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tntroduction.

Bishop [2] has stated : « It is thought that a manifold c on has,
in general, the property that holomorphic functions in a neighborhood of
jlf extend to be holomorphic in some fixed open set ».

Historically the problem of extending holomorphic functions from a

neighborhood of’ a submanifold of Cn has been considered by Levi, Hartogs,
and Bochner in the case of a hypersurface. More recently work has been
done by Lewy, Bishop, Weinstock, and Wells. (See [6] for a general intro-
duction and discussion).
--------

Pervenuto alla Redazione 1’ll Dicembre 1967.

H. A1,nalt della Seavia Sup.. Pisa.
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Certain submanifolds of an are geometrically well-placed, and inherit
a C.R structure from Cri (see below). This makes it possible to define a
complex of differential operators on them (the a complex on (0, p) forms) which
has been used by J. J. Kohn [14] as a prototype in a study of sub elliptic
complexes, so these C-R structures are important objects to study in them-
selves. But it turns out that extendibility is closely related to simple in-

variants of the C-B structure.

Essentially this thesis is devoted to a discussion of Bishop’s statement.
Chapter I contains some necessary linear algebra. In II, we define the con-
cept of a C-R manifold, which is a pair (M, H (M)), where H (M) is a sub-

bundle of T (D~) ® C (here and in the following, all tensor products are over

R) so that H (M) n H (M) = 0, and H (M) is involutive. Some examples are
given. A complex manifold M is a C-R manifold when H (M) is taken to be
its holomorphic tangent bundle. If 1V’ is a real submanifold of M, (N,

is a C-R 8ub1nanífold when the fiber dimension of

is constant. When the dimension of that intersection in

minimal (as a function of the dimensions of M and 1V) N is called generic.
~ Most » C-R submanifolds are generic. An important invariant of the C-R
manifold (H, H (M)) is the Levi algebra of M, .C~ (~VI ), the sub-algebra of vec-
tor fields generated by H (M) and H (M). We always assume that f(M) is
constant dimensional, and define the excess dinlension of aL (M), ex dim

~ (.M), to be the codimension of H (M) + H (M) in the bundle whose sections
are 

In III we analyze the concepts of extendibility and holomorphic hull
for generic C-R submanifolds of C" , and in particular we prove a theorem.

suggested by H. Rossi about local triviality for such submanifolds when

ex dim f(M) = 0. Later we give a general example (Reinhardt submani-
folds) of embedded C-R submanifolds of Cn whose hull can be exactly const-
ructed. This leads to examples of in on having the property descri-
bed by Bishop.

Let M be a C-R submanifold of Cn . If ex dim &#x3E; 0, we show in
IV that there is a non-trivial family of analytic discs with boundaries on
M. We use this in V to show that if M is a generic C-B submanifold of

On , and if e = ex dim f (M) &#x3E; 0, then M is extendible (in the sense of

Bishop) to a subset of on containing a manifold 1~T with dim N = dim 
We also show that if 1lf is compact, it is always extendible to a manifold

N with dim N = dim M + 1. The same result is true if M is a submanifold

containing no complex submanifolds.
The following is substantially the text of a doctoral dissertation writ-

ten at Brandeis University under the direction of Professor Hugo Rossi.
I would like to thank Professor Rossi for his help and constant encouragement.



277

1. REAL SUBSPAOES OF A COMPLEX VECTOR SPACE 

A. Complex Structure.

Let W be a finite-dimensional complex vector space. There is a real
linear map J : so that J2 = - J is given by multiplication by i.

If V is a real vector space with a linear map J so that J2 = - Ip
the V has the structure of a complex vector space VJ, if for any v E V

(a + bi) is defined to be a,v + bjv. Then dimo Vj = 1 dimR V. J called a
2

coynp lex structure on V.

If TT is a real vector space, then Y ® C is a complex vector space,
called the complexification of V, obtained by defining J on an element

v (&#x26; c of V 0 C as :
J (v ® c) = v (&#x26; ic, and extending J linearly to all of V (~ C. Then

and dim c V. F0 C has an important au-

tomorphism of period two, -, de6ned by requiring that v (&#x26; 0 = v (D c (c
is the complex conjugate of c).

There are maps re: and im : V (&#x26; C -+ V defined by

re (a) a + a (an element of V 10B 1, indentified to V) and by i1n (a) a - ar e (a) = 2 ( an element of V i nden tifie d to F) and (a) 

(again in identified to V).
(Another way of obtaining the complexification of V is to consider the

vector space V X V, and define a J by J (v, w) = (- 2v, v). The complex
vector space so obtained is isomorphic to Y ® C, and the isomorphism
I : is just I (a) = (re (a), iin (a)). The important, - automor-
phism becomes (v, zc) = (v, - 

If V already has a complex structure given by a linear map g with
K2 = - then Y ~ C splits naturally into the sum of two complex snb-
spaces, HK (V) + AK(V) with HK(V) == AK(V)- HK(V) (resp. AK(V)) is
called the of holomorphic vecto’fS (depending on K) (resp. the space
o/’ antiholonlorphic vectors (depending on K)). HK (V) is generated by vectors
of the form v (&#x26; 1 - (.Kv) ~ i (which can be read v - ikv), so con-

sists of vectors of the form v + ikv, v E V. If the linear map g is extended

to V ® C by requiring that K (v ~ e) = (Ktl) (&#x26; c, it is not hard to see that

is the (+ i) eigenspace of K and is the (- i) eigenspace of
i (and these are the only eigenspaces of K).
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On the other hand, if V ® C is written as the direct sum of two complex
subspaces H~ -t- A and H = A, this splitting induces a linear map .K on V
with g2 = - and H (resp. A) is just (resp. AK (1’)). If v (D 1 =
a+h, with aEA 
And Kv is just im (a - h).

VK is naturally isomorphic (as a complex vector space) to (cor-
respond an element V with v - iKv E HK( ( 1~ )).

If RT is a complex vector space, H ( W (resp. A (141)) will denote HK (117")
(resp. AK ( W )) where K in the « complex structure » of lI’.

B. Subspaces and Generic Subspaces.

Let T~’ be a complex vector space of complex dimension it, and V a
real subspace of W of real dimension k.

1. DEFINITION : rrt (V) is the maximal complex subspace of ~V contained
in V.

F0 C is canonically imbedded in Define.

2. THEOREM : H (V) + A (V) = T (&#x26; C for a subspace T o,f V, and T
is a complex subspace of 11T; T is 1n ( Y )

’In ( Y ) and H ( V) ate naturally isomorphic.

3. THFoRFm: t max (0, k - n) dimo (iii (V)) ---k’3 . THEOREM : mag (O, K - n)  dimc (m ( Y )) C 
2

so that and

Let GpR(W ) (resp. be the collection of p dimensional real (resp.
complex) vector subspaces of flT. Then (resp. has the

structure of a compact C °° (reap. complex-analytic) manifold (Steenrod [29]~
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4. THEOREM :

these 

then ha8

Proof : A simple argument based on rank. The work of Sommer [28],
§§ 1-3, can be used to show this result. #

(Note that 1n-l (Ga ( tV )) is the complement of a lower dimensional al-

gebraic set in GIL (IV), and ni is, in fact, a fibration).

5. DEFINITION : Elements of (Gb (1V)) are called generic subspaces
of dimension k, and other elements of are called exceptional.

The concept of generic subspace is not really satisfactory categorically,
for the inverse image of a generic subspace V by a complex linear map
is generic if &#x3E; 0 but need not be in other cases, and the image
of a generic subspace by a complex linear map need not be generic. Gene-

ricity is not preserved well by taking products; a proper complex subspace
of a complex vector space is not generic.

C. The C-h’ Vector Space Category.

We define the vector space category by giving its objects and maps.
An object in the category is a pair (V, tiT), where Y is a real vector space,
1V is a subspaces of V, and YT has a complex vector space structure com-

patible with its real structure. (Equivalently we can give a subspace W
and linear map Jw: with Or a subspace H of

can be given so Then fV is obtained by requiring
that C = H + H in YC). A niap of the category is a pair of real
linear maps (V~V)2013~F~~) so that:

is a complex linear map. (()ther conditions equiva

into H’.

l. REMARK: An example of an object in the C.R vector space category
is provided by ( t~, -NN,here V is a real subspace of a complex vector

space. This is, in a sense, the most general example. If (V, W ) is an object,
there is a complex vector space iT and an in.je(-.tion j: F2013~- V so 
is a generic snbspace of F, and ( TT, j~T ) ~ ( j l V ), And any map
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from (V, W ) to W’) can be realized as the restriction of an appropriate

complex linear map from V to V’.

2. DEFINITION: The codi1nension of (V, 1f) is 

An interpretation of this is apparent:

3. THEOREM : If generic snbspace of a complex vector space tY,

Proof. Examine B4 and B5. #

II. C I~ MANIFOLDS AND l’HE LEVI ALGEBRA.

A. Objects and Maps.

C-R manifolds are designed to look « tangentially » like the vector

space category. There are many examples of such manifolds.
If V is a vector bundle, let be the collection of C- sections of V.

