zn

n!
(3.1)

=
∑

n

φ(xn)
n!

f (n)(z).

Definition 3.1. Let φ : R[x] → R[x] be a linear operator. Define a function
dφ : R[x] → N ∪ {−∞} by: If φ(f (n)) = 0 for all n ∈ N, we let dφ(f) = −∞.
Otherwise let dφ(f) be the smallest integer d such that φ(f (n)) = 0 for all n > d.
Hence dφ(f) ≤ deg f for all f ∈ R[x].

The set A(φ) is defined as follows: If dφ(f) ∈ {−∞, 0} and φ(f) is standard real-
and simple-rooted, then f ∈ A(φ). Moreover, f ∈ A(φ) if d = dφ(f) ≥ 1 and all of
the following conditions are satisfied:

(i) φ(f (i)) all have leading coefficients of the same sign and deg(φ(f (i−1))) =
deg(φ(f (i))) + 1 for 1 ≤ i ≤ d,

(ii) φ(f) and φ(f ′) have no common real zero,
(iii) φ(f (d)) strictly interlaces φ(f (d−1)),
(iv) for all ξ ∈ R the polynomial Lφ(f)(ξ, z) is real-rooted.

The following theorem is proved in [5].

Theorem 3.2. Let φ : R[x] → R[x] be a linear operator. If f ∈ A(φ), then φ(f) is
real- and simple-rooted.

We will also need the following classical theorem of Hermite and Poulain. For a
proof see [24].

Theorem 3.3. Let f = a0 + a1x + · · · + anxn and g be real-rooted polynomials.
Then the polynomial

f(
d

dx
)g := a0g(x) + a1g

′(x) + · · · + ang(n)(x)

is real-rooted. Moreover, if f( d
dx )g 	= 0, then any multiple zero of f( d

dx )g is a
multiple zero of g.

The following theorem gives a sufficient condition for a polynomial to be mapped
onto a real-rooted polynomial.

Theorem 3.4. Let F =
∑n

k=0 Qk(x)zk be such that Q0 	= 0 and
(I) For all ξ ∈ R, F (ξ, z) is real-rooted,
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(II) Q0 strictly interlaces or strictly alternates left of Q1, and deg Q0 = 0 or
Q0 and Q1 have leading coefficients of the same sign.

Suppose that
(III) f is real- and simple-rooted and that for 0 ≤ k ≤ deg f the polynomials

φF (f (k)) have their leading term of the same sign with

deg φF (f (k)) = deg Q0 + deg f − k.

Then φF (f) is real- and simple-rooted.

Proof. We will show that the set of real- and simple-rooted polynomials satisfying
(III) is a subset of A(φF ) by verifying conditions (i)-(iv) of Definition 3.1. Condition
(i) follows immediately from (III). For condition (iv) note that

Lφ(f)(ξ, z) =
n∑

k=0

Qk(ξ)f (k)(ξ + z),

so by Theorem 3.3 condition (iv) is satisfied. Suppose that η is a common zero
of φF (f) and φF (f ′). By (3.1) we have that 0 is a multiple zero of Lφ(f)(η, z).
Moreover, since Lφ(f)(η, z) is not identically equal to zero, by (II), Theorem 3.3
tells us that 0 is a multiple zero of f(η + z). This means that η is a multiple zero
of f contrary to the assumption that f is simple-rooted, and verifies condition (ii).

For condition (iii) we have to show that for all α ∈ R such that x+α satisfies (III)
the polynomial φF (1) = Q0 strictly interlaces f(x) := φF (x+α) = (x+α)Q0 +Q1.
This follows from (II) when analyzing the sign of f(x) := φF (x + α) at the zeros of
Q0: Let αk < αk−1 < · · · < α1 be the zeros of Q0 ordered by size. Suppose that Q0

and Q1 are standard and that Q0 strictly interlaces or strictly alternates left of Q1.
Then sgn f(αi) = sgn Q1(αi) = (−1)i for 1 ≤ i ≤ k. By Rolle’s theorem we know
that f has a zero in each interval (αi, αi+1). This accounts for k−1 real zeros of f .
Since Q0 has positive sign, so does f by condition (III). Now, because f(α1) < 0
and f is standard, f must have a zero to the right of α1. We now know that f has k
real zeros. The signs at αi force the remaining zero to be in the interval (−∞, αk).
Thus Q0 strictly interlaces f as was to be shown.

Now, if Q0 = A ∈ R, then deg Q1 ≤ 1. Suppose that Q1 = B ∈ R. Then clearly
A strictly interlaces (x+α)A+B. If Q0 = A and Q1 = Cx+D where A, C, D ∈ R,
then f = (A + C)x + Aα + D, so by (III) we have that Q0 strictly interlaces f .
This concludes the proof. �

In some cases it may be convenient to have a sharper hypothesis. Therefore we
state the following form of the theorem.

Corollary 3.5. Let d ∈ N be given and let F =
∑n

k=0 Qk(x)zk be such that Q0 	= 0
and

(i) For all ξ ∈ R, F (ξ, z) is real-rooted.
(ii) Q0 strictly interlaces or strictly alternates left of Q1, and deg Q0 = 0 or

Q0 and Q1 have leading coefficients of the same sign.
(iii) The polynomials φF (xk), 0 ≤ k ≤ d have the same sign and

deg φF (xk) = deg Q0 + k.

