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Abstract—Multiagent computing on a cluster of workstations is widely envisioned to be a powerful paradigm for building useful

distributed applications. The agents of the system span across all the machines of a cluster. Just like the case of traditional distributed

systems, load balancing becomes an area of concern. With different characteristics between ordinary processes and agents, it is both

interesting and useful to investigate whether conventional load-balancing strategies are also applicable and sufficient to cope with the

newly emerging needs, such as coping with temporally continuous agents, devising a performance metric for multiagent systems, and

taking into account the vast amount of communication and interaction among agent. This paper discusses the above issues with

reference to agent properties and load balancing techniques and outlines the space of load-balancing design choices in the arena of

multiagent computing. In view of the special agent characteristics, a novel communication-based load-balancing algorithm is proposed,

implemented, and evaluated. The proposed algorithm works by associating a credit value with each agent. The credit of an agent

depends on its affinity to a machine, its current workload, its communication behavior, and mobility, etc. When a load imbalance

occurs, the credits of all agents are examined and an agent with a lower credit value is migrated to relatively lightly loaded machine in

the system. Quasi-simulated experiments of this algorithm show load-balancing improvement compared with conventional workload-

oriented load-balancing schemes.

Index Terms—Load balancing, distributed systems, cluster computing, multiagent computing, object-based systems, communication.
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1 INTRODUCTION

MULTIAGENT systems have recently been widely em-

ployed in developing scalable software systems on

heterogeneous networks [6], [13], [23]. Indeed, using a cross-

platform language (such as Java in most cases), distributed

systems based on agents are very attractive because of the

inherent scalability and autonomy. Viewing the software

agents (usually in the form of objects) as “brokers” and the
interactions among agents as the exchange of “services,” a

multiagent system closely resembles a community of human

beings doing business with each other, and are widely

envisioned to be able to perform many commercial activities

on behalf of human beings (see Table 1 [5] for a list of

properties that agents generally have in common and

distinguish them from traditional processes or threads).

Thus,many financial applications are beingbuilt using sucha
multiagent paradigm [8], [23]. Examples of notable multia-

gent systems include those reported in [9], [10], [12], [19], [25].

However, the end-users (e.g., the customer who employs the

software agents to locate the cheapest prices of certain

commodities in the financial markets) definitely demand a

quick response fromsuch amultiagent system. Because of the

unique features (e.g., mobility, autonomy, etc.) of a software

agent (detailed below), load imbalance is inevitable over time
and a longer response time results. Specifically, if the agents

are fully autonomous in the migration from machines to

machines without any coordination with respect to the load

levels on themachines, it is very likely that somemachines are

overloaded and become bottlenecks in the distributed

computation process. Thus, load balancing, as a system

service, is very much needed to make such a multiagent

distributed computing paradigm attractive and useful for
implementing large-scale applications.

In dynamic load balancing research [1], [2], [15], [16],
[17], the whole cluster of machines (PCs and/or work-
stations) is often viewed as a common resource to which
users submit their own jobs through the workstations (see
[4], [27], [28], [33], for a good overview of the general load-
balancing problem). Dynamic load-balancing schemes dis-
tribute the jobs among the workstations so as to balance the
workload. These jobs run until they are finished or killed.
The job assignment decisions require no a priori job
information, such as execution time, resources needed and
communications to be performed. New jobs may be added
to the cluster of machines [11], [24] at any time by the users,
and are scheduled by the load-balancing system.

The above scenario, nevertheless, cannot be applied to a
distributed multiagent system. To begin with, agents are
temporally continuous. They do not cease to exist unless the
whole system is shut down or they are extinguished out of
the needs of their internal agent management. In addition,
very often, nearly all the agents are specified and created at
system startup. Seldom is there a need to introduce more
agents to the system. Furthermore, agents interact among
themselves through highly variable communication pat-
terns, while the communication between the jobs in a
cluster are usually with a static pattern. The focus of agent
research has been on its philosophy, theory, language, and
architecture. There are also some multiagent systems which
aim at load-balancing problems [29]. Very little published
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research is done on the load-balancing aspect to capture the
essence of agent systems in such a distributed environment.
The introduction of agent technology has opened up new
opportunities for further research of load-balancing with
respect to agent technology. This research aims at bridging
this gap as a first attempt by examining load-balancing
strategies with respect to their application to multiagent
systems.

This paper is organized as follows: As detailed in
Section 2, we translate such characteristics into correspond-
ing load-balancing strategies which are implemented in our
newly proposed load-balancing model for evaluation. We
constructed an agent test platform so that experimental
results can be obtained with variation of system parameters,
as described in Section 3. In Section 4, analysis of the results
shows an improvement made by our new communication-
based load-balancing algorithm, called Comet, in the place
of an agent-based system, compared with traditional work-
load-based load-balancing algorithms. Several future re-
search directions are also identified in Section 5.

2 CREDIT-BASED LOAD-BALANCING MODEL

In this section, we introduce a new load-balancing model,
Credit-Based Load Balancing Model, which aims at captur-
ing some of the necessary agent characteristics. It lets us
analyze the dynamics of load-balancing operations with
respect to multiagent systems.

2.1 Load-Balancing Model Overview

In dynamic load-balancing schemes, the two most impor-
tant policies are selection policy and location policy. As
previously discussed, the selection policy deals with which
task or agent is migrated whenever there is a need, while
the location policy determines to which destination ma-
chine the selected agent is migrated to. If the selection
policy is formulated carefully, the desirable effects are that
the agent selected to migrate will not make the overall
situation worse by making the destination more overloaded

than the source, and the cost of the migration will be

compensated by the gain in performance. Likewise, should

the location policy be properly planned, the overall system

workload will be more averaged after the migration.
The credit-based load-balancing model focuses on these

two policies. We assign a numerical value, called credit, to

every agent. The credit indicates the tendency of the agent

to remain undisturbed in case migration is under con-

sideration. To an agent, the higher its credit, the higher its

chance to stay at the same machine, which is equivalent to

saying that its chance to be selected for migration is lower.
The credit of each agent changes in accordance with the

behavior of the agent system and agent interaction. The

credit of an agent increases in the following ways:

. its workload decreases,

. it communicates with other agents also residing at
the same machine, or

. it has a high affinity with the local machine. For
example, it requires a special type of processors,
I/O devices, or large amounts of data localized at
the machine.