1. DEFINITION : A C-B manifold is a pair (Jf, H (:’tT )) where M is a

real differentiable manifold of dimension it + k (n &#x3E; k) and H is a k-

dimensional complex subbundle of’ ( T (1’iT ) Q C ). The following two conditions
are satisfied :

a) If A (M) = H (M), then H (M) n A (,If)= )0( (the zero-section).
b) H is involutive. That is, if a, fl E F (H (M)), so is (a; fl] E r (H (1ll)).

2. THEOREM: If M is a real differentiable 1nanilold of dimension k,
then (a) of 1 is equivalent to either the following: 2

1) There is a (2k)-dimensional subbundle R of T (M) so that R is a

complex vector bundle (that is, there is a real bundle J : 1~ -~ R IV it h

J2 = - IR).
2) There is a reduction of the g’ro1lp to T froin GL (n + k, to

a linear group whose elements are of the form where

a) -)- 1) It is clear that aud J is ob

tained as in 1.
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1) -+ 2) We obtain this reduction by taking a covering of M by
charts which exhibit (R, J) as a complex subbundle. -

2) --~ a) It is clear from I how to obtain H (M) from a knowledge
of R and its complex structure. #

REMARK : There is a reduction of the group of T (M) from GL (n + k, R)
to U (k) X 0 (n - k) (which is a linear group whose elements are of the

form A 0) with A E U (k), B E 0 (it - k)). This is accomplished in the usual0 B
way with a Riemannian metric (Nomizu [22], § 8).

3. THEOREM: If M is a real differentiable manifold of dimension n 
satisfying (a) of 1, then (b) of 1 is equivalent to either of the following :

1) If ti is any differential form annihilating I"(H(M)) then (a, B) = 0
any 0153, fl both in 

and J i8 as in

(the Nijenhuis tensor
,fior C-ll 

Proof’ : b) - 1) and 1) -+ b) are eimple uses of the formula

b) ---~ 2) Suppose
(for some K E 1-’ ( R)). But then.
- i [x, And (2) follows.

2) --~ b) as above. #

REMARKS : If (M, H (J1I)) is a O-R manifold, we shall often say « M is
a C JR manifold ».

Note that Rp) ( p E Tl) is an object in the C-R vector space

category.
(We follow Sweeney [30] in the following presentation). Consider the

exact sequence

Taking duals we yet :
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where (H (M)) + A is the dual of T (M) ~ C/TT (M) + A (ill), and coii -

sists of all linear functionals which are 0 on H (M) + A (Jtf) in l’ (11/) ~ C.
Taking the m-th exterior product we obtain :

where K consists of all linear combination fJ1 A ... Aq. where at least one
-- - .. - - . , -

If we choose a splitting map

the sequence (*), then Am r splits the sequence of 1)1,-th exterior products.
If we define DP, q = H (M )* (&#x26; A q A (M)*, we obtain a 
--&#x3E; by composing the following sequence :

So if is essentially the part of

Proof : If we choose another splittiD g r° : H ( 1’~~ )*‘ + .4 ( J[)* ~ ( Z’ (,,lf ) ~ I’ &#x3E;
of the seqnence (*), then r’ = r + Ic, k: H( 1I)* + A  .1f )* - (H( Vf ) + A 
a : DP, q -+ DP, q+l will be well defined if d 1’) ø - d (:1m (1’ + k)) eft 

then (..;j1n r) ø - (A’n (r + k)) (P consists oi terms of the form L = --~ 1’:1 A...
must occur at least once on a terin of (t or

1:i (since we are taking the difference with r), there are no « pure &#x3E;

Am r terms).
Then d~ has terms like A ... (which clearly has n(i

part in DP, q+l because of the and r~’~ n .. A ... A 

has no part by 2-1). But we must assume also that ~~ =- U (for e to

be well-defined), otherwise dk could have (does in certain examples "re must

include) some (1~I) terms.

5. THEOREM : 1 8 1 - 1)° q+l is a (that 62 = 0) and this
statement can be added to the in theorem 2.
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Proof: The fact that 02 = 0 is equivalent to the Nijenhuis tensor = 0

(in 2-2)) is a routine computation. W’e just must examine the effects of a2
on functions °), then the coefficients of the (0, 2) forms involved consist

exactly of terms like the Nijenhuis tensor

REMARK : The cohomology groups defined by theorem 4 have been

investigated by Kohn 114], in the case of ill compact and C-R codi m = 1,
and are important in themselves.

EXAMPLES: it) S4 has no non-trivial C- R structure. For: S‘~ has no

complex structure (eliminating 2t = 2, k = 2) and also its tangent bundle
has no two dimensional subbundle (eliminating n = 3, k = 1).

b) It is not necessarily true that an object satisfying ( 1-a) can be

expanded to satisfy both requirements of 1. That is, given an satsfy-
, 

m m m

ing (1-a), there need be no with H (1’VI), and H (l’tI) satisfying
all of axiom 1. Take R5, and an H which has global sections

Then and fl] is real (sc any ft containing Hand in-

volntive would have

c) Contact manifolds (studied by Gray [7] and Sasaki and Tanno [27],
etc.) have n = Ii -+- 1. An almost contact manifotd satisfies (1-a) only.

~~1 Let G be a Lie algebra, and (~o its complexification. Let 9f be a
Lie subalgebra of Gc so that 9t n W = 0. If C~ is a Lie group with Lie al-

gebra G, then the collection of left-invariant vector fields generated by at

the identity form a basis at each point of a homogeneous subbundle of

which satisfies 1.

e) Complex manifolds have subbundles satisfying 1, their ILOlomiorphic
tangent (If only 1 a) is true, then the manifold is « almost complex »,
and (I-b), (3-1), (:1-2), 5 are wellknown conditions for the integrability of an

almost complex manifold,.)
f’) At the opposite extreme from (e) is the following situation : consi-

der a partial differential operator on Rn where the aj are C°°
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complex-valued functions. If, at each point of the span of the vectors

at , ... , an of R2 is two dimensional then P determines in the obvious way
a subbundle H of 11 (Rn) C satisfying 1 (with k = 1). (Note that if the

span of the vectors al a-,t of R2 is always one dimensional, the situation
(solutions, etc.) is essentially completely handled by the Frobenius theorem).

g) Certain fibre bundles 7l: M- N used in the study of deformations
of complex structure have fiber a complex manifold (as in Kodaira and Spen-
cer [3]). Then the R of (2-1) is all of the vertical tangent bundle (a sub-

bundle and J is defined by using the complex structure of the

fiber. M is a G’-R manifold equipped with this (R, J). (If 11, the fibering map,
is a global product, we have the important example N x T, a real manifold
product with a complex manifold. This is the  flat » case).

If (M, H (M)) is a C-R manifold, and 1~T is a differentiable submanifold

of lll, then (provided that the dimension of the fiber of (T (N ) ® C) n H (M) ~jv
is constant over A’ ) defining H (N) = (T (N ) ® C) n makes (N, H (N))
into a C-R manifold. This remark applied to example e), complex manifolds,
provides the objects which are the main source of our interest:

ia) (Much of what is said here will be true also for real submanifolds

of Stein manifolds). on is, of course, a C-R manifold. is generated

by tangent vectors of the form

consists of tangent vectors of the form If N is a real submanifold

of Cn, then all linear combination

which are also « tangent » to N. If the fiber dimension is con-

stant, (.,’V, H (N)) is a C.R manifold (and a O-R submanifold of H (Ok))).
Such N are also called embedded C.R manifolds. Not every manifolds

is embeddable. Example : in (~), consider the product N x T, with N any real
monifold and T any compact complex manifold. It is an open question whe-
ther any C-R manifold is locally embeddable. (A real analytic manifold witl
real analytic structure is locally embeddable. See VB).

If M is a real C°° submanifold of C’~, then p E M is a generic point of
M if T (M)p is a generic subspace of T (C’1)p (in the sense of IB5, f’or q’ (M)p

is naturally a real subvectorspace of Z’ (Cn)p , which, by affine translstion of
Cn, has a complex structure). If p is a generic point of Af, then there is an
open neighborhood Np of p in M so that if q E Np, then q is also a generic
point of M (just IB4). Then is a C-R manifold, called a 

ric submanifold oj. Any hypersurface of Cn is a generic submanifold.
If (M, H (M)) is a C.R manifold, let R = re + A (M)), a subbundle of

If p E III, we define the C-R at 1) to be divy ((T 
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(see IC2). If this number is the same for all of M (as when M is connected)
it is called the C-R codimension of M. Using 103 we know : if M is a ge-
neric submanifold of with non-trivial holomorphic tangent bundle, then

C-B codim (M, H (M)) = codi m R of in Cn.

We can give a general example af non trivial generic submanifolds of

en with dimr = n + k. Let 9,,-k be C°° real-valued functions on Cn.

