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ABSTRACT

Graphs can be found in applications like social networks,
bibliographic networks, and biological databases. Under-
standing the relationship, or links, among graph nodes en-
ables applications such as link prediction, recommendation,
and spam detection. In this paper, we propose link-based
similarity join (LS-join), which extends the similarity join
operator to link-based measures. Given two sets of nodes in
a graph, the LS-join returns all pairs of nodes that are highly
similar to each other, with respect to an e-function. The
e-function generalizes common measures like Personalized
PageRank (PPR) and SimRank (SR). We study an efficient
LS-join algorithm on a large graph. We further improve our
solutions for PPR and SR, which involve expensive random-
walk operations. We validate our solutions by performing
extensive experiments on three real graph datasets.

1. INTRODUCTION
Many emerging applications contain a large amount of

inter-related information. For example, millions of Face-
book users can establish friendship with each other. Bib-
liographic networks, such as DBLP and CiteSeer, contain
author collaboration information and citation details. In e-
commerce applications, complex business relationship exists
among suppliers, retailers, and consumers. A graph natu-
rally captures this kind of information. Figure 1 illustrates
a graph that models the relationship among sales managers
and customers in a company.
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Figure 1: Promotion suggestion.
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In recent years, a lot of effort has been devoted to ex-
tracting useful information from large graphs. Particularly,
researchers have proposed link prediction [7], graph clus-
tering [20, 21], spam detection [22], and recommender sys-
tems [1]. These techniques adopt a link-based similarity
measure, which computes the proximity between two nodes
based on the paths connecting them. Common examples
of this measure include Personalized PageRank (PPR) [13],
SimRank (SR) [9], and Common Neighbors [7]. In this pa-
per, we study a new query called the Link-based Similar-
ity join (or LS-join in short). Given two sets of nodes in a
graph, the LS-join returns k pairs of nodes, which are ranked
the highest according to some linked-based similarity score.
This query can be used in a lot of applications, including:

• Promotion suggestion. To promote new products
to customers, a social network that contains a company’s
salespersons and prospective customers can be a valuable
tool. In particular, the LS-join suggests a set of (salesperson,
customer)-pairs for promotion purposes. In Figure 1, we can
see that p2 (a sales manager) and q1 (a target customer)
not only know each other, but also have a lot of “indirect”
connections, e.g., person x and y. If p2 wants to recommend
a product to q1, he can seek the help from x or y. He
can also give them coupons if they successfully invite q1
to buy the product. A PPR measure that quantifies the
closeness of two objects in terms of the paths between them
can be used [13]. For example, the PPR of p2 and q1 is high,
since they are closely related. A LS-join, which uses PPR to
measure the proximity between salespersons and customers,
may yield (p2, q1) as an answer. This result suggests that
the company should let p2 approach q1.
• Citation analysis. In a bibliographic network, a node

represents a publication, and a directed edge from node a

to b indicates that paper a cites paper b. The similarity
of two papers can be captured by the SR [9] – two papers
have a high SR score if the sets of nodes that point to them
are similar. Given the papers published in two areas (e.g.,
Artificial Intelligence (AI) and Database (DB)), a LS-join,
using the SR, returns k pairs of papers that are cited by sim-
ilar papers. The pairs of papers returned, which reflect that
they investigate similar problems, can be useful to scientists
interested in cross-disciplinary work in AI and DB.

• Link prediction. As a graph evolves over time, new
edges can appear among nodes. For example, two users in
a social network, who do not know each other, can become
friends later. An edge then appears between the nodes that
represent these users. The problem of link prediction is to
estimate what edges will be generated in the future. One
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way to predict links is to identify node pairs that are highly
similar. In a social network, we can consider two users to be
similar if they have many friends in common. They may also
become friends later. Given two interest groups in a social
network, we can use a LS-join retrieve k pairs of users, who
have the highest tendency to become friends.

Challenges. Evaluating a LS-join query is not trivial.
This is because many common link-based measures (e.g.,
PPR and SR) involve random-walk computation. For exam-
ple, calculating a PPR score of two nodes a and b involves
finding the probability that a random walker at a can reach
b, for every path between a and b. This operation, which
considers all paths between a and b, incurs significant over-
head, especially on a large graph. A simple implementation
of the LS-join by computing the scores for all node pairs,
can be extremely expensive. We thus study efficient LS-join
query solutions, as detailed below.

1. Developing the IDJ algorithm for the e-function.
We observe that common similarity measures, such as PPR,
SR, and Discounted Hitting times [19], can be generalized
to a form called the e-function. Given nodes s and t, let
Pi(s, t) be a probability function that involves i steps of
random walks. The definition of Pi(s, t) depends on the
similarity measure used. An e-function is a weighted sum
of Pi(s, t)’s, for all values of i, where the weight of Pi(s, t)
decreases exponentially with i. When i is small (say, i ≤ 3),
Pi(s, t) can be used to estimate the e-function with a high
accuracy. Based on this intuition, we propose the Iterative
Deepening Join algorithm (or IDJ in short), which is in-
spired by the classical strategy of iterative-deepening depth
first search in state-space search [18]. The term “iterative
deepening” means that the length (or depth) of the paths
between s and t considered increases with the number of
iterations. This information, which can be easily obtained
in the first few rounds, can prune nodes effectively. An-
other salient feature of the IDJ is that the depth increases
exponentially with i. In our experiments, the IDJ can im-
prove the performance of a basic solution by one order of
magnitude.

2. Enhancing the IDJ for PPR and SR. We further
customize the IDJ for two important e-functions, namely
PPR and SR. For these measures, we develop fast methods
(e.g., backward random walk) to compute their lower and
upper bounds. Theoretically, these bounds attain a higher
pruning efficiency than the IDJ. In our experiments, PPR
and SR outperform IDJ by an order of magnitude.

Prior works. The evaluation of similarity join between
two sets of objects has been well studied. [3, 11] addressed
this in high dimensional databases, where the Euclidean dis-
tance was used as a similarity measure. In [2, 5], set- and
string-similarity (e.g., Hamming and Edit distances) were
used in data cleaning applications. Few works have stud-
ied the similarity join on graphs. [12] and [15] respectively
investigated the similarity join for road network and graph-
pattern matching, by using the shortest-path distance. It
is not clear how these work can handle an e-function (e.g.,
PPR and SR), which we investigate in this paper.

Link-based measures has been widely used in network ap-
plications, such as link prediction [7] and k-nearest neigh-
bor search [19]. The PPR [13] is extended from Google’s
PageRank model. To compute PPR scores, iterative meth-
ods [13], random-walk simulations [6], and approximation
algorithms [19], have been developed. The SR [9] defines the

node similarity recursively based on in-neighbors and is ex-
pensive to compute [16]. To evaluate SR efficiently, random
walk simulation [8], iterative [16], and non-iterative meth-
ods [4], have been proposed. An algorithm for computing
single-pair SR has been recently proposed [17]. Complemen-
tary to these works, we study how to prune expensive PPR
and SR score computation during a join operation.

