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p. 107-1

On Liouville Theorem and Apriori Estimates
for the Scalar Curvature Equations

CHANG-SHOU LIN

Abstract. In this article, we study the problem of nonexistence of positive solutions
of the equation

where K(x) is a C homogeneous function of degree 1 &#x3E; 0. Suppose that K (x )
satisfies the nondegenerate condition,

for x E JRn B {OJ, where ci are positive constants. We prove that equation ( 1 ) admits
no positive solutions. This Liouville Theorem allows us to derive apriori estimates
for positive solutions of scalar curvature equations in the region where the scalar
curvature function is nonpositive. Various apriori estimates are also derived under
different circumstances.

Mathematics Subject Classification (1991): 35J60, 45G10.

1. - Introduction

Let (M, go) be a Riemannian manifold of dimension n &#x3E; 3. For a given
smooth function R on M, one would like to find a metric g conformal to

4

go such that R is the scalar curvature of the new metric g. Set g - V n-2 go
for some positive function v, then the question above is equivalent to finding
positive solutions of

where Ogo is the Beltrami-Laplace operator of (M, go) and k is the scalar cur-
vature of go. In recent years, there have been a lot of progress in understand-

ing equation ( 1.1 ), in particular, when (M, go) is the standard n-dimensional

Pervenuto alla Redazione il 2 febbraio 1998 e in forma definitiva il 19 agosto 1998.
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sphere Sn . In this case, k (x ) = n (n - 1) and then equation (1.1) becomes

By using the stereographic projection 7r of S’ onto M" and letting u (x) _
o "20132

with x = 7r(y) for y E S’ and for some suitable positive
constant Cn, equation (1.2) reduces into

where K (x ) = (x ) ) for x E In general, if (M, go) is a locally con-
formally flat manifold, a local flat metric can be chosen and then, equation ( 1.1 )
is reduced to equation (1.3) in an open set of R’~.

It is well-known that, when R (y) is a positive constant identically for

y E S’~, equation (1.2) possesses a family of solutions, whose total energy could
be concentrated in a small neighborhood of some point yo E S’~. Thus, it is
of great interest from the viewpoint of PDE to study the blow-up behavior for
a sequence of positive solutions of (1.2) when R (y) is a nonconstant function.
For works in this aspect, we refer the reader to [3], [6,7], [11,12], [20] and
references therein. To do the blow up analysis, we first rescale solutions near
a blow-up point. Since the solution structure of equation (1.3) was completely
understood for the case K (x) =- a positive constant, it is easier to describe the
limit of the rescaling solutions when As) is a positive function. This is the
reason why most works have only considered the situation where is positive.

In this paper, we will consider the problem of finding apriori estimates
for the region where the curvature function R is nonpositive. In [5], Chen-Li
studied equation (1.2) on S’~ and proved some apriori bound for solutions in
the region {y E S’ I R(y) s 0} by assuming 0 whenever R (y) = 0.
However, their argument seems to work only for solutions globally defined on
the whole space In this paper, we want to extend their result for solutions

defined locally, which can be applied in the general case when M is locally
conformally flat. We believe that the result in local nature should be more
useful. For applications, we can prove the apriori bound without the condition
B1 R (y) i= 0 whenever R (y) - 0, although a nondegenerate condition is still

required.
It is quite well-known that the establishment of apriori bounds is closely

related to the Liouville theorem. The Liouville theorem always plays an im-
portant role in the theory of elliptic equations. For the scalar curvature equa-
tions (1.3) in R , we [14] have proved the Liouville theorem for several classes
of functions K. One of them is that depends only on the x,
variable only. Assume K (xl ) is nondecreasing in xl, K = ~i 1 for xl  b and
K n K2 &#x3E; max(0, for a, we [14] proved that equation (1.3) possesses
no positive solutions in The Liouville theorem for this class of K was first
observed by Y.Y. Li [10], where he proved that there are no positive solutions/
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with the decay rate O(lxI2-n) at infinity. In fact, he asked whether equation (1.3)
possesses no positive solutions when a nonconstant K (xl , ... , xn) is bounded

by two positive constants and K (xl, ... , xn) is nondecreasing in xi. In general,
this problem still remains open. Our first result is:

THEOREM 1. 1. Let K (xl , X2, ... , Xn) - x’ for some positive integer m. Then
equation (1.3) possesses no positive solutions in JRn.