Suppose p E fl (0), and det ( p) A ... A dLo,,-k ( p) =t= 0. Then there is a neigh-
borhood N of p in Cn so that N n 0 gji (0) = M is a C°° submanifold of Cn

&#x3E; 
_ _

of codimension n - k. If, in addition, 8gi ( p) A ... A aen-k ( p) # 0 (the ej are

holomorphically transverse at p) then N can he chosen so that is a gene-

ric submanifold of Cn. (pt = Xl I ig2 = yi in On is a submanifold which is not

generic, for a et A ae2 = 0).

6. DEFINITION: Let (Jf, H(M)), (/B1, H (11’ )) be C-R manifolds. Put R =
= re (H (M) + A (M)) and Q = re (H (N) + A (N». A differentiable map ,~’ :

a C-R mapping if, for any p E ilt, (d~p , Rp) : (T (M)p , Rp)
is a map in the O-R vector space category.

When M and A are complex manifolds, such an 4t’ is a complex analy-
tic map - and the condition in 6 is equivalent to requiring that f satisfy
the Cauchy-Riemann equations.

We can read off from IC equivalent forms of the definition 6.

7. THEOREM : differentiable ntap, the

a’re 

1). f’ is a C.R 
2). dioJR = JQ are tlae contplex structures on of 2-1).
3). tlzis : dt’ (&#x26; 10 (H (M) r- H(11-’ ).
4). the 1nap naturally indueed by f on the exte-

’rior then ./1f= AJ’o ON am, aN are the a maps of 4 on

Jlf aild ~1).

1), 2), 3) are equivalences from IC. That (4) is equivalent is a

usual linear algebra argument
If 2lf is a submanifold of Cn, and M n (1 (0) (as before) we have

J ,

the following further equivalences :

R. THEOREM map onty tchen there are C°° fun-
ctions aj defined on so that aj Bej = 0. If further the ej are holo.

i 
,

transverse (.so J1f is a generic sub1nanifold of on) this is the

souze ((s that efA A = O.
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Trivial. it:

Traditionally J* is said to be « relatively holomorphic » (note that the

restriction to If of any function holomorphic in neighborhood of 1"I is a C-R
map), and the partial differential equations of theorem 8 are the « induced &#x3E;&#x3E;

or «tangential » Caucby-Riemann equations.

B. O-Coinplex Manifolds.

1. 1’HEOREM: Let C-.R V i.s a complex inalti-

,t’old and H its holomorphic tangent bundle only when T = re (H (ilf) +
+ A 

Proof : If ~lI is a complex manifold, then clearly has the desire(I
property. On the other hand, if is we have

exactly the hypotheses of the NcwInnderNirenberg theorem [19] so J1I is a

complex man i fold. r,

If H is a C-R manifold, a submanifold N of nl is a comple.r
submanifold if’ N is a C-.R submanifold of and C- B codim N = 0. Such

an N is, by 1, a complex manifold.
Certain C.R manifolds are very far away from having complex sulma-

nifolds :

2. DEFINI’1’ION : A (non-trivial) O-R manifold (JI, H(.11)) is it’

no open subset of Tl as a complex submnnifold.

Any strictly pseudo-convex hypersurface of C’z is 0-complex.
The intersection in On of transverse, holomorphically transverse strictly
pseudo convex hyper-surfaces provides examples ot’ 0 complex manifolds of

any C-R codimens. (A sphere | z - a = r is the simplest example of a

strictly pseudo convex hypersurface). (See C 12).
(M, H (M)) is 0-complex only ,vhen: it’ is any connected con1plex

manifold, f’ : 8T- M a non-constaut C-R map, then dim N - 0. An alge
braic interpretation is provided by :

3. THEOREM: If (lVl, H (M)) i8 a C-R the folloiving ai-e equi-
valent

1.) There is an open subset U IyI possessitig a complex 
2.) There is an open subset U o f M, a 0./’ U, and

a-.invariant subalgebra ( of h (T (.’tI ) C) .so f’ (H ( 1~ ) ~-~- A (N)).
3.) There is an open subset U of J{, a N n.f U, lutd an

u E I" (H u E T (N) (&#x26; C ) .so that tc, 1(1 v = 0.
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Proof: 1 ~ - 2) If N is a complex submanifold of U, we can select
so that C IN = (H (1fT) + A (N )) (by extending H (N ) as a subbundle of H (Ai)
over M, for example, and taking ~ to be the algebra of sections of the ex.
tended bundle).

2) --~ 1) On N, ~ is a -invariant subalgebra of r(H (N) + A (~)). All
we must show is that there is a complex submanifold in some open set

of N. Let 0 be that open subset of bT where the distribution ~ has maxi.

mal rank. So there ~ = ~~(F)~ for some bundle V. Then (by A =

= r(re V ) is an involutive subalgebra of T (T (~1") 10’). Hence, by the Fro-

benius theorem, y there is a maximal integral submanifold S of C’’, and

is the desired

complex submanifold.

1) --&#x3E; 3) Take a coordinate z on the complex submanifold S of U.

Then extend the element a of .r (8 (S )) to any element u Since
bz

we have
~ 

3) --~ 2) Let ~ be the subalgebra generated by u and u. jf
The following result generalizes an interesting theorem of Bochner and

Martin ([4], Chap. 3,5) on analytic mappings carrying spherical surfaces onto
each other. 

,

4. THEOREM: Let (M, H (M)) be a 0-complex C-.R manifold, (N, H (N))
a manifold, suppose f : (j1f, --~ (N, H (N)) is a surjective C-I~

map. If’ codim M = O-R codi11l dim M = dim N, and a dense

open subset of N is 0 complex.

By Sard’s theorem (Milnor [18], 2) we can find a regular value
q E N of / with f ( p) = q. Then dfp is a surjective linear map from C a X Rb
to where 2a + b = dim M, C-R codim 1V1= b,
and C.R codim N = d. Since ~’ is onto, 2a + b h 2c + d. Since b = d,
2a h 2c. Then f -1 (q) is a submanifold of (since q is a regular value)
and if 2a &#x3E; 2c we see that is a non-trivial complex submanifold
of M. So 2a = 2c. By further use of Sard’s theorem, dip is a C-R isomor-

phism for a dense open subset of Since 0-complexity is local (by 3)
this dense open subset is O-complex.

In particular, 4 states that if a strictly pseudo convex hypersurface H
of Om is mapped onto a hypersurface H’ of Cn by a C-R map, then in = n,
and a dense open subset of H’ is 0-complex (but there may be complex
submanifolds of H’).

REMARK : We can also define q-complex C.R manifolds, and prove a
result similar to 4.
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C. The Levi Algebra and Levi Forms.

Let (M, H (M)) be a C-R manifold. We know by Al that [r (H (M)),
r (H (M ))J C I’ (H (J1f)), and similarly for A (.iY). An important invariant of

(M)) is the Lie subalgebra of vector fields generated by sections of

H + A (M), and how much it differs from just T (H (M) + A (M)). We
have already essentially worked with this in B (B3). So :

1. the Levi algebra of (M, H (M)), is the snbalgebra
of r C) generated by I’ (H (M ) + A (~f)).

Note that -0 (~f) is-invariant. There is a dense open subset a of M

which is the union of finitely many open sets Qj (plus perhaps a lower

dimensional set) so where Vj is a -invariant complex
subbundle of From here on we make the assumption that M is
one of the Q,. So Z = r (V), for V a -invariant su bhundle of T (3f) Q9 C
containing H (1¡’f) + A (M).

2. DEFINITION : The excess dimension oj. (ex is

dim a ( Y/(H (M) + A (At)).
Ex is an important invariant for the local study of embed

ded C-R manifols.

There is also in hierarchy of Levi forms (suggested by H. Rossi and

the work of Hermann [10]) which expose the structure of’ the Levi algebra
- the first form is related to the classical Levi form of’ a hypersurface. But
first we need a lemma showing that a « relative,, second fundamental form

for subbundles of is well-defined. (W’e will state and prove this

for T ()); the lemma and proof remain valid for 

3. LEMMA : Let be subbundles of Suppose
A : B : .~’ (M) --~ Z’ ( ~VI )/ I Y, , and C : 

are the natural projections, and in addition B ([’ (11" ~)).
Then there is a natural bilinear bundle map B1’2: 

given by the following : if a 6 F( F), # E I’ ( jY2), then Sr, 1B’1. ((~) p, B (f3) p) =
= 1~·

P’rool: This in a local question, so we shall suppose that near p 
is generated by sections is generated by sections ’Uo1j and 9

is generated by sections W211 I and and finally is

generated by sections tk, vi . Then any element y E !’ (T (1’1T )) cau

be written y + I bj Wlj + ic2l + I dk tk · Locally (up to isomor-

ph ism ), A (y) = I b wli + y el I and
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and

Using bilinearity of the bracket, it will suffice to check the proposition
on a and fl = + + d2c2 1. Then computation shows that

C ((a, ~]) ( p) is just a ( p) d ( p) U,2Z] ( p), which is a bilinear function of

a(2~)=a(1~)v~~(p) and 
WTe shall also need the following perhaps more familiar  second fun-

damental form» lemma (for T (M ) - but again the result and proof are

good for T ( M ) ~ (,~ ).
4. LEMMA: Let V be a subbundle of T (M), and A : T (M) V

the natural projection. Then there is a natural skewsymmetric bilinear

bundle x V -+ T (M)/ V given by the following : if E 

then Sv : (a ( p)) is just A ([x, PH ( p).

