On local isometric immersions of the spaces of negative constant curvature into the euclidean spaces

By

Eiji Kaneda

(Received Feb. 21, 1978)

Introduction

In his paper [9], T. Otsuki obtained an estimate for the lower bound of the dimensions of the euclidean spaces in which a space of negative constant curvature can be locally isometrically immersed. He proved that any space of negative constant curvature of dimension n cannot be isometrically immersed into the euclidean space R^{2n-2} .

The main purpose of this paper is to show the following

Theorem 5.2. Any space of negative constant curvature of dimension n can be locally isometrically immersed into the euclidean space \mathbb{R}^{2n-1} .

We wish to prove this theorem by a method based on the theory of non-linear partial differential equations established by M. Kuranishi [8] and H. Goldschmidt [4].

Let (M, g) be an *n*-dimensional Riemannian manifold. Let *P* be the differential equation of isometric immersions of (M, g) into the euclidean space \mathbb{R}^m with $m \ge n$, which is a system of non-linear parital differential equations of order 1. Adjoining to this system *P* the equation of Gauss-Weingarten which is obtained by differentiating the equation of isometric immersions, we obtain the system $P^{(1)}$ of order 2, the first prolongation of *P*. Similarly adjoining to the system $P^{(1)}$ the equation which is obtained by differentiating the equation of Gauss-Weingarten, we obtain the system of order 3, the second prolongation of *P*. A formal solution of order 1 can be always be extended to a formal solution of order 2, while a formal solution of order 2 cannot be necessarily extended to a formal solution of order 3. There exists an obstruction to extending the formal solutions of order 2 to the formal solutions of order 3, which is called the equation of Gauss.

Recently J. Gasqui [3] gave a new proof of the famous theorem of Janet-Cartan, showing that the system Q which is obtained by adjoining the equation of Gauss to the system $P^{(1)}$ forms an involutive system under the assumption $m \ge \frac{1}{2}n(n+1)$. Another proof of the theorem of Janet-Cartan from a somewhat different viewpoint was delivered by N. Tanaka in his lecture at Kyoto University before Gasqui's paper was published (cf. [6]). He proved that the symbol q of the system Q is isomorphic to the second prolongation $\mathfrak{h}^{(2)}$ of the symbol \mathfrak{h} of the linear operator L which was first introduced by himself (see [10]), and proved that if $m \ge \frac{1}{2}n(n+1)$, then at each generic point of Q the symbol \mathfrak{h} is involutive. Here we remark that the vanishing of the Spencer cohomology group of the symbol \mathfrak{h} plays an important role in his proof of the theorem of Janet-Cartan.

In this paper we need to investigate the system Q under the assumption $m < \frac{1}{2}n(n+1)$. Unfortunately the symbol \mathfrak{h} cannot be involutive in this case. Hence the method developed by N. Tanaka cannot be applied to our problem. However, by letting (M, g) be a space of negative constant curvature, we can prove the following

Theorem 5.1. If m=2n-1, then there exists an open fibered submanifold π_1^2 : $P_*^{(1)} \rightarrow P$ of the vector bundle π_1^2 : $P^{(1)} \rightarrow P$ such that the intersection $Q_* = Q \cap P^{(1)}$ forms an involutive differential equation.

Theorem 5.2 cited above now follows from Theorem 5.1.

Following the formulations given by N. Tanaka, we recall in § 1 the differential equations P, $P^{(1)}$, etc. In § 2, we define the formal Gaussian variety with respect to a curvature like tensor. § 3 and § 4 are devoted to the proof of Theorem 3.1 that describes the properties of the formal Gaussian variety with respect to a curvature like tensor of negative constant curvature. Finally in § 5 we prove Theorem 5.1.

The author would like to express his gratitude to Professor N. Tanaka for his kind advices and constant encouragements.

§ 1. The differential equations associated with isometric immersions

Let *M* be an *n*-dimensional differentiable manifold^(*) and let T = T(M) (resp. $T^* = T^*(M)$) be the tangent (resp. cotangent) bundle of *M*. By $\bigotimes^k T^*$ (resp. $S^k T^*$), we mean the bundle of *k*-tensors (resp. symmetric *k*-tensors) on *M*. Let *g* be a Riemannian metric on *M*. We denote by ∇ (resp. *R*) the covariant differentiation (resp. the curvature tensor) associated with the Riemannian connectoin on *M* induced from *g*.

Let \mathbb{R}^m be the *m*-dimensional euclidean space with $m \ge n$ and \langle , \rangle be the standard inner product of \mathbb{R}^m . We denote by \overline{g} the cannonical Riemannian metric of \mathbb{R}^m induced from \langle , \rangle .

By definition an isometric immersion f of the Riemannian manifold (M, g) into the euclidean space \mathbb{R}^m is an immersion of M into \mathbb{R}^m which is a solution of the equation

$$f^*\bar{g}=g$$

where f^*g stands for the Riemannian metric on M induced from g by f.

Let f be an isometric immersion of (M, g) into \mathbb{R}^m . Then at each $p \in M$, we have the following equalities (cf. Proposition 2 of Appendix in [6]):

^(*) Throughout this paper we shall assume the differentiability of class C^{∞} .

Local isometric immersions

(1.1)
$$\langle \nabla_x f, \nabla_y f \rangle = g(x, y)$$

(1.2)
$$\langle \nabla_z \nabla_x f, \nabla_y f \rangle = 0,$$

(1.3)
$$\langle \nabla_u \nabla_z \nabla_x f, \nabla_y f \rangle + \langle \nabla_z \nabla_x f, \nabla_u \nabla_y f \rangle = 0,$$

(1.4)
$$\langle \nabla_z \nabla_x f, \nabla_u \nabla_y f \rangle - \langle \nabla_u \nabla_x f, \nabla_z \nabla_y f \rangle = -g(R(z, u)x, y),$$

(1.5)
$$\begin{array}{c} \langle \nabla_v \nabla_z \nabla_x f, \nabla_u \nabla_y f \rangle + \langle \nabla_z \nabla_x f, \nabla_v \nabla_u \nabla_y f \rangle - \langle \nabla_v \nabla_u \nabla_x f, \nabla_z \nabla_y f \rangle \\ - \langle \nabla_u \nabla_x f, \nabla_v \nabla_z \nabla_y f \rangle = -g(\nabla_v R(z, u)x, y) \quad \text{for } x, y, z, u, v \in T_p. \end{array}$$

Classically the equation (1.2) (resp. (1.4)) is called the equation of *Gauss-Weingarten* (resp. the equation of *Gauss*).

Let $J^{k}(M, m)$ be the vector bundle of all k-jets of local differentiable maps of M into \mathbb{R}^{m} . By π_{k-1}^{k} we mean the canonical projection of $J^{k}(M, m)$ onto $J^{k-1}(M, m)$ and by π_{-1}^{k} the source map of $J^{k}(M, m)$ onto M. As usual the set of formal solutions of order k are represented by a subvariety of $J^{k}(M, m)$. We denote by P the subvariety of $J^{1}(M, m)$ composed of all 1-jets satisfying the equation (1.1) and by $P^{(1)}$ the subvariety of $J^{2}(M, m)$ composed of all 2-jets satisfying the system of equations (1.1) and (1.2). We also denote by Q the subvariety of $J^{2}(M, m)$ composed of all 2-jets satisfying the system of equations (1.1), and (1.2). We also denote by Q the subvariety of $J^{2}(M, m)$ composed of all 2-jets satisfying the system of equations (1.1), (1.2) and (1.4) and by $Q^{(1)}$ the subvariety of $J^{3}(M, m)$ composed of all 3-jets satisfying the system of equations (1.1) ~ (1.5). Note that $P^{(1)}$ (resp. $Q^{(1)}$) is the first prolongation of P (resp. Q) in the usual sense.

We now give the explicit expressions of the varieties P, $P^{(1)}$, Q and $Q^{(1)}$.

Let $\otimes^k T^* \otimes \mathbb{R}^m$ be the vector bundle of all \mathbb{R}^m -valued k-tensors on M. Let us set $T^k(M, m) = \sum_{i=0}^k \otimes^i T^* \otimes \mathbb{R}^m$. We shall represent every element $\omega \in T^k(M, m)$ by $\omega = (p; \omega_0, \omega_1, \dots, \omega_k)$, where p is the origin of ω and $\omega_i \in \otimes^i T_p^* \otimes \mathbb{R}^m$ $(i=0, 1, \dots, k)$. As in Appendix in [6], we shall consider the vector bundle $J^k(M, m)$ as a subbundle of the vector bundle $T^k(M, m)$. We have $J^0(M, m) = T^0(M, m)$ and $J^1(M, m) = T^1(M, m)$. The bundles $J^2(M, m)$ and $J^3(M, m)$ can be characterized as follows: $J^2(M, m)$ consists of all $(p; \omega_0, \omega_1, \omega_2) \in T^2(M, m)$ such that

$$\omega_2(x, y) = \omega_2(y, x)$$
 for any $x, y \in T_p$.

 $J^{3}(M, m)$ consists of all $(p; \omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}) \in T^{3}(M, m)$ such that

$$(p; \omega_0, \omega_1, \omega_2) \in J^2(M, m);$$

$$\omega_3(x, y, z) = \omega_3(y, x, z) - \omega_1(R(x, y)z),$$

$$\omega_3(x, y, z) = \omega_3(x, z, y) \quad \text{for any } x, y, z \in T_p.$$

These being prepared, we give the explicit expressions of the varieties P, $P^{(1)}$, Q and $Q^{(1)}$.