Then φF (f) is real-rooted (real- and simple-rooted) if f is real-rooted (real and
simple-rooted) and deg(f) ≤ d.
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Proof. The case of real- and simple-rooted f follows immediately from Theorem 3.4
since (iii) implies (III). If f is a real-rooted polynomial of degree at most d, then f
is the limit of a sequence {fk}∞k=0 of real- and simple-rooted polynomials of degree
at most d. It follows that φF (f) is the limit of φF (fk), and the thesis follows by
continuity. �

In the language of PF -sequences we have

Theorem 3.6. Let d ∈ N be given and let F =
∑n

k=0 Qk(x)zk ∈ R[x, z] be such
that Q0 	= 0 and

(i) For all ξ ∈ R, F (ξ, z) is real-rooted.
(ii) φF (1) strictly interlaces φF (x).
(iii) For all 0 ≤ k ≤ d

deg φF (xk) = deg Q0 + k,

and φF (xk) ∈ PF1.
Then PF [{φF (xi)}d

i=0] ⊆ PF [xi].

Several old results can be derived from these last few theorems. In [25, p. 163]
Pólya gave a theorem which he states was probably the most general theorem on
real-rootedness known at the time. “Dieser Satz gehört wohl zu den allgemeinsten
bekannten Sätzen über Wurzelrealität”.

Theorem 3.7. Let f(x) be a real-rooted polynomial of degree n, and let

b0 + b1x + · · · + bn+mxn+m (m ≥ 0)

be a real-rooted polynomial such that bi > 0 for 0 ≤ i ≤ n. Then the equation

G(x, y) := b0f(y) + b1xf ′(y) + b2x
2f

′′
(y) + · · · + bnxnf (n)(y) = 0

has n real intersection points (counted with multiplicity) with the line

sx − ty + u = 0,

provided that s, t ≥ 0, s + t > 0 and u ∈ R.

Proof. We may assume that s, t > 0 since the other cases follow by continuity when
s and/or t tends to zero. Thus we may write the equation as

a0g(x) + a1xg′(x) + a2x
2g′′(x) + · · · + anxng(n)(x) = 0,

where g(x) = f(st−1x + ut−1) and ai = sit−ibi. Now, we see that all hypotheses of
Corollary 3.5 are satisfied for

F (x, z) = a0 + a1xz + a2x
2z2 + · · · + an+mxn+mzn+m,

when d = n. �
We will later need one famous consequence of this theorem, t = 1, s = u = 0,

due to Schur [29].

Theorem 3.8. Let f =
∑n

k=0 akxk and g =
∑m

k=0 bkxk be two real-rooted polyno-
mials such that g has all zeros of the same sign. Then the polynomial

(fSg)(x) =
M∑

k≥0

k!akbkxk,

where M = min(m, n) has only real zeros.
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3.1. Multiplier-sequences. A multiplier-sequence is a sequence T = {γi}∞i=0 of
real numbers such that if a polynomial f(x) = a0 + a1x + · · · + anxn has only real
zeros, then the polynomial

T [f(x)] := a0γ0 + a1γ1x + · · · + anγnxn

also has only real zeros. There is a characterization of multiplier-sequences due to
Pólya and Schur [25, pp. 100-124], as follows.

Theorem 3.9. Let T = {γi}∞i=0 be a sequence of non-negative real numbers and
let φ(x) = T [ex] =

∑∞
k=0 γk

xk

k! be its exponential generating function. Then T is a
multiplier-sequence if and only if φ is a real entire function which can be written as

φ(x) = cxneβx
∞∏

k=1

(1 + δkx),

where c > 0, β ≥ 0, δk ≥ 0, n ∈ N and
∑∞

k=1 δk < ∞.

The following lemma is well known (see [25]).

Lemma 3.10. A nonnegative multiplier-sequence has no internal zeros.

Theorem 3.11. Let {λk}∞k=0 be a non-negative multiplier-sequence, and let α <
β ∈ R be given. Define two R-bilinear forms R[x] × R[x] → R[x] by

f · g :=
∑
k≥0

λk

k!
f (k)(x)g(k)(x)(x − α)k(x − β)k,

f ◦ g :=
∑
k≥0

λk

k!
f (k)(x)g(k)(x)(x − α)k.

If f is real-rooted and g is [α, β]-rooted, then f · g is real-rooted. If f is real-rooted
and g is [−∞, α]-rooted, then f ◦ g is real-rooted.

Proof. We prove the statement for · since the case for ◦ is similar. We may assume
that λ0 > 0. Clearly the theorem is true if λi = 0 for all i > 0, so by Lemma 3.10
we may assume that λ1 > 0. Let g have all zeros simple and in the interval (α, β),
and let φ be the linear operator defined by φ(f) = f · g. Then φ = φF , where

F (x, z) =
∑
k≥0

λk
g(k)(x)

k!
(x − α)k(x − β)kzk.

Since {λk}k≥0 is a multiplier sequence, F (ξ, z) is real-rooted for all real choices of
ξ. Now, Q0 = λ0g(x) and Q1 = λ1(x−α)(x−β)g′(x), so Q0 strictly interlaces Q1.
Moreover, deg φ(xk) = deg Q0 + k for all k, so all the hypothesis of Corollary 3.5
are fulfilled. Since any [α, β]-rooted polynomial is the limit of polynomials which
are (α, β)- and simple-rooted, the thesis follows by continuity. �

There are a few bilinear forms on polynomials that occur frequently in combi-
natorics. Let # : R[x] × R[x] → R[x] be defined by

(f#g)(x) :=
∑
k≥0

f (k)(x)g(k)(x)
xk

k!
.