Obviously, K (xl ) is increasing in Xl only when m is an odd positive integer.
For the case of even positive integer, Theorem 1.1 can be extended to:

THEOREM 1.2. Suppose that K &#x3E; 0 in and satisfies K (t~) = tl K (ç) for
t &#x3E; 0 I = 1, where 1 &#x3E; 0 is a constant. Assume there exists an open set

c~o C Sn - such that K (~ ) &#x3E; co &#x3E; 0 for some constant co and ~ E Then

equation ( 1.3) possesses no positive solutions.

In fact, for a homogeneous function K, we have more general result than
Theorem 1.1. Note that in the following theorem, K could allow to change
signs.

THEOREM 1. 3. Suppose that K is a C homogeneous function of degree 1 &#x3E; 0
and satisfies

for positive constants Ci and C2. Then equation (1.3) possesses no positive solutions
in JRn.

As mentioned before, the Liouville theorem is closely related to the exis-
tence of apriori bound of solutions. An immediate consequence of Theorem 1.1
is the following theorem. (Throughout the paper, Br always denotes the open
ball with center 0 and the radius r).

COROLLARY 1.4. Suppose satisfies and

for x E B1. Then there exists a constant c which depends on C1, C2 and the dimension
n such that

holds for any solution u of
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DEFINITION. A function K E C 1 (B1 ) with K (0) = 0 is said to satisfy the
nondegenerate condition at 0 if in a neighborhood of 0, I~ can be written by

COROLLARY 1.5. Suppose K E C1(R1) with K (0) = 0 satisfies [NG] at 0. Let
ui be a sequence of solutions of (1.6). Assume that ui is uniformly bounded in any
compact set of BIB101. Then ui is uniformly bounded in Bl.

DEFINITION. A function E is said to satisfy condition [M] if

(i) K &#x3E; 0 in B I and 7~ 0 whenever K (x) # 0.
(ii) The zero set A = f x E B1 I K (x) = 0} is a k-dimensional submanifold

with 0  k  n. Let N be a tube neighborhood of A and let yr denote the
orthorgonal projection from N onto A such = d(x), where
d(x) = d(x, A) is the distance of x to A. For x E N, K satisfies

where is a positive
homogeneous function of degree 1 in (TxoA)1-, the orthogonal complement
of the tangent subspace of A at xo.
It is easy to see that notions of [NG] and [M] can be defined in a locally

confomally flat manifold, and their definitions are independent of the choice of
the local flat metrics.

COROLLARY 1.6. with K (0) = 0 and satisfies the as-
sumption [M]. Then there exists a constant c such that

holds for any solution of ( 1.6).

Together with Corollary 1.4 through Corollary 1.6, we have the following
apriori estimates for equation (1.1). To state our result, we let SZ- _ lpo E M I

0 in a neighborhood of po) and QO _ {po E M ~ R (p°) = 0 and there
exists a neighborhood U of po such that R is nonnegative in U, but does not
vanish identitically in U}. Obviously, SZ- is an open subset in M, and SZ- is

disjoint from QO.
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THEOREM 1.7. Let (M, go) be a locally conformally flat manifold and R be a
C 1 function on M. Assume that (i) IfQo i= 0, then R has only a finite set of critical
points lpi, ... , p,, I on and satisfies the nondegenerate condition at each pj,
and (ii) If 0, then S2° is a union of a finite number of submanifold and R
satisfies [M] on each component of Qo. Then there exists 80 &#x3E; 0 and c &#x3E; 0 such
that if u is a positive solution of ( 1.1 ), then

for any p E M and R ( p)  80.