The variety P is composed of all $(p; \omega_0, \omega_1) \in J^1(M, m)$ satisfying

(1.6)
$$\langle \omega_1(x), \omega_1(y) \rangle = g(x, y)$$
 for any $x, y \in T_p$.

It is easily observed that P is a fibered submanifold of $\pi_{-1}^1: J^1(M, m) \to M$. Let $\alpha = (p; \omega_0, \omega_1) \in P$. We mean by N_{α} the orthogonal complement of the subspace $\omega_1(T_p)$ in \mathbb{R}^m . Then the union $N = \bigcup_{\alpha \in P} N_{\alpha}$ forms a vector bundle over P.

The variety $P^{(1)}$ is composed of all $(P; \omega_0, \omega_1, \omega_2) \in J^2(M, m)$ satisfying $(p; \omega_0, \omega_1) \in P$ and

(1.7)
$$\langle \omega_2(z, x), \omega_1(y) \rangle = 0$$
 for any $x, y, z \in T_p$.

We can easily see that $P^{(1)}$ forms a vector bundle over P which is isomorphic to the vector bundle $S^2T^*\otimes_P N$.

Analogously the variety Q consists of all $(p; \omega_0, \omega_1, \omega_2) \in P^{(1)}$ satisfying

(1.8)
$$\langle \omega_2(z, x), \omega_2(u, y) \rangle - \langle \omega_2(u, x), \omega_2(z, y) \rangle = -g(R(z, u)x, y)$$
for any x, y, z, u \in T_p,

and the variety $Q^{(1)}$ is composed of all $(p; \omega_0, \omega_1, \omega_2, \omega_3) \in J^3(M, m)$ satisfying $(p; \omega_0, \omega_1, \omega_2) \in Q$ and

(1.9)
$$\langle \omega_3(u, z, x), \omega_1(y) \rangle + \langle \omega_2(z, x), \omega_2(u, y) \rangle = 0,$$

(1.10)
$$\begin{array}{l} \langle \omega_3(v,z,x), \omega_2(u,y) \rangle + \langle \omega_2(z,x), \omega_3(v,u,y) \rangle - \langle \omega_3(v,u,x), \omega_2(z,y) \rangle \\ - \langle \omega_2(u,x), \omega_3(v,z,y) \rangle = -g(\nabla_v R(z,u)x,y) \quad \text{for any } x, y, z, u, v \in T_p. \end{array}$$

In the subsequent sections we shall mainly concerned with the variety Q. In connection with the variety Q we make some definitions.

Let $\beta = (p; \omega_0, \omega_1, \omega_2) \in Q$. By definition the symbol \mathfrak{q}_{β} of the variety Q at β is the subspace of $S^2 T_p^* \otimes N_{\alpha}$ consisting of all $\xi \in S^2 T_p^* \otimes N_{\alpha}$ such that

(1.11)
$$\begin{array}{c} \langle \xi(z, x), \omega_2(u, y) \rangle + \langle \omega_2(z, x), \xi(u, y) \rangle - \langle \xi(u, x), \omega_2(z, y) \rangle \\ - \langle \omega_2(u, x), \xi(z, y) \rangle = 0 \quad \text{for any } x, y, z, u \in T_p, \end{array}$$

where we set $\alpha = \pi_1^2(\beta)$. We also denote by $q_{\beta}^{(1)}$ the *first prolongation* of the symbol q_{β} , i.e., $q_{\beta}^{(1)} = T^* \otimes q_{\beta} \cap S^3 T_p^* \otimes N_{\alpha}$.

§ 2. Formal Gaussian varieties

Let T be a finite dimensional real vector space and T^* be the dual vector space of T. By $\bigotimes^k T^*$ (resp. S^kT^*) we mean the vector space of covariant k-tensors (resp. symmetric k-tensors) of T.

By definition an element $C \in \bigotimes^{4} T^{*}$ is called *curvature like* if it satisfies the following:

$$C(x, y, z, w) = -C(y, x, z, w) = -C(x, y, w, z),$$

$$C(x, y, z, w) + C(y, z, x, w) + C(z, x, y, w) = 0 \quad \text{for } x, y, z, w \in T.$$

We denote by K(T) the vector space of all curvature like tensors.

Let N be another finite dimensional real vector space with an inner product \langle , \rangle . For each $\alpha \in S^2T^* \otimes N$, we denote by $\Omega(\alpha)$ the element in K(T) defined by

 $\Omega(\alpha)(x, y, z, w) = \langle \alpha(x, z), \alpha(y, w) \rangle - \langle \alpha(x, w), \alpha(y, z) \rangle \quad \text{for } x, y, z, w \in T.$

Let C be any element in K(T). By $\mathscr{G}(C)$ we mean the inverse image of C by the map $S^2T^*\otimes N \ni \alpha \rightarrow \Omega(\alpha) \in K(T)$. $\mathscr{G}(C)$ is called the *formal Gaussian variety* with respect to C.

Let $\alpha \in \mathscr{G}(C)$. Define a linear map $\mathcal{Q}_{*\alpha}: S^2T^* \otimes N \rightarrow K(T)$ by setting

We denote by \mathfrak{g}_{α} the kernel of the map Ω_{α} , which may be identified with the tangent space to the variety $\mathscr{G}(\Omega(\alpha))$ at α . We also denote by $\mathfrak{g}_{\alpha}^{(1)}$ the first prolongation of the subspace \mathfrak{g}_{α} of $S^{2}T^{*}\otimes N$, i.e., $\mathfrak{g}_{\alpha}^{(1)} = T^{*}\otimes \mathfrak{g}_{\alpha} \cap S^{3}T^{*}\otimes N$.

Let \langle , \rangle be an inner product of **T**. For each $k \in \mathbb{R}$ let us define $C_k \in K(\mathbb{T})$ by

$$C_k(x, y, z, w) = k(\langle x, z \rangle \langle y, w \rangle - \langle x, w \rangle \langle y, z \rangle) \quad \text{for } x, y, z, w \in T.$$

We say that C_k is the curvature like tensor of constant curvature with sectional curvature k.

Let O(T) (resp. O(N)) be the orthogonal group of T (resp. N) with respect to the given inner product \langle , \rangle of T (resp. N) and o(T) (resp. o(N)) be the Lie algebra of O(T) (resp. O(N)).

Let $a \in O(N)$, $t \in O(T)$, $\chi \in S^{t}T^{*} \otimes N$ and $C \in K(T)$. Let us define $a\chi^{t} \in S^{t}T^{*} \otimes N$ and $C^{t} \in K(T)$ by setting

$$a\chi^{t}(x_{1}, \dots, x_{l}) = a(\chi(tx_{1}, \dots, tx_{l}))$$

$$C^{t}(x_{1}, x_{2}, x_{3}, x_{4}) = C(tx_{1}, tx_{2}, tx_{3}, tx_{4}) \quad \text{for } x_{1}, \dots, x_{4}, \dots, x_{l} \in T.$$

It is straightforward to see that if $\alpha \in \mathscr{G}(C)$, then $a\alpha^t \in \mathscr{G}(C^t)$. Similarly if $\beta \in \mathfrak{g}_{\alpha}$ (resp. $\gamma \in \mathfrak{g}_{\alpha}^{(1)}$), then $a\beta^t \in \mathfrak{g}_{\alpha a^t}$ (resp. $\alpha\gamma^t \in \mathfrak{g}_{\alpha a^t}^{(1)}$).

Let us consider the case $C = C_k$. Since $C_k^t = C_k$ holds for any $t \in O(T)$, we have

Proposition 2.1. The formal Gaussian variety $\mathscr{G}(C_k)$ is invariant under the action of the product group $O(N) \times O(T)$ on $S^2T^* \otimes N$ defined by

$$O(N) \times O(T) \times S^2 T^* \otimes N \ni ((a, t), \alpha) \rightarrow a \alpha^t \in S^2 T^* \otimes N.$$

Proposition 2.1 is useful in the consideration of the formal Gaussian variety $\mathscr{G}(C_k)$.

§ 3. The formal Gaussian variety $\mathscr{G}(C_k)$ with k < 0

In this and the next sections we shall investigate the formal Gaussian variety

 $\mathscr{G}(C_k)$ with k < 0. Our main aim is to show

Theorem 3.1. Assume that dim $N = \dim T - 1 = n$ and k < 0. Then there exists an open set O in $S^2T^* \otimes N$ such that:

- (1) $\mathscr{G}(C_k) \cap O$ is an n(n+1)-dimensional submanifold of $S^2T^* \otimes N$.
- (2) For each $\alpha \in \mathscr{G}(C_k) \cap O$, there exists a vector $e \in T$ such that

 $e \, \,] \, \beta \neq 0$ for any $\beta \in \mathfrak{g}_{\alpha}, \, \beta \neq 0$.

(3) dim $g_{\alpha}^{(1)} = n(n+1)$ for any $\alpha \in \mathscr{G}(C_k) \cap O$.

Remark. In order to prove the theorem we have only to prove it in the case where k = -1. In fact consider the linear endomorphism of $S^2T^*\otimes N$ given by $S^2T^*\otimes N \ni \alpha \to \sqrt{-k\alpha} \in S^2T^*\otimes N$. It is clear that this endomorphism maps $\mathscr{G}(C_{-1})$ onto $\mathscr{G}(C_k)$. Moreover we have $g_{\alpha} = g_{\sqrt{-k\alpha}}$ and hence $g_{\alpha}^{(1)} = g_{\sqrt{-k\alpha}}^{(1)}$.