This product is important when analyzing how the the zeros of σ-polynomials
behave under disjoint union of graphs; see [10].
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Theorem 3.12. Let f be real-rooted and let g have only real zeros of the same
sign. Then f#g is real-rooted.

Proof. The theorem follows from Theorem 3.11, since {1}∞k=0 is trivially a multiplier-
sequence. �

This generalizes a result of Wagner, who proved that f#g is real-rooted whenever
f and g have only non-negative zeros; see [10, 35].

The diamond product of two polynomials f and g is given by

(3.2) (f � g)(x) =
∑
k≥0

f (k)(x)
k!

g(k)(x)
k!

xk(x + 1)k.

This product is important in the theory of (P, ω)-partitions and the Neggers-Stanley
conjecture and was first studied by Wagner in [36, 37]; see also Section 4 of this
paper. Applying Theorem 3.11 with the multiplier-sequence { 1

k!}k≥0 we get

Theorem 3.13. Let f be real-rooted and let g have all zeros in the interval [−1, 0].
Then f � g is real-rooted.

This was first proved by Wagner [37] under the additional hypothesis that f has
all zeros in [−1, 0], and generalized by the present author in [5].

A sequence of real numbers Γ = {γk}∞k=0 is called a multiplier n-sequence if
for any real-rooted polynomial f = a0 + a1x + · · · + anxn of degree at most n the
polynomial Γ[f ] := a0γ0 + a1γ1x + · · · + anγnxn is real-rooted. There is a simple
algebraic characterization of multiplier n-sequences [12], as follows.

Theorem 3.14. Let Γ = {γk}∞k=0 be a sequence of real numbers. Then Γ is a
multiplier n-sequence if and only if Γ[(x+1)n] is real-rooted with all its zeros of the
same sign.

Recall the definition of the hypergeometric function 2F1:

2F1(a, b; c; z) =
∞∑

m=0

(a)m(b)mzm

(c)mm!
,

where (α)0 = 1 and (α)m = α(α + 1) · · · (α + m − 1) when m ≥ 1. The Jacobi
polynomial P

(α,β)
n (x) can be expressed as follows [26, p. 254]:

(3.3) P (α,β)
n (x) =

(1 + α)n

n! 2F1

(
−n, 1 + α + β + n; 1 + α;

1 − x

2

)
.

We need the following lemma.

Lemma 3.15. Let n be a positive integer and r a non-negative real number. Then
Γ = {

(−n−r
k

)
}∞k=0 is a multiplier n-sequence.

Proof. Let r > 0. Then

Γ[(x + 1)n] =
n∑

k=0

(
−n − r

k

)(
n

k

)
xk

= 2F1(−n, n + r; 1; x)

= P (0,r−1)
n (1 − 2x),

where the last equality follows from (3.3). Since the Jacobi polynomials are known
(see [26]) to have all their zeros in [−1, 1] when α, β > −1, we have that Γ[(x+1)n]
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has all its zeros in [0, 1]. The case r = 0 follows by continuity when we let r tend
to zero from above. �

For any real number q let Γq := {q + k}∞k=0. The following corollary was already
known to Laguerre.

Corollary 3.16. Let n > 1 be a positive integer. Then Γq is a multiplier n-sequence
if and only if q /∈ (−n, 0).

Proof. Let q ∈ R be given. We have to determine for which n > 1 the zeros of
Γq[(x + 1)n] are all real and of the same sign. Now,

Γq[(x + 1)n] = (x + 1)n−1{(n + q)x + q},
and the theorem follows. �

4. The E-transformation

The E-transformation is the invertible linear operator E : R[x] → R[x] defined
by

E(
(

x

i

)
) = xi,

for all i ∈ N. The PF -preserving properties of this linear operator was first studied
in [6] and later in [36, 37] and [5]. It is important in the theory of (P, ω)-partitions
since it maps the order-polynomial of a labeled poset to the E-polynomial of the
same labeled poset; see [6, 36]. In, [6] Brenti proved the following theorem. Let
λ(f) and Λ(f) denote the smallest and the largest real zero of the polynomial f ,
respectively.

Theorem 4.1. Suppose that f ∈ R[x] has only real zeros and that f(n) = 0 for all
n ∈ ([λ(f),−1] ∪ [0, Λ(f)]) ∩ Z. Then E(f) has all zeros real and is non-positive.

In this section we will prove the following theorem.

Theorem 4.2. For all n ∈ N we have

PF1[{xi(x + 1)n−i}n
i=0] ⊆ PF [

(
x

i

)
].

Moreover if f ∈ PF1[{xi(x + 1)n−i}n
i=0], then E(f) has simple zeros and

E((x + 1)d) � E(f) � E(xd).

The diamond product (3.2) is intimately connected with the E-transformation.
By the Vandermonde identity(

x

i

)(
x

j

)
=

∑
k≥0

(
k

k − i, i + j − k, k − j

)(
x

k

)
,

it follows (see [37]) that

(4.1) (f � g)(x) := E(E−1(f)E−1(g)).

We will later need a symmetry property of E . Let R : R[x] → R[x] be the algebra
automorphism defined by R(x) = −1 − x.