On the contrary, the credit of an agent decreases in the

cases below:

. its workload increases,

. it communicates with other agents residing at other
machines,

. it has a high mobility, i.e., it can be migrated
elsewhere very easily, or

. it has just sent or received an agent message which
indicates that the agent will probably become busier
in a short while.

Given such a credit, we now have a common standard to

describe the credibility of each agents tendency to stay at

the same machine. As the interactions and communications

among the agents continue, the credit of each agent changes

accordingly. Such a credit can be used in the selection

788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 8, AUGUST 2002

TABLE 1
Agent Properties



policy, where the agent with the lowest value is identified
and migrated.

One interesting aspect of the Comet algorithm is that, if
an agent has a higher computation workload, it will have a
higher chance of being selected for migration. On the
surface, this design choice seems to be counterintuitive.
However, we incorporate this selection mechanism based
on our observations on the variation of overall system
workload in that when an agent has a higher workload,
such an increase is usually a localized event and the
duration can be quite significant. Thus, it makes sense to
move such an agent to a relatively lightly loaded machine.

The remaining question is the location policy. This is not
addressed by the credit model. It is, however, determined
indirectly during the computation of the credits. The
computation of an agents credit requires the communica-
tion loading that this agent makes with every other agent.
The information of communication loading with each agent
is gathered in a vector. After the selection policy has
determined which agent is to be migrated, the location
policy will be in effect. The location policy first identifies
which remote agent will perform the most communication
with the agent to be migrated. The machine at which this
remote agent resides is selected as the destination machine.

Based on this model, the load-balancing problem in a
multiagent system can be viewed as the periodic calculation
of credits for each agent. No actions are needed until the
loading level of a machine exceeds a certain predefined
threshold. At this point, the selection policy makes the
decision based on each agents credit. The location policy
also inherently determines which machine receives the
migrated agent.

In [34], Zhou points out that the failure of a central host
should be detectable in a rapid manner. A new host can
thus start up subsequently to assume the load collection
duty, or another running machine can take up the
responsibility instantly. The loss of load balancing for a
short period of time is not critical and detrimental since all
work arriving in the interim may be scheduled locally. As
regards the performance bottleneck problem, Zhou’s
experimental results indicate that the marginal increase in
the likelihood of finding an underloaded host is offset by
the linearly increasing cost of state dissemination. He
suggests that a reasonable cluster size for visible gain in
aggregated response is about 30 and a slower time scale in

state dissemination process may well prove a more effective
approach. With such a cluster size, the load-balancing
information flow is not high enough to saturate the central
host. This follows that the possible threat of bottleneck
posed by it does not have sufficient grounds.

2.2 The Comet Algorithm

In the multiagent system considered in our study, we
assume an application is composed of agents executable on
any of the p machines of the cluster. The structure of the
application is modeled by the interdependence relation-
ships among the agents. More specifically, we use an
undirected graph to model the application structure. An
undirected graph is an appropriate generic model because a
multiagent application executes perpetually and produces
results continuously in response to user queries (e.g.,
financial database queries).

One particular feature in our multiagent system is that
the communication pattern among the agents is known.
Even if it changes, all such changes are registered on the
Agent Name Server and JATLite Message Router. Using
this feature, we can arrange the agents to minimize
communication overhead through the interconnection net-
work. Notice that the computational load of an agent and
the communication load between two agents may be
different for processing different queries. Thus, the data
or control dependencies among agents are not constant.
Hence, the communication dependency relationship be-
tween any two agents cannot be modeled by a directed
edge. Indeed, an edge between two agents only indicates
that the agents communicate during the processing of a
particular query but does not imply a precedence relation-
ship. Given these agent characteristics, we can also see that
the application is inherently iterative in nature in that each
iteration corresponds to the execution of the application for
one particular query. Fig. 1 illustrates the dynamics and
structure of the multiagent application.

Traditional load-balancing strategies commonly use the
computational load of a process as the load index based on
the assumption that computation is the dominant activity in
a process and communication can be fully overlapped with
computation [21], [28], [32]. While this approximation might
be valid for heavy weight processes in a distributed system,
such a load index is clearly not appropriate for the
multiagent system considered in our study. As mentioned
earlier, the computation load within an agent is sometimes
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Fig. 1. (a) Iterative and dynamic nature of a multiagent application. (b) The structure of an agent.



minimal (e.g., a fast execution of a certain financial formula)

and a BSP style of multithreaded programming model [31]

is more accurate. Thus, we propose a composite attribute to

indicate the load of an agent that takes into account the

effect of remote and local communications among agents.

Specifically, the load of an agent executing on machine is

defined as the sum of its computational load and the

communication load (see Table 2 for a summary of

notations), where:

ui ¼ hi þ gi ¼
X

MðaiÞ¼MðajÞ

cðai; ajÞ þ
f

2

X

MðaiÞ6¼MðajÞ

cðai; ajÞ

(note that aj may be local or remote depending upon the

value of MðajÞ). Here, hi and gi represent the intramachine

and intermachine communication load, respectively. The

factor 2 is included to avoid doubly counting the inter-

machine communication. The value of wi is computed

dynamically by examining the clock ticks in a specified

period. Note that the communication cost cðai; ajÞ can be

computed by each agent using the message sizes. The

scaling factor (> 1) is system dependent and calculated

based on the network bandwidth of the system. With

networking technology nowadays, intermachine commu-

nication is often approximately more than an order of

magnitude slower than intramachine communication. The

load Lk of a machine mk is defined as the sum of all its local

agents load. More specifically,

Lk ¼
X

MðaiÞ¼k

ðwi þ uiÞ:

The goal of a load-balancing algorithm is to minimize the

variance of the load among all the machines in the cluster.

This will, in turn, minimize the average response time of

serving users queries.

With the above definition of load index, an overview
of the proposed Comet load-balancing algorithm is in
order. Below, we describe the important aspects of the
Comet system.

