
Operations Research Letters 27 (2000) 193–197
www.elsevier.com/locate/dsw

On-line scheduling on a singlemachine: maximizing the number of
early jobs

Han Hoogeveena, Chris N. Pottsb, Gerhard J. Woegingerc; ∗;1
aInstitute of Information and Computing Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands

bFaculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, UK
cTU Graz, Institut f�ur Mathematik B, Steyrergasse 30, A-8010 Graz, Austria

Received 11 November 1999

Abstract

This note deals with the scheduling problem of maximizing the number of early jobs on a single machine. We investigate
the on-line version of this problem in the Preemption-Restart model. This means that jobs may be preempted, but preempting
results in all the work done on this job so far being lost. Thus, if the job is restarted, then it has to be done from scratch.
We prove that the shortest remaining processing time (SRPT) rule yields an on-line algorithm with competitive ratio 1

2 .
Moreover, we show that there does not exist an on-line algorithm with a better performance guarantee. c© 2000 Elsevier
Science B.V. All rights reserved.

Keywords: Combinatorial problems; On-line algorithms; Competitive analysis; Worst-case bounds; Single-machine
scheduling

1. Introduction

An instance of the scheduling problem of maximiz-
ing the number of early jobs on a single machine con-
sists of a sequenceJ of jobs Jj for j=1; : : : ; n. Every
job Jj is speci�ed by its processing time pj, its release
date rj, and its due date dj. A job can only be pro-
cessed after it has been released, and the machine can
process at most one job at a time. If in some sched-

∗ Corresponding author.
E-mail addresses: slam@cs.uu.nl (H. Hoogeveen), c.n.potts@

maths.soton.ac.uk (C.N. Potts), gwoegi@opt.math.tu-graz.ac.at
(G.J. Woeginger).
1 Supported by the START program Y43-MAT of the Austrian

Ministry of Science.

ule a job is completed before or at its due date, then
it is called early (or on time); otherwise, the job is
late. Our goal is to �nd a schedule that maximizes the
number of early jobs.
In the o�-line version of this problem, all

the job data are known a priori. This version is
well-understood. If preemption is allowed, then the
problem can be solved in polynomial time [4,1]. Al-
ternatively, if preemption is not allowed, then the
problem is NP-hard to solve to optimality [5,6]. In
this note, however, we are mainly interested in the
on-line version of this problem for which the job data
are not known a priori: the jobs arrive over time, and
the decision maker does not have any knowledge on
the future of the system. Thus, a job Jj only becomes

0167-6377/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(00)00061 -4

194 H. Hoogeveen et al. / Operations Research Letters 27 (2000) 193–197

known at its release date rj. At this moment, the de-
cision maker also discovers the processing time pj
and the due date dj of this job. At any time that the
machine is idle, the decision maker speci�es which of
the available jobs should be processed or whether the
machine should be better kept idle. There are three
standard models for on-line scheduling where jobs
arrive over time.

1. The non-preemptive model. Once a job is started
on the machine, it must be run to completion.
In this model, the �nally constructed schedule is
non-preemptive.

2. The preemption-resume model. The currently pro-
cessed job may be preempted at any moment in
time, and it may be resumed at any later moment in
time. A job Jj is completed, as soon as it has been
processed for a total of pj time units on the ma-
chine. In this model, the �nally constructed sched-
ule is in general preemptive.

3. The preemption-restart model. The currently pro-
cessed job may be preempted at any moment
in time. However, by preempting a job, all the
progress that has been made on this job so far is
lost. Thus, if the job is restarted at some later mo-
ment in time, then it has to be done from scratch.
In this model, the �nally constructed schedule is
non-preemptive.

The quality of an on-line algorithm A is usually
measured by its competitive ratio (or worst-case ra-
tio) RA. In maximization problems, this competitive
ratio is de�ned by

RA = inf{A(J)=Opt(J) |J
is a sequence of jobs; Opt(J)¿ 0}: (1)

Here, A(J) denotes the number of early jobs in
the schedule constructed by the on-line algorithm
A for the job sequence J, whereas Opt(J) de-
notes the number of early jobs in an optimal o�-line
schedule for J. In the non-preemptive model and
in the preemption-restart model we take an optimal
non-preemptive schedule when computing Opt(J),
and in the preemption-resume model we take the op-
timal preemptive schedule when computing Opt(J).
Clearly, 06RA61 holds. The closer the ratio RA
comes to one, the better is the quality of the on-line
algorithm A.

