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Introduction

In his paper [9], T. Otsuki obtained an estimate for the lower bound of the
dimensions of the euclidean spaces in which a  space of negative constant curvature
can be locally isometrically immersed. He proved that any space of negative con-
stant curvature of dimension n  cannot be isometrically immersed into the euclidean
space R2 " - 2 .

The main purpose of this paper is to show the following

Theorem 5 .2 .  A ny space of negative constant curvature of dimension n can be
locally isometrically immersed into the euclidean space R " - '.

We wish to prove this theorem by a  method based on the theory of non-linear
partial differential equations established by M. Kuranishi [8] and H. Goldschmidt [4].

Let (M, g) be an n-dimensional Riemannian manifold. Let P be the differential
equation of isometric immersions of (M, g) into the euclidean space R"' with
which is a system of non-linear parital differential equations of order 1. Adjoining
to this system P the equation of Gauss-Weingarten which is obtained by differentiat-
ing the equation of isometric immersions, we obtain the system P ( "  of order 2, the
first prolongation of P .  Similarly adjoining to the system P ( 1 ) the equation which is
obtained by differentiating the equation of Gauss-Weingarten, we obtain the system
of order 3, the second prolongation of P. A formal solution of order 1 can be
always be extended to a formal solution of order 2, while a formal solution of order
2 cannot be necessarily extended to a  formal solution of order 3. There exists an
obstruction to extending the formal solutions of order 2 to the formal solutions of
order 3, which is called the equation of Gauss.

Recently J . Gasqui [3] gave a new proof of the famous theorem of Janet-
Cartan, showing that the system Q which is obtained by adjoining the equation of
Gauss to the system P " ) forms an involutive system under the assumption m >
ln(n+1). Another proof of the theorem of Janet-Cartan from a somewhat different
viewpoint was delivered by N. Tanaka in his lecture a t Kyoto University before
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Gasqui's paper was published (cf. [6]). He proved that the symbol q of the system
Q is isomorphic to the second prolongation b") of the sym bol of the linear operator
L which was first introduced by himself (see [10]), and proved that if m  in(n -I- 1),
then at each generic point of Q the sym bol is involutive. Here we remark that the
vanishing of the Spencer cohomology group of the symbol plays an important role
in his proof of the theorem of Janet-Cartan.

In this paper we need to investigate the system Q  under the assumption
m <ln(n+ 1). Unfortunately the symbol cannot be involutive in this case. Hence
the method developed by N. Tanaka cannot be applied to our problem. However,
by letting (M, g) be a space of negative constant curvature, we can prove the following

Theorem 5 .1 .  If  m=2n —1, then there exists an open fibered subrnanifold P P
—4' of the vector bundle P")-->P such that the intersection Q,=Q n P " )  form s an

involutive differential equation.

Theorem 5.2 cited above now follows from Theorem 5.1.
Following the formulations given by N. Tanaka, we recall in § 1 the differential

equations P, P" ) , etc. In § 2, we define the formal Gaussian variety with respect to
a curvature like tensor. § 3 and § 4  are devoted to the proof of Theorem 3.1 that
describes the properties of the formal Gaussian variety with respect to a curvature
like tensor of negative constant curvature. Finally in § 5 we prove Theorem 5.1.

The author would like to express his gratitude to Professor N. Tanaka for his
kind advices and constant encouragements.

§  1 .  The differential equations associated with isometric immersions

Let M  be an n-dimensional differentiable manifold ( * ) and let T = T (M ) (resp.
T * =T *(M )) be the tangent (resp. cotangent) bundle of M . By V T* (resp. SkT*),
we mean the bundle of k-tensors (resp. symmetric k-tensors) on M .  Let g  be a
Riemannian metric on M .  We denote by 17 (resp. R) the covariant differentiation
(resp. the curvature tensor) associated with the Riemannian connectoin on M  in-
duced from g.

Let R I "  be the m-dimensional euclidean space with m ..n  and < , > be the
standard inner product of R m .  We denote by g  the cannonical Riemannian metric
of R I" induced from < , >.

By definition an isometric immersion f of the Riemannian manifold (M, g) into
the euclidean space R'" is an immersion of M  into I r  which is a solution of the
equation

f

where f  *g stands for the Riemannian metric on M induced from g by f.
Let f  be an isometric immersion of (M, g )  into R m  . Then at each p E  M, we

have the following equalities (cf. Proposition 2 of Appendix in [6]):

( * )  Throughout this paper we shall assume the differentiability of c la s s  C .
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(1.1) <17sf,17„f>=g(x, y),