The rest of our paper is organized as follows. Section 2 for-
malizes the e-function and the LS-join. Section 3 describes
the IDJ algorithm. We enhance the IDJ for PPR and SR in
Sections 4 and 5 respectively. Section 6 presents our results
on three real datasets. Section 7 concludes.

2. THE E-FUNCTION AND THE LS-JOIN
We now study the e-function (Section 2.1) and the LS-join

(Section 2.2). We present a simple solution in Section 2.2.

2.1 The ed-function and the e-function
Let G be a graph on which the e-function is defined. Also,

let V and E be the sets of nodes and edges of G respectively.
We assume that G is directed and weighted, with the weight
of an edge (u, v) denoted by w(u, v). Given a node u, we
use I(u)(O(u)) to denote the set of in(out)-neighbor nodes
of u. We suppose that G is represented by a data structure
(e.g., an adjacency list), which allows efficient enumeration
of neighbors for a given node.

In the random walkmodel, a random surfer traverses nodes
in V according to the edges in E. At every step, the surfer
moves from u where he is currently located, to an out-
neighbor v of u with an outgoing probability pout(u, v). For
an unweighted graph, pout(u, v) = 1

|O(u)|
; for a weighted

graph, pout(u, v) =
w(u,v)�

v�∈O(u) w(u,v�)
. The random walk model

is often used to define link-based similarity measures, for
instance, PPR and SR. In these measures, a random-walk-
related probability value, Pi(u, v), is defined, where i is the
number of steps moved by the surfer. For example, in PPR,
Pi(u, v) is the chance that a surfer at u can reach v at the
i-th step. We now define the ed-function and the e-function.

Definition 1 (ed-function). Given two nodes u, v ∈

V , the ed-function, denoted by Sd(u, v), is:

Sd(u, v) = a

d�

i=1

λ
iPi(u, v) + b (1)

• a and b are real-valued constants, with a > 0;

• λ ∈ (0, 1) is called a constant decay factor; and

• d ∈ ℵ is called the depth of the ed-function.

Here, d is also the maximum number of steps used in the
random walk.

Definition 2 (e-function). Given two nodes u, v ∈

V , the e-function, denoted by S(u, v), is:

S(u, v) = lim
d→∞

Sd(u, v) (2)

The ed-function, Sd(u, v), computes the similarity between
u and v by using the random walk model up to d steps. Due
to the presence of λi, Sd(u, v) converges as d approaches to
infinity. Hence, the value of the e-function (Definition 2)
exists. Moreover, in Equation 1, λiPi(u, v) decays exponen-
tially with i. Hence, a longer random-walk path contributes
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Table 1: Summary of Notations

Notation Meaning

G(V,E) graph G of node set V and edge set E
P,Q joining sets, where P,Q ⊆ V
u, v graph nodes
(u, v) a graph edge
I(u), O(u) Set of in- and out-neighbors of u, I(u), O(u) ⊆ V
λ decay factor
Sd(u, v) ed-function score between u and v
S(u, v) e-function score between u and v
ε tolerance
Sz(u, v) the ez-function that satisfies ε

less to the values of Sd(u, v) and S(u, v). We will exploit this
observation to design an efficient LS-join algorithm. Now let
us state without proof a simple but useful result:

Lemma 1. The ed function (Equation 1) is a monotoni-
cally increasing function of d.

The e-function can be specialized to a wide range of link-
based similarity measures, for instance:

• Personalized PageRank (PPR) [13]: a = 1− λ; b = 0;
and Pi(u, v) is the probability that a random surfer
from u reaches v at the i-th step.

• SimRank (SR) [13]: a = 1; b = 0; and Pi(u, v) is the
probability that two surfers from u and v first meet
each other at the i-th step.

• Discounted Hitting Times (DHT) [19]: a = 1; b = 1;
and Pi(u, v) is the probability that a surfer from u first
reaches v at the i-th step.

In this paper, we focus on PPR and SR. Nevertheless, we
will also present an LS-join algorithm for any e-function.

2.2 The LS-Join Query
Observe from Equation 2 that S(u, v) requires an infinite

number of Sd(u, v) terms. Hence, S(u, v) can be hard to
find. A practical way is to compute Sz(u, v) instead:

|S(u, v)− Sz(u, v)| ≤ ε (3)

where ε ∈ �, called the tolerance of S(u, v), controls the
accuracy of Sz(u, v) in estimating S(u, v). Let P,Q ⊆ V be
the joining sets of the LS-join, then we have:

Definition 3 (Link-based Similarity Join (LS-Join)).
Given G, P , Q, ε, e-function S(u, v), and an integer k, the
LS-Join returns a sorted-list of (p, q)-pairs with the k highest
Sz(p, q) values, where p ∈ P and q ∈ Q.

Table 1 summarizes the notations used in this paper.
In all solutions studied in this paper, the value of z that

satisfies Equation 3 is first obtained. Let us explain how this
is done by showing the following lemma.

Lemma 2. S(u, v) ∈ [Sd(u, v), Sd(u, v) +X+
d ], where

X
+
d =

a · λd+1

1− λ
(4)

Lemma 2 gives the lower and upper bounds of the e-function,
by using the value of X+

d . Its proof can be found in Ap-
pendix A. Observe from Equation 4 that as d increases, X+

d

becomes smaller. Hence, Sd(u, v) approaches S(u, v) when
d increases. We next obtain the following result.

Lemma 3. To satisfy Equation 3,

z ≥
log (1−λ)ε

aλ

log λ
(5)

This lemmas tells us how to find z for a given tolerance �. Its
proof can be found in Appendix A. In PPR, if a = λ = 0.5,
b = 0, and ε = 10−6, then z ≥ 19. Notice that the smaller
the tolerance, the larger is the value of z. In the sequel, we
assume that z has been obtained by using this lemma.
A basic solution for performing LS-join is to compute

Sz(p, q) for every node pair (p, q) ∈ (P,Q), and then re-
turn the pairs with the k highest scores. Although efficient
algorithms for computing similarity scores exist, they are
tailored for specific measures (e.g., PPR [6]), and it is not
clear how they can support other e-functions. Moreover,
many node pairs that are not the answers still need to have
their ez-function values fully computed. Due to the preva-
lence of the small-world phenomenon [14], a smaller ε (or
a big z) likely invokes expensive computation that spans a
significant portion of a graph. As shown in our experiments,
such a method does not perform well, especially on a large
graph. We next study a better algorithm.

3. ITERATIVE DEEPENING JOIN (IDJ)
We now present the Iterative Deepening Join algorithm

(or IDJ), which evaluates the LS-join for an e-function. We
discuss the framework of the IDJ in Section 3.1. We then
examine its details in Sections 3.2 and 3.3.