In the following we shall simply write \mathscr{G} instead of $\mathscr{G}(C_{-1})$.

Let $\{e_a\}_{0 \le a \le n}$ (resp. $\{v_i\}_{1 \le i \le n}$) be an orthonormal basis of T (resp. N). Making use of these basis, we shall express N-valued covariant tensors of T in terms of their coefficients. Let $\chi \in \bigotimes^{l} T^* \otimes N$. Define an element $X = (X_{a_1}^k, \dots, a_l)_{\substack{0 \le a_1, \dots, a_l \le n \\ 1 \le k \le n}} \in \mathbb{R}^{n(n+1)^{l}}$ by

$$X_{a_1,\dots,a_l}^k = \langle \chi(e_{a_1},\dots,e_{a_l}), v_k \rangle \quad \text{for} \quad 0 \leq a_1,\dots,a_l \leq n, 1 \leq k \leq n.$$

Let $\alpha \in \mathscr{G}$ and let $A = (A_{ab}^k)_{\substack{0 \le \alpha, b \le n \\ 1 \le k \le n}} \in \mathbb{R}^{n(n+1)^2}$ be the coefficients of α . Then we

have

$$(3.1) A_{ab}^{k} = A_{ba}^{k},$$

(3.2)
$$\sum_{p=1}^{n} (A_{ac}{}^{p}A_{bd}{}^{p} - A_{ad}{}^{p}A_{bc}{}^{p}) = -(\delta_{ac}\delta_{bd} - \delta_{ad}\delta_{bc})$$
for $0 \leq a, b, c, d \leq n, 1 \leq k \leq n,$

where δ means the Kronecker's delta. Conversely, it is clear that any $\alpha \in \bigotimes^2 T^* \otimes N$ whose coefficients $A = (A_{ab}^{k})_{\substack{0 \leq n, b \leq n \\ 1 \leq k \leq n}}$ satisfy (3.1) and (3.2) is contained in \mathscr{G} .

Let $\alpha \in \mathscr{G}$. Assume that α satisfies the following

$$(\#) \qquad \alpha(e_0, e_0) = 0, \quad \alpha(e_0, e_i) = v_i \qquad \text{for} \quad 1 \leq i \leq n.$$

Then we have $A_{00}^{k} = 0$, $A_{0i}^{k} = \delta_{ik}$ for $1 \le i, k \le n$. Hence by (3.1) and (3.2) we obtain

$$(3.3) A_{ij}^{k} = A_{ji}^{k} = A_{ik}^{j},$$

(3.4)
$$\sum_{p=1}^{n} (A_{ik}{}^{p}A_{jlp} - A_{il}{}^{p}A_{jkp}) = -(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk})$$
for $1 \leq i, j, k, l \leq n$.

Let us denote by $\mathring{\mathscr{G}}$ the set of all α satisfying (\sharp) and by $\overline{\mathscr{G}}_n$ the subvariety of \mathbb{R}^{n^s} of all $A = (A_{ij}^{k})_{1 \leq i,j,k \leq n} \in \mathbb{R}^{n^s}$ satisfying the system of equations (3.3) and (3.4). Clearly we can identify \mathscr{G} and $\overline{\mathscr{G}}_n$ in a natural way.

Let $A = (A_{ij}^{k})_{1 \le i,j,k \le n} \in \overline{\mathscr{G}}_{n}$. By $(\overline{\mathfrak{g}}_{n})_{A}$, we mean the vector space of all $B = (B_{ij}^{k})_{1 \le i,j,k \le n} \in \mathbb{R}^{n^{3}}$ such that

(3.5)
$$B_{ij}^{\ k} = B_{ji}^{\ k} = B_{ik}^{\ j},$$

(3.6)
$$\sum_{p=1}^{n} (B_{ik}{}^{p}A_{jl}{}^{p} + A_{ik}{}^{p}B_{jl}{}^{p} - B_{il}{}^{p}A_{jk}{}^{p} - A_{il}{}^{p}B_{jk}{}^{p}) = 0$$
for $1 \le i, j, k, l \le n$

Naturally $(\bar{g}_n)_A$ may be idetified with the tangent space to the subvariety $\overline{\mathscr{G}}_n$ at A. We also denote by $(\bar{g}_n^{(1)})_A$ the vector space of all $C = ({}^{l}C_{ij}{}^{k})_{1 \leq l,j,k,l \leq n} \in \mathbb{R}^{n^4}$ such that

$$^{i}C_{ij}^{\ \ k} = {}^{i}C_{lj}^{\ \ k}$$

$${}^{l}C_{ij}{}^{k} = {}^{l}C_{ji}{}^{k} = {}^{l}C_{ik}{}^{j},$$

(3.9)
$$\sum_{p=1}^{n} \left({}^{q}C_{ik}{}^{p}A_{jl}{}^{p} + A_{ik}{}^{p}{}^{q}C_{jl}{}^{p} - {}^{q}C_{il}{}^{p}A_{jk}{}^{p} - A_{il}{}^{p}{}^{q}C_{jk}{}^{p} \right) = 0$$
for $1 \leq i, j, k, l \leq n$.

We prove

Proposition 3.2. There exists an open set U of \mathbb{R}^{n^3} such that:

(1) $\overline{\mathscr{G}}_n \cap U$ is a $\frac{1}{2}n(n+1)$ -dimensional submanifold of \mathbb{R}^{n^3} .

(2) For each $A \in \overline{\mathscr{G}}_n \cap U$, there exists a vector $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ having the following property:

If $B = (B_{ij}^{k})_{1 \leq i,j,k \leq n} \in (\tilde{g}_{n})_{A}$ and $B \neq 0$, then

$$\sum_{p=1}^{n} x_k B_{ij}^{k} \neq 0 \qquad for \ some \ (i,j) \ (1 \leq i, j \leq n).$$

(3) dim $(\overline{\mathfrak{g}}_n^{(1)})_A = \frac{1}{2}n(n+1)$ for any $A \in \overline{\mathscr{G}}_n \cap U$.

Before proceeding to the proof of Proposition 3.2, we first note the following. Let $a = (a_i^{\ j})_{1 \le i,j \le n}$ be an orthogonal matrix, i.e., $\sum_{k=1}^n a_k^{\ i} a_k^{\ j} = \delta_{ij}$ and let $X = (X_{ij}^k)_{1 \le i,j,k \le n} \in \mathbb{R}^{n^3}$ and $Y = ({}^t Y_{ij}^k)_{1 \le i,j,k,l \le n} \in \mathbb{R}^{n^4}$. Define $X^a = ((X^a)_{ij}^k)_{1 \le i,j,k \le n} \in \mathbb{R}^{n^3}$ and $Y^a = ({}^t (Y^a)_{ij}^k)_{1 \le i,j,k,l \le n} \in \mathbb{R}^{n^4}$ by setting

$$(X^{a})_{ij}{}^{k} = \sum_{p,q,r=1}^{n} a_{i}{}^{p}a_{j}{}^{q}a_{k}{}^{r}X_{pq}{}^{r},$$

$${}^{l}(Y^{a})_{ij}{}^{k} = \sum_{p,q,r,s=1}^{n} a_{i}{}^{s}a_{i}{}^{p}a_{j}{}^{q}a_{k}{}^{r}sY_{pq}{}^{r} \quad \text{for} \quad 1 \leq i, j, k, l \leq n.$$

By simple calculations we know that if $A \in \overline{\mathscr{G}}_n$ then $A^a \in \overline{\mathscr{G}}_n$ and that if $B \in (\overline{\mathfrak{g}}_n)_A$ (resp. $C \in (\overline{\mathfrak{g}}_n^{(1)})_A$), then $B^a \in (\overline{\mathfrak{g}}_n)_{A^a}$ (resp. $C^a \in (\overline{\mathfrak{g}}_n^{(1)})_{A^a}$).