Information policy: In the Comet system, we employ a
distributed periodic information gathering policy. Specifi-
cally, the machines in the system synchronize periodically
and check their local aggregate load against the load
threshold, which is the estimated high ðTHÞ load level
computed based on measured load values obtained by
profiling the system. Certainly, the load threshold is related
to the given problem size of the application (i.e., number of
agents involved and the activity levels of the agents as
determined by the load exerted by the users, e.g., number of
queries submitted) and the average load required to give a
reasonably fast response time. In our implementation, we
allow the administrator of the system to change the load
threshold online. That is, although the system starts with a
load threshold (specified as a command line argument)
determined a priori by profiling the application, the
threshold (and the period of information collection) can be
changed when needed (e.g., for some administrative
reasons). In fact, to assist the administrator, our system
reports the instantaneous average loads and the variances
before and after each load-balancing phase. Finally, a
centralized approach is used in decision policy, i.e., a
central entity determines whether there is a need to perform
agent migration. In short, our model employs distributed
information gathering policy and centralized migration
decision-making policy.

Selection policy: Each agent ai is associated with a credit
Ci which is defined as: Ci ¼ ÿx1wi þ x2hi ÿ x3gi, where x1,
x2, x3 are positive real numbers and are application-
dependent coefficients. The rationale of this credit attribute
is to capture the affinity of an agent to the machine in that
the intramachine communication component contributes
positively to the credit, whereas the reverse is true for the
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intermachine communication. In the sender machine, the
agent with the smallest credit is selected for migration
because such an agent spends a dominant amount of time
communicating with a remote agent and, hence, is a
suitable candidate for migration in order to reduce the
local load level. After migration, the heavy intermachine
communication becomes local communication in the re-
ceiver machine. Although some local communication in the
sender machine also becomes intermachine communication,
the overall effect is still desirable because the senders load is
reduced. Finally, note that we assume all agents are equally
“mobile,” meaning that they can be migrated to another
machine with the same ease. If, in the scenario, there are
some agents that are relatively not mobile (i.e., they have
affinity to certain machines which may have special I/O
facilities), we can add a constant to computation of the
values of Ci.

Location policy: After a migrating agent is selected,
we need to determine the target machine. In the Comet
system, each agent ai keeps track of a p-element vector
storing the value of remote communication (the local
communication component is stored as the MðaiÞth
element) between the local machine and all other
machines in the network. Specifically, each element vs
of the vector is

P

MðajÞ¼s cðai; ajÞ. Suppose the yth element
ðy 6¼ MðaiÞÞ is the largest element. Then, machine my will
be chosen as the receiver of the agent.

With the above descriptions, the Comet algorithm is
outlined in pseudocode format in Fig. 2. Notice that the
proposed location policy is novel in that we implicitly
specify a receiver machine in the network for a migrating
agent. By contrast, most existing load-balancing schemes
require the system to determine a receiver which is usually
the one with the lowest load. It should be noted that, for
multiagent systems in which communication is the domi-
nant event, choosing the lowest load machine may not be a
suitable strategy because such a machine may not necessa-
rily reduce the intermachine communication overhead,
which is a dominant part of the aggregate load. The
rationale of selecting the lowest load machine as the
receiver is to avoid thrashing. However, the Comet system

is inherently free of thrashing because the total load across
all machines is reduced after each migration. To see this,
consider the situation shown in Fig. 3.

Here, agent ai is selected for migration from machine mk

to machine ml due to its heavy communication with remote

agents on ml (e.g., agent aj). Now, the aggregate load on mk

before migration is given by: Lk ¼
P

MðazÞ¼kðwz þ hz þ gzÞ.

Let W , H, and G denote
P

w,
P

h, and
P

g, respectively.

Also, let
P

MðajÞ¼l vðaI ; ajÞ ¼ � and
P

MðazÞ¼k cðai; ajÞ ¼ �.

Then, after migration, the new values of load are given by:

L0
k ¼ ðWk ÿ wiÞ þ ðHk ÿ �Þ þ Gk þ

f�

2
ÿ
f�

2

� �

L0
l ¼ ðWl þ wiÞ þ ðHl þ �Þ þ Gl ÿ

f�

2
þ
f�

2

� �

:

Thus, the total load1 of the two machines after migration is
given by: L0

k þ L0
l ¼ Lk þ Ll þ ð� ÿ �Þð1ÿ fÞ and, hence, the

total load is reduced because f > 1 and � > � (otherwise, ai
will not be selected). Thus, thrashing will not occur in the
Comet system because thrashing occurs if and only if the
aggregate load across the whole system is nondecreasing
over time. Given this stability characteristic and the
incremental load reduction process (through migration),
the Comet scheme is able to minimize the variance of load
across all the machines and, hence, optimize the average
response time of user queries.

3 EXPERIMENTAL ENVIRONMENT

This section describes the experimental environment of this
research in which measurements were taken, what inputs
were used to drive the system, and what outputs were
collected for subsequent analysis and evaluation. Imple-
mentation details of the experimental system are illustrated.
System operations, like information dissemination, agent
migration, and results collection, are also explained.
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Fig. 2. Algorithm: Comet.

1. Strictly speaking, there should be a cost (in terms of time, for example)
associated with the migration. However, as we are interested in the “steady
state” overall workload of the system, such a transient cost is ignored in the
analysis.



3.1 System Overview

To investigate the effects of Comet, a multiagent system has
been implemented to provide a testing platform of the
credit-based load-balancing model. The whole system is
written in Java using JDK 1.17 and is implemented on a
cluster of 16 machines, which comprises eight PCs running
Linux 2.0.36 (RedHat 5.2 distribution) and eight Sun
UltraSparc I Workstations, connected through a 155 Mbps
ATM network. The configurations of these 16 machines are
listed in Table 3. These machines reside at the High
Performance Computer Research Laboratory of the Depart-
ment of Electrical and Electronic Engineering, and Systems
Research Group Laboratory of the Department of Computer
Science and Information Systems, the University of Hong
Kong. All the machines have separate hard drives, but the
same set of files are mirrored on every one of them with the
same directory structure. This is to ensure that all the
related initialization and configuration files are accessible
from every machine, and network file systems are not
adopted to avoid I/O bottleneck.