3.1 Algorithm Design
Recall that the LS-join returns node pairs (p, q) ∈ (P,Q)

that yield the k highest ez-function scores (Sz(p, q)). If z
is large, Sz(p, q) can be expensive to compute. Thus, the
IDJ chooses not to compute Sz(p, q) for every node pair
in P and Q. Instead, it executes the LS-join in an iterative
manner. At every round, an approximate value of Sz(p, q) is
used to prune nodes. As the number of iterations grows, the
approximation of Sz(p, q) is deepened – i.e., it becomes more
precise at a higher cost. On the other hand, the number
of node pairs that needs to be operated is reduced. In the
final round, the IDJ evaluates the exact ez-function values
for node pairs that cannot be pruned. If most of the nodes
can be pruned in early rounds, which are relatively cheap to
process, then the IDJ can finish quickly. The idea of IDJ is
inspired by the classical strategy of iterative-deepening depth
first search (or IDDFS) for state-space search [18], on which
we discuss in detail at Appendix B.

In the j-th iteration of the IDJ, we collect the following
information about Sz(p, q):

• For every pair (p, q) ∈ (P,Q), we derive S−

z (p, q), a
lower bound of Sz(p, q); and

• For each node p ∈ P , we compute S+
z (p,Q), an upper-

bound of the ez-function between p and any node q ∈

Q, i.e., S+
z (p,Q) ≥ Sz(p, q), for any q ∈ Q.

We then find a set R of k pairs with the highest S−

z scores.
Let Tk be the k-th largest S−

z score of the pairs stored in R.
We use the following pruning rule:

• For any p ∈ P , if S+
z (p,Q) < Tk, then p is pruned.

The tightness of the above bounds is controlled by a depth
function, or dep(j), where j is the number of iterations. This
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function is defined in a way that when j is small, the bounds
are loose but are cheap to estimate. As j increases, tighter
bounds can be obtained at a higher cost. We will revisit
dep(j) in Section 3.3.

Algorithm 1 details the IDJ. Step 1 initializes j to one1.
In the j-th iteration, Step 3 executes join-bound. Given a
depth function dep(j), join-bound derives the set R of node
pairs with the k highest S−

z scores, as well as an array up,
where up[p] = S+

z (p,Q), for every p ∈ P . Step 4 finds Tk

from R. We then use the pruning rule to remove nodes from
P (Steps 5-7). This process (Steps 2-8) is repeated until
dep(j) ≥ z. Step 9 executes join-refine, which computes
the exact ez-function for nodes that remain in P and Q by
using Equation 1, and put the node pairs with the k highest
Sz(p, q) values to R. Step 10 returns R.
The IDJ is designed to alleviate the problems of the basic

methods mentioned in Section 2.2. The IDJ only computes
the exact ez-function scores for node pairs in P and Q that
cannot be pruned. This can be better than the basic solution
that evaluates the ez-function for all node pairs in P and Q.
The main concern about the IDJ is whether it can carry out
pruning (Steps 2-8) efficiently and effectively. This depends
on: (1) the implementation of join-bound; and (2) the set-
ting of dep(j). Let us study these two important issues in
more detail.

Algorithm 1: Iterative-Deepening-Join (IDJ)

Input: Graph G(V,E); k and z; joining sets P ,Q;
Output: top-k pairs R with the highest Sz(p, q) values
init(j);1

while dep(j) < z do2

(R, up) ←join-bound(G,P,Q, k, dep(j));3

Tk ← R.getMin();4

for each p ∈ P do5

if up[p] < Tk then6

Remove p from P ;7

j ← j + 1;8

R ←join-refine(G,P,Q, z);9

return R;10

3.2 Bounding the ez-function
We now present the join-bound and the join-refine rou-

tines used in Algorithm 1. First, we explain how to obtain
the lower and upper bounds of the ez-function (i.e., S−

z and
S+
z ), which are used by these routines.
Deriving S−

z . Recall from Lemma 1 that Equation 1
monotonically increases with d . Thus, for any d ∈ [0, z],
Sd(p, q) ≤ Sz(p, q). Hence, we can set S−

z as:

S−

z (p, q) = Sd(p, q) (6)

Deriving S+
z . We obtain S+

z by:

S+
z (p,Q) = max{S−

z (p, q) | q ∈ Q}+X
+
d (7)

which can be deduced by: (1) Sz(p, q) ≤ S(p, q) (Lemma 1);
(2) S(p, q) ≤ Sd(p, q)+X+

d (Lemma 2); and (3) Equation 6.
Notice that as d increases, Sd(p, q) is more expensive to

evaluate, and so are Equations 6 and 7.
Algorithm 2 presents the pseudocode of join-bound. For

every p ∈ P , we invoke CompLowerBound to return a vec-
tor c (Step 3), which stores S−

z (p, q) for every q ∈ Q, using

1The init function for the PPR, which is more complex,
will be discussed in Section 4.

Equation 6. For every q ∈ Q, we push c[q] into R, using
updateResult (Steps 4-5). Here, R is a min-heap of size
k, and the details of updateResult can be found in Ap-
pendix B. In Step 6, CompUpperBound uses Equation 7 to
computes up[p]. Step 7 returns R and up. The cost of Step
3, denoted by CL, depends on the e-function used. Step 5
incurs a cost of O(log k), while Step 6 takes O(|Q|) times.
Hence, Algorithm 2 costs O(p(CL + q log k +Q)).
The join-refine function is implemented by invoking

compLowerBound with depth z, in order to compute Sz(p, q).
Its details can be found in Appendix B.

Algorithm 2: join-bound

Input: graph G(V,E); joining sets P,Q; size k; depth d
Output: top-k pairs R; upper-bound vector up
R ← ∅ //R is a min-heap of size k;1

for each p ∈ P do2

c ←compLowerBound(G,P,Q, k, d, p);3

for each q ∈ Q do4

R ← updateResult(R, c[q], (p, q), k);5

up[p] ← compUpperBound(c, d, a,λ);6

return (R, up);7

3.3 The Depth Function
When join-bound is invoked in Step 3 of Algorithm 1, its

parameter d is the value of the depth function, dep(j), for
the j-th iteration. As explained in Section 3.2, the larger
the value of d, the more costly is the bound computation.
It is thus important to set dep(j) appropriately, in order to
attain efficient and effective pruning. Here we design dep(j)
based on two intuitions:

1. dep(j) should be an increasing function of j. Lemma 1
implies that Sd(p, q) approaches Sz(p, q), as d tends to z.
Also, the IDJ is designed in such a way that as j increases,
join-bound should have a better estimate of Sz(p, q), in
order to prune nodes that are not removed in previous it-
erations. Since join-bound uses Sd(p, q) (Section 3.2), and
d = dep(j), dep(j) should increase with j.

2. dep(j) should be an exponential function of j. Equa-
tion 7 tells us that S+

z is affected by X+
d . As shown in Equa-

tion 4, X+
d shrinks exponentially with d. Figure 2 shows how

X+
d changes with d, at a = λ = 0.5 and z = 19. Hence, S+

z

also shrinks exponentially with d. Since S+
z is used for re-

moving nodes, the pruning effect drops drastically for large
d. As S+

z is more costly to compute for large d, we should
avoid executing join-bound at these d values.

0 25
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Figure 2: X+
d vs. d.