Note that it is more conventional in scheduling to
minimize the number of tardy jobs, rather than max-
imize the number of early jobs. However, the num-
ber of tardy jobs in an o�-line schedule may be zero,
which destroys the possibility of �nding a �nite com-
petitive ratio. Consequently, it is usual in competitive
analysis to adopt the goal of maximizing the number
of early jobs.
Let us briey discuss our scheduling problem in the

context of these three on-line models. First, consider
the non-preemptive model. Suppose that, at time 0, a
job J1 with p1=1 and d1=1 is released. How should a
reasonable on-line algorithm A behave? If it does not
start to process J1 at time 0, then no further job may ar-
rive. In this case, A(J)=0; Opt(J)=1, and RA=0. If,
on the other hand, algorithm A decides to process the
job starting at time 0, then an instant later a huge num-
ber of jobs may arrive, all with tiny processing times
and all with due dates equal to 1. Then, Opt(J) can
become arbitrarily large, whereas A(J) = 1. Again,
RA = 0. Hence, in the non-preemptive model, any
on-line algorithm A yields RA=0 and thus must behave
very poorly in the worst case; a hopeless situation!
Next, consider the Preemption-Resume model. Baruah
et al. [2] prove that, in this model also, any on-line
algorithm A yields RA = 0. The only known positive
result is due to Kalyanasundaram and Pruhs [3], who
design a randomized on-line algorithm A whose (very
very small) competitive ratio RA is strictly bounded
away from 0. To the best of our knowledge, no results
are known so far for the preemption-restart model.
In this note, we study the competitive ratio of

on-line algorithms for maximizing the number of early
jobs on a single machine in the preemption-restart
model. Sgall [7] gives a comprehensive survey on
on-line scheduling. Most of the results derived so far
in this area seem to be in the non-preemptive and
in the preemption-resume model. However, Shmoys
et al. [7] introduce the preemption-restart model and
present several results for scheduling m parallel ma-
chines to minimize the makespan. Speci�cally, they
present a (2− 1=m)-competitive for the case identical
parallel machines, and show that this bound is the
best possible. They also show that for uniform paral-
lel machines the best competitive ratio is �(logm),
and for unrelated parallel machines the best compet-
itive ratio lies between the lower bound of
(logm)
and the upper bound of O(log n). In his Ph.D.

H. Hoogeveen et al. / Operations Research Letters 27 (2000) 193–197 195

thesis, Vestjens [9] derives several negative results
for the preemption-restart model. For minimizing the
maximum job delivery time on a single machine in
the preemption-restart model, Vestjens shows that
the competitive ratio of an on-line algorithm cannot
be better than 3

2 . Van den Akker et al. [8] provide
a matching positive result for this problem. We are
not aware of any other literature dealing with on-line
scheduling for preemption-restart model.
Our contribution is to design an on-line algo-

rithm with competitive ratio 1
2 for maximizing the

number of early jobs on a single machine in the
preemption-restart model. The algorithm and its anal-
ysis are contained in Section 2, while Section 3
demonstrates using an adversary argument that there
cannot exist an on-line algorithm whose competitive
ratio is strictly better than 1

2 .

2. Proof of the positive result

In this section, we describe and analyze algorithm
SRPT, which is based on the shortest remaining pro-
cessing time (SRPT) rule. Algorithm SRPT constructs
a schedule of early jobs only, since any tardy jobs
can be appended to this schedule in an arbitrary order.
At any time t, let �pj denote the remaining process-
ing time of a job Jj with rj6t. From this de�nition,
�pj = pj if the machine does not process Jj immedi-
ately before time t. On the other hand, if the machine
processes job Jj throughout some interval [s; t], but
Jj is not processed immediately before time s, then
�pj = pj − (t − s). Algorithm SRPT makes a decision
about which job to process next whenever a new job
is released, and whenever the machine completes the
processing of a job. At any decision point t, a job Jj
for which

�pj =min{ �pk | Jk ∈ J; rk6t; �pk ¿ 0; t + �pk6dk}
(2)

is selected to be processed next. No further early jobs
are scheduled by Algorithm SRPT if, at some deci-
sion point t, no jobs are subsequently released and
t + �pk ¿dk for all jobs Jk with rk6t and �pk ¿ 0.
Note that Algorithm SRPT also implements an earli-
est completion time (ECT) policy: when SRPT makes
a decision to process a job Jj that has the shortest re-
maining processing time among available jobs, then if

it is not preempted, Jj completes no later than if any
other available job were to be processed next. Thus,
a job is preempted only if a newly released job can
complete earlier.
In a schedule of early jobs generated by Algorithm