Proof : In the same spirit as 3 #.

5. DEFINITION : L~ , I the first Levi form of H (M)), is a bilinear

map L1 : H (M) x H x T (M) ~ C/(H (M) + A (M)) given by L, (a, b) =
== (a, b) (where is the map of 4, with V = +
= A (M)).

6. REMARKS : Note that Li is skew-hermitian, so that L, (ei a, C2 b) ==
- - c1 C2 L, (a, b) for complex numbers c1 , c2 . The information contained

in the of (4) is completely given by Li, for, since
r (H (M)) and (M)) are involutive, S 1-1 (M)XA (M) = 0. If
q is any non-vanishing purely imaginary 1-form annihilating H (M) + A (M),
then (~ o Ll) is a bilinear hermitean map to C, more clearly recognized as

a « Levi form &#x3E;&#x3E; (especially in the case of C-R codim = 1, see e. g. 11).
It is not necessarily true that the image of Li is a subbundle, but

when we use Levi forms in what follows, we will make the assumption
(without further remark) that the image of L1 (and of other Levi forms

when used) will be subbundles.
We will define the kth Levi form in terms of the (k - 1)st Levi form,

k &#x3E; 2. Lk-l, the (k - 1)81 Levi form, is a bilinear bundle map, and (*) Lk-l :
(H (l’tl) + A (hVl)) x i1nLk-2 -+ T (.L1f) (&#x26; where (imLk+2)* is a sub-

bundle of a quotient bundle T (M) ~ C/Qk-2 of 0, and, if D :

i,(m) (&#x26; C---~ T(M) 0 is the usual projection, D-1 = 

i . I)EFINII’ION :
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8. REMARKS : Li. : + A x 0 CI(im-Lk-l)* is

a bilinear bundle map, is a subbundle of a quotient bundle (T (M)
® and D’ ([F (H (Jf) + A (1W), I" q (imLk) if D’ :

C --~ is the natural quotient map (by 3). These
remarks show that the inductive hypotheses (*) for 7 are satisfied, and
therefore the definition can be « continued &#x3E;&#x3E; to k + 1.

Lk : (H(iY) + A &#x3E; imLk-I -+ 1’(M) (&#x26; is essentially the
elements of Z (j1f) which are obtained by bracketing k times projected on the
collection of elements of (assumed to be sections of a bundle) obtai-

ned by bracketing fewer than k times. (For proof, examine 3, 4, 7.)
So Lk provides a rough idea of the structure of o(,.’ (ltT ), indeed :

Proof: Trivial from I y 2, 8. +t

10. REMARKS: In M is 0-complex, then we see from 8,9, and that

ex dim E (M) &#x3E; 0, and 0 (but not conversely !)
Note that the converse of (9-2) is not true : ex dim fl (jlf) can be large

even though L2 = 0. 
The lcth Levi farm of Hermann [10] is essentially a (k + 1)-linea,r map

Lk : -+ Z’ (M ) ~ wbere Lk ... , ak+1) is projection
into T (M) (&#x26; of [a, [a2 [... [ak, and is a suitably chosen
subbundle (just the images of Lo , ..., 

When M is a hypersurface in en (lence a generic submanifold, see
example (h) of A) then historically the Levi form L1 (by 9-4) the only one
which is possibly non-trivial in this case) has long been ’known, and has
a number of interpretations. Suppose 0 E l’Vh then :

11. THEOREM : following hermitean iitaps 0?i are the same,
that is, they have the same nU1nber of’ non-zero eigenvalues and the sa1ne aù-
solute value Of signature :

1) [i L, : X H (1Jf)0 - + A (JW)o I.
2) Ij q is a _purely itnaginaJ’Y annihilating H (lVl ) + A (lVl ) and

2ve consider the map (a (0), b (0)) --+ (dq) (a, b) B0) where
’ 

a, b E T (H (M)) from H X H (M)o --~ C.
3) If f’ : ~2013~~ and 0 is a regular va lite of f ~ and i11 = 1-1 1 {U), let

be the complex hessian matrix of’ f at 0 (that is, the entry
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considered (foi- S, 1.’ E H (M)o, contained in T (CII)O ~ C ca,nonically).
4) are linearly independent 1 -forntg generating A (H (M)) at 0,

the Levi form is a map ?-Chose matrix (cij) is given by :

any purely iniaginary 1-form ccnnihilating H (M) + A (M).

Proof.. 1) --~ 2) is easy, using the formula 2dr¡ (a, fl) = 0153 (r; (~i)) - p (r¡ (a)) +
([ot, fl]) and the fact that if C is split near 0 into H (M) +
+ A (M) + K, then Ko is naturally isomorphic to T (Mo) 
and ~o is just a multiplication by a non-zero constant on a suitable Ko.

2) - 3) is just (ker af ) n Put Q = af. This is a purely

imaginary 1-form on T (j1f) (for there it since af = - af on’ 

2

T (M) = ker df ) which is non-vanishing and annihilates H (M) + A (M). So
by 21 (4 is &#x3E;&#x3E; the Levi form, but dl~ _ (a -~- a) (af ) = a af, and the

coefficients of the 2-form a af in standard coordinates are just (CHf).
2) -&#x3E; 4) This method was given by Kohn [14] who also gave the ca-

racterization 2). If (J) is a 1-form, then fro is defined as  df, w &#x3E; for a sui-

table An investigation in local coordinates on ~l easily
shows that is a first order operator, and so can be expressed 1&#x3E;y

+ + Cij .rn. But if I is purely imaginary, cij = cij. The her-
mitean form c;; is the Levi form, merely by using the proof of (2) again. #

REMARK : Hermann [9] has given still another characterization of the

Levi form, as the second fundamental form of J1f relative to a suitable (com-
plex structure-invariant) connection.

12. COROLLARY : i%I is 0 complex if a af has all positive or all nega-
tive eigenvalues.

B3 and 11.

If a af has a.ll positive or all negative eigenvalues, M is called strictly
pseudo-convex. But note that not every 0-complex hypersurface is strictly
pseudo-convex.
h. ex dim L(M = 0.

In the case that (ill, H (uT )) is the product of a real manifold N and

a complex manifold T (so that merely consists of the holomorphic

’t Aitnali delta Pma.
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tangent vectors of T), we see that ex dim E (M) = 0. The converse is true

locally :

1. THEOREM : (M, H (M) be a C-R manifold witla ex --. 0.

Then if p E M, there is an open neighbo1’hood in M which is C-R isontorphic
to an open neighborhood of 0 in RP X Cq, with the natural O-R structure on
MP x Cq (and = codim M).

Proof. Perhaps one way to prove this would be to assert that 
is an involutive subalgebra of F (T (M)) ( in fact, it is I’ (re (H (M) + A (M))))
and use the Frobenius theorem to find maximal integral submanifolds of

M for the distribution, each of which will be naturally equipped with a

complex structure by the splitting of However

one problem remains: how to guarantee that the complex structure varies

nicely along neighboring maximal integral manifolds. This is the content,

of L. Nirenberg’s complex Frobenius theorem, with his in Niren-
2

berg [201 See also Hormander [12]. u
In case M is an embedded C-R manifold, somewhat more can be said

(see I1I A).
1 shows that in some sense Z(M) measures how different is

from a product structure.

III. HULLS AND REINHARDT SUBMANIFOLDS.

A. Local flatness for generic submanifolds.

Let K be a subset of C’~.

1. DEFINITION : f E H (K) if there is an open set U of C 11 ° containing Il
so that f : t~ --~ C is a holomorphic function.

2. DEFINITION : K is extendible to ~, connected subset ~.’’ of on if

and res : H (K’) - H (Ii ) is onto (where res is the natural restric-

tion map).

3. DEFINITION : An open subset U of On is a domain of if

U is not extendible in any complex manifold.
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4. DEFINITION : If K is a subset of U, an open set in then Ku+
-

Note that if K is extendible to K’, then K’ C 

5. THEOREM: U is a domain of holomorphy only when K compact subset
"- 

,

of U --&#x3E; KU compact subset of U.

Proof : Hormander [11], 2.5. :t+

6. DEFINITION: A subset L of an open set U is .H ( U) convex if : K

compact subset of compact subset of L.
The important concepts of extendibility and convexity are measured

(at least locally, for generic C-B submanifolds of On) by ex dim of the Levi
algebra. First we show that if ex dim = 0, then the submanifold is locally
holomorphically convex, in a number of ways.