Thus, dep(j) should be an exponential function of j (e.g.,
2j). Figure 2 shows the first three iterations of the IDJ,
where join-bound is evaluated at d = 2, 4, and 8. We can
see that these points capture the trend of X+

d well. We thus

717



use dep(j) = 2j . Next, we study how to enhance the IDJ
for PPR and SR measures.

4. CUSTOMIZING IDJ FOR PPR
We now discuss how the IDJ can be optimized for the

PPR.We first present an implementation of compLowerBound
in Section 4.1. In Section 4.2 we discuss a better design of
compUpperBound, which efficiently returns a tighter upper
bound of Sz than the method we studied in Section 3.2.

4.1 Design of compLowerBound
As discussed in Section 2.1, the PPR is an e-function,

with a = 1 − λ, b = 0, and Pi(p, q)=Vi(p, q), where Vi(p, q)
is the probability that a random surfer at p visits q at the
i-th step. Given a node p ∈ P , compLowerBound returns an
array c, where for every q ∈ Q, c[q] stores S−

z (p, q), which is
equal to Sd(p, q) (Equation 6), or:

Sd(p, q) = (1− λ)
d�

i=1

λ
i
Vi(p, q) (8)

The compLowerBound contains d iterations. At iteration
i (where i ∈ [1, d]), let r be a vector, where r[u] stores
Vi−1(p, u) for every u ∈ V . Initially, r stores V0(p, u) (i.e.,
r[p] = 1 and r[u] = 0 for u �= p). We obtain Vi(p, v) for
every v ∈ V , by performing a one-step random walk:

Vi(p, v) =
�

(u,v)∈E

r[u] · pout(u, v) (9)

The values of Vi(p, v) are then written to r. We also ac-
cumulate the values of r in c, using Equation 8. After d

iterations, each entry c[q] contains the value S−

z (p, q). This
compLowerBound needs O(d · |E|) time and O(|V |) space. In
practice, it runs very fast in the first few iterations. The de-
tails (Algorithm 5) and a complexity analysis can be found
in Appendix C.1.

4.2 Design of compUpperBound
To understand how we redesign compUpperBound for the

PPR, we first present an important result about S+
z (p,Q).

Theorem 1. Let Vi(p,Q) be the probability that a surfer
at p visits some node in Q at the i-th step. For any p ∈ P ,
and 0 ≤ d ≤ z,

S+
z (p,Q) = max{Sd(p, q) | q ∈ Q}+ Y

+
d (p,Q) (10)

where

Y
+
d (p,Q) = λ

d
�

v∈V

Vd(p, v) · Y0(v,Q) (11)

and

Yd(p,Q) = (1− λ)

z�

i=d+1

λ
i
Vi(p,Q) (12)

Proof. (Detail in Appendix C.2) We first claim that:

Lemma 4. For any p ∈ P , q ∈ Q, and 0 ≤ d ≤ z,

Sz(p, q) ≤ Sd + Yd(p,Q) (13)

Next, we show that:

Lemma 5. For any p ∈ P , 0 ≤ d ≤ z,

Yd(p,Q) ≤ Y
+
d (p,Q) ≤ Yd(p,Q) + ε (14)

That is, Y +
d (p,Q) differs from Yd(p,Q) by at most ε. From

Lemma 5, we have:

Sz(p, q) ≤ Sd + Y
+
d (p,Q) (15)

We then obtain Equation 10, and the theorem holds.

New compUpperBound. Given a node p ∈ P , a set of
S−

z (p, q) values stored in c for every q ∈ Q, the routine
compUpperBound developed in Section 3.2 computes S+

z (p,Q).
Now, if Y0(p,Q) is known (which we will explain how to get),
Equation 11 can be used to get Y +

d (p,Q). We can then use
c, together with Theorem 1, to obtain S+

z (p,Q). The details
are shown in Algorithm 8 in Appendix C.3. Note that the
cost of deriving Y +

d (p,Q), which is O(|V |), has the same cost
of deriving X+

d . Thus, Algorithm 8 has the same complexity
as that of deriving S+

z (p,Q) by using Equation 7.2

Algorithm 8 can yield a tighter upper bound than that of
Equation 7. We first note the following:

Lemma 6. For any p ∈ P , Yd(p,Q) ≤ X+
d .

The proof of the above lemma can be found in Appendix C.2.
Also, Lemma 5, shows that the difference between Yd(p,Q)
and Y +

d (p,Q) is ε or less. If ε is small, Y +
d (p,Q) is likely

to be less than X+
d . Thus, the upper bound obtained by

Algorithm 8, using Equation 15, can be smaller than the
one obtained from Equation 7.

Finding Y0(p,Q) by backward random walk. Recall
that our approach needs to know Y0(p,Q). However, eval-
uating Y0 (Equation 12) can be expensive, since it involves
finding many Vi(p,Q) values, each of which involves i steps
of random walk. We now present an efficient algorithm of
obtaining Y0(v,Q) for all v ∈ V . The new compUpperBound

contains z iterations. At iteration i (where i ∈ [1, z]), let rb
be a vector, where rb[v] stores Vi−1(v,Q) for every v ∈ V .
Initially, rb stores V0(v,Q) (i.e., rb[v] = 1 for v ∈ Q and
rb[v] = 0 otherwise). We obtain Vi(u,Q), for every u ∈ V ,
by performing a one-step backward random walk:

Vi(u,Q) =
�

(u,v)∈E

rb[v] · pout(u, v), ∀u ∈ V (16)

The values of Vi(u,Q) are then written to rb. We also accu-
mulate the values of rb in another size |V | vector y0, using
Equation 12. After z iterations, each entry y0[v] contains
the value of Y0(v,Q). This method, detailed in Algorithm 9
of Appendix C.3, is used in Step 1 of the IDJ (Algorithm 1).
It only needs O(z · |E|), the same cost of performing z steps
of random walks on G.

5. CUSTOMIZING IDJ FOR SR
We now discuss how to optimize the IDJ for the SR. We

present a simple implementation of compLowerBound for the
SR in Section 5.1. Section 5.2 describes a faster version of
compLowerBound.

5.1 Design of compLowerBound
As discussed in Section 2.1, the SR is an e-function, with

a = 1, b = 0, and Pi(p, q)=Fi(p, q), where Fi(p, q) is the

2We do not use Yd(p,Q) (Lemma 4) to obtain S+
z (p,Q),

because of its high cost: it involves evaluating many Vi(p,Q)
values, each of which incurs i steps of random walk. Instead,
we use Y +

d (p,Q), which can be obtained more efficiently.
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probability that two random surfers at p and q first meet
each other at the i-th step. Given a node p ∈ P , compLowerBound
returns an array c, where for every q ∈ Q, c[q] stores S−

z (p, q),
which is equal to Sd(p, q) (Equation 6), or:

Sd(p, q) =
d�

i=1

λ
i
Fi(p, q) (17)

Recall that for the PPR, c can be obtained by performing
random walk for p. Computing c for the SR is more complex;
we also need to consider the random walk for each q ∈ Q,
in order to evaluate the probability that p and q first meet.
In our implementation, for each q ∈ Q, we invoke compSR on
(p, q), which returns the SR score of p and q (i.e., Sd(p, q)),
and store the result in c[q] (Algorithm 11 in Appendix D.1).