We note that if a C 1 function R has no critical points with vanishing
critical values, then R satisfies the assumption of Theorem 1.7. In this case,
Theorem 1.7 was previously proved in [5] when (M, go) is the standard n-
dimensional sphere. However, Theorem 1.7 is much stronger than the one
in [5] even when (M, go) is the n-dimensional sphere. For example, if at each
critical point p of R with R (p) - 0, the Hessian of R at p is non-singular,
then R satisfies the assumption of Theorem 1.7. Thus, we extend the previous
result of [5] to allow R to have critical points with zero critical value, of course,
the nondegenerate condition is still needed.

As mentioned before, the apriori bound for the part where R is positive
was obtained in a number of recent works, e.g., see [3], [6,7], [10,11] and
references therein. Together with Theorem 1.7, one could obtain apriori bound
for solutions for some class of R where R is not assumed to be positive. For
example, we have the following result on S3.

THEOREM 1.8. Let (S3, go) be the standard 3-sphere and R be a given Morse
function on S3. Assume R satisfies 0 whenever R (y) &#x3E; 0 and p R (y) = 0.
Then there exists a constant c &#x3E; 0 such that for any solution v of (1.2), one has

Furthermore, the Leray-Schauder degree d for equation (1.2) is given by

where A+ = {p e S3 p is a critical point o, f’ R with R(p) &#x3E; 0 and  0},
the Morse index o, f R at 

We note that the Leray-Schauder degree d is defined as the standard topo-
logical degree of the nonlinear map v -~ g ( 00 - 4 ) -1 R v5 from c2,a (S3) to itself
for 0  a  1. For reference, please see [15].

For a locally conformally flat manifold which is not conformally equivalent
to we can apply the positive mass theorem and obtain:
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THEOREM 1.9. Let (M, go) be a locally conformally flat n-manifold and R be a
Cn-2 function which for n &#x3E; 4, in addition assume that for any 8 &#x3E; 0, there exists a
neighborhood U of the critical set f p E M pR ( p) = 0 and R ( p) &#x3E; 01 such that

where 1 = n - 2. Suppose R also satisfies the assumption of Theorem 1.7 on the
and S2° if they are not empty. Then there exists a positive constant c &#x3E; 0

such that

for p E M and for any solution v of ( 1.1 ). Furthermore, if the first eigenvalue of
the conformal Laplacian operator is positive and maxM R &#x3E; 0. Then the Leray-
Schauder degree is -1.

There are two alternative methods to compute the Leray-Schauder degree
when (M, go) is the standard n-sphere. One is to deform R to a function
which is close to a positive constant. And then we have to prove an uniform
bound for solutions during the deformation. This can be done for the case
when R is positive in 53. Please see [3]. But, when R changes signs, the
uniform bound fails to exist. Another method is to approach equation (1.2) by
subcritical exponents as done in [20]. It is not difficult to see that Theorem 1.7
still holds while (1.2) is approached from the subcritical exponents. Thus, a
blow-up point should occur at most the critical points of R with a positive
critical value and 0 R  0. Therefore, the work of [20] can still be applied
and the degree-counting formulas (1.7) can be obtained. This is the proof of
Theorem 1.8. Theorem 1.9 can be proved similarly. In fact, an uniform bound
will be derived when equation (1.1) is approached by subcritical exponents. We
give a proof in Section 4.

Finally, we would like to remark that Corollary 1.6 is not optimal when
the dimension of A is equal to 0. In this case, the assumption of Corollary 1.6
simply means that K has a nondegenerate minimum at 0, namely, Q(x) &#x3E; 0
for 0. Thus, it can not be applied to the degenerate case, say, K (x ) =

2 X4 for x near 0. In this case, we have the following.

THEOREM 1.10. Let K be a nonnegative C 1 function in B1 such that K (0) = 0
and 0. In addition, K satisfies

for x near 0 and for some positive constant co &#x3E; 0. Suppose ui is a sequence of
solutions of (1.6) for I  1. Then ui (x) is uniformly bounded for I  1/2.