7. THEOREM : Let M be a generic 0- R submanifold of On. The following
are equivalent for p E M :

’ 

a.) For sufficiently small open neighborhoods U of p E M, ex dim

(u) = o.
b.) For sufficiently small open neighborhoods U of p E M, U is C-R iso-

iitorphic to an open set in eq, with p = C-R codim M.
c.) There is a fundamental sequence of open neighborhoods U of p E M

so that IT Sj domains of holomorphy in on
jEz

d.) There is a fundamental sequence of open neighborhoods U of p E M
so that U is not extendible.

e.) For sufficiently small open balls B of C’~ Iwith center p, B f1 M is

H (B) convex.

Proof’ : We have already seen a) - b) (IIDl). It remains to remark

that another proof can be given for embedded C-R manifolds, not using
the powerful complex Frobenius theorem of Nirenberg. For this, see Rossi

[26].
b) --~ c) Wells (see [33] and [35]) gives an explicit construction of T~,

nornmal tubes over U of height E. These are then shown to be domain of

holomorphy. Take Sj = Tl p .
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In the language of Rossi [24], l~ is called an Sb.
e) - d) is obvious.

the results d) --~ a), c) --~ a) will be proven by the theorems of VA.
b) --~ e) is all that remains. First, we observe that by choosing B

small enough in C’, we can (since M is a submanifold) obtain B n M = U Ii; ,
where Ki are increasing compact subsets of M. (This is an important step
in the example c C, one must choose B small enough so

that B f1 M + for if B n M = M, B n M would not be H (B) convex). It

is enough to show that KiB is a compact subset of B or (since B is

a domain of holomorphy) that B n M.

We can define T, and Sj as in b) - c). (In fact, T, can be defined as

(z ~ (z)  E~ for a plurisubharmonic function ~. ) T, is a family of domains

of holomorphy decreasing to Sj as 8 . Then (B, B n Sj) is a Runge pair -
J 

_

in the sense of Behnke [1] ] (see also Bremermann [5]). Then 

(since (B, B n Sj) is a Runge pair) but n Sj = B ft lVl (take U = B n M in b)).
-

So finally we obtain KiB c 13 ft .M as desired

REMARK : If M is not generic, all implications of 7 are true (with the
same proofs) except d) --~ a), and c) - a), and e) --~ a).

7 above is a fairly full characterization of the case ex dim oL (lVl) = 0.
When ex dim E (1Jf) &#x3E; 0, we will obtain some information about the local

hull in IV and We will indicate a suggestion of this general result by
computing a particular class of examples in what follows.

B. Reinhardt Submanifolds.

If ~ is a subset of Cn, K * =)Iz E i none of the coordinates of’ z is U; _
We define a differentiable map of maximal rank

at each point L : -~-~ Nn by L ((Z1 , zn)) = (log log 
If p E Rn, W1 (p) is a generic submanifold of C’~ of dimension n, and

hence has no complex tangent vectors. (Also note that L-1 ( p) is the mi-

nimal boundary of a polyclisc, and is thus an n-torus, S1 X ... ~~ (it times)).

1. If lVl is a submanifold of Rn of dimension k, L-1 (M) is a
generic C - 7~ submanifold of Cnl of C - R codimensioii n - k.

Computation
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2. DEFINITION : A subset K of Cn is a Reinhardt set if for any

is in general position if K = K*.
1~ is a Reinhardt set in general position only when L-1 (L = K*.
If Nc Iti let chN be the convex hull of N in Rn.
The remainder of this investigation depends on the following theorem :

3. THEOREM: Let U be an open connected Reinhardt subset of Cn in
general position. Then U is extendible to L-1 (ch (L (U))). And ij U is

extendible to V, then V c L-1 (ch (L (U))).)

Proof. If U is extendible to V, then V C L-1 (ch (L ( tT ))) (see Rossi [25]).
We need two lemmas to prove the reverse inclusion:

4. DEFINITION: A map A : Rk X ( (1 - {0}--&#x3E; en is a continuous family
of’ annuli if A is continuous, and Ap (z) = z) is a complex analytic
map for lp  I z C Op {Ip , Op real positive numbers varying continuously
with p). A is degenerate at p if Ap (7p = is constant.

5. LEMMA : Ijet N be a connected, simply connected neighborhood of 0
in Rk, I and suppose that A : N X (C - y0~) --~ C’~ is a continuous family
of annuli, with A degenerate at 0. Then U Ap (I z == Ip or I z = Op) is

PEN
extendible to U (Op  |z| Ip).

EN

This is the annulus Kontinuitätssatz. The proof for discs (Wells
[33]) goes through almost without change ~ .

6. LEMMA: Let y : a continuous curve. Suppose that

the straight line from y (0) to y (1) has relatively rational slope. Then

L-1 (Î’ ([0, 1])) is extendible to L-1 (cfa (y q 0, 1]))).

First we consider an example in 1~2. Define y (t) = (0, 2t),

t ~ 1 , and y (t) _ (2t - l ), 2 - Jt), t &#x3E; 11 . I f H~ is a horizontal line going

through (07 t), then L-1 of the segment of Ht bounded by y is just an

aunulus product with a circle in C2. When t = 1, the annulus is degene.
rate. By applying 5, we obtain the conclusion of this lemma for this y.

Fig 1
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Now consider the general case, ~:[0,1]2013~~ and let the straight line

connecting ¡’ (0) and y (1) be given by 2013~(~+~,...,~+~). Then

hypothesis that the slopes be relatively rational means that either aj = 0,

or !k is rational. We will assume that there is a continuous family of stright
aj

lines Aq, 9 0 , q 1, given, with Aq parallel to A i , and the endpoints of
.A

Aq on y We assume also that Ao is a point. So Aq is given by : t 4 (at t +

Fig. 2

Consider T = L-i (Aq ([0, 1 ]}). Computation shows that T is an (n - l)-
parameter family of Riemann surfaces, each with two boundary curves on

an n-torus (L-1 (Aq (0)) and L-1 (Aq (1))). Because of the « relatively rational &#x3E;&#x3E;

assumption, these curves are just circles and T is an (n - 1) parameter
family of annuli, and gives the conclusion of the lemma. #

REMARK : We can also prove 6 directly without the assumption « rela-

tively rational slope &#x3E;&#x3E;. If ak is not rational, the Riemann surfaces are strips,
aj

with two boundary lines, and the functions we must extend are almost pe-
riodic on the strip. But this can be done with a suitable version of 5, since
a Cauchy formula holds for almost periodic functions on a strip.

To return to the proof of 3; we apply 6, and note two things : each

point in can be obtained in the image of a finite number of con-

structions of the type of 6 (since TT is open), and the extension by means
of the constructions of 6 is consistent, that is, whatever finite sequence is

used to obtain a point leaves independent the values of the

functions extended. #
Consider a curve A in a l-dimensional submanifold given by

t -~ (a~ (t), ..., an (t» ERn. is the jth derivative of A, and is the map

t -+(al U) (t), ..., an(j) (t)). We will make the assumption that for values of t

near any value under discussion, the dimension of the linear span of the

vectors (t), ... , (t), ... , (all j) remains constant and that if (t) = 0
for some t, (t) - 0. (This last requirement appears rather strong. But it

is equivalent to domanding that the images of certain Levi forms be vec-
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tor bundles, as we always require. The reader can state the results corre-

sponding to 7, 8, and 10 if the last assumption is not made. Examine

x = t2, y = t3 in R2).

7. THEOREM: The subset ~A (t) ( t - to ~ C el has exactly a k-dimensional
convex hull ( for small enough c) only when A (k) (t), (t)~ ... , A~i~ (t) are tine-
arly independent for t near to 9 and (t) is linearly dependent on A(k) (t), ... ,

k

A(I) (t) (80 that (t) _ ~ vq (t) A~q~ (t) for differentiable functions vq).
q=l

Proof : Taylor’s theorem.
The formula for appearing in 7 is, when suitably normalized,

called the Frenet formulas.
Consider now L-1 (A) = M is a generic 0 - .R submanifold of On, of

C - R codimension n - 1. A coordinate map for this (n + 1) dimensional

manifold is provided by :

Then

and

We can explicitly find a single non-zero tangent vector field S gene-
rating r (H It is :

and ~S generates h (A (M)).

8. THEOREM: 1.) If for small evough c, Ac={A(T)| t - to 1 el has
exactly a k-dimensional convex hull, then ex dim E (Me) ¿ lc (where Me =
= (~1~))·

2.) If we suppose in addition that



298

(as in 7), then if toe put
are linearly independent, and

Proof’ : A computation with dR gives the form of Eq-l of (2 j. The
other conclusions follow immediately. #

We might call the formula of (8-2) (in analogy with (7)) the complex
Frenet formula8.

We will need the following :

9. LEMMA : Let H be a Lie algebra generated by a and b, Define Zk
by £1 = [a, b], and Ek = [a, Ek-d. Suppose there is a Lie algebra map
on H so that -2 is the identity, and a = b and Ek = - 1k . Then H is
generated as a vector space by a, b, and all the 

Proof: An induction argument based on the «length» (in brackets)
of a term. #

Assume (as before 7) that A has constant dimensional convex hull at
each point.