(1.2) <17117 f, 17 y f> = 0,

(1.3) <172,171175 f, <17,17x f ,  1 7 .17 f > = 0,

(1.4) <vj75f, 17 .17 ,f> — <V.17 xf, 17,17,f> = — g(R(z, u)x, y),

<17 ,17
2 17 5  J;17 .F,f>+<17 z17 s f, > —  <17 ,17 .17

x .f, 17 ,17 , f>
— <17. 175 flU 2Fvf>=  — g(17R(z, u)x, y) for x, y , z, u, u  E

Classically the equation (1.2) (resp. (1.4)) is called the equation of Gauss-W eingarten

(resp. the equation of Gauss).
Let Jk(M, m) be the vector bundle of all k-jets of local differentiable maps of

M  into R m . By 7r _ 1  we mean the canonical projection of Jk(M, ni) onto J ' ( M ,  m)
and by irk_i  the source map of Jk (M, m) onto M . As usual the set of formal solutions
of order k are represented by a subvariety of P (M , m ) .  We denote by P the sub-
variety of .11(M, m) composed of all 1-jets satisfying the equation (1.1) and by P "'
the subvariety of .12(M, m) composed of all 2-jets satisfying the system of equations
(1.1) and (1.2). We also denote by Q the subvariety of P (M , m) composed of all
2-jets satisfying the system of equations (1.1), (1.2) and (1.4) and by Q" ) the sub-
variety of P (M , n i) composed of all 3-jets satisfying the system of equations (1.1)—
(1.5). Note that Pm  (resp. Q (" )  is the first prolongation of P  (resp. Q) in the usual
sense.

We now give the explicit expressions of the varieties P, p»>, Q and Q" ) .
Let Ok T*Ø/V be the vector bundle of all Rm-valued k-tensors on M .  Let us

set Tk(M, m)= 0  T * ()R m . We shall represent every element w E Tk(M, m) by
(0=(P; wo, WI, •  •  •  , WO, where p is the origin of co and wi  E  O i  T;;ORm (i=05 15 • • • 5
k ) .  As in Appendix in [6], we shall consider the vector bundle Jk(M, m) as a sub-
bundle of the vector bundle Tk(M , m ). We have J°(M , m )=T°(M , m) and P(M, m)
= T '(M , m ).  The bundles P (M , n i) and P (M , n i) can be characterized as follows:
J 2(M, m) consists of all (p; a,„ w 1 , 0)2 ) E T 2 (M, m) such that

(x, y)=a) 2 (y, x) for any x ,  y E

P (M , m) consists of all (p ; (0 0 , oh, (02, oh) E r (M , n i) such that

(1); coo, (015 E J 2 (M , / 71) ;

co,(x, y, z)=a),(y, x, z)— ai i (R(x, y)z),

a),(x, y, z)=o),(x, z, y) for any x, y, z E T .

These being prepared, we give the explicit expressions of the varieties P, P"), Q
and Q" ) .

The variety P is composed of all (p; oh, 0,1) E J'(M , ni) satisfying

(1.6) <0),(x), ai i (y )>=g(x, y) for any x, y e  T .

(1.5)
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It is easily observed that P is a fibered submanifold of r  1 : P (M ,  m )  M . Let a =

(P; wo, (00 E P .  We mean by N  orthogonal complement of the subspace o 1(T 9 )
in R .  T h en  the union N = U ,„  N „  forms a vector bundle over P.

The variety P m  is composed of all (P; w 0 , oh, oh) e .12 (M, m) satisfying (p;
oh) E P and

(1.7) <0)2(z, x), (01(.0> = 0 for any x, y, z E  T i ,.

We can easily see that P '"  forms a vector bundle over P  which is isomorphic to the
vector bundle S2 T *0 , N.

Analogously the variety Q consists of all (p; oh, co„ oh) E Pm  satisfying

<co2(z, x), oh(u, y)> — <w2 (u, x), oh(z, y)>= — g(R(z, u)x, y)

for any x, y, z, u E  T9 ,

and the variety V" is composed of all (p; w 0 , oh, co„ oh) e .13 (M, m) satisfying (p; oh,

co„ oh) E  Q and

(1.9) <Wu, z, x), w1(y)>+ <0),(z, x), co, (u, y)> =0,

<0)3(v, z, x), (02(u, A> ± <0 4z, x), 0)3(v, u, Y)> < 0 )3(v u, x), a)2(z, Y)>
— <oh(u, x), oh(v, z, y)>= --g(17 2 R(z, u)x, y) for any x, y, z, u, y E  T9 .

In the subsequent sections we shall mainly concerned with the variety Q .  In
connection with the variety Q we make some definitions.

Let 13= (p; co„ co„ oh) e Q .  By definition the sym bol (1,, of the variety Q at 13 is
the subspace of S2 T:O N, consisting of all e E SzT:gN„ such that

<(z, x), (02(u, Y)>+ <(02(z, x), Y)>—<e(u, x), (0 2(z, Y)>
—<(02(u, x), (z , y)> = 0 for any x, y, z, u E  T9 ,

where we set a ---7r;.( 19). We also denote by q(
9' ) the f irst prolongation of the symbol

qi„ i.e., 6 ' ) =T*® q 9 n S 3 T:ON„.