SRPT, each job starts processing either at its release
date or when the machine completes processing a pre-
vious early job. Thus, a schedule obtained from Algo-
rithm SRPT can be represented by a sequence that de-
�nes the order in which the early jobs are completed.
By scheduling each job of the sequence to start pro-
cessing as early as possible, and not allowing preemp-
tion, we obtain a corresponding schedule of early jobs.
Similarly, an optimal schedule of early jobs can also
be represented by the sequence in which these jobs
are completed. In the following, a sequence de�ning
a schedule of early jobs is called a feasible sequence.

We now present the main result in this section.

Theorem 1. Algorithm SRPT has a competitive ra-
tio RSRPT¿ 1

2 .

Proof. Let e∗ be the number of early jobs in an opti-
mal schedule, and let sequence �∗=(J�∗(1); : : : ; J�∗(e∗))
de�ne some optimal schedule. Similarly, let e be the
number of early jobs in the schedule generated by Al-
gorithm SRPT, and let sequence � = (J�(1); : : : ; J�(e))
de�ne this schedule. To establish the inequality
RSRPT¿ 1

2 , we prove that e¿e
∗=2. Suppose for the

sake of contradiction that the inequality e¡e∗=2
holds. Our aim is to use the sequences � and �∗ to
construct feasible sequences of early jobs, which we
denote by �0; : : : ; �e. Each feasible sequence �j for
j = 0; : : : ; e satis�es the following two conditions:

(i) �j contains at least e∗ − j jobs;
(ii) the �rst j jobs in �j are given by �j(i)=�(i) for

i = 1; : : : ; j.

From these conditions, sequence �e contains at least
e∗−e early jobs, where e∗−e¿e, and has � as a sub-
sequence. Thus, job J�e(e+1) is early if it is scheduled
after the last job of �, which contradicts the termina-
tion rule of Algorithm SRPT. Therefore, to establish
the contradiction and to prove the theorem, we only
need to specify how to construct sequences �1; : : : ; �e

with the desired properties. This is done using an in-
ductive procedure that we describe next.

196 H. Hoogeveen et al. / Operations Research Letters 27 (2000) 193–197

To start our inductive construction, we set �0 = �∗.
To construct �j from �j−1 for j=1; : : : ; e, we proceed
as follows. First note that by condition (i) sequence
�j−1 contains at least e∗− j+1¿ 2e− j+1¿j jobs.
If �j−1(j) = �(j), then we set �j = �j−1. The feasi-
bility of �j follows from the feasibility of �j−1, and
�j obviously satis�es conditions (i) and (ii). Alterna-
tively, if �j−1(j) 6= �(j), then we obtain �j from �j−1
by �rst removing job J�(j) if it is present in �j−1, and
then removing job J�j−1(j) and replacing it with job
J�(j). Removing job J�(j) does not a�ect feasibility.
Moreover, from the ECT policy of the SRPT rule, job
J�(j), which replaces job J�j−1(j), completes no later
in �j than job J�j−1(j) completes in �j−1. Thus, the
feasibility of sequence �j follows from that of �j−1.
From the construction, sequence �j contains either the
same number of jobs as sequence �j−1, or one less
job. Hence, condition (i) for �j−1 implies condition
(i) for �j. Condition (ii) for �j also follows from the
construction.

In the next section, we show that RSRPT = 1
2 by

providing an instance which shows that no on-line
algorithm can have a competitive ratio exceeding 1

2 .

3. Proof of the negative result

In this section, we describe adversary strategies
against which any on-line algorithm must perform
poorly. Our main tool is the following lemma.

Lemma 2. For every integer k¿0 and for all real
numbers r and dwith r ¡d; there exists an adversary
strategyS=S(k; r; d) with the following properties.

(i) S creates 2k+1 jobs. The earliest release date
of these jobs is r; and the latest due date of these
jobs is d.

(ii) There exists a feasible schedule in which all
2k + 1 jobs are early. In such a schedule; the
machine is continuously busy throughout the in-
terval [r; d].

(iii) The adversary strategy S can prevent any
on-line algorithm from scheduling more than
k + 1 jobs to be early.