From now on let us assume that $n \ge 2$ and $\overline{\mathscr{G}}_{n-1} \neq \phi$. Let $\lambda \in \mathbb{R}_{*} = \mathbb{R} - \{0\}$ and let $\hat{A} = (\hat{A}_{ij}^{k}) \in \overline{\mathscr{G}}_{n-1}$. Define an element $\varphi(\lambda, \hat{A}) = (\varphi(\lambda, \hat{A})_{ij}^{k})_{1 \le i, j, k \le n} \in \mathbb{R}^{n^{3}}$ by

$$\varphi(\lambda, \hat{A})_{ij}{}^{k} = \sqrt{1+\lambda^{2}} \hat{A}_{ij}{}^{k},$$

Eiji Kaneda

$$(*) \qquad \qquad \varphi(\lambda, \hat{A})_{ij}{}^{n} = \varphi(\lambda, \hat{A})_{in}{}^{j} = \varphi(\lambda, \hat{A})_{ni}{}^{j} = \lambda \delta_{ij},$$

$$\varphi(\lambda, \hat{A})_{nn}{}^{i} = \varphi(\lambda, \hat{A})_{ni}{}^{n} = \varphi(\lambda, \hat{A})_{in}{}^{n} = 0, \qquad \varphi(\lambda, \hat{A})_{nn}{}^{n} = \lambda - 1/\lambda$$

for $1 \le i, j, k \le n - 1.$

It is easily observed that $\varphi(\lambda, \hat{A}) \in \overline{\mathscr{G}}_n$. We now define a map $\Phi: \mathbb{R}_* \times \overline{\mathscr{G}}_{n-1} \times \mathbb{R}^{n-1} \to \mathbb{R}^{n^3}$ by

$$\Phi(\lambda, \hat{A}, \xi) = \varphi(\lambda, \hat{A})^{\exp \xi} \quad \text{for } (\lambda, \hat{A}, \xi) \in \mathbf{R}_* \times \overline{\mathscr{G}}_{n-1} \times \mathbf{R}^{n-1}$$

where, for $\xi = (\xi_1, \dots, \xi_{n-1}) \in \mathbb{R}^{n-1}$, we mean by ξ the skew symmetric matrix of the form:

$$\tilde{\xi} = \begin{pmatrix} -\xi_1 \\ 0 \\ \vdots \\ -\xi_{n-1} \end{pmatrix}.$$

Since $\varphi(\lambda, \hat{A}) \in \overline{\mathscr{G}}_n$, we have $\Phi(\lambda, \hat{A}, \xi) \in \overline{\mathscr{G}}_n$. Let $(\lambda, \hat{A}) \in \mathbb{R}_* \times \overline{\mathscr{G}}_{n-1}$. We denote by $\Phi_* = \Phi_{*(\lambda, \hat{A}, 0)}$ the differential of the map Φ at $(\lambda, \hat{A}, 0)$, where 0 means the zero vector $(0, \dots, 0)$ in \mathbb{R}^{n-1} . In a natural way, the tangent space the variety $\mathbb{R}_* \times \overline{\mathscr{G}}_{n-1} \times \mathbb{R}^{n-1}$ at $(\lambda, \hat{A}, 0)$ may be identified with the direct sum $\mathbb{R} \oplus (\bar{\mathfrak{g}}_{n-1})_{\hat{A}} \oplus \mathbb{R}^{n-1}$. Hence Φ_* induces a linear map of $\mathbb{R} \oplus (\bar{\mathfrak{g}}_{n-1})_{\hat{A}} \oplus \mathbb{R}^{n-1}$ into \mathbb{R}^{n^3} . We also denote it by Φ_* .

Let $\mu \in \mathbb{R}$, $\hat{B} = (\hat{B}_{ij}^{k})_{1 \leq i,j,k \leq n-1} \in (\bar{g}_{n-1})_{\hat{A}}$ and $\xi = (\xi_1, \dots, \xi_{n-1}) \in \mathbb{R}^{n-1}$. We note that the vectors $\Phi_*(\mu)$, $\Phi_*(B)$ and $\Phi_*(\xi)$ in \mathbb{R}^{n^3} are necessarily contained in $(\bar{g}_n)_{\varphi(\hat{\lambda},\hat{A})}$. By using the coefficients they are explicitly represented as follows:

$$\begin{aligned}
\Phi_{*}(\mu)_{ij}{}^{k} &= (\lambda/\sqrt{1+\lambda^{2}})\mu\hat{A}_{ij}{}^{k}, \ \Phi_{*}(\mu)_{ij}{}^{n} &= \mu\delta_{ij}, \\
\Phi_{*}(\mu)_{in}{}^{n} &= 0, \ \Phi_{*}(\mu)_{nn}{}^{n} &= (1/\lambda^{2})(1+\lambda^{2})\mu; \\
\Phi_{*}(\hat{B})_{ij}{}^{k} &= \sqrt{1+\lambda^{2}}\hat{B}_{ij}{}^{k}, \\
(**) \qquad \Phi_{*}(\hat{B})_{ij}{}^{n} &= \Phi_{*}(\hat{B})_{nn}{}^{n} &= 0; \\
\Phi_{*}(\xi)_{ij}{}^{k} &= \lambda(\xi_{i}\delta_{jk} + \xi_{j}\delta_{ki} + \xi_{k}\delta_{ij}), \\
\Phi_{*}(\xi)_{ij}{}^{n} &= -\sqrt{1+\lambda^{2}}\left(\sum_{p=1}^{n}\xi_{p}\hat{A}_{ij}{}^{p}\right), \\
\Phi_{*}(\xi)_{in}{}^{n} &= -(1/\lambda)(1+\lambda^{2})\xi_{i}, \ \Phi_{*}(\xi)_{nn}{}^{n} &= 0 \quad \text{for} \quad 1 \leq i, j, k \leq n-1.
\end{aligned}$$

Lemma 3.3. For each $B \in (\bar{\mathfrak{g}}_n)_{\varphi(\lambda,\hat{A})}$, there exists a unique $(\mu, \hat{B}, \xi) \in \mathbb{R} \oplus (\bar{\mathfrak{g}}_{n-1})_{\hat{A}}$ $\oplus \mathbb{R}^{n-1}$ such that

$$B = \Phi_*(\mu) + \Phi_*(\hat{B}) + \Phi_*(\xi).$$

Proof. We first suppose that $\Phi_*(\mu) + \Phi_*(\hat{B}) + \Phi_*(\xi) = 0$ for some $(\mu, \hat{B}, \xi) \in \mathbb{R}$ $\oplus (\bar{g}_{n-1})_{\hat{A}} \oplus \mathbb{R}^{n+1}$. Then by (**) we can easily obtain $\mu = \hat{B} = \xi = 0$. This implies the uniqueness. Next we show the decomposition. Let $B = (B_{ij}^{k})_{1 \le i,j,k \le n} \in (\bar{g}_n)_{\varphi(\lambda,\hat{A})}$. Take $\mu \in \mathbb{R}$ and $\xi = (\xi_1, \dots, \xi_{n-1}) \in \mathbb{R}^{n-1}$ so that $B_{nn}^n = (1/\lambda^2)(1+\lambda^2)\mu$, $B_{in}^n = -(1/\lambda)(1+\lambda^2)\xi_i$ for $1 \le i \le n$. We set $\bar{B} = B - (\Phi_*(\mu) + \Phi_*(\xi))$. Then $\bar{B} \in (\bar{g}_n)_{\varphi(\lambda,\hat{A})}$, $\bar{B}_{nn}^n = 0$ and \bar{B}_{in}^n

=0 for $1 \le i \le n$. Substituting $B = \overline{B}$ into (3.6), we have $\overline{B}_{ij}{}^n = 0$ for $1 \le i, j \le n-1$ and

$$\sum_{p=1}^{n} (\bar{B}_{ik}{}^{p}\hat{A}_{jl}{}^{p} + \hat{A}_{ik}{}^{p}\bar{B}_{jl}{}^{p} - \bar{B}_{il}{}^{p}\hat{A}_{jk}{}^{p} - \hat{A}_{il}{}^{p}\bar{B}_{jk}{}^{p}) = 0$$

for $1 \leq i, j, k, l \leq n-1.$

Thus if we set $\hat{B}_{ij}^{k} = (1/\sqrt{1+\lambda^2})\bar{B}_{ij}^{k}$ for $1 \leq i, j, k \leq n-1$, then $\hat{B} = (\hat{B}_{ij}^{k})_{1 \leq i, j, k \leq n-1} \in (\bar{g}_{n-1})_{\hat{A}}$ and $\bar{B} = \Phi_{*}(\hat{B})$. Hence we have $B = \Phi_{*}(\mu) + \Phi_{*}(\hat{B}) + \Phi_{*}(\xi)$. Q.E.D.

Proof of Proposition 3.2. We proceed by induction on n. It is easy to see that the proposition holds for n=1. We now assume that the proposition holds n-1 with $n \ge 2$. Then there exists an open set \hat{U} in $\mathbb{R}^{(n-1)^3}$ such that:

(1') $\overline{\mathscr{G}}_{n-1} \cap \hat{U}$ is a $\frac{1}{2}n(n-1)$ -dimensional submanifold of $\mathbb{R}^{(n-1)^3}$.

(2') For each $\hat{A} \in \overline{\mathscr{G}}_{n-1} \cap \hat{U}$, there exists a vector $x = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}$ having the following property:

If $\hat{B} = (\hat{B}_{ij}^{k})_{1 \leq i,j,k \leq n-1} \in (\bar{g}_{n-1})_{\hat{A}}$ and $B \neq 0$, then

$$\sum_{p=1}^{n-1} x_k B_{ij}^{k} \neq 0 \qquad \text{for some } (i,j) \ (1 \leq i, j \leq n-1)$$

(3') dim $(\bar{\mathfrak{g}}_{n-1})_{\hat{A}} = \frac{1}{2}n(n-1)$ for any $\hat{A} \in \overline{\mathscr{G}}_{n-1} \cap \hat{U}$.