3.2 JATLite: A Java Agent Development Package

An agent package, called JATLite [14], is used to realize the
agent interactions and communications. JATLite is an open-
source package developed by Stanford University and
currently of version 0.4 beta. It provides a set of Java
packages that facilitate the agent framework development
using the Java language.

In a system implemented with JATLite, there is an entity,
called agent message router (AMR), which acts as the
central backbone for agent communication. Each agent has
to register its name with this AMR before they can interact
with other registered agents. After successful registration,
the agent can send messages to and receive from other
agents through AMR, regardless of the location of the
destination machines. In each message transmission, the
whole message is transferred from the source agent to the
AMR first, and the AMR looks up its registration database

to find out the location of the destination agent. After that,

the message is forwarded to the destination agent. No direct

connection between the two agents is established.
This way of message transfer is in contrast to other agent

packages agent name server (ANS), which only resolves

agent names into their real locations. In a system with ANS

implementation, every agent has to query the ANS about
the physical location of a destination machine. Afterwards,

it still has to make a separate connection with the

destination agent before it starts the message delivery.

The ANS can be conceived as the name resolution server in

a TCP/IP network. Each machine just needs a symbolic

name of another machine without noting the physical

location. As such, changing the physical location address

will not affect the system functioning.
In JATLite, since every message has to be transferred to

the AMR first before it is forwarded to the destination

agent, the incurred overhead compared with the case of

direct connection may be very significant. To cite an

example, both the source and the destination agents may

reside at the same host, while the AMR is in a remote host.

Although the source agent can send the message directly to

the other party without using the external network, the

AMR implementation still makes no exception and needs to

go for a round-trip. In the light of this potentially

undesirable overhead, we decided to abort the utilization

of such an AMR in the JATLite implementation. Rather, we
implement a distributed name resolution (DNR) mechan-

ism to replace the original ANS function carried out by the

JATLite AMR. This makes our implementation slightly

more complicated, but brings a great degree of flexibility

and adaptability. Another advantage of using JATLite is

that it has incorporated a KQML layer [20]. This allows us

to exchange KQML, one of the de facto standard agent

communication languages, without further effort. The

KQML layer provides encapsulation, transmission, and

extraction functionalities which are indispensable to agent

interactions.

3.3 Classification of Hosts

The overall configuration is shown in Fig. 4. There exists a

central host. Its role is to initiate system startup, suspension,

and termination. It is also responsible for providing an

interface for query of the current system loading and agent

distribution. The central host does a number of lightweight

tasks, and the volume of information exchanged with it
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should not be high. Therefore, it is not considered as a
serious bottleneck.

Central host is also the decision-maker about whether
there is a need for agent migration, and also the chief
commander of selection and location policies. Other than
the central host, there are a number of compute hosts. These
are the actual hosts which do the computation and among
which agents are started and run. Migration of agents may
occur as needed in-between the compute hosts. A set of
initialization files are needed to inform the central host
which compute hosts are available and participate in the
system operation. They also contain the computation
parameters being used by the compute hosts. The number
of agents being started is also specified in the files. During
every system run, statistics about the workload variations
and migration decisions are recorded. At each migration
point, the workload distribution situation before and after
migration provide useful indicators about whether the
current policies can really offer good load-balancing
judgment.

3.4 Classification of Agents

This system consists of three types of agents. The majority
of agents belong to the type Work Agent. It is the type
which does all the computation and resides at the compute
hosts. There may be one or more Work Agents in each
compute host. The second type is the Communication
Agent (Comm Agent). There is one Comm Agent at each
compute host. It needs to startup those Work Agents
destined to live at the same compute host, collects the credit
values of each of them, and submits the values to the
Central Agent, which is the third type of agents. There is
only one Central Agent residing at the central host. It
gathers all the information submitted by each Comm Agent,
detects whether it is a suitable time to initiate a migration
process, and determines which Work Agent should be
migrated to which compute host. All Comm Agents are, in
turn, started up by the Central Agent.

Being the administrative agents, all Comm Agents and
the Central Agent are not involved in the migration. They
remain at their original locations until the system is shut
down. In our implementation, all the Work Agents are

actually identical in the program code. They differ in the
coefficients supplied to them, which, in turn, will vary their
behavior. The Work Agents interact among themselves
according to the parameters. The initialization files also
specify which other Work Agents each of them has to
interact with. In other words, the files define the commu-
nication pattern. Fig. 5 illustrates the relationship of the
hosts and the three types of agents. The Central Agent has a
close connection with all Comm Agents. Each Comm Agent
closely monitors all Work Agents residing at the same
machine. All the Work Agents interact with one another as
specified by some initialization files. We can see that this
multiagent system is itself monitored by agents implemen-
ted by the same agent package.

3.5 System Hierarchy

Our system is built on top of the JATLite KQML Layer as
shown in Fig. 6. JATLite does offer a Router Layer, but as
said previously, it requires all message delivery to pass
through the router, we did not implement our system
upon the Router Layer. The hierarchy of our system is
described as follows: The lowest layer is the Java virtual
machine, which interprets the Java bytecodes. The second
lowest layer is the core system of the JATLite package. It
is written in Java. As a result, it is placed on top of the
Java virtual machine. The abstract layer provides a
collection of abstract classes necessary for JATLite
implementation. The base layer provides basic commu-
nication based on TCP/IP and the abstract layer. It is
independent of the protocol or message language used in
the higher layer. The KQML layer provides the encapsu-
lation and parsing of KQML messages. The Agent
management layer provides a basis to initiate the Work
Agents in the above layer and acts as a coordinator for all
agent-related management. The highest layer is where
Work Agents do computations and interact. The hierar-
chies may pose a threat of too much overhead. It should
be noted, however, that the most serious overhead lies in
the implementation of the Java Virtual Machine, the basis
of all Java programs. All the above layers represent one
or two function calls and are minimal compared with the
JVM layer.
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3.6 Load Information Dissemination

The flow of load information is an implementation of
information policy. All the Work Agents maintain their own
credit values derived from various policies. Their credit
values are gathered periodically by the Comm Agent
resident at that compute host. Finally, the Central Agent
at the central host obtains the credit values gathered by each
Comm Agent. In summary, each Work Agent is responsible
for its own credit value at the agent level, while each Comm
Agent is responsible for collecting the credits from the Work
Agents at the same machine. The Central Agent makes
load-balancing decisions after it has acquired all the
necessary information.