10. THEOREM: Let A be a curve in R1i, and = L-1 (A). The follot(,-
ing are equivalent for p = A (to) E R".
. 

1. For sufficiently small open neighborhoods o f’ LT of L-1 ( p) in ex

2. For sufficiently small open neighborhoods o f L-’ ( p) in 1Jf, U
""’" 
.. 

............

is extendible to a subget containing a manifold LT, ’with dim U = dim U + lr.
lvhen k is u7ith respect to this property, U can be chosen to be not

extendible.

3. The kth .Levi form, Lk (of IIC), is non-zero, and is zero.

Pi-oof : 1) -+ 3) We must notice two facts : first, that E ( U ) is generated
by 8, S, E1 (8, S), (S, S) as a vector space (by using 9 and 8-2)), and
that Lk = 0 only when £3k (8, ~S) is iineariy dependent on S, S, £1 (8, 8), ...
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1) ~ 2 Use 9 and the explicit form for (S, S) given in (8-2) to
conclude that (t), ... , A(k) (t) are linearly independent (but no more), then

-

use 7 and 3 applied to a neighborhood U. The U desired contains the
....

part of L-1 (chL (IF)). Then L ( U ) is convex, so U

is not extendible.

2) -&#x3E; 1} Suppose that U is extendible to at most a set containing a

manifold with dim U = dim U + lc, lc maximal, and that ex 

If j &#x3E; k, by 1) -+ 2), k is not maximal, 
If j  k, the convex hull of A just contains a j + 1 dimensional set

-

by 8 and 7. Then L ( U ) is not in the convex hull of L (U), since dim

(if dim .L ( U) = 0, 2) -~ 1 ) is trivial). So by
3 we have a contradiction- U cannot be extendible to U.

Therefore = k. m
A theorem completely analogous to 10 can be stated for higher dimen-

sional Reinhardt submanifolds :

11. THEOREM: Let A be a submanifold of Rn ,1J E A. Suppose that the
convex hull of" open subsets of A has constant dimension ?tear p. Put M = L-1 (A).
The are 

1.) sufficiently sgnall open neighborhoods U of L-1 ( p) in 1’!T, ex diin
f(U) = k.

2.) For suficiently open ’neighborhoods U of L- I (p) in lts, U is° 

extendible to a subset coittaining a mainifold f:, 1cith dim U = dim U + k.’ 

..

When k is maximal ’with respect to this property, U can be chosen to be not

extendible..

Proof: It is not difficult to state and prove results corresponding to

7, 8, 9 in this more general case. Then the proof goes as in 10. (Or we
can just study families of curves on A, and apply 10.) #

12. REMARKS: Note that there is no (3) in 11. Such a result would be

false. For L2 could be zero, but the first brackets (corresponding to second
derivatives of the coordinates of A) could be non-zero, and bring more than
one new dimension to oC ( I7 ).

Even (10-3) is not true for general C.R submanifolds of en of dimension
n + 1, because it is essential (9) that ~k = - Ek. This is not always true
- it’s true here only because of the form of fk given in (8-2).

We can find curves A in Rn whose hulls contain an open subset of Rn.

This gives rise to generic (it + 1) dimensional submanifolds of Cn so that
J.11 is extendible to an open subset of C" - we can even obtain M extendible
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to all of by choosing A correctly. = 2, A given by x = t,
y = et sin t, has convex hull all of I~2 . The a equation induced on R3

(from is

10 forces us also to say that ex dim is only a local invariant for the
study of extension : in general, there may be p E A so that any small enough
neighborhood of L-1 ( p) in M will have ex dim = 0, but M = L-1 (A) may
still be extendible to an open set. (Example : A (t) = (cos t, sin t), 0 ~ t ~ ~,
A (t) = (cos t, 0), n  t ~ 2n, in R2. Let p be any point with ~z  t  2n).

C. Osculating Manifolds.

Let M be a manifold, and i : M-+ Cn a C-R map which embeds llt

generically in Cn . We wish to construct a C-R manifold iff ~ approxima.

ting » M to first order, so that L1 (the first Levi form for is nicely re-
lated to L2 , the second Levi form for jif. Let v (i) -+ M be the normal bun-
dle of the embedding i. There is a « natural &#x3E;&#x3E; map, the exponential map
given by the usual straight-line metric in Cn, E : v (i) -+ Cn , so that E I zero-
section is the identity onto i and E I tT is a C°° isomorphism onto an

open neighborhood a of i (M) in Cn, I for some neighborhood of the zero-
section of v (i).

be the canonical projection, and

and H* and A*= H* are subbundles of’

is not a subbundle of in-fact,
dima is dimR j (re (H* + A*)), where j is part of the sequence :

, all bundles over ill. In fact,
will determine l~l.

1. THEOREM : There is a generic O-R 8ubmanijold if of’ C’~ having i (M)
as submanifold, with II (M) = H *, so that dimR M = dimR M + dimointLt.
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then

L1 (a, b) = L2 (a, b’) (by recognizing the isomorphism between

Proof : Put ~VI = E ( II f1 j (re (H ~ -+- A ~))). Since i (M ) is generic, we can
select !7 so that M will be a generic submanifold of on . Then H (M) = H.,
and the other properties are easily checked merely from the definitions of

the Levi forms.

We call if the first order osculating C-R manifold to M. It (locally)
does not depend on i :

2. THEOREM : The gerin oj 11l at M is independent 0.( the 
that is, let i : C’~ , k : en be two generic of M, 1’~Iz , Mk
the manifolds derived from i and k respectively by applying 2. Then the na-

tural i -~ k (M) extends to a- C-R U’

1fhere U, U’ are neigh-borhoods of and k (ill) in M¡ and respectiz,ety.

Proof : Let E : v (i) ---~ en, E’ : v ( j) --~ c,n be respective exponential maps.
Then we observe that Hi- and Hk are naturally isomorphic (both are just
H (M) + H (some complexi6cation of 

Then re (Hl. + At ) and re (Hk -j- are isomorphic, as e.R manifolds.
That is, if is the isomorphism of zero sections, a can be exten.

ded to a : re (H;* + At) -+ (Hl --~- Ak ). (We may have to change o slightly
to get a CoR isomorphism). But i~; = E (8 n j re (H;* + At)) and Mk = E’

+ At)) (if j, l are the usual maps onto the normal bundle).
We can select 8 and 8’ to be invariant, so that E’ o a o B-1 is the de.

sired R extending r and U (respectively U’) is just the image of 
(H/. -+- At) (respectively the image of 0’ n + ~.!))). #

3. REMARK: By iteration, 1 reduces the study of the higher order Levi
forms to the first form - but the relationship is not entirely clear.

Now consider an embedding I : of R in Rn . I (R) is a curve,

A, in Rn . As above we have a sequence 0 -+ T ( R) ~ ~ --~ 0,
where N (A) is the normal bundle over A. Then there is an exponential
map E : N (A) 2013~ R" which is the identity on the zero-section and an isomor-
phism is a neighborhood U’ of the zero section. Then so

T " determines, by composition with J, a subbundle R of dimension one of

jV(A). We define A, the osculating strip u’ith center A, to be U’). ,
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4. 

Proof: We merely must check (see B 8) that
nerate the same complex vector space in

this is true. $~

Note that L-1 (I) and are not the same, for any choice of U

and f~’ in the above, but they agree to first order at M. will see later

that if M extends to a manifold 11’ with M c then H (‘’ ) 1M,
but need not be extendible to if itself.

So ~~’1.~ --~ M is a transition which reduces the orders of the Levi forms
by one (1), is natural (3,4), and helps to diagnose the first order direction

of extension.

Hermann [10] has also studied  holomorphic osculating spaces », and

essentially has the following result, which may help explain the role of l’lI
in egtension :

5. THRoitHm : i Let f be a holot)torphic function defiited in a neighborhood

of Then the on ill in any direction tangent to IV are de-

termined by the derivatives of’ f on 1’tT in directions tangeitt to 1’tT.

Proof’ : We use the Cauchy Riemann ecluations and the fact that

ii-directions are brackets of M directions.
This is exactly the computation in Ilermanii [10], theorem ~.1. +t=

IV. GOING UP ONE DIMENSION

The purpose of this section is to prove the following :

1. THEOREM : Let M be a generic Cq of On oj’ real di1nen.
sion n + k (q finite, q sufficiently large). Suppose that ex d im oL? &#x3E; t &#x3E; 0.

If p E M, then for a sufficiently small ball B in Cn 1vhith center at p,
there is a ()q generic submanifold M of Bp of real dimension n + k + 1,
with ex dim .C (N) ~ t - 1 and Mn Bp c aN. And N will be given as a

subset of the regular set of a map F : Rn+k-l X (I z ( c I} -+ C’1 so that

1.) F is analytic in the second facto)..