Lemma 4.3.
RE = ER.
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Proof. Let n be a non-negative integer. Using the identity(
x + n

n

)
=

n∑
k=0

(
n

k

)(
x

k

)

and the fact that
(−x−1

n

)
= (−1)n

(
x+n

n

)
, we get

ER
(

x

n

)
= (−1)nE

(
x + n

n

)

= (−1)n
n∑

k=0

(
n

k

)
E
(

x

k

)

= (−1 − x)n

= RE
(

x

n

)
,

and the lemma follows. �
Lemma 4.4. Let α ∈ [−1, 0] and let f be a polynomial such that E(f) is [−1, 0]-
rooted. Then E((x−α)f) is [−1, 0]-rooted and E(f) interlaces E((x−α)f). If E(f)
in addition only has simple zeros, then so does E((x − α)f).

Proof. Let g = E(f) and let α ∈ [−1, 0]. By (3.2) and (4.1) we have that

(4.2) E((x − α)f) = (x − α)g + x(x + 1)g′.

Since g interlaces (x−α)g and x(x+1)g′, it also interlaces the sum by Lemma 2.2.
Also, if x /∈ [−1, 0], then the summands have the same sign, so E((x− α)f) cannot
have any zeros outside [−1, 0]. Suppose that g has only simple zeros. Then by (4.2)
the only possible common zeros of g and E((x−α)f) are 0 and −1. If deg(f) ≥ 1 it
also follows from (4.2) that the multiplicities of 0 and −1 of E((x−α)f) are the same
as those of g. Hence the (simple) zeros of g separate the zeros of E((x−α)f) except
possibly at 0,−1, and we conclude that E((x − α)f) has only simple zeros. �
Lemma 4.5. For all integers n ≥ 1 we have

(x + 1)E(xn) = xE((x + 1)n).

Proof. We may write

xn =
n∑

k=1

ak

(
x

k

)
,

where ak ∈ R. Thus

E((x + 1)n) =
n∑

k=1

akE [
(

x

k

)
+

(
x

k − 1

)
]

=
n∑

k=1

ak(xk + xk−1)

= (x + 1)x−1E(xn).

�
Let f and g be standard real-rooted polynomials of degree n and let the zeros

of f and g be α1 ≤ α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ · · · ≤ βn, respectively. We write
f ≤ g if αi ≤ βi for 1 ≤ i ≤ n.
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Theorem 4.6. Suppose that f and g are [−1, 0]-rooted with f ≤ g. Then E(f) and
E(g) are [−1, 0]- and simple-rooted, with E(f) � E(g).

Proof. By Lemma 4.4 and induction we only have to show that E(f) � E(g). If
f and g have the same zeros except for one, i.e., f = (x − α)h and g = (x − β)h,
where α < β, then

E(g) = E(f) − (β − α)E(h),

and since E(h) interlaces E(f) we have E(f) � E(g) by Lemma 2.2.
Now, suppose that f and g are [−1, 0]-rooted polynomials of degree n such that

f ≤ g. Then there are [−1, 0]-rooted polynomials {hi}M
i=0 with

(x + 1)n = h0 ≤ h1 ≤ · · · ≤ hM = xn,

such that f, g ∈ {hi}M
i=0 and hi−1 and hi only differ in one zero for 1 ≤ i ≤ n. We

therefore have
E(h0) � E(h1) � · · · � E(hM ),

and since E(h0) � E(hM ), by Lemma 4.5, the theorem follows from Lemma 2.3. �

A consequence of Theorem 4.6 is that if {fi}m
i=1 is a sequence of standard [−1, 0]-

rooted polynomials of the same degree d, then by Lemma 2.2 and Theorem 4.6, the
image under E of any non-negative sum F =

∑m
i=1 µifi will be [−1, 0]-rooted with

E((x + 1)d) � E(F ) � E(xd).

It is easy to see that a standard polynomial f of degree d is [−1, 0]-rooted if and
only if f can be written as

f(x) = (x + 1)dg(
x

x + 1
),

where g is a standard and (−∞, 0)-rooted. On the other hand, since xi(x + 1)d−i

is [−1, 0]-rooted, we have that F can be written as a non-negative sum of standard
[−1, 0]-rooted polynomials of degree d if and only if

F (x) =
d∑

i=0

aix
i(x + 1)d−i,

where ai ≥ 0. This proves Theorem 4.2.

5. t-stack sortable permutations

For relevant definitions regarding t-stack sortable permutations, we refer the
reader to [2]. Let Wt(n, k) be the number of t-stack sortable permutations in the
symmetric group Sn with k descents, and let

Wn,k(x) =
n−1∑
k=0

Wt(n, k)xk.

Recently, Bóna [1, 3] showed that for fixed n and t the numbers {Wt(n, k)}n−1
k=0

form a unimodal sequence. When t = n − 1 and t = 1 we get the Eulerian and
the Narayana numbers (see [34] and [31, Exercise 6.36]), respectively. These are
known to be PF -sequences, and Bóna [2, 3] has raised the question of whether this
is true for general t. Here we will settle the problem to the affirmative for t = 2
and t = n − 2.
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The numbers W2(n, k) are surprisingly hard to determine despite their compact
and simple form. It was recently shown that

W2(n, k) =
(n + k)!(2n − k − 1)!

(k + 1)!(n − k)!(2k + 1)!(2n − 2k − 1)!
.

See [4, 14, 19, 21] for proofs and more information on 2-stack sortable permutations.
From the case r = 0 in Lemma 3.15 and the identity

n∑
k=0

(
2n − k − 1

n − 1

)(
n

k

)
xk = (−1)n

n∑
k=0

(
−n

k

)(
n

k

)
(−x)n−k,

it follows that
(
2n−k−1

n−1

)
is an n-sequence.