3.7 Migration Operations

As shown in Fig. 7, it is the Central Agent that determines
whether there is a need to perform agent migration, judging
from the collected credit values. Thus, the Central Agent

realizes the migration initiation policy. After an agent is

selected to migrate from its current host (the source

machine) to another compute host (the destination ma-

chine), the Central Agent contacts the Comm Agents at both

the source machine and the destination machine.

1. Source machine: At the source machine side, the

CommAgent informs the selectedWork Agent about

themigration decision. In our system,we assume that

negotiation is implicit and can be represented by the

communication patterns among agents. Effectively,

whenever the Central Agent wants to migrate aWork

Agent, it is able to do so without the Work Agent

expressing any disagreement.
When the Work Agent has been informed about

the migration needs, it enters a suspend state and

ceases to serve other Work Agents queries. Instead,
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it responds with a suspend KQML message. Other
Work Agents need to submit another query after
some time.

2. Destination machine: The Comm Agent at the
destination machine side starts up another Work
Agent. Since the program code is the same for all
Work Agents, the process of migration in our system
is, in fact, an initialization of another identical agent,
accompanied by a termination of the original one.

After the Work Agent is started at the destination
machine, a connection channel is built between the
resurrected and the dying Work Agents. All the
necessary and useful information is transferred from
the dying agent to the resurrected one, including
current states, coefficients for computation, and
information about connection channels established.
Consequently, the original Work Agent is termi-
nated. This follows that the resurrected Work Agent
functions exactly the same as the dead agent,
essentially realizing the whole migration process.

3.8 Synthetic Workload

The two main approaches for feeding workload as inputs to
load-balancing algorithms are synthetic workload and trace
workload. Many experiments on load-balancing algorithms
were done with a traced workload. These workloads were
obtained by recording the variations of workload in real-life
systems, like a cluster of workstations provided for general
use. Synthetic workloads are created by crafting artificial
workloads with mathematical characteristics. Some exam-
ples are exponential distribution [26], [30], [22] and two-
stage hyperexponential distribution [3], etc.

There was no trace workload data available for use in
this multiagent system because there does not exist a
representative workload model, and the synthetic workload
is used in our experiments instead of traced workload.
Specifically, all the workloads were a random amount of
program loops in which there are large amounts of
numerical calculations. Each Work Agent in the system is
given a range within which a random number is generated.
Workloads and communication are performed according to

this random number. The random number range stays

constant for the same Work Agent, so as to maintain the

consistent behavior of individual agents. Because of the

above nature of the workload fed into the system, our

experiments are quasisimulated, in the sense that the

system is not simulated theoretically using a programmable

simulator, but rather, it is implemented realistically, but

with artificial workload.

3.9 Workload Parameters

In the experiments conducted, several parameters have

been identified to formulate the workload for our purpose:

. Agent Computation Load: This represents the level
of computation workload in each agent. This work-
load is generated by a combination of loops and
calculations. The amount of workload is controlled
by a random number generated as described in the
previous section.

. Message Size: This represents the size of messages
transferred during each communication process. It is
also controlled by a random number, like the case for
computation load.

. Intermessage Duration: This is the duration elapsed
between two message exchanges. It defines how
frequently the communication is performed between
two Work Agents. Based on our prior observations
on the behaviors of the agents (we used agents that
perform financial type computations) in our Ether-
net network, the intermessage duration is specified
to be 10 seconds for all Work Agents in this system.

. Computation-Communication Correlation: To main-
tain a consistent agent behavior, we correlate the
computation and communication of an agent such
that an agent with a higher level of computation
workload, its communicationperformedalso contains
larger-sizedmessages, andviceversa.This is achieved
in the system by making use of the same random
number to generate workload and message size.
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3.10 Experimental Parameters

For each experiment, several parameters have to be
specified. They are described in this section.

Credit Coefficients: In our study, we have adopted a linear
model in the calculation of credits,Ci ¼ ÿx1wi þ x2hi ÿ x3gi,
where x1, x2, and x3 are the coefficients which aim to capture
the degree of the affinity of an agent to the machine. The
values of these three coefficients can be varied as to what
extent we want to emphasize different aspects. For example,
if the effect of intermachine communication is to be
emphasized, more, x3 should be increased. Another use of
changing the values of the coefficients is to adjust the
weighting between the two different natures of measure-
ment: workload and message size. To make them compar-
able, some adjustments must be made to the coefficients. In
our experiments, we took all of them as unity but we would
like to emphasize that these coefficients could be fine tuned
for specific applications. Indeed, asdetailed inSection4, some
experimental results are also gathered by varying these
coefficients.

Number of Agents: It is easily seen that the number of
agents is one of the most important parameters in a
multiagent system experiment. When the average number
of agents in a machine is small, less choices are available for
the selection policy and the effect of adding an agent to a
machine or removing one is very significant, directly
making the load-balancing algorithm less efficient. How-
ever, when the average number of agents in a machine
becomes large, the main memory of a machine may be
insufficient to house all the agents. This is especially true for
Java agents since each Java process must be accompanied
with a Java virtual machine, which is notorious for its high
memory usage and sluggish performance. When some Java
agents are forced to swap out of the main memory, the
running time will be greatly increased, which is out of the
controlling scope of the system. From our trial experiments,
we found that a Linux PC box with 128 MB can house only
about 12 agents without extensive swapping. These
numbers vary from one Java version to another, from one
OS to another, and from one machine configuration to
others, too. Because of this, there is a limited range for the
number of agents in order to obtain meaningful and
comparable results.