§  2 . Formal Gaussian varieties

Let T be a finite dimensional real vector space and T* be the dual vector space
of T .  By 0 0 T*(resp. S O T * )  we mean the vector space of covariant k-tensors (resp.
symmetric k-tensors) of T.

By definition an element C e T *  is called curv ature lik e if it satisfies the
following:

C(x, y, z, w)= —C(y, x, z, w)= — C(x, y , w, z),
C(x, y, z, w)+C(y, z, x, w)+C(z, x, y, w )= 0f o r  x, y, z, W E  T.

We denote by K(T) the vector space of all curvature like tensors.

(1.8)

(1.10)
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Let N be another finite dimensional real vector space with an inner product < , >.
For each a E S2T * O N , we denote by Q(a) the element in K(T) defined by

f)(a)(x, y, z, <a(x, z), a(y, <a(x, w), a(y, z)> for x, y, z, w E T.

Let C be any element in K (T ) .  By g(C ) we mean the inverse image of C  by
the map S 2 T *ON  9 a - 42(a) e K(T). g (C ) is called the formal Gaussian variety with
respect to C.

Let a E g ( C ) .  Define a linear map Q :  S 2 T*C)N— K(T) by setting

Q*.(p)(x , y , z, w) -= <gx, z), a(Y, 14 )> + <cv(x, z), wp

<P(x , w), a(Y, <tqx, w), P(Y,
for p e s2r*oN, x, y, z , w E T.

We denote by g„ the kernel of the map Q„, which may be identified with the tangent
space to the variety g(Q (a)) at a. We also denote by e  the first prolongation of
the subspace g„ of S 2 T *ON , i.e., g(2) = T*Og„ n T* O N

Let < , > be an inner product of T .  For each k E R let us define C, e K(T) by

Ck (x, y, z, w)=-k(<x, z><y, w> — <x, wXy, z>) for x, y, z, W E  T .

We say that Ck  is  the curvature like tensor of constant curvature with sectional
curvature k.

Let 0 (T ) (resp. 0 (N )) be the orthogonal group of T (resp. N ) with respect to
the given inner product < , > of T (resp. N ) and o(T) (resp. o(N)) be the Lie algebra
of 0(T ) (resp. 0(N)).

Let a e 0(N), t E 0(T), x E S IV O N  and C E K (T ). Let us define axt e S iT *ON

and Ct E K(T) by setting

ax t (xi, • • • , x ,)=a(x (tx i, • • • , txt))

Ct(x„ x„ x3 , x4 )= C(tx„ tx2 , tx 3 , tx4 ) for x „ • • x „  • • , x , E  T.

It is straightforward to see that if a e g(C ), then aat E ( e ) .  Similarly if p e g„
( re s p . e  e ) , then a t  e a t  (resp. art E g5).

Let us consider the case C = Ck .  Since Cfc = C, holds for any t E 0(T), we have

Proposition 2.1. The formal Gaussian variety g (CO is invariant under the action
of the product group 0 (N )X  0 (T ) on S 2 T *ON defined by

0(N )X  0(T)X  S 2 T*O N 3 ((a, t), a)-->.aat E S 2 V O N .

Proposition 2.1 is useful in the consideration of the formal Gaussian variety
g (CO.

§ 3 .  The formal Gaussian variety (C , ) with k<0

In this and the next sections we shall investigate the formal Gaussian variety



274 Eiji Kaneda

g (C k ) w ith  k < 0 . Our main aim is to show

Theorem 3.1. Assume that dim N  = dim T —1=n and k < 0 .  Then there exists
an open set 0  in S 2 T *O N  such that:

(1) 4?(Ck )( -10  is an n(n+1)-dim ensional subm anifold of SOT *®N.
(2) For each a E g(Ck )n 0 ,  there exists a vector e E T such that

e ] # 0 for any p E g,„ p

(3 )
 

dim g (
al>= n (n+  1) for any a E 1 (C 0 ) fl O.

Rem ark. In order to prove the theorem we have only to prove it in the case
where k =  — 1 .  In fact consider the linear endomorphism of SzT*ON given by
SzT*ON — k a E S zT * O N .  It is clear that this endomorphism maps g(C _ ,)

onto g (C k ). Moreover we have ga = g , / and hence g a
( ' ) =g;%,,.

In the following we shall simply write g  instead of g ( C , ) .