A sampling algorithm. A simple implementation of
compSR can be very costly, since computing Fi(p, q) involves
remembering the previous locations of the two surfers, to
check if they have met before. In fact, evaluating the ex-
act value of Sd(p, q) needs O(d|V ||E|) time and O(|V |2)
space [17]. We thus develop a sampling algorithm to evalu-
ate Sd(p, q). This algorithm executes n rounds, where n is
the number of samples decided by the Hoeffding’s Inequal-
ity [10]. In the i-th round, we obtain a score by simulating
the motion of two surfers at node p and q. Particularly,
at each step, the two surfers randomly choose their out-
neighbor to move forward. When the two surfers arrive at
the same node, we compute a score of λ

j , where j is the
number of steps they have taken. Then the i-th round stops,
because we only consider the event that they first meet. The
final score is obtained by dividing the sum of the scores from
all rounds by n. Algorithm 12 of Appendix D.1 describes
the details of compSR.

Since compLowerBound has to invoke compSR for |Q| times,
it is quite expensive. Our next algorithm can reduce the
number of times that compSR is called.

5.2 Design of compLB-Advanced
The compLB-Advanced is an alternative to compLowerBound.

It enables pruning during the score computation process.
Besides the parameters of compLowerBound, it requires the
min-heap R, defined in Section 3.2, for keeping the current
top-k pairs. It first computes an upper-bound of Sz(p, q), de-
noted by S+

z (p, q) for every q ∈ Q. Then the pairs (S+
z (p, q), q)

are pushed to a max-heap H. These entries are popped in
descending order of their S+

z (p, q) values. Let Tk be the k-
th largest score in R. When an entry is popped from H, if
S+
z (p, q) > Tk, we compute Sd(p, q), record it in c[q], and use

it to update R; otherwise, the algorithm stops. At this point,
the nodes in H are pruned, and c is returned. Although the
values of the pruned nodes in c are not computed (they are
initialized as zero), they are not included in the top-k re-
sult, and so the algorithm is still correct. Algorithm 13 of
Appendix D.2 describes the detail of compLB-Advanced.

We now present the formula for S+
z (p, q), and discuss how

to derive it efficiently.

Theorem 2. Let Mi(p, q) be the probability that two ran-
dom surfers at p and q meet each other at the i-th step.
Then, Sz(p, q) ≤ S+

z (p, q), where

S+
z (p, q) =

d�

i=1

Mi(p, q) +X
+
d (18)

( ) )() )

(a) Basic; (b) Backward random walk

Figure 3: Deriving Mi(p, q) for every q ∈ Q.

Proof. (Sketch) We first prove the following:

Lemma 7. Fi(p, q) ≤ Mi(p, q) for any p ∈ P and q ∈ Q

By using Lemma 7, we can then prove that Sz(p, q) ≤ S+
z (p, q).

The detailed proof can be found in Appendix D.3.

Deriving S+
z (p, q) by backward random walk. To

evaluate S+
z (p, q) (Equation 18), we need to first compute

the Mi(p, q) values. To obtain Mi(p, q), we can perform
an i-step random walk from q. Since compLB-Advanced re-
quires finding S+

z (p, q) for every q ∈ Q, |Q| random walk
operations need to be performed, incurring a high cost of
O(d|Q||E|). This process is illustrated in Figure 3(a), where
we enumerate the nodes in Q for random walks, in order to
meet the surfer from p (at the black squares). This solution
is detailed in Appendix D.2.

We now propose a faster technique of deriving S+
z (p, q)

for every q ∈ Q. At the i-th step, we use a vector r to store
the distribution of the surfer from p. Instead of performing
random walk from the nodes in Q, we use another vector
ur to perform i steps of random walks backwards from r, in
order to touch the nodes in Q. Then, ur[q] stores the value
Mi(p, q) for every q ∈ Q. This idea is shown in Figure 3(b),
where we avoid enumerating the nodes in Q for performing
random walk in Figure 3(a). The routine used in PPR (i.e.,
Algorithm 10, Appendix C.3) can be used here. The details
are described in Steps 4-9 in Algorithm 13 of Appendix D.2.
The algorithm finishes in O(d2|E|) time.

6. EXPERIMENTAL EVALUATION
We test our results on three datasets: Yeast, Coauthor and

Cora, which have 2.36k, 188k, and 37k nodes respectively.
These graphs have different properties; for instance, Yeast
is undirected and unweighted, whereas Coauthor is directed
and unweighted. The default values of our parameters are:
k = 50, λ = 0.2, and ε = 10−6. The default value of z,
equal to 8, is derived from Equation 5. The details of the
datasets and the setup can be found in Appendix E. Our
source codes are also available3. We next present the results
for PPR and SR in Sections 6.1 and 6.2 respectively.

6.1 Results on the PPR
We have tested 3 methods on Yeast and Coauthor:
BJ: Use the basic solution (Section 2.2), where Algo-

rithm 5, with d = z, is used to compute the PPR score.
IDJ-UB1: Use IDJ with compUpperBound in Section 3.2.
IDJ-UB2: Use IDJ with compUpperBound in Section 4.2.

3http://www.cs.hku.hk/~lwsun/codes/vldb11/
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Figure 4: Results on Yeast for PPR.

0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

!

ru
n

n
in

g
 t

im
e

 (
s

e
c

)

 

 

BJ

IDJ−UB1

IDJ−UB2

0 200 400 600 800 1000
0

200

400

600

800

1000

k

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

 

 

IDJ−UB1

IDJ−UB2

2 4 2 4
90

92

94

96

98

100

depth d

n
o
d
e
s
 p

ru
n
e
d
 (

%
)

IDJ−UB2

IDJ−UB1
k=50 k=100

(a) Running time vs. λ (b) Running time vs. k (c) Performance Analysis

Figure 5: Results on Coauthor for PPR.

6.1.1 The Yeast Dataset

Effect of ε (Figure 4(a)). As ε, the tolerance, decreases,
the score needs to be more accurate. A higher depth z is
then required. Hence, the running times of all three meth-
ods increase with ε. Note that idj-ub2 is better idj-ub1,
which is better than bj. In particular, idj-ub2 consistently
outperforms bj by more than an order of magnitude.

Effect of λ (Figure 4(b)). The decay factor, λ, de-
termines the convergent rate of the ed-function. A larger
λ makes the ed-function converges slower, and also needs a
larger z. Moreover, when λ is large, the upper bound value
X+

d (Equation 10) is larger. Thus, the upper bound is less
tight, and the pruning becomes less effective. Thus, the run-
ning times of bj and idj-ub1 increase with λ. Compared to
idj-ub1, idj-ub2 is less sensitive to λ , since it uses Y +

d (p,Q)
to compute upper bounds.