Number of Hosts: The number of hosts is limited by the
available resources only. In this research, we are only
concerned about homogenous machines for easier compar-
ison of raw UNIX loading values from different hosts.
Heterogeneous clusters can be included if some conversion
mechanism is available so that raw loading values can be
normalized before comparison. It should also be noted that
when the number of hosts increases while average number
of agents in each host remains unchanged, the number of
edges in their communication pattern may increase in a
greater magnitude, and the workload collection cycle will
take a longer time.

Period of Workload Collection: From the first set of trial
experiments, we found that the period ofworkload collection
has agreat impact on theefficiencyof the systemand the load-
balancing algorithm. If we want to keep the workload as
balanced as possible, it follows immediately that we need to

keep our information about the present situation of the
system most up-to-date and, thus, the period of workload
collection should be very small. Nevertheless, when the
workload information is to be collected incessantly, such a
collection process itself will contribute tremendous work-
load to themultiagent systemunder investigation, jeopardiz-
ing the effectiveness of the algorithm. Toward another
extreme, when the period is large, the information used for
load-balancing decisionmakingwill be already obsolete. It is
by nomeans a good indicator of the present loading situation
of the whole system. In view of the above, it is necessary to
strike a balance between the two implications. After some
trials, we decided to take 60 seconds as the data collection
period in our experiments. This is also the period when the
Central Agent makes decisions about whether an agent
should be migrated or not.

Communication Pattern: Since agents must communicate
with one another, they form a communication pattern.
Agents establish connections and transmit messages ac-
cording to this pattern. Such a communication pattern has
profound significance to the workload situations and load-
balancing decisions. The reason is that when an agent has a
communication pair with another agent and they exchange
a large amount of messages, the vector used in location
policy will tend to migrate the two agents together once one
of them is selected in the migration policy. A communica-
tion pattern cannot be translated into simple parameters
directly. In our experiments, we have made use of a new
parameter, called pair ratio, which defines the portion of
communication pairs that will exist among all possible
communication pairs. After defining the number of agents,
a communication pattern is generated with this pair ratio as
a reference. Communication pairs are created among
randomly selected pairs of agents. The pair ratio in our
experiments ranged from 1

4
to 1

8
. A smaller pair ratio was

used for a higher number of agents while a large pair ratio
was for a smaller number of agents. The objective is not to
overwhelm the agent system with message transfers.
Otherwise, one cycle of message transfers will be too long,
making our workload data collection ineffective. Moreover,
the experiments aim to investigate the effects of load-
balancing with different paradigms, the choice of pair ratio
does not infringe this basic objective.

3.11 Points of Examination

In our experiments, we measured two values which are our
points of examination. They are variations of normalized
standard deviation over time for each run, and the average
normalized standard deviation for each set of experimental
parameters.

Workload Data Normalization: When different algorithms
are tested, even though they are tested with the same set of
program and data using the same cluster of machines, the
workload of the background user-level and kernel-level jobs
may affect the workload exhibited by the agents concerned.
A normalization process is therefore required to convert the
value to enable direct comparison. The normalization is
done by dividing the measured value by the mean work-
load during the same run. This has the similar effect as
excluding the white noise in spectral analysis, with the
value of white noise obtained from the mean measured
value.
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Normalized Standard Deviation: One of the aims of a load-
balancing algorithm is to minimize the variations in
workloads of all machines in a cluster. Regarding this,
standard deviation in workload is often taken as the
performance metric of a load-balancing algorithm. The
smaller the standard deviation, the better the load-balan-
cing scheme is. Normalized standard deviation is obtained
from dividing the measured standard deviation by the
average workload value of the same experiment. By looking
at the changes in standard deviation of workload with
respect to time, it is easier to visualize the effect of load-
balancing upon the system.

Average Normalized Standard Deviation: As said above, the
variations of normalized standard deviation over time are
recorded for each experiment. Among this set of standard
deviation, the mean can be calculated. After a number of the
same experiments, a set of normalized standard deviations
can be calculated. Finally, all such normalized data are
averaged to give the final performance metric for a
particular set of experimental parameters.

3.12 Performance Metric

In other research work on load balancing, the overall
execution time of a set of jobs is often taken as the
performance metric. This is possible only if all jobs have a
finite execution time so that the whole set of jobs also have a
finite execution time, and can be fed into different load-
balancing schemes for comparison. For the case of
multiagent systems, the above strategy cannot apply. The
reason is that no overall execution time can be measured
because of the immortality nature of agents.

To remedy the need for a performance metric, we can
define another performance metric which does not depend
on the finite execution time of jobs. One is the execution
time of a query which consists of a set of agent operations
and interaction. The other is the workload distribution
situation across all machines in a cluster. For the former
proposed performance metric, some representative query to
a system is needed. That means, if we adopt such a
performance metric, a representative query must be devised
in order that this metric can be obtained generically in any
multiagent systems. Such a query should specify what tasks
agents will perform, how and with whom each of them will
communicate, and when to do all these operations. The
main difficulty of this performance metric is that there does
not exist any well-accepted representative query. The
situation is made worse when considering the lack of a
well-accepted multiagent system model. The second pro-
posed performance metric, the workload distribution
situation across the machines in a cluster, is relatively more
universal and implementable in different cases. This metric
can be measured in any system with all kinds of load-
balancing schemes. More specifically, the workload dis-
tribution is measured as the average normalized standard
deviation. As a result, this metric is the major parameter
considered in our experimental results analysis. Never-
theless, as detailed in Section 4.4, we also performed
experiments with randomly generated queries to investi-
gate the performance of the algorithms in terms of query
response time.

To illustrate the performance of the Comet algorithm, we
also implemented the symmetrically initiated distributed
load-balancing algorithm [28], which is well-known to be
efficient in handling the load balancing of tasks in a
traditional distributed computing system. Because this
algorithm is purely workload based, we call it workload
based load balancing (WBLB) here to clearly reflect its
difference in design philiosophy in contrast to that of the
Comet algorithm. Due to space limitations, we do not repeat
the description of the WBLB algorithm here and the details
about its operations and features can be found from [28].

4 RESULTS

This section describes experimental results obtained from
feeding the system with various combinations of para-
meters. First, the effect of varying the number of agents
and hosts is investigated. After this, we study the effect
of varying the coefficients used in the calculation of the
credit values. We will see that this effect is not very
pronounced even when there is a large difference in the
coefficients. At last, the algorithm is applied to a special
mathematical data structure, a binary tree. We found that
Comet performs similarly with both random communica-
tion structure and trees.