Let us take any $\lambda_0 \in \mathbf{R}_*$, $\hat{A}_0 \in \overline{\mathscr{G}}_{n-1} \cap \hat{U}$ and a sufficiently small open set \tilde{U} in $\mathbf{R}_* \times (\overline{\mathscr{G}}_{n-1} \cap \hat{U}) \times \mathbf{R}^{n-1}$ containing $(\lambda_0, \hat{A}_0, 0)$. In view of Lemma 3.3, we know that the differential Φ_* of at $(\lambda_0, \hat{A}_0, 0)$ is injective. Hence we may assume that the restriction $\Phi_{1\tilde{U}}: \tilde{U} \to \mathbf{R}^{n3}$ of the map Φ to \tilde{U} is an imbedding. Because of the assumption (1'), the image $\Phi(\tilde{U})$ of \tilde{U} forms $a \frac{1}{2}n(n-1)$ -dimensional submanifold of \mathbf{R}^{n3} . Moreover we know $(\bar{g}_n)_{\varphi(\lambda_0, \hat{A}_0)} = T_{\varphi(\lambda_0, \hat{A}_0)}\Phi(\tilde{U})$. We now notice the following

Lemma 3.4. Let f_1, \dots, f_r be differentiable functions on a manifold M and let \mathscr{V} be the subvariety of M defined by the system of equations $f_1 = \dots = f_r = 0$. Assume that there is a submanifold S of M and a point $p \in S$ such that

(i) $S \subset \mathscr{V}$;

(ii) $T_p(S) = \{x \in T_p(M) | df_1(x) = \cdots = df_r(x) = 0\}.$

Then there exists a neighborhood U of p in M such that $\mathscr{V} \cap U = S \cap U$.

The proof of the lemma is left to the readers.

By virtue of Lemma 3.4, we know that there exists an open neighborhood U of $\varphi(\lambda_0, \hat{A_0})$ in \mathbb{R}^{n^3} such that $\overline{\mathscr{G}}_n \cap U = \Phi(\tilde{U}) \cap U$. This implies (1) of the proposition.

Next we show (2). Let $A \in \overline{\mathscr{G}}_n \cap U$. Since $A \in \Phi(\hat{U})$, we may write $A = \varphi(\lambda, \hat{A})^{\exp \xi}$ by using a suitable $(\lambda, \hat{A}, \xi) \in \tilde{U}$. Hence, in order to show (2), it suffices to deal with the case $A = \varphi(\lambda, \hat{A})$. Let $\hat{x} = (\hat{x}_1, \dots, \hat{x}_{n-1}) \in \mathbb{R}^{n-1}$ be the vector stated in (2'). We may assume that $|\hat{x}_i| \ll 1$ for $1 \le i \le n-1$. We define $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ by $x_i = \hat{x}_i$ for $1 \le i \le n-1$ and $x_n = 1$. Let us show the vector x defined above has the property stated in (2). Let $B = (B_{pq}^r)_{1 \le p, q, r \le n} \in (\bar{g}_n)_{\varphi(\lambda, \hat{A})}$ and suppose $\sum_{r=1}^n x_r B_{pq}^r = 0$ for any (p, q) $(1 \le p, q \le n)$. By using the decomposition $B = \Phi_*(\mu) + \Phi_*(\hat{B}) + \Phi_*(\xi)$ in Lemma 3.3 and the formulas (**) for $\Phi_*(\mu)$, $\Phi_*(\hat{B})$, $\Phi_*(\xi)$, we have

(3.10)

$$\sum_{k=1}^{n-1} \{\lambda(\hat{x}_{j}\delta_{ik} + \hat{x}_{i}\delta_{jk} + \hat{x}_{k}\delta_{ij}) - \sqrt{1 + \lambda^{2}}\hat{A}_{ij}^{k}\}\xi_{k} + \left(\delta_{ij} + \frac{\lambda}{\sqrt{1 + \lambda^{2}}}\sum_{k=1}^{n-1} \hat{x}_{k}\hat{A}_{ij}^{k}\right)\mu + \sqrt{1 + \lambda^{2}}\left(\sum_{k=1}^{n-1} \hat{x}_{k}\hat{B}_{ij}^{k}\right) = 0 \quad \text{for} \quad 1 \leq i, j \leq n-1;$$

(3.11)
$$-\frac{1}{\lambda}(1+\lambda^2)\sum_{j=1}^{n-1}\left(\delta_{ij}+\frac{\lambda}{\sqrt{1+\lambda^2}}\sum_{j=1}^{n-1}\hat{x}_k\hat{A}_{ij}^k\right)\xi_j+\hat{x}_i\mu=0$$
for $1\leq i\leq n-1$;

(3.12)
$$\mu - \lambda \sum_{k=1}^{n-1} \hat{x}_k \xi_k = 0.$$

Since $|\hat{x}_i| \ll 1$, it follows from (3.11) and (3.12) that $\mu = \xi_1 = \cdots = \xi_{n-1} = 0$. Hence by (3.10) we have $\sum_{k=1}^n \hat{x}_k \hat{B}_{ij}^k = 0$ for any $1 \le i, j \le n-1$. Therefore by the assumption (2'), we obtain $\hat{B} = 0$. This completes the proof of (2).

Finally we show (3) of the proposition. As in the proof of (2), we may assume $A = \varphi(\lambda, \hat{A})$. Let $C = ({}^{s}C_{pq}{}^{r})_{1 \leq p,q,r,s \leq n} \in (\bar{\mathfrak{g}}_{n}^{(1)})_{\varphi(\lambda,\hat{A})}$. For each s $(1 \leq s \leq n)$, we denote by ${}^{s}C$ the element of $\mathbb{R}^{n^{s}}$ given by ${}^{s}C = ({}^{s}C_{pq}{}^{r})_{1 \leq p,q,r \leq n}$. Clearly we have ${}^{s}C \in (\bar{\mathfrak{g}}_{n})_{\varphi(\lambda,\hat{A})}$ for $1 \leq s \leq n$. By Lemma 3.3, there exist ${}^{s}\mu \in \mathbb{R}$, ${}^{s}\hat{B} \in (\bar{\mathfrak{g}}_{n-1})_{\hat{A}}$ and ${}^{s}\xi \in \mathbb{R}^{n-1}$ such that

 $^{s}C = \Phi_{*}(^{s}\mu) + \Phi_{*}(^{s}\hat{B}) + \Phi_{*}(^{s}\xi).$

Since ${}^{s}C_{pq}{}^{r} = {}^{p}C_{sq}{}^{r}$, we have

(3.13)
$${}^{i}\mu = -\lambda^{n}\xi_{i}$$
 for $1 \leq i \leq n-1$;

(3.14)
$${}^{j}\xi_{i} = \frac{\lambda}{\sqrt{1+\lambda^{2}}} \left(\sum_{l=1}^{n-1} {}^{n}\xi_{l} \hat{A}_{ij}{}^{l} - \frac{1}{\sqrt{1+\lambda^{2}}} {}^{n}\mu \delta_{ij} \right) \quad \text{for} \quad 1 \leq i, j \leq n-1;$$

(3.15)
$${}^{n}\hat{B}_{ij}{}^{k} = -\frac{\lambda}{\sqrt{1+\lambda^{2}}} (2^{n}\xi_{i}\delta_{jk} + {}^{n}\xi_{j}\delta_{ik} + {}^{n}\xi_{k}\delta_{ij}) - \frac{\lambda}{\sqrt{1+\lambda^{2}}} \left(\sum_{p,q=1}^{n-1} {}^{n}\xi_{q}\hat{A}_{iq}{}^{p}\hat{A}_{jk}{}^{p}\right)$$
for $1 \le i, j, k \le n-1;$

(3.16)
$${}^{i}\hat{B}_{ij}{}^{k} - {}^{i}\hat{B}_{lj}{}^{k} = \frac{\lambda}{\sqrt{1+\lambda^{2}}} ({}^{i}\xi_{j}\delta_{lk} + {}^{i}\xi_{k}\delta_{lj} - {}^{l}\xi_{j}\delta_{ik} - {}^{l}\xi_{k}\delta_{ij}) + \frac{\lambda}{1+\lambda^{2}} ({}^{i}\mu\hat{A}_{lj}{}^{k} - {}^{l}\mu\hat{A}_{ij}{}^{k}) \quad \text{for} \quad 1 \leq i, j, k, l \leq n-1.$$

Here we set

(3.17)
$$\frac{{}^{l}\hat{B}_{ij}{}^{k} = -\frac{\lambda}{\sqrt{1+\lambda^{2}}} (2^{l}\xi_{i}\delta_{jk} + {}^{l}\xi_{j}\delta_{ik} + {}^{l}\xi_{k}\delta_{ij})$$
$$-\frac{\lambda}{\sqrt{1+\lambda^{2}}} \left(\sum_{p,q=1}^{n-1} {}^{l}\xi_{p}\hat{A}_{ip}{}^{q}\hat{A}_{jk}{}^{q}\right) \quad \text{for} \quad 1 \leq i, j, k, l \leq n-1.$$

Then by (3.13) and (3.14) we have ${}_{0}^{l}\hat{B} = ({}_{0}^{l}\hat{B}_{ij}^{k})_{1 \le i,j,k \le n-1} \in (\bar{g}_{n-1})_{\hat{A}}$ for $1 \le l \le n-1$ and ${}^{l}\hat{B}_{ij}^{k} - {}_{0}^{l}\hat{B}_{ij}^{k} = {}^{i}\hat{B}_{ij}^{k} - {}_{0}^{i}\hat{B}_{ij}^{k}$ for $1 \le i, j, k, l \le n-1$. Hence if we set

(3.18)
$${}^{l}\hat{C}_{ij}{}^{k} = {}^{l}\hat{B}_{ij}{}^{k} - {}^{l}_{0}\hat{B}_{ij}{}^{k}$$
 for $1 \leq i, j, k, l \leq n-1$,

then $\hat{C} = ({}^{l}\hat{C}_{ij}{}^{k})_{1 \le i,j,k,l \le n-1} \in (\bar{g}_{n-1}^{(1)})_{\hat{A}}$. By these arguments we know that any $C \in (\bar{g}_{n}^{(1)})_{\varphi(\lambda,\hat{A})}$ can be completely determined by ${}^{n}\eta \in \mathbf{R}$, $\hat{C} \in (\bar{g}_{n-1}^{(1)})_{\hat{A}}$ and ${}^{n}\xi = ({}^{n}\xi_{1}, \cdots, {}^{n}\xi_{n-1}) \in \mathbf{R}^{n-1}$. Conversely it is clear that these variables are independent. Hence we have

$$\dim (\bar{\mathfrak{g}}_n^{(1)})_{\varphi(\lambda,\hat{\mathfrak{A}})} = 1 + \frac{1}{2}n(n-1) + n - 1 = \frac{1}{2}n(n+1).$$

This completes the proof the of the proposition.