Theorem 5.1. For all n ≥ 0 the sequence {W2(n, k)}n−1
k=0 , which records 2-stack

sortable permutations by descents, is PF .

Proof. We may write W2(n, k) as

W2(n, k) =

(
2n−k−1

n−1

)(
n+k
n−1

)(
2n

2k+1

)
n2

(
2n
n

) .

A simple consequence of the notion of PF -sequences reads as follows: If {ai}i≥0

is PF , then so is {aki}i≥0, where k is any positive integer. Applying this to the
polynomial x(1 + x)2n we see that

∑
k

(
2n

2k+1

)
xk is real-rooted. Therefore the poly-

nomial
n−1∑
k=0

(
n + k

n − 1

)(
2n

2k + 1

)
xk =

n−1∑
k=0

(
2n − k − 1

n − 1

)(
2n

2k + 1

)
xn−1−k

is real-rooted. Another application of Lemma 3.15 gives that Wn,2(x) is real-rooted.
�

It is easy to see that a permutation π ∈ Sn is (n − 2)-stack sortable if and only
if it is not of the form σn1. Thus the generating function satisfies

xWn,n−2(x) = An(x) − xAn−2(x),

where An(x) is the nth Eulerian polynomial.

Theorem 5.2. For all real numbers t > −2 and integers n > 2, the polynomial

An(t, x) = An(x) + txAn−2(x)

is real- and simple-rooted. Moreover, An(t, x)/x strictly interlaces An+1(t, x)/x for
−2 < t ≤ 3.

Corollary 5.3. For all n ≥ 2 we have that {Wn−2(n, k)}n−1
k=0 is PF . Moreover,

Wn,n−2(x) strictly interlaces Wn+1,n−1(x).

Proof of Theorem 5.2. It is well known that An−1(x) � xAn−2(x) and An−1(x) �
An(x). So by Lemma 2.2 we have that An(t, x) is real- and simple-rooted for t ≥ 0.
However, when t < 0 a similar argument does not apply.

Let En(t, x) = An(t, x
1+x ). Then

En(t, x) = En(x) + tx(1 + x)En−2(x),
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where the coefficient to xk in En(x) counts the number of surjections σ : [n] → [k];
see [6, 36]. These polynomials satisfy the recursion

En(x) = x
d

dx
((1 + x)En−1(x)),

with initial condition E1(x) = x. Thus, if we let Gn(x) = En+1(x)/x we have the
following recursion:

(5.1) Gn(x) =
d

dx
(x(1 + x)Gn−1(x)),

with G0(x) = 1. Obviously Gn(x) is real- and simple-rooted. If we apply (5.1) two
times we get the equation

Gn(x) = (1 + 6x + 6x2)Gn−2(x) + 3x(1 + 2x)(1 + x)G′
n−2(x)

+ x2(1 + x)2G′′
n−2(x),

and for Gn(t, x) := Gn(x) + tx(1 + x)Gn−2(x) we have

Gn(t, x) = (1 + (6 + t)x + (6 + t)x2)Gn−2(x) + 3x(1 + 2x)(1 + x)G′
n−2(x)

+ x2(1 + x)2G′′
n−2(x).

To apply Theorem 3.4 we need show that for all ξ ∈ R and −2 < t < 0 the
polynomial

F (ξ, z) := (1 + (6 + t)ξ + (6 + t)ξ2) + 3ξ(1 + 2ξ)(1 + ξ)z + ξ2(1 + ξ)2z2

is real-rooted. The discriminant of F (ξ, z),

∆(F (ξ, z)) = ξ2(1 + ξ)2(2 + t + (3 − t)(1 + 2ξ)2),

is non-negative when −2 ≤ t ≤ 3, so F (ξ, z) real-rooted for these t. Since all the
Qks are standard, it is easy to see that condition (III) in the statement of Theorem
3.4 is satisfied. Moreover, 1+(6+t)x+(6+t)x2 strictly interlaces 3x(1+2x)(1+x)
when t > −2, so Theorem 3.4 applies. Since Gn strictly interlaces Gn+1, we have
by Theorem 3.4 and Corollary 2.5 that φF (Gn) strictly interlaces φF (Gn+1). Thus
An(t, x) strictly interlaces An+1(t, x). �

6. q-Eulerian and W -Eulerian polynomials

A q-analog of the Eulerian polynomials was introduced and studied in [16] and
further studied in [9]. It is defined by

An(x; q) :=
∑

π∈Sn

xexc(π)qc(π),

where c(π) and exc(π) denote the number of cycles and excedances in π, respectively.
These polynomials satisfy the recursion

An+1(x; q) = (nx + q)An(x; q) − x(x − 1)
∂

∂x
An(x; q),

with initial condition A0(x; q) := 1. See [9] for a proof. The following theorem
appears in [9].

Theorem 6.1. Let q ∈ R, q > 0. Then the polynomials An(x, q) have only real
non-positive simple zeros.

Brenti also makes the following conjecture.
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Conjecture 6.2. Let n, m ∈ N. Then An(x;−m) has only real zeros.

In what follows we will prove this conjecture using multiplier n-sequences. For
n ∈ N define the polynomials En(x; q) by

En(x; q) := (1 + x)nAn(
x

1 + x
; q).

It is clear that En(x; q) is real-rooted if and only if An(x; q) is real-rooted. These
polynomials satisfy a somewhat easier recursion. Namely,

(6.1) En+1(x; q) = (1 + x){qEn(x; q) + x
∂

∂x
En(x; q)},

with initial condition E0(x; q) = 1. Now, for q ∈ R let Γq : R[x] → R[x] be the
linear operator defined by Γq(f(x)) = qf(x)+xf ′(x). Since Γq(xn) = (q +n)xn we
may apply Corollary 3.16.