4.1 Varying Number of Agents and Hosts

The first set of results was obtained by varying the number
of agents, n, and the number of hosts, p. We have tested the
system with the following sets of values: n ¼ 48, 64, 80, 120,
and p ¼ 8, 12, 16. However, not every case of different
number of agents is applied on every case with different
number of hosts. The case of 24 agents is only applied to the
case of eight hosts since there are too few agents per hosts
for the case of 12 hosts and 16 hosts. Likewise, the case of
120 agents is not applied to the case of eight hosts since too
many agents in one single host will use up all the available
physical memory very quickly, thus jeopardizing the
reliability of the results. In summary, Table 4 below shows
the performance metric results, the average normalized
standard deviation (ANSD), of every test case, for WBLB
and Comet. In the table, each ANSD value is obtained by
averaging the ANSD results of 50 different runs. At first
glance, the comet load-balancing algorithms produce a
smaller ANSD in all cases, hence indicating an improved
load-balancing effect. To give a better visualization of the
comparison between WBLB and Comet, selected traces of
ANSD are plotted against time, as illustrated in the graphs
in Fig. 8, which only shows one of the workload traces in
one selected experiment for a particular combination of n
and p.

For the same number of agents, the ANSD for Comet is
lower than WBLB. This means the workload across all hosts
is less varied in the case for Comet, thus indicating an
enhanced load-balancing performance. As the number of
agents increases, ANSD decreases, which means the load-
balancing effect is more pronounced. This is due to the fact
that there are more options for both location and selection
policies. There is a higher chance of selecting an agent to be
migrated to another computing host such that the overall
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workload is more balanced. The same situation occurs in

both WBLB and Comet systems.
In Table 4, we can see that when the number of agents

increases, the difference in performance of WBLB and

Comet also increases. This can be explicated as follows:

Recall that the agents are not uniform tasks. Indeed, each of

the agents contributes different extents of load increases to

its host at different time instants in its execution life time.

Precisely because of such a dynamic behavior, when there

are more agents in the system, the load-balancing problem

becomes more difficult, as there are more possible varia-

tions in the system state. Thus, some load-balancing

algorithms may perform better than others under a more

difficult situation (in other words, some algorithms do not
scale).

Furthermore, from Table 4, it can be observed that for the
same n, when p increases, the load-balancing effect becomes
worse, i.e., ANSD increases. This is because when p

increases, less agents reside at each host and, therefore,
the choice of an agent being migrated according to selection
policy is more restricted. Moreover, when there are less
agents in one host, the fluctuations of the workload of some
agents become significant. This, in turn, affects the overall
standard deviation of the whole host. It can be seen that, for
a small number of agents, e.g., WBLB (with 48 agents) and
Comet (with 48 agents), the data shows some increase when
the number of hosts decreases. The reason is that as the
number of hosts falls, the choice available for location
policy, i.e., selection of a destination host to migrate an
agent, will be smaller. In this connection, the load-balancing
effect will be weaker. This weak effect is not prominent
when the number of agents is high, as the high number of
agents increases the choice in selection policy and, thus, can
compensate the performance loss.

In summary, the Comet load-balancing algorithm per-
forms better when both n and p are large. In that case, since
there are many agents and hosts, it is more possible to select
an agent and a host to make the overall loading of the
system more balanced.

4.2 Varying Credit Coefficients

The calculation of the credit values involve the specification
of three coefficients. Previous experimental results take all
coefficients as unity. This section investigates the effect of
varying those coefficients. Let us take a review of the credit
formulation: Ci ¼ ÿx1wi þ x2hi ÿ x3gi. In this equation, all
x1, x2, and x3 are taken as unity for all previous experiments
but we would also like to investigate the effects of these
coefficients and, thus, we have done test scenarios with the
values shown in Fig. 9a.

The first four sets of experiments aim at investigating the
effects of x3, which is responsible for symbolizing the effect
due to workload. The larger is this coefficient, the greater
tendency is given to a high-workload agent to migrate out of
the current host. This effect is tested on the cases ðx1; x2Þ ¼
ð1; 1Þ and ðx1; x2Þ ¼ ð10; 10Þ. The last two sets of experiments
are designed to prove the effects of intrahost communication
and interhost communication. The larger x1 is, the more
emphasis is placed on intrahost communication, and the
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TABLE 4
Summary of Experimental Results by Varying n and p

(a) WBLB ANSD results. (b) Comet ANSD results.

Fig. 8. Sample workload traces in three cases. (a) 64 agents and eight

hosts. (b) 64 agents and 12 hosts. (c) 120 agents and 16 hosts.



greater affinity the agent has to stay at the same host. On the
contrary, if x2 is larger, the agent will have a greater
tendency to migrate out because of interhost communica-
tion. Because of the limitations of resources, we have not
implemented every experiment with different n and p. We
only experimented two combinations of n and p for each set
of coefficients, namely: Case 1) n ¼ 48 and p ¼ 8; and Case 2)
n ¼ 120 and p ¼ 16. The results are shown in Fig. 9b.

For the first four cases, they do not show much
significant difference. The reason is that the increased
coefficient in x3 induces the same effect to all agents alike.
Consequently, the decision-making process during migra-
tion is not very different. Looking at Cases (e) and (f), we
can see that the ANSD is particularly higher than other
cases. Cases (e) and (f) are special in that the coefficients for
intrahost and interhost communications are diverging
greatly. This means that the weights of both kinds of
communication are unbalanced. The relatively higher value
of ANSD may be caused by some agents constantly being
migrated from one host to another, giving rise to exceed-
ingly varied workload. In summary, the coefficients x1 and
x2 should be equal so that the weights of intrahost and
interhost communications are balanced. Taking into un-
biased account both types of communications, the perfor-
mance in terms of ANSD will be better in this situation.