Q.E.D.

§4. The proof of Theorem 3.1

As in the previous section, we shall fix an orthnormal basis $\{e_a\}_{0 \le a \le n}$ (resp. $\{v_i\}_{1 \le i \le n}$) of T (resp. N). As usual every $\sigma \in o(T)$ (resp. $\rho \in o(N)$) can be represented by a skew symmetric matrix $(\sigma_a^{\ b})_{0 \le a, b \le n}$ (resp. $(\rho_i^{\ j})_{1 \le i, j \le n}$) with respect to $\{e_a\}$ (resp. $\{v_i\}$).

Let $A \in \overline{\mathscr{G}}_n$. By α_A , we mean the element of $\overset{\circ}{\mathscr{G}}$ corresponding to A. Let us define a map $\psi : \mathfrak{o}(N) \times \overline{\mathscr{G}}_n \times \mathbb{R}^n \to S^2 T^* \otimes N$ by

$$\psi(\rho, A, \tau) = \exp \rho \alpha_A^{\exp \tau} \qquad \text{for } (\rho, A, \tau) \in \mathfrak{o}(N) \times \overline{\mathscr{G}}_n \times \mathbb{R}^n,$$

where for each $\tau = (\tau_1, \dots, \tau_n)$ we denote by $\tilde{\tau}$ the element of $\mathfrak{o}(T)$ such that

$$\tilde{\tau} = \begin{pmatrix} 0, \tau_1, \cdots, \tau_n \\ -\tau_1 \\ \vdots \\ -\tau_n \end{pmatrix}.$$

Note that since $\alpha_A \in \mathring{\mathscr{G}}$, we have $\psi(\rho, A, \tau) \in \mathscr{G}$. Let us denote by $\psi_* = \psi_{*(0,A,0)}$ the differential of ψ at $(0, A, 0) \in o(N) \times \overline{\mathscr{G}}_n \times \mathbb{R}^n$, where 0 means the zero matrix of degree *n* or the vector $(0, \dots, 0) \in \mathbb{R}^n$. Naturally the tangent space to the variety $o(N) \times \overline{\mathscr{G}}_n \times \mathbb{R}^n$ at (0, A, 0) may be identified with the direct sum $o(N) \oplus (\overline{\mathfrak{g}}_n)_A \oplus \mathbb{R}^n$. Hence ψ_* induces a linear map of $o(N) \oplus (\overline{\mathfrak{g}}_n)_A \oplus \mathbb{R}^n$ into $S^2 T^* \otimes N$. We also denote it by ψ_* .

Let $\rho = (\rho_i^{\ j})_{1 \leq i,j \leq n} \in \mathfrak{O}(N)$, $B = (B_{ij}^{\ k})_{1 \leq i,j,k \leq n} \in (\bar{\mathfrak{g}}_n)_A$, and $\tau = (\tau_1, \dots, \tau_n) \in \mathbb{R}^n$. It is noted that the vectors $\psi_*(\rho)$, $\psi_*(B)$ and $\psi_*(\tau)$ in $S^2 T^* \otimes N$ are necessarily contained in $\mathfrak{g}_{\alpha,i}$. In terms of coefficients they are represented as follows:

$$\begin{aligned} \psi_{*}(\rho)_{00}{}^{k} &= 0, \quad \psi_{*}(\rho)_{0i}{}^{k} = \delta_{ik}, \quad \psi_{*}(\rho)_{ij}{}^{k} = \sum_{l=1}^{n} \rho_{l}{}^{k}A_{ij}{}^{l}; \\ (***) \qquad \psi_{*}(B)_{00}{}^{k} &= \psi_{*}(B)_{0i}{}^{k} = 0, \quad \psi_{*}(B)_{ij}{}^{k} = B_{ij}{}^{k}; \\ \psi_{*}(\tau)_{00}{}^{k} &= -2\tau_{k}, \quad \psi_{*}(\tau)_{0i}{}^{k} = -\sum_{l=1}^{n} \tau_{l}A_{li}{}^{k}, \quad \psi_{*}(\tau)_{ij}{}^{k} = \tau_{i}\delta_{jk} + \tau_{j}\delta_{ik} \\ \text{for} \quad 1 \leq i, j, k \leq n. \end{aligned}$$

Eiji Kaneda

Lemma 4.1. For each $\beta \in \mathfrak{g}_{a_A}$, there exists a unique $(\rho, B, \tau) \in \mathfrak{o}(N) \oplus (\overline{\mathfrak{g}}_n)_A \oplus \mathbb{R}^n$ such that

$$\beta = \psi_*(\rho) + \psi_*(B) + \psi_*(\tau).$$

Proof. We first assume that $\psi_*(\rho) + \psi_*(B) + \psi_*(\tau) = 0$ for some $(\rho, B, \tau) \in \mathfrak{O}(N)$ $\oplus(\bar{\mathfrak{g}}_n)_A \oplus \mathbb{R}^n$. Then by (***), we immediately have $\rho = B = \tau = 0$. This proves the uniqueness. We next show the decomposition. Let $\beta \in \mathfrak{g}_{a_A}$ and let $\tilde{B} = (\tilde{B}_{ab}^k)_{\substack{0 \le a, b \le n \\ 1 \le k \le n}}^{0 \le a, b \le n} \in \mathbb{R}^{n(n+1)^2}$ be the coefficients of β . Take $\tau = (\tau_1, \dots, \tau_n) \in \mathbb{R}^n$ so that $\tau_k = -\frac{1}{2}\tilde{B}_{00}^k$ for $1 \le k \le n$. We set $\bar{\beta} = \beta - \psi_*(\tau)$. Since $\bar{\beta} \in \mathfrak{g}_{a_A}$, we have $\Omega_{*a_A}(\bar{\beta}) = 0$, i.e.,

(4.1)
$$\langle \overline{\beta}(x, z), \alpha_A(y, w) \rangle + \langle \alpha_A(x, z), \overline{\beta}(y, w) \rangle - \langle \overline{\beta}(x, w), \alpha_A(y, z) \rangle \\ - \langle \alpha_A(x, w), \overline{\beta}(y, z) \rangle = 0 \quad \text{for } x, y, z, w \in T.$$

Let $(\bar{B}_{ab}^{\ b})_{\substack{0 \le a,b \le n \\ 1 \le k \le n}}$ be the coefficients of $\bar{\beta}$. By the choice of τ , we have $\bar{B}_{0b}^{\ c} = 0$ for $1 \le i \le n$. Thus if we put $x = e_0$, $y = e_i$, $z = e_0$, $w = e_j$ $(1 \le i, j \le n)$ into (4.1), then we obtain $\bar{B}_{0i}^{\ c} + \bar{B}_{0j}^{\ c} = 0$. Let us set $\rho = (\bar{B}_{0i}^{\ c})_{1 \le i, j \le n}$ and set $\hat{\beta} = \bar{\beta} - \psi_*(\rho) = \beta - (\psi_*(\tau) + \psi_*(\rho))$. Since $\rho \in o(N)$, we have $\hat{\beta} \in g_{aA}$. Hence

(4.2)
$$\begin{array}{c} \langle \dot{\beta}(x,z), \alpha_A(y,w) \rangle + \langle \alpha_A(x,z), \dot{\beta}(y,w) \rangle - \langle \dot{\beta}(x,w), \alpha_A(y,z) \rangle \\ - \langle \alpha_A(x,w), \dot{\beta}(y,z) = 0 \quad \text{for } x, y, z, w \in \mathbf{T}. \end{array}$$

Let $\mathring{B} = (\mathring{B}_{a,b}^{k})_{\substack{0 \le a,b \le n \\ 1 \le k \le n}}$ be the coefficients of $\mathring{\beta}$. Then we have $\mathring{B}_{00}^{k} = \mathring{B}_{0i}^{k} = 0$ for $1 \le i$, $k \le n$. By this relation, the equation (4.2) may be reduced to the system of equations:

$$\hat{B}_{ij}{}^{k} = \hat{B}_{ik}{}^{j}; \qquad \sum_{p=1}^{n} (\hat{B}_{ik}{}^{p}A_{jl}{}^{p} + A_{ik}{}^{p}\hat{B}_{jl}{}^{p} - \hat{B}_{il}{}^{p}A_{jk}{}^{p} - A_{i}{}^{lp}\hat{B}_{jk}{}^{p}) = 0$$

for $1 \leq i, j, k, l \leq n.$

Thus if we set $B = (\hat{B}_{ij}^{k})_{1 \le i,j,k \le n}$, we have $B \in (\bar{g}_{n})_{A}$ and $\hat{\beta} = \psi_{*}(B)$. Hence we have $\beta = \psi_{*}(\rho) + \psi_{*}(B) + \psi_{*}(\tau)$. Q.E.D.