Effect of k (Figure 4(c)). The running time of bj is
almost the same for different k values (0.41 seconds), since it
has to compute the scores for all (p, q) pairs. The evaluation
times of idj-ub1 and idj-ub2 increase with k, because (1)
we have to compute Sz(p, q) for all the top-k pairs; and (2)
when k is large, the value of Tk becomes smaller, rendering a
lower pruning effectiveness (Section 3.1). Observe that idj-
ub2 outperforms idj-ub1; at k = 50, idj-ub2 is 70% faster
than idj-ub1. This is because idj-ub2 uses tighter bounds,
and is less sensitive to the increase in Tk.

6.1.2 The Coauthor Dataset

Since Coauthor is much larger than Yeast, computing the
PPR scores is more expensive. We first study the effect of
λ on running times, in Figure 5(a). The trends are similar
to Figure 4(b). idj-ub1 and idj-ub2 are much faster than
bj, because they can prune many expensive computations in
early rounds. For instance, at λ = 0.1, they outperform bj
by more than an order of magnitude. Figure 5(b) compares
the methods for different k values. bj, which takes more
than an hour to complete, is not shown here. Similar to
Figure 4(c), idj-ub2 grows slower than idj-ub1 with respect

to k. It also outperforms idj-ub1. At k = 1000, it is 50%
quicker than idj-ub1.

Further analysis. To understand why idj-ub2 is better
than idj-ub1, we examine their pruning effectiveness in each
round of IDJ. Since z = 8, two iterations of join-bound are
run, using depth values 2 and 4. Figure 5(c) shows that
the fraction of nodes pruned in these two iterations, with
k = 50 (left) and k = 100 (right). Notice that idj-ub2
prunes more than 99% nodes from P in the first round. Since
this iteration is the cheapest in the IDJ, idj-ub2 is highly
efficient. The effectiveness of idj-ub1 is more sensitive to k,
which decreases from 98% to 91% as k increases from 50 to
100. To conclude that the IDJ significantly outperforms bj.
The customized IDJ for PPR (idj-ub2) is also faster than
the generic IDJ (idj-ub1).

6.2 Results on the SR
We have tested 3 methods on Yeast and Cora:
BJ: Use the basic solution (Section 2.2), where compSR,

with d = z, is used to compute the SR score.
IDJ-LB1: Use IDJ with compLowerBound in Section 5.1.
IDJ-LB2: Use IDJ with compLB-Advanced in Section 5.2.
In all these methods, we use 105 samples to execute compSR.
The Yeast. Figure 6(a) shows that the running times

of all methods increase with ε. Also, idj-lb2 consistently
outperforms bj by two orders of magnitudes. The execu-
tion times of these methods are longer than those in Fig-
ure 4(a), as in general, SR is more costly than PPR. In
Figure 6(b), as λ increases, z also increases, and so all the
methods are slower. Both idj-lb1 and idj-lb2 outperform
bj significantly. We also tested the effect of k in Figure 6.
The running time of bj, which is around 1100 seconds for dif-
ferent k values, is not shown. Notice that idj-lb2 improves
idj-lb1 by an order of magnitude.

The Cora is a much larger dataset than the Yeast. The
running time of bj, which is more than 10 hours, is not
shown here. Figures 7(a) and (b), which test the effect of
λ and k, show similar trends as Figures 6(b) and (c). Fig-
ure 7(c) compares the effectiveness of idj-lb1 and idj-lb2,
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Figure 6: Results on Yeast for SR.
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Figure 7: Results on Cora for SR.

in terms of the logarithm of the number of times compSR

is run at each iteration. Recall that idj-lb2 is designed to
avoid calling compSR. For both k = 50 (left) and k = 100
(right), idj-lb2 can prune many (over 106) compSR compu-
tations, by paying a relatively small cost of upper-bound
computation. This explains why the effectiveness of idj-lb2
is an order of magnitude better than idj-lb1. We conclude
that the IDJ is better than bj. The customized IDJ for SR
(idj-lb2) also outperforms the generic IDJ (idj-lb1).

7. CONCLUSIONS
In this paper, we propose the LS-join query, which sup-

ports many graph applications, including customer sugges-
tion, citation analysis, and link prediction. To evaluate the
LS-join, we propose the IDJ algorithm, which can be used
on a class of link-based measures. We also enhance the per-
formance of the IDJ for the PPR and the SR, which are
common similarity measures. Our algorithms, which can be
used on weighted and directed graphs, perform much better
than basic solutions on large graphs. In the future, we will
extend the LS-join to consider other features in a graph, for
example, the contents of a social network user’s blog. We
will also study how to customize the IDJ for other common
e-functions, for instance, the DHT.
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APPENDIX

A. LEMMA PROOFS FOR SECTION 2.3
Lemma 2 Proof. We first rewrite S(u, v) as:

S(u, v) = Sd(u, v) +Xd(u, v) (19)

where

Xd(u, v) = a

∞�

i=d+1

λ
iPi(u, v) (20)

We now prove the 2 parts of the lemma:
(Part 1) S(u, v) ≥ Sd(u, v): Since Pi is a probability value,

0 ≤ Pi ≤ 1, and Xd(u, v) ≥ 0. By using Equation 19, we
can see that this part is correct.

(Part 2) S(u, v) ≤ Sd(u, v) + X+
d . We first show that

Xd(u, v) ≤ X+
d :

Xd(u, v) ≤ a

∞�

i=d+1

λ
i (as Pi(u, v) ≤ 1)

= a ·
λ
d+1

(1− λ)
(as λ < 1)

= X
+
d

Using Equation 19, this part holds.
Since Parts (1) and (2) are correct, the lemma is true.
Lemma 3 Proof. From Lemma 2, we know that

S(u, v) ∈ [Sz(u, v), Sz(u, v) +X
+
z ]

For Inequality 3 to hold, we need X+
z ≤ ε. We can then

obtain Inequality 5, and so the lemma is correct.

B. THE IDJ ALGORITHM (SECTION 3)

Algorithm 3: updateResult (Section 3.2)

Input: current heap R, score sc, pair (p, q), size k
Output: updated heap R
if sc < R.minEntry().key then1

return R;2

R.push(Entry(sc, (p, q))); //Entry(key, content)3

if R.size() > k then4

R.popMin();5

return R;6

Algorithm 4: join-refine (Section 3.2)

Input: graph G(V,E); node sets P,Q; size k; depth z
Output: top-k pairs R
//R is a MinHeap of fixed-size k;1

R ← ∅;2

for each p ∈ P do3

c ←compLowerBound(G,P,Q, k, z, p);4

for each q ∈ Q do5

R ← updateResult(R, c[q], (p, q), k);6

return R;7

The design of IDJ is inspired by the classical strategy of
iterative-deepening depth first search (or IDDFS), which is
used in state-space search [18]. Notice that other methods
like BFS (breadth-first-search) and DFS (depth-first search)
can also be used in state-space search. In IDDFS, we per-
form depth-first search within a constrained scope first. If
the goal is not found, we start over the search with an ex-
panded scope. Compared to DFS, IDDFS avoids the high

cost of digging too deep in early rounds. Compared to BFS,
IDDFS avoids the high cost of storing all the intermediate
states. Using the same spirit of IDDFS, we do not fully com-
pute the exact Sz(p, q) scores in early rounds (as in DFS),
since they are expensive to compute. Also, we do not store
the intermediate scores for later iterations (as in BFS), as
they incur a high space cost. However, the scores computed
in early rounds can effectively prune nodes from the joining
sets.