4.3 Communication Pattern

The previous communication pattern formed among the
agents is randomly constructed. However, in many occa-
sions of computation, a tree communication pattern is
required. Examples are sorting, searching, and other kinds
of divide-and-conquer algorithms. It is interesting as well as
useful to see the effects of applying Comet to those
algorithms. The only parameter in a tree communication
pattern is the tree order. We have tested order 4 and 5,

which translate into 31 and 63 agents. A set of agents with a
tree communication pattern was fed into the system and
again the values of ANSD were collected. The case of eight
hosts is tested. Each test is run for 10 times 1,800 seconds
each. Random communication patterns are also used for
comparison. The results are listed in Table 5 below.

These results should be compared with Comet for the
same number of agents in the event of randomly generated
communication patterns. We did not have experimental
results for 32 agents with random communication patterns;
nevertheless, we can still compare the results with the
linearly interpolated case of 24 and 48 agents. For the case of
63 agents, we can make a direct comparison with 64 agents,
assuming no significant difference. Thus, we obtain the
comparison graph as shown in Fig. 10.

We see that for the case of Comet, the tree communica-
tion pattern results in a better load-balancing performance
than a randomly generated pattern. This can be explained
by the fact that tree structures are inherently regularly
formed, with certain degree of clusteredness. Hence, the
agents can be arranged in such a way that interhost
communications are reduced to a greater extent. On the
contrary, in the case of a randomly generated pattern, each
agent has the same probability to establish a communica-
tion link with another agent, thus making the overall
pattern irregular. This also makes it impossible to achieve
an arrangement of agents such that the interhost commu-
nication can be minimized as in tree pattern. For the case of
WBLB with respect to tree pattern, the results do not
indicate any obvious and consistent conclusion. The value
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of ANSD is higher in one case, but lower in another. In fact,
they are very close together. We can, therefore, assume that
for WBLB, the communication pattern does not make any
remarkable difference in ANSD.

4.4 Query Response Time

To quantify the performance of the Comet algorithm from
an end-user’s point of view, we also performed experiments
with hypothetical queries, which are randomly generated
by selecting a random subset of agents to perform a query
with a random communication pattern. We performed
experiments using our prototype system with 20, 40, 60, 80,
and 100 queries and we measured the average query
response times. We used 48 agents on eight machines. For
each query set, we ran the experiment 10 times with
different initial configurations of the agents. In these
experiments, to illustrate the effect of load balancing, we
also included a “no load balancing” method, which let the
agents to fully autonomously migrate (specifically, each
agent will flip a coin after finishing a query to decide
whether it will migrate to a randomly selected machine).
These results are shown in Fig. 11. As can be seen, the
Comet approach outperformed the other two methods and
the average query response times increase with the number
of queries. We can see that the increase in the response
times of the Comet algorithm is smaller while the other two
approaches have a sharper increase.

4.5 Summary

As can be seen from the above results, for a different
number of agents and hosts, Comet consistently demon-
strates a stronger capability to reduce the workload
variation across all the hosts in a cluster. Results show that
for the same number of hosts, the performance of Comet
will be better for a larger number of agents. Likewise, for
the same number of agents, Comet will be better when the
number of hosts increases. In general, both Comet and
WBLB will be better for a larger number of agents and
hosts, and Comet consistently performs better than WBLB.
As regards the calculation of credit values, three coefficients
are involved. The effect of varying the coefficients was
experimented and studied. It is found that the coefficients
for intermachine communication and intramachine com-
munication should be equal in order to achieve the best
performance. In doing so, the effects of both communication
will be balanced. It is also found that the coefficient

corresponding to workload does not affect the performance
noticeably. The explanation proposed is that the same
weighting effect of workload is applied to all agents alike.
No significant difference is, thus, observed. At last, a
ubiquitous data structure, a binary tree, is used to model the
agent communication pattern, and the agents are fed to the
system. It is shown that the Comet algorithm produces a
better performance in the face of a binary tree communica-
tion pattern. It can be explained that Comet succeeds to
capture the clusteredness of a tree pattern and, subse-
quently, translates the pattern into a mapping between the
agents and the hosts such that the workload variation is
minimized.

5 CONCLUSIONS AND FUTURE WORK

This research collocates the concept of load balancing and
agent theory into one perspective. The load-balancing
strategies were discussed in the light of the characteristics
of agents. The discussion was followed by an introduction
of multiagent cluster system test platform built from scratch
and the design of a novel load-balancing algorithm, Comet,
which is communication-based, apart from taking workload
into account. We implemented the algorithm on the test
platform. Different system parameters were fed into the test
platform and experimental results were collected and
evaluated accordingly. Based on the temporal continuity
of agents, one of the prominent agent characteristics, we
have defined the performance of a load-balancing scheme
as the average normalized standard deviation (ANSD) in a
specified period of time. ANSD is taken as the performance
metric in the test platform which minimizes the subtle
system background workload differences. This makes the
metric widely comparable for experiments with diverging
system configuration parameters. We compared the results
with the conventional workload-based load-balancing
algorithm. The results show that Comet performs generally
better than WBLB. The performance is better with a larger
number of agents and hosts. This implies better scalability.

As for the internal coefficients of the credit value
calculation in the Comet algorithm, some experiments were
designed to testify their effect toward the overall perfor-
mance. They demonstrated that the weighting of both
intermachine and intramachine communication should be
the same in order to achieve the lowest system workload
variation. Results also suggest that the weighting of
computational workload has no significant influence on
the load-balancing performance. An interesting data struc-
ture, binary trees, is incorporated in the agent communica-
tion pattern in the last set of experiments. It is shown that
Comet produces a better performance for a tree commu-
nication pattern than a randomly generated one. This
demonstrates the ability of Comet to capture the clustered-
ness of the communication pattern and formulate an
optimized agent-host mapping dynamically.

One limitation of our study in this paper is that we
assume a static communication pattern. In reality, agents
may change their communication patterns dynamically.
Thus, a further research direction is to investigate the
effectiveness of the Comet algorithm under such a more
dynamic situation. Another avenue of further research is to
incorporate language constructs in devising the load-
balancing strategies and agent migration decisions. We
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are currently working on some further experiments with
workload variation prediction based on the characteristics
of different language constructs.
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