Let fea l, „g ,, (resp. be an orthonormal basis of T (resp. IV). Making
use of these basis, we shall express N-valued covariant tensors of T in terms of their
coefficients. Let x  E CY VON. Define an element X=(X aki

" ic d7z
az)osa i a z g n  E

by

X 14 ,• • • ,a z  <X(eal , • • • 5 e.1) , yk> f o r  O ci„ • • •, a1 < n , 1 < k < n .

Let a E g  and let A =(ika0)05a,0gn E R n ( n + 1 ) 2  be  the coefficients of a .  Then we
1Z1c5n

have

(3.1) Aabk= Aba k ,

(3.2) E (A ac P A i l ac/ P A b c P ) —  - - ( 8 a.c 6 bd  ( 3 a d 6 b c )
p=1

for b , c ,  d <n , 1 <k <n ,

where 3 means the Kronecker's delta. Conversely, it is clear that any a E  0 2 VO N
whose coefficients A =(A a b k)o g n s a t is f y  ( 3 .1 )  and (3.2) is contained in g .

W c 7 i

Let a E g .  Assume that a satisfies the following

( # ) a(e„ e 0) =0 , c e (e 0 , e i )= 1 ) f o r  1 < i < n .

Then we have Aoo
kA 0 =  ô 0 for l i, k n. Hence by (3.1) and (3.2) we obtain

(3.3) A ijk =A jsk =A ik i,

(3.4) p=1
E (A ik P A p p — A „P A (ô 0ô 1 a aj k p , —

i k - -

for k ,

Let us denote by the set of all a satisfying (#) and by  g. „ the subvariety of R" 8 of
all A =(A ii k ) i , , i , E Rn' satisfying the system of equations (3.3) and (3.4). Clearly
we can identify g  and -g .„ in a natural way.
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Let A =(A i j kE  n• BY  ( g n ) e l ,  .we mean the vector space of all B =
(B„k),, i d ,„„ E  R n 3  such that

(3.5) B ijk=B i,k=B iki,

7I

E ( B i k P A B P + A . P B , , P - B i l l )  A i k P A „ P  B  k l=  0
P= 1

for l i , j , k , 1<n.

Naturally (M A  may be idetified with the tangent space to the subvariety g n a t  A.
We also denote by (O A  the vector space of all C = ( t Cii k)16t,j,k,i n E  Rn 4 such that

(3.7) =

(3.8)

(3.9) E e c i k P A p P + A i k P q c i l P  — q C il P  A jk r  — A i l P °Ci ,P)=0
P 1

for j, k , 1<n.

We prove

Proposition 3.2. There exists an open set U of Rn 3 such that:
(1) g n n U  is a in(n+1)-dimensional submanifold of R '.
(2) For each A E Y n n  U, there exists a v ector x =(x „ • • , x n ) E Rn having the

following property:
If B =(B i i lk, k 5 n  E  ( B n ) A  and B *0 , then

E x k B i j k for some (i, j)
P= 1

( 3 )  dim (C )A = In (n +  1) for any A E  g n n U.

Before proceeding to the proof of Proposition 3.2, we first note the following.
Let be an orthogonal m atrix , i.e ., EZ= 1 ak

i ak
i = 3 "  and let X =

E R a 8  and Y— ( t

Y j j
k), J ,k ,i n e R a4 .  Define X a  — E Rn 3

and Y a  ( 1( E R a4 by setting

—  E  ai nai gak rX p g ' ,
p,q ,r =1

E  a1sa iPa51a17 s Y „ r f o r  1 j, k ,
p,q,r,s= 1

By simple calculations we know that if A E  g n  then Aa  E  g n  and that if B E ( .)A
(resp. C E ODA), then Ba E  ( f l ) A ' 8  (resP. C a  E

From now on let us assume that 2 and n 1 ± 9 $ .  Let A E  R ,=  R  — {0} and
let 4 = (Â i j k) E  g n _ i . Define an element v)(A 11) (W(2 , E R "  by

v,(2, 4 ) , j k= ,v1 + 2 2,4- t i k,

(3.6)
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( * ) 442, 4 )ii n =SD(2 , =ça(2, Â),,'= 2o,

ço(2 , )i)nn' =WO, = 542 , inn =0, 40(2, , i)n„" = 2— 1/2

for

It is easily observed that
 ç ( 2 ,

 Â) E g n . We now define a map 0: R * X  n X  R n

—*Rns by

0(2, 4 , 0=4 9(2 , Â)ex P for (2, Â, e

where, f o r  -=.(e„ • • • , E ,  w e m ean by the skew symmetric matrix of
the form:

el e n 0

Since w(2, Â) E g n , we have 0(2, Â, e) E g n . Let (2, Â) E R * X -g n _i . We denote by
0 * = 0 * (2 ,1,0) the differential of the map 0 at (A, Â, 0), where 0 means the zero vector
(0, • • • , 0) in Rn -1 . In a natural way, the tangent space the variety R * X  g 7, _, X Rn

at (2, Â, 0) may be identified with the direct sum R e ( g 2 2 - 2 ) 1 O R '.  Hence 0 * in-
duces a linear map of R ( f ir n -2)10R

n - i  into Ra'. We also denote it by 0 * .
Let p E R, Jj= ( E 022-2):4' 

a n d
 e= (12 • • •2 e nE  R " '. W e  note

that the vectors O ( p ) ,  * (B) and 0 (C )  in Rn' are necessarily contained in
By using the coefficients they are explicitly represented as follows:

0*(te)iik=(21A/ 1 + 2 2) t a i ik ,  0 * ( t i ) i i ' -- = too,
o* (p ),„ ' =  0 , = (1122)(1+  22)p ;
0 * ( 2),1k—A/1+22fio k,
0 4 6 ) i ,n= 0 * (11)1n .= 0 * (it n -= 0 ;
0 *(e)ii k = 2(e A /c+ e jaki+ eicat,),
o * (e),,,n= — 0+2 2 ( E 7)=2

0 (C)1 ==  ( 1 2)( 1 2 2 )e i, 0 *(e)2,22n  = 0 f o r  1

Lemma 3.3. For each B E (gOr(2,1), there exists a unique (p, e RC(22-2)1
R" 1 such that

B=0 * (p )±  0 (Ê )+ 0 (e ) .

P ro o f  We first suppose that 0 * (p)± 0 * (/1)± 0 * (0 =  0  for some (p, Ê ,  e) e R

C)(g7,_,) 2 C)Rn -" .  Then by (**) we can easily obtain p-= fl=e= O. This implies the
uniqueness. Next we show the decomposition. Let B=(B o

 k)lsi,,,ksn E Cgn),(2,I)• Take
p E R and e = 1, • • • , e n _ E -1  so that 13 nn n 22)(1 ± 22)P, B i n ? ' =  ( 112)(1 ± 2z)Œ2,
for 1.<i n . We set 1-3= B — (0 * CO+ 0 * (e )).  Then Be  On) r (2,1), B ,' = 0 and Bin'

—e,

( 0
—en -1)*
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= 0  for 1< i < n .  Substituting B = B  into (3.6), we have Bo n = 0  for 1< i, j<n—  1
and

E  (B ikP iii/ P -1 -4213— iiP — R u P ifikP -411P B ikP )=  0
p=1

f o r  1< i , j , k ,1 < n - 1 .

Thus if we set fi i i
k = (1 /1/ 1 ± /12 )B i i k  fo r 1< i, j ,  k  <n -1 , then E

( n
- 1) .A and B  = ,(1 1 ) . Hence we have B=0 ,(p)-1- ,(1:1)-F 0 * ( ) . Q.E.D.

Proof of Proposition 3.2. We proceed by induction on n .  It is easy to see that
the proposition holds for n = 1 .  We now assume that the proposition holds n - 1
with n> 2. Then there exists an open set CI in R 3 such that:

(1') n CI is a  in(n — 1)-dimensional submanifold of R 1 3 .
(2') F o r  each Â E g n  _1 rl U. ,  there exists a  vector x=  (x i , • • • , x , )  E Rn

having the following property:
If •fi ,k <n-1 E -1)A and then

n-1
E  x k B i j k# 0 for some (i, j) (1 <i, j<n—  1).
v=i

(3') dim (g ,,) 1 =1—n(n— 1) for a n y  A c  n 1n
Let us take any 20 E R ,, Â o E  g n _, n U and a sufficiently small open set U in R ,

X (g 7, 1 n C)xRn-' containing (2,, Â „ 0 ) .  In view of Lemma 3.3, we know that the
differential 0 ,  of at (2„ 4 0 , 0) is injective. Hence we may assume that the restriction
0 1 0 : (7--+R" of the map 0  to  CI is an imbedding. Because of the assumption (1'),
the image 0 (0 )  of CI forms a .in(n— 1)-dimensional submanifold of  R .  M oreover
we know (n ) p(2o,jo) T 9 9 (4 ,2 0 ) (1 - 7 ) •  We now notice the following

Lemma 3 .4 .  L et f1, • • • , f ,  be differentiable functions on a manifold M and let 1/'
be the subvariety of  M  defined by  the system of  equations f1 = • • • =f ,= 0. Assume
that there is a submanifold S of M and a point p E S such that

(i) S c 1 / . ;
(ii) T9 (S )={ x  E Tp (M )14f ,(x )= • • =df ,(x )=01.

Then there exists a neighborhood U of p in M such that 1/ -  (-1 U= S n U.