Theorem 6.3. Let q ∈ R and n ∈ N. If q ≥ 0, n ≤ −q or q ∈ Z, then En(x; q)
has only real zeros.

Proof. We may write (6.1) as

En+1(x; q) = (x + 1)Γq[En(x; q)].

The cases q ≥ 0 and n ≤ −q follow from Corollary 3.16 by induction. We may
therefore assume that q = −m is a negative integer. We claim that deg En(x; q) = n
if n ≤ m and deg En(x; q) = m if n ≥ m. From this the real-rootedness follows by
Corollary 3.16 and induction. The case n ≤ m is clear since

Γq[xn−1] = −(m − n + 1) < 0.

The case n > m also follows by induction. Suppose that n ≥ m and that deg En(x; q)
= m. Then by the recursion we have that deg En+1(x; q) ≤ m + 1. Moreover, since
Γq[xm] = 0 we have that deg En+1(x; q) ≤ m. Let a 	= 0 be the coefficient to
xm of En(x; q). Then the coefficient to xm of En+1(x; q) is aΓq[xm−1] = −a, so
deg En+1(x; q) = m, and the thesis follows. �

The Eulerian polynomial P (W, x) of a finite Coxeter group W is the polynomial

P (W, x) =
∑
σ∈W

xdW (σ),

where dW (σ) is the number of W -descents of σ; see [8]. This polynomial is also
the generating function for the h-vector of the Coxeter complex associated to
(W, S). For Coxeter groups of type An we have that P (An, x) = An(x)/x, the
shifted Eulerian polynomial. Also, for Coxeter groups of type Bn it is known (see
[8]) that P (Bn, x), has only real zeros. It is easy to see that P (W1 × W2, x) =
P (W1, x)P (W2, x) for finite Coxeter groups W1 and W2. Also, the real-rootedness
can be checked ad hoc for the exceptional groups. Thus, by the classification of
finite irreducible Coxeter groups, to prove that P (W, x) has only real zeros for all
finite Coxeter groups it suffices to prove that P (Dn, x) is real-rooted for Coxeter
groups of type Dn. The real-rootedness of P (Dn, x) is conjectured by Brenti in [8].
It is known that the Eulerian polynomials of type An, Bn and Dn are related by
(see [8, 27, 33])

P (Dn, x) = P (Bn, x) − n2n−1xP (An−1, x).
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This relationship was first noticed by Stembridge [33]. One step towards proving
the real-rootedness of P (Dn, x) is to learn more about the relationships between
the zeros of P (Bn, x) and P (An, x).

Brenti [8] introduced a q-analog of P (Bn, x)

(6.2) Bn(x; q) =
∑

σ∈Bn

qN(σ)xdB(σ),

where dB(σ) is the number of Bn-descents of σ and N(σ) is the number of negative
entries of σ; see [8]. He proved that

(6.3)
∑
i≥0

((1 + q)i + 1)nxi =
Bn(x; q)

(1 − x)n+1
,

and that Bn(x; q) is real- and simple-rooted for all q ≥ 0. Suppose that f(i) is a
polynomial in i of degree d; then the polynomial W (f) is defined by∑

i≥0

f(i)xi =
W (f)(x)

(1 − x)d+1
.

One can show (see [6]) that E(f) and W (f) are related by

(6.4) E(f)(x) = (1 + x)deg(f)W (f)(
x

1 + x
).

It follows that W (f) has only real non-positive roots if and only if E(f) is [−1, 0]-
rooted.

Since ((1 + q)i + 1)n is a [−1, 0]-rooted polynomial in i for any q ≥ 0, it
follows from, e.g. Theorem 4.2, that Bn(x; q) is real-rooted in x for any fixed
q ≥ 0. It is natural to generalize Bn(x; q) to have n + 1 parameters as Bn(x;q) :=
W

( ∏n
i=0

(
(1+ qi)x+1

))
. This polynomial has a nice combinatorial interpretation,

as follows.

Theorem 6.4. For all n ∈ N we have

Bn(x,q) =
∑

σ∈Bn

q
χ1(σ)
1 q

χ2(σ)
2 · · · qχn(σ)

n tdB(σ),

where

χi(σ) =

{
1 if σi < 0,

0 if σi > 0.

Proof. The proof is an obvious generalization of the proof of Theorem 3.4 of [8]. �
Note that this theorem gives a semi-combinatorial interpretation of the W -

transform of any [−1, 0)-rooted polynomial.

Corollary 6.5. Let n ∈ N and let q1, q2, . . . , qn be non-negative real numbers. Then
Bn(x;q) has only real and simple zeros.

We need the following lemma on the degree of W (f).

Lemma 6.6. Let f ∈ R[x]. Then

deg W (f) = deg f − mult(−1, E(f)).

Moreover, mult(−1, E(f)) is equal to the maximal integer k such that

(x + 1)(x + 2) · · · (x + k)

divides f .
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Proof. Since deg E(f) = deg f for all f , we have by (6.4) that deg W (f) = deg f −
mult(−1, E(f)). If we expand f in the basis {

(−x−1
i

)
} as

f(x) =
∑
i≥0

(−1)iai

(
−x − 1

i

)

=
∑
i≥0

ai

i!
(x + 1) · · · (x + i),

we have by Lemma 4.3 that

E(f)(x) =
∑
i≥0

ai(x + 1)i,

and the lemma follows. �

We now have more precise knowledge of the location of the zeros of Bn(x; q) for
any given q ≥ 0.