These being prepared, we start the proof of Theorem 3.1. Let U be the open set in \mathbb{R}^{n^3} stated in Proposition 3.2. Let $A_0 \in \overline{\mathscr{G}}_n \cap U$. By Lemma 4.1. we know that the differential ψ_* of ψ at $(0, A_0, 0)$ is injective. Taking a sufficiently small open neighborhood \tilde{O} of $(0, A_0, 0)$ in $\mathfrak{o}(N) \times (\overline{\mathscr{G}}_n \cap U) \times \mathbb{R}^n$, we may assume that the restriction of the map ψ to \tilde{O} is an imbedding. Therefore the image $\psi(\tilde{O})$ of \tilde{O} forms an n(n-1)-dimensional submanifold of $S^2T^* \otimes N$. Note that $\overline{\mathscr{G}}_n \cap U$ is a $\frac{1}{2}n(n-1)$ dimensional submanifold of \mathbb{R}^{n^3} . Moreover we know $g_{\alpha_{A_0}} = T_{\alpha_{A_0}}\psi(\tilde{O})$. Hence by Lemma 3.4, there exists an open neighborhood O of α_{A_0} in $S^2T^* \otimes N$ such that $\mathscr{G} \cap O$ $= \psi(\tilde{O}) \cap O$. This shows (1) of the theorem.

Next we show (2) of the theorem. Let $\alpha \in \mathscr{G} \cap O$. Since $\alpha \in \psi(\overline{O})$, we may write $\alpha = \psi(\rho, A, \tau)$ by using suitable $(\rho, A, \tau) \in o(N) \times (\mathscr{G}_n \cap U) \times \mathbb{R}^n$. Hence in order to show (2), it suffices to deal with the case where $\alpha = \psi(0, A, 0) = \alpha_A$. Since $A \in \overline{\mathscr{G}}_n \cap U$ there exists a vector $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ satisfying (2) of Proposition 3.2. Here we may assume that $|x_i| \ll 1$ for $1 \le i \le n$. We set $e = e_0 + \sum_{i=1}^n x_i e_i$. Then

we can see that the vector e satisfies the condition in (2). In fact, let us suppose $e \, \lrcorner \, \beta = 0$ for some $\beta \in g_{\alpha_{a}}$. Then by using the decomposition $\beta = \psi_{*}(\rho) + \psi_{*}(B) + \psi_{*}(\tau)$ in Lemma 4.1. and the formulas (***), we have

(4.3)
$$-2\tau_{k} + \sum_{i=1}^{n} x_{i} \left(\rho_{i}^{k} - \sum_{j=1}^{n} \tau_{j} A_{ji}^{k} \right) = 0 \quad \text{for} \quad 1 \leq k \leq n;$$

(4.4)
$$\rho_{i}^{k} - \sum_{j=1}^{n} \tau_{j} A_{ji}^{k} + \sum_{j=1}^{n} x_{j} \left(\tau_{j} \delta_{ik} + \tau_{i} \delta_{jk} + \sum_{l=1}^{n} \rho_{l}^{k} A_{ji}^{l} \right) + \sum_{j=1}^{n} x_{j} B_{ji}^{k} = 0 \quad \text{for} \quad 1 \leq i, k \leq n.$$

The equation (4.3) and the skew symmetric part of (4.4) with respect to the pair (i, k) form a system of homogeneous linear equations with variables τ_i , ρ_j^k $(1 \le i, j, k \le n)$. Since $|x_i| \ll 1$ it follows that $\tau_i = \rho_j^k = 0$ for $1 \le i, j, k \le n$. Hence we have $\sum_{j=1}^n x_j B_{ji}^k = 0$ for any $1 \le i, k \le n$. Therefore we obtain $B_{ji}^k = 0$ for any $1 \le i, j, k \le n$. This shows $\beta = 0$.

Finally we show (3) of the theorem. As in the proof of (2), we may assume that $\alpha = \alpha_A$. Let $\gamma \in \mathfrak{g}_{\alpha_A}^{(1)}$. Since $e_s \, \, \, \downarrow \gamma \in \mathfrak{g}_{\alpha_A}$ for $0 \leq s \leq n$, there are ${}^s\rho = ({}^s\rho_i{}^s)_{1 \leq i,j \leq n} \in \mathfrak{o}(N)$, ${}^sB = ({}^sB_{ij}{}^k)_{1 \leq i,j,k \leq n} \in (\overline{\mathfrak{g}}_n)_A$ and ${}^s\tau = ({}^s\tau_1, \dots, {}^s\tau_n) \in \mathbb{R}^n$ such that $e_s \, \, \, \downarrow \gamma = \Psi_*({}^s\rho) + \Psi_*({}^s\tau)$. Then, by the relation $e_i \, \, \downarrow \gamma = e_s \, \, \downarrow e_i \, \, \downarrow \gamma$ for $1 \leq s, t \leq n$, we have

(4.5)
$${}^{i}\tau_{k} = \frac{1}{2}{}^{0}\rho_{k}{}^{i} + \frac{1}{2}\sum_{j=1}^{n}{}^{0}\tau_{j}A_{jk}{}^{i}$$
 for $1 \leq i, k \leq n$;

(4.6)
$${}^{i}\rho_{j}{}^{k} - \sum_{l=1}^{n}{}^{i}\tau_{l}A_{lj}{}^{k} = {}^{0}\tau_{i}\delta_{jk} + {}^{0}\tau_{j}\delta_{ik} + \sum_{l=1}^{n}{}^{0}\rho_{l}{}^{k}A_{ij}{}^{l} + {}^{0}B_{ij}{}^{k} \quad \text{for} \quad 1 \leq i, j, k \leq n;$$

(4.7)
$$\begin{array}{c} {}^{l}B_{ij}{}^{k} - {}^{i}B_{lj}{}^{k} = \frac{1}{2} ({}^{0}\rho_{i}{}^{i}\delta_{jk} + {}^{0}\rho_{i}{}^{j}\delta_{ik} + {}^{0}\rho_{i}{}^{k}\delta_{jl}) - \frac{1}{2} ({}^{0}\rho_{i}{}^{i}\delta_{jk} + {}^{0}\rho_{i}{}^{j}\delta_{lk} + {}^{0}\rho_{i}{}^{k}\delta_{jl}) \\ + \frac{1}{2} \sum_{p,q=1}^{n} {}^{0}\rho_{p}{}^{q} (A_{lk}{}^{p}A_{ij}{}^{q} - A_{ik}{}^{p}A_{lj}{}^{q}) \quad \text{for} \quad 1 \leq i, j, k, l \leq n. \end{array}$$

From (4.6) we obtain

(4.8)
$${}^{i}\rho_{j}{}^{k} = \frac{1}{2}({}^{0}\tau_{j}\delta_{ik} - {}^{0}\tau_{k}\delta_{ij}) + \frac{1}{2}\sum_{l=1}^{n}({}^{0}\rho_{l}{}^{k}A_{ij}{}^{l} - {}^{0}\rho_{l}{}^{j}A_{ik}{}^{l});$$

(4.9)
$${}^{0}B_{ij}{}^{k} = -\frac{1}{2} ({}^{0}\tau_{j}\delta_{ik} + {}^{0}\tau_{k}\delta_{ij} + 2{}^{0}\tau_{i}\delta_{jk}) - \frac{1}{2} \sum_{p,q=1}^{n} {}^{0}\tau_{q}A_{qi}{}^{p}A_{jk}{}^{p} - \frac{1}{2} \sum_{p=1}^{n} ({}^{0}\rho_{p}{}^{k}A_{ij}{}^{p} + {}^{0}\rho_{p}{}^{j}A_{ik}{}^{p} + {}^{0}\rho_{p}{}^{i}A_{pj}{}^{k}) \quad \text{for} \quad 1 \leq i, j, k \leq n.$$

We set

(4.10)
$$\begin{split} {}^{l}_{0}B_{ij}{}^{k} &= -\frac{1}{2}({}^{l}\tau_{j}\delta_{ik} + {}^{l}\tau_{k}\delta_{ij} + 2{}^{l}\tau_{i}\delta_{jk}) - \frac{1}{2}\sum_{p,q=1}^{n}{}^{l}\tau_{q}A_{qi}{}^{p}A_{jk}{}^{p} \\ - \frac{1}{2}\sum_{p=1}^{n}({}^{l}\rho_{p}{}^{k}A_{ij}{}^{p} + {}^{l}\rho_{q}{}^{j}A_{ik}{}^{p} + {}^{l}\rho_{p}{}^{k}A_{pj}{}^{k}) \quad \text{for} \quad 1 \leq i, j, k, l \leq n. \end{split}$$

Then we have ${}_{0}^{l}B = ({}_{0}^{l}B_{ij}{}^{k})_{1 \le i,j,k \le n} \in (\bar{g}_{n})_{A}$ for $1 \le l \le n$. Moreover by (4.5), (4.7) and (4.8) we obtain ${}^{l}B_{ij}{}^{k} - {}_{0}^{l}B_{ij}{}^{k} = {}^{i}B_{lj}{}^{k} - {}_{0}^{i}B_{lj}{}^{k}$ for $1 \le i, j, k, l \le n$. Let us set

(4.11)
$${}^{l}C_{ij}{}^{k} = {}^{l}B_{ij}{}^{k} - {}^{l}_{0}B_{ij}{}^{k}$$
 for $1 \leq i, j, k, l \leq n$.