3.) F contains degenerate discs..
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Proof : First put p = 0. Since ex dim .£ (J1f) &#x3E; 0, we can find zc E r(H(ltT ))
so that (u, u~o ~ (H(~T) -~- ~~ (112~))0. Then by arguments used by Wells [33],
Weinstock [32], also Hormander [1]] ] (using Zk = Xk -~- iyk) we can assume

there is a function p and E H (1Jf)o so that : l1T c e-1 (0), d~O (0) ~ 0,

by a linear change of variables,

means terms vanishing to order 3 at 0), and
A (q) is the second-order Taylor series terms. ’1’ @ C is a linear sub-

space of T (C~)~ ® C generated by

Analysis of A (q) : for j c k, and

(substitution of Hormander). Then

hypothesis, is not positive semidefinite, so using a linear change of

coordinates we can obtain A11 C 0. If we follow this by a suitable unitary
coordinate change, we can even assume (Ajz) diagonal.

Term (1) is 0~:y~)-)-0’(~p), where x is a direction normal to 

t is a direction tangent to lVl - but not a term involving z~ .

Term (2) is : where are real, inde-

pendent of z1 (they are 0 q x j), x normal to J1f), and 0’ ( x!) contains

no term of the form’ I Zt I ’. will combine the terms 0’ q t 12) into

0’ q z II - their treatment will be te same in what follows).
Then by using the inverse function theorem, M is given in a suitable

small neighborhood of 0 b3T :
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The functions ... , xk+1 , .... xn) are coordinates for M near 0.

We will now describe a family of discs with boundaries on M, whose

interiors will «fill up » a manifold N of dimension n + k + 1.
Let .D ~ 1; c C. Consider the map W : R x D x 

given by IS’ (g, t, 2c) it7). W is a, C°° function, and for e, w constant,
the partial map of W : h - Ck is analytic. Note that for Lo = 0, the disc

is degenerate, i.e., just a point. Under these conditions Bishop and Wein-
stock (using genericity of M) show that there is a map F defined in a

neighborhood of 0 in R X ek-, with values in en having the
following properites :

(i) -, is eq on D and analytic on D.

(ii) F is Cq (Actually, Weinstock asserts that F is eq on R"-k X
X R Ckm I but by (i) I’ is analytic in the third variable - hence

we can use Cauchy’s formula and differentiation under the integral to esta-
blish as much differentiability in D as on aD).

Note that the domain space of F has exactly (n + k + 1) parameters.
We will show that for certain points in a neighborhood of 0, the Jacobian
has rank (n + k + 1) - and this will display the desired as a subset

of the image of F.

has rank (2k - 2). Applying (iv) at

rank n - k (it is the (n - k) X (n - k) identity matrix). Note that at 
a (re F)) 8 

I th .d 
8 8 

h8 h d f. h d.is also the identity matrix (this uses the degeneracy of the discs at 0).
dx
The Jacobian matrix is in upper triangular block form, with two of

the diagonal blocks the ones investigated above. So in any sufficiently small
neighborhood of 0, the Jacobian of F has renk at least + (2k - 2) =
= n + k - 2.

We now consider the map (Fi , F~) : X D X C k-1 --~ C 2, which
is given by the first and last components of I’, with all the variables except
L07 ti and c,, (the center of Fn) held constant. We will show that this map
is injective in a suitably small neighborhood of 0.
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(In the following we imitate closely the methods of Bishop and

Weinstock.)
In C2 described by (z, , xn, y,,), t M &#x3E;&#x3E; is given by

Let T (2~ be the order 2 terms indicated. Relative to

is nothing but a constant -~- further 0 (3) terms ~ because the functions ap-

pearing in T (2) have first derivatives perpendicular to

const (depending on the nbd) + 0 (3).
= and let g (x, z) be the 0 (3) term. Put h’ (x, zj =

= h (x, z) - g (x, z), so la’ is just the terms of order less than 3. Using pro-
perty (iii) of F, we can consider the functions on aD which have image in
M: (If f : aD -+ RP, we define Tf : to be the trace on aD of the
harmonic conjugate of f which vanishes at the origin). Then 
(c,, is the real coordinate of the center of the disc). And 

(As Bishop remarks, these discs approximate the given ones - we have

thrown away 0 (3) terms). Then (’ is the Sobolev 1-norm on the boundary,
curve)

(The last inequality follows from Lemma 3.2 of Weinstock, essentially
the corollary to Lemma 3.4 of

Weinstock - essentially because g is 0 (3) at 0 and we are ta,king the 
Take x, ir small enough, so that 11 + II w II C (9I~%-1· Then the last

inequality gives

Let us take another elemeut {c~, eiff, t*) of the domain space, with y, y’, Z, Z’
the functions corresponding to x, x’ , z, z’. Then :

(by the corollary to Weinstock’s Lemma
for some C.
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Let as consider F defined on the open set given by cn I -t- 
 g  1’0 (an3* t E D) (where 1 L I consists of the other variables which we

have « held constant »). Then we will show that for sufficiently small ro ,
F’ is 1-1 on with the « L » variables held constant.

So we suppose zn = The following is the essential reasoning: using
the above (fl), the Sobolev lemma (which shows that the 1-norm along the

I -dimeDsioDal curves forming the boundary dominate the uniform norm), and
the maximum modulus principle applied to our analytic discs, (if the uni-

form norm is dominated on the boundary, it is dominated on the whole disc)
we have :

(We have reduced the problem to the approximating quadratic model !) We
can compute h’ explicitly (pp. 41-43 of Weinstock) to get

The « Const » term is constant relative to T (there are no first order zn,

!It , j?~ terms in 0’ ( ) or 0 ( ~ x 2 )). Note also are bounded

by c ~ ] p ] since they are, up to a constant elements of L.
The same formulas hold true for Z?y ~ l i , with the variables c,z , ~, t 1»-

ving :tic’s on the right hand side (but the Const (L) term is the same). If we
show ct = c~ ~ and e = e*:’ then (since z~ = (It) have t = tfF. We note

that ~~ x’ - ~’ ~~ C CB, where B = ~ c~~ - c,~,~‘ ~ -i- (~O -f- ~O*‘) ~ ~o -- N~ , I (here we

use the character of sl , ti terms).
Then apply (y) to see Apply (y) to the real

parts ; we obtain similarly cn -- c*n|  0 (e -- B. So B = +
+ (e + - P* ! C. C (e + *‘)2 B 4r20 CB This is impossible if ro is suf-

ficiently small, unless B = o. Therefore e,, = c*n, Q = (/B and t = t*, and we
are done.

The injectivity combined with the implicit function theorem gives the

additional three dimensions we need in the rank of the ,Jacobian, so we now
know that F I Uro is a nontrivial family of analytic discs. When e = 0, the
Cq family contains degenerate consists of discs whose bound-

ries lie on M and whose interiors are not on 71f.

By the openness of the genericity condition (see IIA, example 
IB4) there will be a simply connected open subset of Uro , call it ~7~ so

that is generic. Put ~1’ = F ( Ur"). Note that for small I

enough balls 
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We must show ex dim .C (N ) ~ t - 1.
Near 0, ~ C) is generated by ... , ~x E h(H (M)), and11 

r (A (M)), and X,, I the «other» vector fields on M. Since ex dim

E (J11") ~ t, we assume that t of the x1 ’s are obtained by Lie operations from
the and ’is: say xk+1 , ... , Because mnbp c N, we can extend
all vector fields over N, preserving their linear independence and Lie rela-

tions ; a field v is extended to v. fihen xx+1 E .~ (N), 1 j :5,- t- But at most
one of the .7k+j can be in 1’(H (N) + A (N)), for it is generated 

_ - ~ _

... , x , 1 , ... , x , and one other pair of vector fields, d and d (holomorphic
vectors fields along the disc structure of N). But only a 1 dimensional com-
bination of red and imd can be tangent to M (by the non-triviality of the

discs) so only a 1-dimensional linear combination of the can be in the

vector fields generated by red and imd. (Say it is the field generated by 
N ~

Then xx+2 , ... , are i n but not in F(H(N) + A (N)), so ex

dim .~ (N) ~ t - 1. #
(We do not know whether ex dim = t implies ex dim f(N) = t -1 ). ~

2. EXAMPLE An informative example to examine is given by the 3-

dimensional hypersurface of C2 defined by the equation Y2 = xi |2, where
zk = Xk -~- I n this simple case a disc whose boundary is on M be

given explicitly (for fixed x2). Then the boundary its 12 = yz &#x3E; 0, and the
full map f (from R4 to C2) is : 

_ --, ,- -

It is easy to see that F is the type of map satisfying (i)-(v) above. In this

case it is even simple to see that h’ is injective, for its Jacobian is 2Y2 2~.

3

= the union of the discs, the open set below the paraboloid.) This
section’s work was an 0 (3) perturbation of this.

10. della SCuola n’crn2..tuxa. - Prsa.
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V. CONSEQUENCES AND CONJEOTURES

A. Principal Results.

The following Kontinuitätssatz is proven by Wells [33].