Theorem 6.7. Let 0 < q < t ∈ R and let n > 0 be an integer. Then

Bn(x; 0) � Bn(x; t) � Bn(x; q) � xBn(x; 0),

where the first three polynomials have no common zeros.

Proof. Let 0 < r < s < 1. Then by the proof of Lemma 4.4 we have

E(xn) � E(x(x + r)n−1) �strict E((x + r)n) �strict E((x + r)n−1(x + s))

� E((x + s)n) �strict E((x + s)n−1(x + 1)) � E((x + 1)n),

where �strict means strictly alternating left of. Since (x+1)E(xn) = xE((x+1)n),
this implies

E(xn) �strict E((x + r)n) �strict E((x + s)n) �strict E((x + 1)n).

Now since

Bn(x; q) = (q + 1)nW ((x +
1

1 + q
)n) = (q + 1)n(1 − x)nE((x +

1
1 + q

)n)(
x

1 − x
),

we see by Lemma 6.6 that deg Bn(x; 0) = n − 1 and deg Bn(x; q) = n if q 	= 0.
Moreover, the alternating property is preserved under the operation (6.4), and the
theorem follows. �

It follows from (6.2) that P (Bn, x) = Bn(x; 1) and P (An, x) = Bn(x; 0).

Corollary 6.8. For all integers n ≥ 1 we have that P (An, x) strictly interlaces
P (Bn, x).

Since P (An, x) � xP (An−1, x) and P (An, x) � P (Bn, x), we have by Lemma
2.2 that for all t ≥ 0 the polynomial P (Bn, x) + txP (An−1, x) is real-rooted. Un-
fortunately a similar argument does not apply when t < 0.

One can extract more from (6.3). Brenti [8] proved that the polynomial∑
σ∈Bn,N(σ)∈{k,n−k}

xdB(σ)

is real-rooted for all choices of 0 ≤ k ≤ n. Using Theorem 4.6 we can extend this
result to the following corollary.
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Corollary 6.9. Let S be any subset of [0, n]. Then the polynomial

P (Bn, S; x) :=
∑

σ∈Bn,N(σ)∈S

xdB(σ)

has only real and simple zeros.

Proof. Comparing the coefficient of qi in both sides of (6.3) we see that P (Bn, S; x)
= W (fn(S; x)), where

fn(S; x) =
∑
s∈S

(
n

s

)
xs(x + 1)n−s.

So the theorem follows from Theorem 4.2. �
One instance of Corollary 6.9 is particularly interesting. Recall that a Coxeter

group of type Dn is isomorphic to the subgroup

Dn = {σ ∈ Bn : 2 | N(σ)}.
Hence, we have the following corollary.

Corollary 6.10. For all n ∈ N the polynomial∑
σ∈Dn

xdB(σ)

has only real and simple zeros.

Note that the above polynomial is not P (Dn, x), since Bn-descents and Dn-
descents are not the same.

7. The h-vector of a family of simplicial complexes

defined by Fomin and Zelevinsky

Fomin and Zelevinsky [17] recently associated to any finite Weyl group W a
simplicial complex ∆FZ(W ). For the classical Weyl groups the corresponding h-
vectors (polynomials) are given by

h(∆FZ(An−1), x) =
1
n

n−1∑
k=0

(
n

k

)(
n

k + 1

)
xk,

h(∆FZ(Bn), x) =
n∑

k=0

(
n

k

)(
n

k

)
xk,

h(∆FZ(Dn), x) = h(∆FZ(Bn), x) − nxh(∆FZ(An−2), x).

It is known that the h-polynomials corresponding to An and Bn have only real
zeros. Here we will show that so has h(∆FZ(Dn), x).

Theorem 7.1. Let α, β ∈ R be such that α ≥ 0, 2α + β > 0 and let n ≥ 2 be an
integer. Then the polynomial

Fn(α, β) := αh(∆FZ(Bn), x) + βnxh(∆FZ(An−2), x)

is real- and simple-rooted. Moreover, h(∆FZ(Bn−1), x) strictly interlaces Fn(α, β)
if α > 0 and strictly alternates left of Fn(α, β) if α = 0.

Corollary 7.2. Let W be a finite Weyl group. Then h(∆FZ(W ), x) has only real
and simple zeros.
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Proof. For the exceptional Weyl group one can check the real-rootedness ad hoc;
see [28]. The other cases follows from Theorem 7.1. �

The Hadamard product of two polynomials

p(x) = a0 + a1x + · · · + amxm,

q(x) = b0 + b1x + · · · + bnxn

is the polynomial

(p � q)(x) = a0b0 + a1b1x + · · · + aNbNxN ,

where N = min(m, n). Málo proved that if the zeros of p are real and the zeros of
q are real and of the same sign, then the zeros of p � q are real as well. This also
follows from Theorem 3.8 since p � q = Γ[pSq], where Γ is the multiplier sequence
{ 1

k!}∞k=0. It is known (see e.g. [18]) that if f has only real zeros, then all zeros of
Γ[f ] are real and simple except for possibly at the origin.

Proof of Theorem 7.1. We may write Fn(α, β) as

Fn(α, β) = α(x + 1)f + (2α + β)g,

where f = (x + 1)n−1 � (x + 1)n−1 and g =
(
x(x + 1)n−1

)
� (x + 1)n−1.