Proof. The proof is by induction on k. For k =0, the
adversary simply releases a job with processing time

d−r at time r. For k¿1, the adversaryS proceeds as
follows. Let L=(d−r)=8, and note that d=r+8L. The
adversary releases two jobs J1 and J2 with processing
times p1 = 3L and p2 = 4L at time r. Both jobs have
due date d. Then the adversary waits until time r+2L.

Case 1. If at time r + 2L the on-line algorithm
is processing job J1, then S calls the sub-adversary
S(k − 1; r + 4L; r + 5L).
Case 2. Otherwise, S calls the sub-adversary

S(k − 1; r + 3L; r + 4L).
Property (i) holds, since S creates the two new

jobs J1 and J2 together with the 2k − 1 jobs of the
sub-adversary. To prove property (ii), consider the
following schedules with all jobs early. In case 1, pro-
cess job J1 during the interval [r + 5L; d] and job J2
during the interval [r; r + 4L], and process all jobs of
the sub-adversary by induction. Similarly, in case 2,
process J1 during [r; r + 3L]; J2 during [r + 4L; d],
and all jobs of the sub-adversary by induction.
It remains to establish property (iii). First, assume

that the on-line algorithm schedules at most one of the
jobs J1 and J2 to be early. By induction, the on-line
algorithm can schedule at most k of the jobs that are
created by the sub-adversary to be early. This shows
that at most k + 1 jobs are early. Next, assume that
the on-line algorithm schedules both jobs J1 and J2
to be early. Then, in case 1, the on-line algorithm
must process job J2 entirely during the time inter-
val [r + 2L; d]. But then the processing of J2 covers
all of [r + 4L; r + 5L], and consequently none of the
sub-adversary’s jobs can be early. This yields at most
2 early jobs. Finally, in case 2, the on-line algorithm
must process all of J1 after time r+2L. Hence, at least
L units of J2 must be processed before time r+2L. But
if J2 is started between time r and time r+2L, then its
processing covers all of [r+3L; r+4L]. Again, none
of the sub-adversary’s jobs can be early. This again
yields at most 2 early jobs.

Theorem 3. Every on-line algorithm A for maximiz-
ing the number of early jobs in the Preemption-Restart
model has competitive ratio RA6 1

2 .

Acknowledgements

The authors are grateful to an anonymous referee
for suggesting a neater way to present the proof of

H. Hoogeveen et al. / Operations Research Letters 27 (2000) 193–197 197

Theorem 1. We would also like to thank the organiz-
ers of the Dagstuhl Seminar 99431 on ‘Scheduling in
Computer and Manufacturing Systems’ during which
the results presented in this paper were established.

References

[1] P. Baptiste, An O(n4) algorithm for preemptive scheduling of
a single machine to minimize the number of late jobs, Oper.
Res. Lett. 24 (1999) 175–180.

[2] S. Baruah, J. Haritsa, N. Sharma, On-line scheduling to
maximize task completions, Proceedings of the 15th IEEE
Real-time Systems Symposium (RSS’96), 1994, pp. 228–237.

[3] B. Kalyanasundaram, K. Pruhs, Maximizing job completions
on-line, Proceedings of the Sixth European Symposium on
Algorithms (ESA’98), Springer Lecture Notes in Computer
Science, vol. 1461, 1998, pp. 235–246.

[4] E.L. Lawler, A dynamic programming algorithm for
preemptive scheduling of a single machine to minimize the
number of late jobs, Ann. Oper. Res. 26 (1990) 125–133.

[5] J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker, Complexity
of machine scheduling problems, Ann. Oper. Res. 1 (1977)
343–362.

[6] J. Sgall, On-line scheduling, in: A. Fiat, G.J. Woeginger (Eds.),
On-line Algorithms: The State of the Art, Lecture Notes in
Computer Science, vol. 1442, Springer, Berlin, 1998,, pp. 196–
231.

[7] D.B. Shmoys, J. Wein, D.P. Williamson, Scheduling parallel
machines on-line, SIAM J. Comput. 24 (1995) 1313–1331.

[8] J.M. van den Akker, J.A. Hoogeveen, N. Vakhania, Restarts
can help in the on-line minimization of the maximum delivery
time on a single machine, Proceedings of the Eighth European
Symposium on Algorithms (ESA’2000), Lecture Notes in
Computer Science, vol. 1879, Springer, Berlin, 2000.

[9] A.P.A. Vestjens, On-line machine scheduling, Ph.D. Thesis,
Eindhoven University of Technology, 1997.