1. THEOREM I Let TT be a simply connected domain in Rd and let F:

D X U -+ on be a continuous family of analytic discs parameterized by U with
the property that for some point uo in U, X luo)) is a point (a degen-
erate di8c). Then if f is holomorphic in a domain B containing F (aD X U),
there is a domain such that A contains F (jj X U), and there is a

holomorphic function g in A such that g | B = f.
As in the work of Wells and Weinstock, these hypotheses ase fulfilled

for a suitable TT (see IV1 and IV2), and we obtain the following, which

are our main new results :

2. THEOREM I If M is a generic C-R submanifold of en, and £1 =t= 0 then
M is extendible to a set containing a 8ubmanifold N with dim N = dim
M+1

3. THEOREM : If M is a generic C-R 8ubmanifald of Cn, and e = ex dim
E (M) &#x3E; 0, then M is extendible to a set containing a generic submanifold N
with dim N = dim M + e.

Proof : Apply IV1 and 1 inductively, m
We note a maximum principle : the maximum modulus of a function

on N is dominated by its maximum modulus on M.
The following result is analagous to the Bochner-Hartogs result that

the boundary of a C°° relatively compact open subset of On must be exten-
dible to the interior of the set.

4. THEOREM : Let M be a compact non-trivial generic 8ubmanifold
of On (so dimo &#x3E; 0). Then M is extendible to a set containing a sub-

manifold N with dim N = dim M + 1.

Proof : If for some open set U of M, ex &#x3E; 0, then (2) M is
extendible to such an N.

So we may assume ex dim ~ (1~) = 0. Then computation shows that
the distribution h (re (H (M) + A is completely integrable and its
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maximal integral submanifolds possess the structure of a complex submanifold
of C". Then the result desired follows from: -

5. LEMMA : No compact subset of on is the union of the images of
non-constant analytic maps from complex submanifolds of 

Proof : Suppose K is compact, and K = U U1, where f1: M1 -+ U1
AEL .

is a non-constant complex analytic map. There are three proofs now:
1.) Consider the function algebra D (K) given as the uniform closure

on K of functions on K which are analytic on each Then D (K) is a
closed, separating subalgebra of C (K), the continuous complex valued func-
tion on K. By a theorem of Bishop [3], a point p of K is a peak point
for D (K ) : i.e., and some gED(K). But

for some 10. So consider now an f E H (K) close enough to g. Then
by the maximum modulus principle, = f { p). Since f4 is non-constant,
this is a contradiction, for in the above take any q E U4.

2.) Put t = inf dim U1. Consider the functions zi: .g --~ 0 (the first.
A

coordinate in Cn). Since .K is compact, I Z, I attains a maximum on K, say
when zi -= t.

If ~zi = t~ ~ 0, then ~Zt = tl. This is also a consequence
of the maximum principle, for I Zt I must be constant on U4. Then put
K’ == c zt = tl. K" is a compact subset = t, an affine

translate of en-i.

Continue the argument to obtain K’ as a compact subset of But

then If’ is the union of open sets in Ct , a contradiction.
n

3.) The function Z ) I *, 12 = g (Z) is plurisubharmonic and attains a
i=1

niaximum value t on p E K. If p E U1, then by the maximum principle for
plurisubharmonic functions (Gunning and Rossi [3], IXC 3) used as above,

( n )
g-I Then Ui c{E 12 = t . But hyperspheres are 0-complex (seeg-](t)m UA. Then UAc 12,12 = t But hyperspheres are 0-complex (see

IIB and IIC 12) hence dim UA = 0. This is false

6. REMARK : If M is compact as in 4, then M is probably extendible
to a manifold N with and 1. (There is (at least)
cobordism obstruction to having aN = M).

7. THEOREM: M is a non.trivial generic C.R submanifold
of’ C", then M is extendible to a, set containing a subtnanifold N, with
dim N = dim M -‘- 1.
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Proof : Since M is 0-coD1pJex, .£. =t= 0 (IIB 10), and so the result by 

B. Conjectures.

If M is real analytic with a real analytic C-R structure, then certain
results are known (obtained by considering the complexification of M ).

1.) M is locally embeddable as a generic C-.R submanifold of on

(Rossi [26]).
2.) If M is a trivial C-B submanifold of on (so dim H (M) is 0),

then M is a holomorphically convex subset of Cn .

3.) If M is a submanifold of every C-R map f : M- C is
the restriction of an element of H (M ) (see Tomassini [31]).

(As a result of the above, we see in particular that the differential

equation of IIIB 12 has as « solution &#x3E;&#x3E;

all functions analytic in C2*).
If M is compact, Wells [34] has shown that if M is analytic and is a

trivial C-R manifold of Cn, then M is an Sa. See also [21] for phrasing
of (2) for C °° manifolds.

We conjecture that (1) is true without change for C °° manifolds, and
that certain statements close to (3) should be true for C °° manifolds. We

will describe the situation as it is now understood.

We would like to suggest a version of (3) for C °° . (Let be the

collection of complex-valued C-R functions on a C-R manifold M).
If M is a compact generic C-R submanifold of Cn, then there is a

generic C.R submanifold N with and aN contains an

open subset of M, and each function determines a function

CI~ (N) in the sense that the «boundary values » of F on 
just f on M.

To attempt to prove this we would recall how we first obtained N in

IV as a union of disjoint discs in On whose boundaries are in M. So if

v E N, v is in a certain disc Dv with c M. The obvious way to try to
extend f is: 

.....

Then F’ so constructed is analytic in the disc direction, but two results
remain to be proved:

i) F E OR (N)
ii) F assumes the correct «boundary values » in M. a
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We were not able to prove either of these, but the following lemma
would probably be useful in proving (1): .

LEMMA: Let Q be an (n + p)-dimensional generic submanifold of Cn,

for all compactly supported (n, p -1 )
Q

forms 1" in C".

Proof : A Stoke’s theorem computation, using the fact that f E CR (Q)
only when c~f - ~. #

To understand an «approximate» » version of (3) suggested by R. Ni-
renberg, we begin with the description of some function algebras.

If K is a compact subset of C", then H (K) is, as before, the collection
of functions hotomorphic in a neighborhood of K, and C (l~) is the uniform

algebra of continuous complex-valued functions of K. A (K) is the closed

subalgebra of C (K) generated by restrictions of functions in H (K). Finally,
let be the topological algebra of germs of functions holomorphic
about K.

s

The natural restriction map is a continuous 1-1 map
*

onto a dense subset of A (g), so that the induced map c5 (nl (K)) -+ c5(.A (g))
of maximal ideal spaces (with the usual topology) is a homeomorphism, for
c5 (A (K)) is compact. (If K is a point in we are asserting here that
the topological rings Oc 7 ... (convergent power series) and C have
isomorphic duals).

If Uj is a neighborhood of K, then there is a Riemann domain
.11 .11 .11

n; : and U cS (A ( U)).But S if Uj is a sequence
+-

of neighborboods decreasing to K, where the inverse limit maps are the

natural restrictions. The 1tj commute with these maps, so there is induced

a continuous projection by following the isomorphism to
above by limaj. (This projection agrees with the one given by

-

Rossi [24] and Wells [35] : if is the uniform subalgebra of C (8 )
generated by restrictions to K of there is an injection A(K, 

The map

from cS (A (K)) to en obtained agrees with the one defined above). The inverse
limit description above has been used by Harvey and Wells [23] to obtain
information about sheaf cohomology on holomorphically convex subsets of C".

Rename c5(A (K)) the envelope of holomorphy of K, .E (K ), and think
of it as a limit of Riemann domains over C".
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-

E(I) -&#x3E; Cn the hull of K; Wells [35] has shown
that if K is extendible to K’, then K’ c K.

Return to the case of a compact O-R manifold M. Let D (M) be the
uniform closure of OR (M). R. Nirenberg’s version of (3) for C °° is :

If M is a compact C-.R submanifold of On, f E CR (M), then there is F

holomorphic in a neighborhood of M so that F 11M  B.

If this is true, we can conclude that A (M) = D (M). (When M is a
trivial submanifold we would expect 0 (M) = A (M).
This has been shown - R. Nirenberg and Wells [21].)

Then we have the following situation : E (M) - with M c M c 
J~(~f) is the space of maximal ideals of A (M) or D (M) or And

this result is probably true :

We conjecture : E (M) possesses the structure of a 000 space, and so
does is a 000 space map, and A (E (M)) _ ~*‘ (A (C")) (anti-holomorphic
tangent bundle) is a « bundle » over E (M), and extends

to an that is, on any pure-dimensional part of E (M),
df (A (E (M))) = 0. (And dim E (M) = dim M + ex dim f (M).)

We would hope that (1) would go over without change in the C °°

case, and this fact would enable us to reduce the local analysis of « nice &#x3E;&#x3E;

systems of first order partial differential equations with complex coefficients
to the local study of the inhomogeneous Cauchy-Riemann equations.

T., Mathematic8
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