By the discussion before this proof we have that for all real choices of γ, δ ∈ R

the polynomial

γf + δg =
(
(γ + δx)(x + 1)n−1

)
� (x + 1)n−1

is real- and simple-rooted. By the Obreschkoff theorem we infer that f strictly
alternates left of g. Now, since f � (x + 1)f and f � g we know by Lemma 2.2
that f either interlaces or alternates left of Fn(α, β) for all α, β ∈ R such that
sgn(α) = sgn(2α+β). Moreover, since g and f have no common zeros, neither does
Fn(α, β) and f (provided that 2α + β 	= 0). �
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25. G. Pólya, Collected papers, Vol. II: Location of zeros, Edited by R. P. Boas, Mathematicians

of Our Time, Vol. 8. The MIT Press, Cambridge, Mass.-London, 1974. MR58:21342
26. E. D. Rainville, Special functions, The Macmillan Co., New York, 1960. MR0107725 (21:6447)
27. V. Reiner, Descents and one-dimensional characters for classical Weyl groups, Discrete Math.

140 (1995), no. 1-3, 129–140. MR1333715 (96d:05116)
28. V. Reiner and V. Welker, On the Charney-Davis and the Neggers-Stanley conjectures,

http://www.math.umn.edu/˜reiner/Papers/papers.html (2002).
29. J. Schur, Zwei sätze über algebraische gleichungen mit lauter reellen wurzeln, J. Reine Angew.

Math. 144 (1914), no. 2, 75–88.
30. R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry,

Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci.,
vol. 576, New York Acad. Sci., New York, 1989, pp. 500–535. MR1110850 (92e:05124)

31. , Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics,
vol. 62, Cambridge University Press, Cambridge, 1999. MR1676282 (2000k:05026)

32. , Positivity problems and conjectures in algebraic combinatorics, Mathematics: fron-
tiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319. MR1754784
(2001f:05001)

33. J. R. Stembridge, Some permutation representations of Weyl groups associated with the co-

homology of toric varieties, Adv. Math. 106 (1994), no. 2, 244–301. MR1279220 (95f:20011)
34. R. A. Sulanke, The Narayana distribution, J. Statist. Plann. Inference 101 (2002), no. 1-

2, 311–326, Special issue on lattice path combinatorics and applications (Vienna, 1998).
MR1878867

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1292954
http://www.ams.org/mathscinet-getitem?mr=1292954
http://www.ams.org/mathscinet-getitem?mr=1779778
http://www.ams.org/mathscinet-getitem?mr=1779778
http://www.ams.org/mathscinet-getitem?mr=1260339
http://www.ams.org/mathscinet-getitem?mr=1260339
http://www.ams.org/mathscinet-getitem?mr=0460128
http://www.ams.org/mathscinet-getitem?mr=0460128
http://www.ams.org/mathscinet-getitem?mr=0568321
http://www.ams.org/mathscinet-getitem?mr=0568321
http://www.ams.org/mathscinet-getitem?mr=1179101
http://www.ams.org/mathscinet-getitem?mr=1179101
http://www.ams.org/mathscinet-getitem?mr=1630680
http://www.ams.org/mathscinet-getitem?mr=1630680
http://www.ams.org/mathscinet-getitem?mr=0053175
http://www.ams.org/mathscinet-getitem?mr=0053175
http://www.ams.org/mathscinet-getitem?mr=0272642
http://www.ams.org/mathscinet-getitem?mr=0272642
http://www.ams.org/mathscinet-getitem?mr=2031858
http://www.ams.org/mathscinet-getitem?mr=2031858
http://www.ams.org/mathscinet-getitem?mr=1408355
http://www.ams.org/mathscinet-getitem?mr=1408355
http://www.ams.org/mathscinet-getitem?mr=1401000
http://www.ams.org/mathscinet-getitem?mr=1401000
http://www.ams.org/mathscinet-getitem?mr=0046395
http://www.ams.org/mathscinet-getitem?mr=0046395
http://www.ams.org/mathscinet-getitem?mr=1629428
http://www.ams.org/mathscinet-getitem?mr=1629428
http://www.ams.org/mathscinet-getitem?mr=0230102
http://www.ams.org/mathscinet-getitem?mr=0230102
http://www.ams.org/mathscinet-getitem?mr=0225972
http://www.ams.org/mathscinet-getitem?mr=0225972
http://www.ams.org/mathscinet-getitem?mr=0164003
http://www.ams.org/mathscinet-getitem?mr=0164003
http://www.ams.org/mathscinet-getitem?mr=58:21342
http://www.ams.org/mathscinet-getitem?mr=0107725
http://www.ams.org/mathscinet-getitem?mr=0107725
http://www.ams.org/mathscinet-getitem?mr=1333715
http://www.ams.org/mathscinet-getitem?mr=1333715
http://www.ams.org/mathscinet-getitem?mr=1110850
http://www.ams.org/mathscinet-getitem?mr=1110850
http://www.ams.org/mathscinet-getitem?mr=1676282
http://www.ams.org/mathscinet-getitem?mr=1676282
http://www.ams.org/mathscinet-getitem?mr=1754784
http://www.ams.org/mathscinet-getitem?mr=1754784
http://www.ams.org/mathscinet-getitem?mr=1279220
http://www.ams.org/mathscinet-getitem?mr=1279220
http://www.ams.org/mathscinet-getitem?mr=1878867


3716 PETTER BRÄNDÉN
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