C. THE PPR ALGORITHM (SECTION 4)
We first present the pseudocodes of compLowerBound in

Section C.1. We then present the proofs of lemmas used by
compUpperBound in Section C.2. The algorithm pseudocodes
of compUpperBound is shown in Section C.3.

C.1 Algorithms for compLowerBound

Algorithm 5: compLowerBound (for PPR)

Input: graph G(V,E); depth d; node p
Output: score vector c of Sz values
Set r ← {0, 0, . . . , 0}, c ← {0, 0, . . . , 0};1

r[p] ← 1;2

for i ← 1 to d do3

r ← walkOneStep(G,r);4

c ← addScore-PPR(r,c,λ,i);5

return c;6

Algorithm 6: walkOneStep

Input: Graph G(V,E); current vector r
Output: next-step vector r�

Set r� ← {0, 0, . . . , 0};1

for each u ∈ V do2

if r[u] > 0 then3

for each v ∈ O(u) do4

r�[v] ← r�[v] + r[u] · pout(u, v);5

return r�;6

Algorithm 7: addScore-PPR

Input: current vector r, c; decay factor λ; step i
Output: updated c
for each v ∈ V do1

c[v] ← c[v] + (1− λ)λi × r[v];2

return c;3

Algorithm 5 describes how to compute c. It initializes all
entries of c to be zero. Note that the sum of all entries in
r, where r[v] = Vi−1(p, v) for v ∈ V , is always equal to 1.
Also, r[p] = 1 and r[v] = 0 for v �= p. For every step i, it
invokes Algorithm 6, which refreshes r by performing one
step of random walk, based on Equation 9. The vector c is
used to accumulate the r values, using Algorithm 7. After
d steps of random walks, c stores the value of Sd(p, q).
Algorithm 6 runs with a time complexity of O(|E|). Sub-

sequently, Algorithm 5 needs O(d · |E|) time and O(|V |)
space. We remark that the cost of Algorithm 6 is much
smaller when i is small, say i < 3, since most entries in r

are zero. This property makes Algorithm 5 run very fast in
the first few iterations.

722



C.2 Lemma Proofs for compUpperBound
The following are the proofs of lemmas used to support

Theorem 1.
Proof of Lemma 4. First, observe that for any q ∈ Q,
Vi(p, q) ≤ Vi(p,Q). This is because at the i-th step of ran-
dom walk from p, the event A that the surfer visits some
node in Q subsumes the event B that it visits a specified
node q ∈ Q. Since Vi(p,Q) and Vi(p, q) correspond to the
probabilities that event A and event B happen respectively,
we have Vi(p,Q) ≥ Vi(p, q), for any specified q ∈ Q. Then,

Sz(p, q) = Sd(p, q) + (1− λ)

z�

i=d+1

λ
i
Vi(p, q)

≤ Sd(p, q) + (1− λ)
z�

i=d+1

λ
i
Vi(p,Q)

= Sd(p, q) + Yd(p,Q)

Hence, the lemma holds.
Proof of Lemma 5. First, we show that Vd+i(p,Q) can be
calculated as:

Vd+i(p,Q) =
�

v∈V

Vd(p, v) · Vi(v,Q) (21)

To compute Vd+i(p,Q), instead of using d+i steps of random
walks, in Equation 21, we only perform random walks for
d steps and obtain Vd(p, v). For each v ∈ V , we multiply
Vd(p, v) by Vi(v,Q), which is the probability of visiting some
node in Q if we keep walking i steps from v. Finally, we can
add up the products at each v to get Vd+i(p,Q), since these
probabilities are disjoint from each other.

Given Equation 21, we now prove this lemma by expand-
ing the RHS of the equation:

Y
+
d (p,Q) = λ

d
�

v∈V

Vd(p, v) · Y
+
0 (v,Q)

= λ
d
�

v∈V

Vd(p, v)

z�

i=1

(1− λ)λi
Vi(v,Q)

= λ
d(1− λ)

z�

i=1

λ
i
�

v∈V

Vd(p, v)Vi(v,Q)

= (1− λ)

z�

i=1

λ
d+i

�

v∈V

Vd(p, v)Vi(v,Q)

= (1− λ)

z�

i=1

λ
d+i

Vd+i(p,Q) (Equation 21)

= (1− λ)

z+d�

i=d+1

λ
i
Vi(p,Q)

= Yd(p,Q) + (1− λ)

z+d�

i=z+1

λ
i
Vi(p,Q)

Since

0 ≤ (1− λ)

z+d�

i=z+1

λ
i
Vi(p,Q) ≤ ε

the two sides of the inequality hold.
Proof of Lemma 6. If we refer to the proof of Lemma 2
in Appendix A, X+

d is an upper bound since Vi(p, q) ≤ 1.

On the other hand, we obtain Yd(p,Q) as an upper-bound
because Vi(p, q) ≤ Vi(p,Q). Since Vi(p,Q) is probability
value and thus always no larger than 1, we have Yd(p,Q) ≤
X+

d for any p ∈ Q. Thus, the lemma holds.

C.3 Algorithms for compUpperBound
The new compUpperBound algorithm for PPR is shown

in Algorithm 8. The new init algorithm, which precom-
putes the values of Y0(v,Q) for every v ∈ V , is presented
in Algorithm 9. It makes use of a backward random walk
procedure, called walkOneStepBackwards, as illustrated in
Algorithm 10.

Algorithm 8: compUpperBound (for PPR)

Input: vector r, c, y0, depth d
Output: upper bound of S (S+

z )
s ← max{c[q] | q ∈ Q}; // Compute Equation 101

for each v ∈ V do2

s ← s+ λd · r[v] · y0[v]; // Use Equation 113

return s;4

Algorithm 9: init (for PPR)

Input: graph G; joining set Q; depth z;
Output: upper-bound vector y0
Set rb ← {0, 0, . . . , 0}, y0 ← {0, 0, . . . , 0};1

for each q ∈ Q do2

rb[q] ← 1;3

for i ← 1 to z do4

rb ← walkOneStepBackwards(G,rb);5

y0 ← addScore-PPR(rb,y0,λ,i)6

return y0;7

Algorithm 10: walkOneStepBackwards

Input: graph G(V,E); vector rb
Output: next-step vector rb�

rb� ← {0, 0, . . . , 0};1

for each v ∈ V do2

if r[v] > 0 then3

for each u ∈ I(v) do4

rb�[u] ← rb�[u] + rb[v] · pout(u, v);5

return rb�;6

D. THE SR ALGORITHM (SECTION 5)
We first present the algorithms used by compLowerBound,

in Secton D.1. In Sections D.2 and D.3, we discuss the
algorithms and proofs used by compLB-Advanced.