This paper is organized as follows. In Section 2, Theorem 1.1 is proved
for the case when m is an odd positive integer. Corollary 1.4 is proved as
a consequence of Theorem 1.1. In Section 3, we will give the proofs of
Theorem 1.2, Theorem 1.3 and their corollaries. Finally, Theorem 1.9 and
Theorem 1.10 are proved in Section 4. Also in Section 4, we will give an
alternative proof of the result of Chen-Li, based on the Pohozaev identity.
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2. - The method of moving planes

In this section, we will prove Theorem 1.1 when m is an odd positive
integer. For the case when m is an even positive integer, Theorem 1.1 is a

special case of Theorem 1.2, whose proof will be given in the next section.
Our proof for Theorem 1.1 with odd m will use the well-known method of

moving planes. The method of moving planes was invented by A.D. Alexandrov
and has been developed further to study the problem of radial symmetry for
positive solutions of elliptic equations by Serrin [17], Gidas-Ni-Nirenberg [9],
Caffarelli-Gidas-Spruck [2], Chen-Li [4] and others. It was also used to study
the behavior of a blow-up sequence of solutions of (1.3) near a blow-up point by
Chen-Lin [6,7]. Another ingredient in our proof is a blow-up argument, which
originally was due to R. Schoen [16]. The argument is important, because it
enables us to reduce the general case of Theorem 1.1 to the situation when
solutions is bounded in First we begin with a lemma.

LEMMA 2.1. Assume that both Ki (x) and p Ki(x)1 are bounded between by
two positive constants for I x I  1. Let ui be a sequence of positive solutions of

Then there exists a constant C independent of i such taht

holds for I  1 /2.

Lemma 2.1 is a special case of Corollary 1.4 in [6]. For a proof, we refer
the reader to [6].

LEMMA 2.2. Suppose E C (B1 ) uniformly converges to K (x) in B1 and
K (x)  -co for x E B1 and for some positive constant co. Let ui be a sequence of
solution of

The ui (x) is unifomly bounded for  1 /2.

It is easy to see that Lemma 2.2 is an immediate consequence of the

Liouville theorem, which states that equation ( 1.3) possesses no positive solutions
when K z a negative constant.

PROOF OF THEOREM 1.1. Suppose that u is a positive solution of (1.3)
with K (x) - xm. Throughout the section, K (x) always denotes the particular
functionxm. We first claim that.

LEMMA 2.3. Assume that there exists a positive solution of ( 1.3). Then ( 1.3)
possesses a bounded positive solution.
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PROOF. Assume SUPRII u(x) = +cxJ. Otherwise, Lemma 2.3 holds automat-
ically. We divide the proof into two steps.

STEP 1. We want to prove

for some constant C where

We first consider the case

where x 1 denotes the x 1-coordinate of x. Then v satisfies

where Kl (y) _ ( 1 -+- For I y I  1 /2, it is easy to see that K1 (y) satisfies
the hypothesis of Lemma 2.1. Thus by (2.1 ),

for some constant C &#x3E; 0.

For the case x 1  0, we use the similar scaling v (y ) for

jyj I ~ 1/2. Then by applying Lemma 2.2, (2.4) holds also for the case xl  0.

STEP 2. In order to construct a bounded solution, we will apply a blow-

up argument which originally was due to R. Schoen. Let xi = (X’,.ii) be a
sequeuse of points such that ~ +oo as j ~ By Step 1, we have

&#x3E;. Set ) and

Let rj satisfy

Then

where . I. By Step 1,
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Let 4~ We may assume

Thus, vj satisfies

For any fixed R &#x3E; 0 and Iyl s R, we let . Then

Since

for large j, we have

Since Vj (y) is uniformly bounded in any compact set of by elliptic estimates,
there exists a subsequence (still denoted by Vj) which converges to v in lo (R
By (2.6), v satisfies

Since v (o) = 1, v (y) &#x3E; 0 in M". Therefore the proof of Lemma 2.3 is finished. D

Now we are back to the proof of Theorem 1.1. By Lemma 2.3, we
assume that u is bounded. Following conventional notations, we let for any À,

~i == ~}, £x = (x I Xl  h) be the
reflection point of x with respect to 7B. Set

for x E £x. We want to claim
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We divide two steps to prove (2.8).