The proof of the lemma is left to the readers.
By virtue of Lemma 3.4, we know that there exists an open neighborhood U of

yo(20 , 4 0) in Rn 1 such that g n n u=o(0)n U .  This implies (1) of the proposition.
Next we show (2). Let A E g 7 i n U . Since A E OW ), we may write A= yo(2, Me x P

by using a suitable (2, Â, e) E U .  Hence, in order to show (2), it suffices to deal with
the case A = yo(2, A. ). Let 5e=(:i i , •  •  , E  R' 1 be the vector stated in (2'). We
may assume that 1 for 1 < i<n — 1. We define x=  (x i ,  • • • , xn ) E R n by
for 1<i<n—  1 and x„ = 1. Let us show the vector x  defined above has the property
stated in (2). L e t  B= (B p , ), 1 5 p , q , r 5 n  E  ( . ) (A ,2 )  and suppose E ; 1 x ,B 0 r = -0  for any
(p, q) (1 p ,  q  < n ) .  By using th e  decomposition B  =  .(p) + .(Ii) + 0 * (0 in
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Lemma 3.3 and the formulas (**) for 0 * (p), 0 * (f?), 0 * ( e ) ,  we have

n-1
E {2( iia ik - Hi'15jk+-ikôlj) Al 1+  2 2 4

 ij
k

}
k=1

2 n_i
+  + E 1/1 +22 (E l0

A/ 1 ± 2 2 k - 1 k = i

f o r  1<i, j<n —1;

n-1 n-1
(3.11) — 10 i=1.+ 2 2 )  E  (au+ — E xkA ok)e, =2 A/1+22

for 1 <i<n —1;

n-1
11 —  2  E x'kek=o.

k 1

Since j<1, it follows from (3.11) and (3.12) that p = e i = • • • =e„_,=0. Hence by
(3.10) we have E7k'=1 Aciji,k---0 for any j5 n  —  1 . Therefore by the assumption
(2'), we obtain Ê=0. T h is  completes the proof of (2).

Finally we show (3) of the proposition. As in the proof of (2), we may assume
A = ço(2, .  Let E (e ) , ( 2 ,1) . For each s (1 s  < n ) ,  we denote
by SC the element of R n 9  given by 8 C = ( 8 C p q r) 1 6 p ,q „ Clearly we have 8C E (gOv(2,1)
for 1 < s < n .  By Lemma 3.3, there exist 'It e R , 81  e 0.-1).1 and sE e Rn - '  such that

8C= 0 *( 8P)H-  0 *(8lb+  0 *(8e).

Since 8C„r --= P Cs q
r , we have

(3.13) f o r  1..<i5n— 1;

j e t  A / 1  2+ 22 (X  n e l A / 1 1 +  nP3ii)

— -(2nEiaik nek8ij) - E2 2  
( p i

n - 1

(3.15) +22 A/I ±2 z 
for 1<i, j, k<n —1;

(3.16)

Here we set

(3.17)

k k _  2  f t.&  \
t i - I 'a k u i j i

A/ 1 + 2 2

• 1±22
( p Â 1 j

k - 1114, 1 k ) for 1  i,j, k, 1<_n —1.

— 2 - P i eidik+ V ik - 1- è A i)/1+2 2

2 n-1

1-  / 1 + 2 2 I P A iP a A ik g ) f o r  1 j, k, 1<n — 1.

(3.10)

(3.12)

(3.14) f o r  1<i, j<n —1 ;
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Then by (3.13) and (3.14) we have !BF 1„_ E -1 ) .1  for 1 1 n -1  and
o h —  i k  for j ,  k , l<n  — 1 . Hence if we set

(3.18) l e i i k  _ 1  i j k f o r  1<i, j, k , l<n —  1,

then ( 161 — z (C21)1. By these arguments we know that any C E
can be completely determined by ny) E R, C  E  ("C ) I  and ne = ( nel, • • • • 'l e .- ) E  R n  •
Conversely it is clear that these variables are independent. Hence we have

dim (A- T), ( ,,I ) = 1  ±  n(n —  1) n —  1 = in(n + 1) .

This completes the proof the of the proposition. Q.E.D.

§ 4. The proof of Theorem 3.1

As in the previous section, we shall fix an orthnormal basis le a j o , a , „  (resp.
{v1}1 .) of T (resp. N ) . As usual every a E  o(T) (resp. p e o(N)) can be represented
by a skew symmetric matrix ( 0 ' . 5 ) 0 . , b 5 n

 (resp. (p i l) i i ,j „) with respect to {e a } (resp.

Iva).
Let A E g n . By a , ,  we mean the element of 4  corresponding to A .  Let us

define a m ap *: o(N)X - „ X Rn--,5 2 T*ON by

qr(p, A, r)--- exp pa,eiP for (p, A, r) e o(N )X  n X Rn,

where for each r • • • , •r„) we denote by the element of o(T) such that

13, r 1, • • • , r„

=

\

t 7 r
'(

)

— r.