Then we have $C = ({}^{l}C_{ij}{}^{k})_{1 \le i,j,n,l \le n} \in (\bar{\mathfrak{g}}_{n}^{(1)})_{A}$. Therefore any $\gamma \in \mathfrak{g}_{aA}^{(1)}$ can be completely determined by ${}^{0}\rho = = ({}^{0}\rho_{i}{}^{j})_{1 \le i,j \le n} \in \mathfrak{O}(N)$, $C = ({}^{l}C_{ij}{}^{k})_{1 \le i,j,k,l \le n} \in (\bar{\mathfrak{g}}_{n}^{(1)})_{A}$ and ${}^{0}\tau = ({}^{0}\tau_{1}, \cdots, {}^{0}\tau_{n}) \in \mathbb{R}^{n}$. Conversely it is clear that these variables are independent. Hence we have dim $\mathfrak{g}_{aA}^{(1)} = \frac{1}{2}n(n-1) + \frac{1}{2}n(n+1) + n = n(n+1)$. Thus we have completed the proof of Theorem 3.1.

§ 5. Isometric immersions of the spaces of negative constant curvature

Let (M, g) be the space of constant curvature of dimension *n* with sectional curvature k < 0. Then at each $p \in M$, we have

$$-g(R(x, y)z, w) = k\{g(x, z)g(y, w) - g(x, w)g(y, z)\}$$

for x, y, z, w \in T_p.

Moreover we have $\nabla R \equiv 0$ on M.

We now show the following

Theorem 5.1. If m=2n-1, then there exists an open fibered submanifold π_1^2 : $P_*^{(1)} \rightarrow P$ of the vector bundle π_1^2 : $P^{(1)} \rightarrow P$ such that the intersection $Q_* = Q \cap P_*^{(1)}$ forms an involutive differential equation.^(**)

Proof. Let $\alpha \in P$ and let V be a sufficiently small neighborhood of α in P. From the local triviality of the vector bundle $\pi: N \to P$, we may assume that $\pi^{-1}(V)$ is isomorphic to the vector bundle $V \times N$, where $N = N_a$. Furthermore we may assume that the isomorphism gives an isometric isomorphism between each fiber of $\pi^{-1}(V)$ and N. (Note that since each fiber of the vector bundle $\pi: N \to P$ is a subspace of R^{2n-1} , it is endowed with an inner product.) Similarly the restriction $T_{|x^1|,(v)}$ of the tangent bundle T = T(M) to $\pi_{-1}^1(V)$ may be assumed to be isomorphic to the bundle $\pi_{-1}^1(V) \times T$, where we set $T = T_p$. We may assume that the isomorphism gives an isometric isomorphism between each fiber of $T_{|\pi^1-1(v)}$ and **T** with respect to the given Riemannian metric g. Under these observations the restriction $P_{|v|}^{(1)}$ of the vector bundle $\pi_1^2: P^{(1)} \rightarrow P$ to V may be considered to be isomorphic to the bundle $V \times S^2 T^* \otimes N$. By this isomorphism the set $Q \cap (\pi_1^2)^{-1}(V)$ is mapped onto $V \times \mathscr{G}(G_k)$ (see the equation (1.8)). Hence there exists an open set O in $S^2T^*\otimes N$ having the property stated in Theorem 3.1. By O_{α} we denote the open set in $P^{(1)}$ that corresponds to the open set $V \times O$ in $V \times S^2 T^* \otimes N$. For any $\alpha \in P$, we take such an open set O_{α} in $P^{(1)}$ and set $P_{\sharp}^{(1)} = \bigcup_{\alpha \in P} O_{\alpha}$. Then it is clear that $\pi_1^2: P_{\sharp}^{(1)} \to P$ forms an open fibered submanifold of the vector bundle $\pi_1^2: P^{(1)} \to P$. We set $Q_i = Q \cap P_i^{(1)}$ and

^(**) For the definition of involutive differential equations, see [8] or [4].

 $Q_{*}^{(1)} = Q^{(1)} \cap (\pi_{2}^{3})^{-1}(P_{*}^{(1)})$. Then we can easily verify that Q_{*} forms a fibered submanifold of the vector bundle $\pi_{1}^{2}: P^{(1)} \rightarrow P$. Hence Q_{*} is a differential equation. In order to show the involutiveness of Q_{*} , we must show the following:

- (a) The map $\pi_2^3: Q_{\sharp}^{(1)} \to Q_{\sharp}$ is surjective.
- (b) The union $q^{(1)} = \bigcup_{\beta \in Q_*} q_{\beta}^{(1)}$ is a vector bundle over Q_* .
- (c) For each $\beta \in Q_{\sharp}$, the symbol q_{β} of Q_{\sharp} at β is involutive.

Proof of (a). Let $\beta = (p; \omega_0, \omega_1, \omega_2) \in Q_*$. Let us define $\overline{\omega}_3 \in \bigotimes^3 T_p^* \bigotimes \mathbb{R}^{2n-1}$ by setting

$$\langle \overline{\omega}_3(w, z, x), \omega_1(y) \rangle = -\langle \omega_2(z, x), \omega_2(w, y) \rangle,$$

 $\langle \overline{\omega}_3(w, z, x), n \rangle = 0 \qquad \text{for } x, y, z, w \in T_p, n \in N_a(\alpha = \pi_1^2(\beta)).$

Then we have $\gamma = (p; \omega_0, \omega_1, \omega_2, \overline{\omega}_3) \in J^3(M, m)$ and $\pi_2^3(\gamma) = \beta$. Moreover since $\nabla R \equiv 0$ we have $\gamma \in Q_{\sharp}^{(1)}$ (see the equations (1.9) and (1.10)). Hence the map $\pi_2^3: Q_{\sharp}^{(1)} \to Q_{\sharp}$ is surjective.

Proof of (b) and (c). Let $\beta = (p; \omega_0, \omega_1, \omega_2) \in Q_{\sharp}$. We set $\alpha = \pi_1^2(\beta)$. We may assume $\beta \in O_{\alpha}$. Then by the definitions of the vector spaces q_{β} and $q_{\beta}^{(1)}$, we have $q_{\beta} = g_{\omega_2}$ and $q_{\beta}^{(1)} = g_{\omega_2}^{(1)}$ (Note that we are assuming $T = T_p$ and $N = N_{\alpha}$.) Since dim N =dim T - 1 = n - 1, we have dim $q_{\omega_2}^{(1)} = \dim g_{\omega_2}^{(1)} = n(n-1)$. This indicates that the union $q^{(1)} = \bigcup_{\beta \in Q_*} q_{\beta}^{(1)}$ is a vector bundle over Q_* . We next show (c). Since $\beta \in O_{\alpha}$, there exists a vector $e \in T = T_p$ such that $e \perp \xi \neq 0$ for any $\xi \in q_{\beta}; \xi \neq 0$. Then we can easily see that any basis $\{e_1, \dots, e_n\}$ of $T = T_p$ such that $e_1 = e$ is regular for the symbol q_{β} . Hence q_{β} is involutive. Thus we have completed the proof of Theorem 5.1. Q.E.D.

Note that any space of constant curvature is a real analytic Riemanian manifold. Then the varieties P, $P^{(1)}$, $Q^{(1)}$ and Q are also considered to be real analytic. We can easily see that Theorem 5.1 still holds if we consider everything in the real analytic category. Then Q_{\sharp} forms a real analytic differential equation. From the existence theroem of local solutions of real analytic involutive differential equations (cf. [8], [4]) follows

Theorem 5.2. Any space of negative constant curvature of dimension n can be locally isometrically immersed into the euclidean space \mathbb{R}^{2n-1} .

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

Bibliography

- D. Blanuša, Über die Einbettung hyperbolischer Räume in euklidische Räume, Monatsch. Math. 59 (1955), 217-229.
- [2] E. Cartan, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math. 6 (1927), 1-7.
- [3] J. Gasqui, Sur l'existence d'immersions isometriques locales pour les variétés riemanniens, J. Diff. Geom. 10 (1975), 61-84.

Eiji Kaneda

- [4] H. Goldschmidt, Integrability criteria for systems of non linear partial differential equations, J. Diff. Geom. 6 (1972), 357-373.
- [5] M. Janet, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math. 5 (1926), 38-43.
- [6] E. Kaneda and N. Tanaka, Rigidity for isometric imbeddings, to appear in J. Math. Kyoto Univ.
- [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry II, Wiley-Interscience, New York (1969).
- [8] M. Kuranishi, Lectures on involutive systems of partial differential equations, Publ. Soc. Mat. São Paulo (1967).
- [9] T. Otsuki, Isometric imbedding of Riemannian manifolds in a Riemannian manifold, J. Math. Soc. Japan 6 (1954), 221-234.
- [10] N. Tanaka, Rigidity for elliptic isometric imbeddings, Nagoya Math. J. 51 (1973), 137-160.

Added in proof: After submitting this paper, the author knew the following classical work:

E. Cartan, Sur les variétés de courbure constante d'un espace euclidien ou noneuclidean, Oeuvres complètes, Partie III, vol. 1, Gauthier-Villars, Paris, 1955.