D.1 Algorithms for compLowerBound
Algorithm 11 presents the compLowerBound for SR. It in-

vokes a sampling method of evaluating the SR score for a
given pair of nodes, as shown in Algorithm 12.

Details of compSR. Algorithm 12 describes the sampling-
based method for evaluating the SR score for a given pair
of nodes. The algorithm executes n iterations, where n de-
pends on the sampling accuracy and will be discussed later.
Let us discuss how to obtain a score in the i-th round: We
simulate the motion of two surfers at node p and q. Partic-
ularly, at each step, the two surfers randomly choose their
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Algorithm 13: compLB-Advanced (for SR)

Input: graph G(V,E); joining set Q; result size k; depth d;
node p; top-k pairs R

Output: score vector c
c ← {0, 0, · · · , 0};1

r ← {0, 0, . . . , 0}; uc ← {0, 0, . . . , 0};2

r[p] ← 1;3

for i ← 1 to d do4

r ← walkOneStep(r,G);5

ur ← r;6

for j ← 1 to i do7

ur ← walkOneStepBackwards(ur,G);8

uc ← addScore-SR (ur, uc,λ, i);9

MaxHeap H;10

for each q ∈ Q do11

H.push(Entry(uc[q] +X+
d
, q)); //Entry(key, content)12

while H.notEmpty() do13

s ← H.maxEntry().key;14

q ← H.maxEntry().content;15

H.popMax();16

if s < R.minEntry().key then17

break;18

c[q] ← compSR(G, p, q, d);19

R ← updateResult(R, s, (p, q), k);20

return c;21

Algorithm 11: compLowerBound (for SR)

Input: graph G(V,E); joining set Q; result size k; depth d;
node p

Output: score vector c
for each q ∈ Q do1

c[q] ← compSR(G, p, q, d,λ);2

return c;3

Algorithm 12: compSR

Input: graph G(V,E); node p, q; depth d; decay factor λ

Output: score s
s ← 0;1

for i ← 1 to n do2

p� ← p, q� ← q;3

for j ← 1 to d do4

p� ← randomly select a node from O(p�);5

q� ← randomly select a node from O(q�);6

if p� = q� then7

s ← s+ λj ;8

break;9

return s
n
;10

out-neighbor to move forward. When the two surfers ar-
rive at the same node, we obtain a score of λj , where j is
the number of steps they have taken. Then, the i-th round
stops, as we only consider the event that they first meet. If
they did not meet each other after d steps, the round stops
with a zero score. The final score is obtained by dividing
the sum of the scores from all rounds by n.

Correctness of compSR. Let p̂ be the approximate score
and p be the exact score. According to the Hoeffding’s In-
equality [10], we have:

Pr(|p̂− p| ≥ α) ≤ 2e−2nα
2

where n is the number of samples, and α is the error between
the approximate value and true value.

D.2 Algorithms for compLB-Advanced
Algorithm 13 describes compLB-Advanced, which is an en-

hanced version of compLowerBound. It incorporates novel
pruning techniques that avoids handling some nodes that
cannot be in the top-k result.

A Basic Solution for finding S+
z (p, q). The algorithm

of compLB-Advanced requires the computation of S+
z (p, q).

One simple way to evaluate S+
z (p, q) (Equation 18) is to

first compute the Mi(p, q) values. They can be obtained by
considering two random surfers from p and q. Particularly,
let rp and rq be two vectors that store respectively the dis-
tribution of the surfers from p and q at the i-th step. Since
the surfers are independent, Mi(p, q) =

�
v∈V

rp[v]× rq[v].
However, this can incur a high cost, since compLB-Advanced
requires the finding of S+

z (p, q) for every q ∈ Q. Conse-
quently, we need to consider the random walk from each
q ∈ Q, with a cost of O(d|Q||E|).

D.3 Proofs for compLB-Advanced
Lemma 7. We consider two random events: at the i-

th step of two random surfers, event A is that the two
surfer “meet for the first time”, and event B is that they
“meet”. If event A happens, event B must also happen.
Since Fi(p, q) and Mi(p, q) correspond to the probabilities
that event A and event B happen respectively, we have
Fi(p, q) ≤ Mi(p, q).
Theorem 2 can now be proved as follows:

Sz(p, q) = Sd(p, q) +Xd(p, q)

=
d�

i=1

λ
i
Fi(p, q) +Xd(p, q)

≤

d�

i=1

λ
i
Mi(p, q) +Xd(p, q)

≤

d�

i=1

λ
i
Mi(p, q) +X

+
d

= S+
z (p, q)

E. EXPERIMENT SETUP
We test our results on three graphs of different sizes:

Yeast, Coauthor and Cora. The Yeast dataset is relatively
small, on which we can finish all the experiments with ba-
sic solutions. We use Coauthor and Cora as large graphs
to mainly test the scalability of our solutions, on which the
basic solutions often cannot be finished within a feasible
time. The default values of our parameters are: k = 50,
λ = 0.2, and ε = 10−6. The value of z is derived from
Equation 5. All the experiments were carried out on the
Windows XP operating system, on a machine with a 2.66
GHz Intel Core Duo processor and 2GB memory. The pro-
grams were written in C++ and compiled on Microsoft Vi-
sual Studio 2005. Our source codes are also available at
http://www.cs.hku.hk/~lwsun/codes/vldb11/.

Datasets. The properties of the datasets used can be
found in Table 2. Let us now describe their details.

• Yeast4 is a protein-protein interaction graph, where
each node denotes a protein and an edge denotes the inter-
action between two proteins. The graph is undirected and
unweighted. The dataset contains the PIN class information,

4http://vlado.fmf.uni-lj.si/pub/networks/data/
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Table 2: Datasets (D=directed, UD=undirected;
W=weighted, UW=unweighted)

Dataset Type |V | |E| |P | |Q|
Yeast UD, UW 2.36k 7.18k 283 586

Coauthor UD, W 188k 1140k 12.06k 28.16k
Cora D, UW 37k 710k 1.35k 4.61k

where the proteins are partitioned into 13 clusters. We pick
two largest partitions (encoded as 3-U and 8-D respectively)
as the joining sets.

• Coauthor is exacted from the DBLP record5. A node
represents an author, and an edge (u, v) indicates that au-
thors u and v co-authored a paper. We construct this graph
from the DBLP record as follows. We first find all the con-
ference papers, and for each paper, we add edges between its
authors. For each edge (u, v), we assign the weight w(u, v)
as the number of papers that u and v co-authored. This

graph is undirected and weighted. We identify the authors
as the two joining sets from the database (DB) and artificial
intelligence (AI) areas respectively. We consider an author
as in the DB area if he/she has published papers in a DB
conference (e.g., VLDB).

• Cora6 is a citation graph. A node denotes a scientific
paper and an edge from u to v indicates that paper u cites
paper v. The graph is directed and unweighted. The dataset
contains the labels of research areas for the papers. We
identify two sets of paper labeled as database and machine
learning as our joining sets.
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