Note that since a, e 4. , we have ilr(p, A, z) e g .  Let us denote by ilr
r  *=**(0,A ,0) the

differential of *  at (0, A, 0) e o(N) X g ,  x /2 " , where 0 means the zero matrix of
degree n  or the vector (0, • • • , 0) E R n .  Naturally the tangent space to the variety

o(N) X g n X R n  a t (0 , A, 0) may be identified with the direct sum o(N)C ,(gOa C)Rn.
Hence * *  induces a linear map of o(N)0(gO a C)Rn into SzT*ON. W e also denote
it by **.

Let p—(pi .1)1 1 ,i ,, e o(N ), B =(B ij k )1 2,j,lt n e ( ,JA , an d  z =(r, - - • , r„) e R " .
It is noted that the vectors * * (p), * * (B) and * * (r) in S 2 T*ON are necessarily con-
tained in g,,A • I n  terms of coefficients they are represented as follows:

* * ( p ) o o k  = 0 ,  * * ( p ) o i k = a i k ,  * * ( p ) i i k= i  pikAz i z;

**(Moo' =**(B)oi k  =0, **(B )id k = Bb /';

**(r)ook = —2r k, **(r)oi k = — E r 1A 1 , *(r)ii k =riaik ±r
1=1

for j , k <n .
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Lemma 4 . 1 .  For each p E g„,, there exists a unique (p, B, r) e 0(N)e(an)AIOR n

such that

= k*(P) - HP '*(B ) - **(r).

P ro o f. We first assume that lr * ( p ) d -  * (B )+A ir * ( z ) =  0 for some (p, B, r) E 0 (N )

0 0 0 A O R n .  Then by (***), we immediately have p=B=T =O . This proves the
uniqueness. We next show the decomposition. Let p e  g  and let fi=- (17.bk)?R n
e R n ( n + " ' be the coefficients of p .  Take r =  (r„  • • r n) E Rn so that r k =  — R  for
1 _<_1( n. We set 13 - 13 —* * (r). Since p E g„, we have Q 4 (p)= 0, i.e.,

<13(x5 CYA(Y, 14))>+ <crA (x, z), Ay, — 0(x, w), A (y, z)>
— <cr,(x, w), Ay, z)> = 0 f o r  x, y, z, WE T.

Let ( B a 0 k ) 0 S a , b 5 n  
be the coefficients of p. By the choice of r ,  we have 13- 0 0

1' = 0  for
n

I Thus if we put x= e 0 , y=e,, z=e„ w = (1 j- n) into (4.1), then we
obtain B„.1 -1- A V =  O . Let us set p=(130 j -1) , , , , ,„  and set P-= p—* * (p)= p—(* * (r)
+ * * (p)). Since p e 0 ( N ) , we have P E g „ .  Hence

<(x,z), a AO', <ceA(x, z), <Ax, w), A (Y,

n
E (B i k PAI ,P +A / k —  1 3 2 A I j i k 1 =- 0

p=1
f o r  1:<_i,j,k,1<n.

Thus if we set B---( ij k ) is i , j ,k s n ,  we have B E (g ) A and g = / 1 ( B ) .  Hence we have

p—**(p)+**(B)-F**(1)- Q.E.D.

These being prepared, we start the proof of Theorem 3.1. L et U be the open
set in Rn'stated in Proposition 3 .2 . Let A, E g r1 U .  By Lemma 4.1. we know that
the differential * *  of *  a t (0, A„ 0) is  injective. Taking a sufficiently small open
neighborhood O of (0, A„ 0) in o(N) X (g. n (1) X R n , we may assume that the restric-
tion of the map *  to  O  is  an  imbedding. Therefore the image ,p,(60) of Ô forms
an n(n — 1)-dimensional submanifold of S 2 T * O N . Note tha t g n  n U is a  -in(n — 1)
dimensional submanifold of R n ' .  Moreover we know g„A o = T,„0*(6). Hence by
Lemma 3.4, there exists an open neighborhood 0 of crA o in  S 2 T*ON such that g n 0
= ( 0 ) n o .  This shows (1) of the theorem.

Next we show (2) of the theorem . Let a e  g n  O .  Since a e *(5), we may
write a =*(p, A, r )  by using suitable (p, A, r) E 0(N) X cn o x R n .  Hence in
order to show (2), it suffices to deal with the case where a = ip, (0, A, 0)= crA . Since
A E  g n n U there exists a  vector x= (x„ • • • , xn ) E R n  satisfying (2) of Proposition
3.2. Here we may assume th a t x,l< 1 for We set e= eo +  x i e , .  Then

(4.1)

(4.2)
— <aA(x, w), i3(y, z)--- 0 f o r  x, y, z, w E T.