To prove Step 1, we want to show that

Suppose u (x) &#x3E; u (x~) for some If x 1  2À, then I~ (x ~ ) &#x3E; 0. Hence

If then and

provided that u (x ) &#x3E; u~-(x). Hence, (2.9) is proved.
Assume

for some h s 0. Let

for Clearly, &#x3E; 0 and is a harmonic function in E~,. Set

Since we have by (2.10)

Applying the maximum principle at xo and by (2.9), we have

which yields a contradiction obviously. Thus, Step 1 is proved.
Let

By Step 1, ho &#x3E; 0. Clearly, (2.8) follows if



117

STEP 2. ho = +00.

Suppose ho  --~oo. By continuity, we have

by the maximum principle and the Hopf boundary point Lemma. By the def-
inition of ho, there exists a sequence of hj &#x3E; ho such that ho = Àj
and

where As in Step 1, we want to show for large j,

We prove (2.13) by contradiction. Assume that there exists a sequence of

such that 0 and
.1 

-

Since 0 and

we have K (x ~ ) &#x3E; 0. Thus, 0 ~ ~ ~ À}.
If ac~ is bounded, we may assume = x° exists. If x° e :EÀo’

then 0 which yields a contradiction to (2.12). If x° e then

which contradicts to (2.12) again. Thus, we may assume
I --

By elliptic estimates, U j is bounded in C2,a (R’) for some a &#x3E; 0. Thus, a

subsequence of U j (still denoted by converges to a nonnegative function u
in where u satisfies

We claim that it = 0 in To see it, two cases are discussed seperately.
If xl = X0  Ào, then by continuity, (2.12) implies

On the other hand, By the maximum principle,
in Exo, which implies u --_ 0 in If xj = Ào, then there
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exists e (jcj~,~) such that g~(~B0) &#x3E; 0, which implies -~-~-(~0) = 0.
Thus E(x) == 0 by the Hopf boundary point Lemma.

Let = $ . By the Hamack inequality, is bounded in ) = Uj (o) Y q Y loc ( )

Thus, we may assume Vj converges to v in is harmonic and
v == 1 in JRn. In particular, we have for any s &#x3E; 0, there exists jo = such
that

where 1 + Ào) is the ball with center (x 1, 0, ... , 0) and the radius 1 + Ào.
Thus, for x = where t E 

by (2.14). Hence

which yields a contradiction. Then (2.13) is proved.
Let Applying the maximum princ

to as in Step 1, (2.13) yields a contradiction. Thus, Step 2 is

proved.

0. Rewrite equation (1.3) into

where

Since the first eigenvalue of A with zero boundary value for A R is bounded, by
using the comparison theorem of the first eigenvalue, we have obtained a con-
tradiction provided that R is large enough. Therefore, the proof of Theorem 1.1
is completely finished. 0
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PROOF OF COROLLARY 1.4. Assume that there exists a sequence of Ki E
satisfying the hypothesis of Corollary 1.4, and a sequence of positive

solutions ui of

such that

By Lemma 2.1 and Lemma 2.2, the blow-up set of must be contained
in the zero set of K, where is a limit function of a subsequence of Ki.
Thus, ri = {x E B1 I Ki (x) = 0} ~ ~ and is (n - I)-dimensional manifold. Let
di (x) = d (x, ri ) denote the distance of x to ri . For 3/4, let

for 1/2. Then vi satisfies

where Ki ( y ) By (1.4), both Ki (y ) I and I
are bounded between by two positive constants which depend on cl and C2-
Thus, by Lemma 2.1 and Lemma 2.2,

for some constant c3 and for 3 /4.
By the assumption (2.15), we have ui (xi ) ~ -E-oo for a sequence

of Ixi I  1/2. As before, set

for x E B (xi , 60) where and Let ri satisfies

as i Let

where Obviously, satisfies
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where E ri i such that

By (2.16), we may assume Since

as i ~ +oo, where is assumed to converge to (1, 0,..., ,0). By the
argument in the proof of Lemma 2.3, vi is bounded in any compact set in R’

by (2.17). Let v be the limit function of Vi. Then v (o) = 1 and v satisfies

which yields a contradiction to Theorem 1.1. 0

3. - Proofs of Theorem 1.2 and Theorem 1.3

In this section, we begin with a proof of Theorem 1.3 which is a nice

applicaiton of Theorem 1.1 and Corollary 1.4. To begin with, we need a

lemma first.

LEMMA 3.1. Suppose K satisfies the hypothesis of Theorem 1.3 and u is a

positive solution of (1.3). Then there exists a constant Co such that

where J
PROOF. Fix x E R’ and let

for 1/2 ~ 2. Then v satisfies

Since K (y) has no critical point in the annulus 1 /2  I y I ~ 2}, we have
by Lemma 2.1 and Corollary 1.4,

for some positive constant Co. Thus, (3.1) follows immediately.
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PROOF OF THEOREM 1.3. Rewrite equation (1.3) into

where By (3 .1 ), we have

for x E Thus, by the Hamack inequality and the gradient estimate, we have

for some positive constant C2-
Set w(t, 0) = where r = et and 0 = r-lx. By a straightforward

computation, w satisfies

where t = l2 - 4 (n - 2) 2 / 16, Ao is the Beltrami-Laplace operator of the standard
~n-1 ~ wt and wtt denote the first derivative and the second derivative with respect
to t respectively. By (3.1) and (3.5), both wand wt are uniformly bounded in
(201300, oo) x sn-1. Applying estimates of the linear elliptic equations, 
is uniformly bounded on (-oo, oo) X sn-l for 3. Thus, for any
sequence Ti ~ there exists a subsequence (still denoted by Ti ) such that
w(Ii,8) converges in C2~a (~n-1 ) as i ~ +00.

Let

where po w is the gradient of w on sn-1. By (3.6), we have

Hence E(t) is increasing in t and E(t) &#x3E; E (-oo) = 0 for t E R. Since E(t)
is bounded, we have 11 Wt 11 E L2(R), where || wt|| denote the L2 norm of wt on
sn-1. Applying (3.6) once more,
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Integrating along t, we have

Since II Wt II L2 E L 2(R) and w is uniformly bounded, there exists a sequence
of Ti -+ +00 such that - 0 and converges in as

i - +00. Thus, wtt E x sn-1). Without loss of generality, we may also
assume - 0 as i ~ Let lim Hence wco

i---&#x3E;00
satisfies

Therefore by (3.9),

which yields a contradiction. And the proof of Theorem 1.3 is finished. 0

PROOF OF THEOREM 1.2. Since K is nonnegative, K (t~ ) is nondecreasing
along any ray issuing from the origin. Thus, from the proof the of Theorem 1.1
~ ~ 

n-2
in [14], we conclude that the quantity is also increasing along any
ray from the origin. Let QR = {x E t~ for some ~ E Wo and
R 2/P}. Rewrite equtaion (1.1) into
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where

Then, the inequality

holds for x ~ I &#x3E; 1. Particularly, for x E one has

since the first eigenvalue of the Laplace operator on 03A9 R with the zero boundary
value is bounded by a constant R -2, (3.11) contradicts to the comparison
theorem of the first eigenvalue. D

By applying Theorem 1.3, we can give a proof of Corollary 1.5.

PROOF OF COROLLARY 1.5. Suppose that ui is a sequence of solutions of (1.6)
such that ui(xi) = +oo as i - By the assumption,

where Then vi satisfies

where

Thus, applying Corollary 1.4,

After (3.12) is proved, we set

where Mi - u i (xi ) . Obviously, and li satisfies
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where where

By elliptic estimates, a subsequence of vi converges to v in where

v (0) = 1 and satisfies

which yields a contradiction to Theorem 1.3. 0

It is not difficult to see that by applying Theorem 1.2, Corollary 1.6 can be
proved by the same arguments as the proofs of Corollary 1.4 and Corollary 1.5.
Thus, we omit its proof.

4. - Apriori estimates

In this section, we first give a proof of Theorem 1.10.

PROOF OF THEOREM 1.10. Let uj be a sequence of solution of (1.6). By
the assumption and Lemma 2.1, the blow up could occur at 0 at most. Thus
there exists a constant ci - ci (r) &#x3E; 0 such that

Applying the Pohozaev identity and (1.9), one has for small ro

Hence by (4.1 ),
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Let ~ E with == 1 for 1. Multiplying cp2Uj on both0 2 
- 4

sides of equation (1.6), one has

By the Sobolev embedding theorem, the inequality above implies

for some constant C5 and for all j. Rewrite equation (1.6):

where Multipying i for a &#x3E; 1 where
" j

for small ro &#x3E; 0, we have

boundary terms

Noting that by (4.3)

if ro is chosen small. Thus, by the Sobolev embedding, we have
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for any a &#x3E; 1. Thus, cj E Lp (B 2 1 ) for any p &#x3E; nl2. Therefore, by the Hamack
2

inequality, there exists a C8 &#x3E; 0 such that

which is the conclusion of Theorem 1.10. 0

By the same reasoning, we can give an alternative proof of Chen-Li’s result,
based on Lemma 2.1 and the Pohozaev identity. Suppose u is a solution of

where Q is a bounded domain of Assume K satisfies

where , and

Then the blow-up for any sequence of solutions uj of (4.5) never occurs at points
in r.

To -prove the claim, we let T(.q--be a differential operator of first order
such that 

-

for x E Q such that 80. Multiplying (4.5) by T u and by the integration
by parts, we have

where N is a tube neighborhood of r. If N is sufficiently small and the

boundary terms are always bounded from above, we have by (4.8),

for some constant c2 independent of u. Thus, applying the same argument as
the final stage in the proof of Theorem 1.10, the Hamack inequality can be
applied to u in N. Thus, the claim follows immediately.

PROOF OF THEOREM 1.9. We shall prove Theorem 1.9 by deriving an uniform
bound when equation (1.1) is approached from the subcritical exponents. Let uj
be a sequence of solutions of
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where is the conformal Laplacian and with

We may assume
- ., 

Otherwise, the

apriori bound is easy to derive. Suppose that
4

Let po E M be a blow-up point of vi. Let go = for some positive
function h in neighborhood of po. (We may assume po = 0 in this coordinate
of the chart at po). Let uj = vj h. Then uj satisfies

for some ro &#x3E; 0 and Tj = pj. Applying Theorem 1.7 and Theorem 1.3
in [6] which states that 0 is a simple blow-up for uj, the sequence vj has at most
a finite set of blow-up points { p 1, ... , where each pj is a critical point
of K with positive critical values. Let Mj = maxBro uj . The same result quoted
above implies that a subsequence of Mjvj converges to vco in M B { p 1, ... , 
and v,, is a sum of Green’s function of L with singularities at { pl , ... , i.e.,

with cj &#x3E; 0 and N &#x3E; 1.

vjh as before and let yj satisfy =

Applying the Pohozaev identity and its variant, we have

and

where Bj and Dj are both boundary terms. Since both Bj and Dj are in-

volved with quadratic terms of My and its first derivatives at the boundary, by
a straighforward computation and (4.11), we have

for some do &#x3E; 0. Here, do &#x3E; 0 is due to the positivity of the regular part
of the Green function, a consequence of the Positive Mass Theorem. We first
consider the case n = 3. By Taylor expansion,
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Since 0 is a simple blow up point, we have for 1 3,

where o(1) - 0 as i ~ Thus, (4.12) and (4.14) implies

Putting (4.13), (4.14) and (4.16) together, we have

which obviously yields a contradiction.
For n &#x3E; 4, one has by Taylor expansion,

where 1 = n - 2. Thus, by (4.12)

By the assumption (1.8), one has

Together with (4.18), the inequality implies that
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By (4.13) and (4.17), one has

Since

one has by (4.19),

which obviously leads to a contradiction. Hence, for any po &#x3E; 1, the uniform
boundedness for solutions of (4.9) for po  p  "2 is established.

Now suppose À1 (L) &#x3E; O,then it is not difficult to prove that the degree of
all solutions of (4.9) with p  n + 2/n - 2 is equal to -1. Thus, the counting
of the Leray-Schauder degree for the critical exponent follows from the uniform
bound. 0
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