Let È = (Ê a  b k )o g a  b5n be the coefficients of P. T h e n  w e  have h ook = h o ,k = 0 for 1< i,
16 7T-

k < n . By this relation, the equation (4.2) may be reduced to the system of equations:

f ;
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we can see that the vector e  satisfies the condition in (2). In fact, let us suppose
e  J  j3=0  for some p  e  g .  Then by using the decomposition 13= -* ,(p )- H  r,(B )±
* , ( r )  in Lemma 4.1. and the formulas (***), we have

(4.3) —2rk E r A j j k)= 0 f o r  1 < k < n ;

(4.4)
pik E x j Er i d i k + r k +

E x i B = o for 1 _< k < n.
=1

The equation (4.3) and the skew symmetric part of (4.4) with respect to the pair (i, k)
form a system of homogeneous linear equations with variables r i , p j k (1 < i, j,k < n ).
Since I x i l<  1 it follows that r i ---- p i k = 0  for 1S  j ,  Hence we have E7, XB I k
=0 for any 1 _< k < n .  Therefore we obtain B i i k = 0  for any 1 i, j ,  k < n .  This
shows p=0.

Finally we show (3) of the th e o re m . As in the proof of (2), we may assume that
c = a , .  Let r e  g .  Since es J  r e g„A  for 0 < s< n , there are ' p  = ('p ') e o(N),
8B= ( sB i j k ) i i, j,k 5 n  E (M A and 'v  = ( 'r , ,('ri, • • • , st n ) e R n  s u c h  t h a t  e , J *C O +

* ( 813)+T" * ('y ). Then, by the relation es J  es J  r=e, J e , J r for 1< s ,  t < n , we have

(4.5) 2, k 1 0
Pk -ri , A

 jk 1 f o r  1 < i, k < n ;
J=1

140 ' r t A t i k
(4.6) 2=1

= °1-i3ik °rJaik E fo r  1:<i, j,k<_n;

ijk = keP lia jk -F °P li3 ik+ °P ikaii)— iC P ila jk -F °P ij51k± °Pzk8.11)
(4.7)

-F i E  °Pp q (A1kP  A i i q — il i k PA, j q) f o r  1< i, j,k ,1 < n .

From (4.6) we obtain

(4.8) 1113.1k=  Wriaik —°Tkaii)+1 Ei=i

OB i i k_  y O r  j a i k +  k a i j + 2 0r i a  j  / 3 _ 1  E  o z., A a i pA i k p
(4.9)

-  E  cppkA i i P  ° P p .  Ai k P +' p p i A p j k ) f o r  1 j, k < n .
p,q=1

p= 1

We set

tA i k — — 1-e r ja ik  + irkaii +vria i k) E  I r q A q i P A jk p

poi=1
(4.10) -  E  (ip p kAi j P-F i p , 1 ,4, k P+ zp p

i Ap j
k ) f o r  1 j ,k , l< n .

p=1
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Then we have t,B=GB 0 k , 1 5 i , j , k 5 n  E  (g.),„ for Moreover by (4.5), (4.7) and
(4.8) we obtain /1 3 „j k___,f,B i j k _ iB i j k _ 1;25 for 1 i , j, k, 1_<_n. Let us set

(4.11) /131jk_tiB1k for 1 i, j,

Then we have C = K i i k E  ( C ) A •  Therefore any y E  ct 2, can be completely
determined by °p = E  0 (N ) , C = (' C  ) E (gD A  and °r=  ( ° r 1  • • • ,
Qr„) E R .  Conversely it is clear that these variables are independent. Hence we
have dim gr ,

(11 -= -In(n —  1)+i[ n (n  + 1 )  n  n (n + 1). T h u s  w e  have completed the
proof of Theorem 3.1.

§ 5 .  Isometric immersions of the spaces of negative constant curvature

Let (M , g) be the space of constant curvature of dimension n  with sectional
curvature k < O. T hen a t each  p E  M , we have

—g(R(x, y)z, w)-=k{g(x, z)g(y, w)—g(x, w)g(y, z)}

for x, y, z, iv E T .

Moreover we have FR -_=0 on M.
We now show the following

Theorem 5 .1 .  If m =2n—  1, then there exists an open fibered submanifold 4: Pr
—>-P of the vector bundle P " ) ---4 3  such that the intersection Q,=Q (1 P P  form s an
involutive differential equation.'")

P ro o f .  Let a e P  and let V  be a  sufficiently small neighborhood of a in  P.
From the local triviality of the vector bundle r: N  P ,  we may assume that 7r- '(V )
is isomorphic to the vector bundle Vx N, where F u r t h e r m o r e  w e  m a y  a s -
sume that the isomorphism gives an isometric isomorphism between each fiber of
n- '( V) and N .  (Note that since each fiber of the vector bundle ar: N—*P is  a  sub-
space of 122 1' 1, it is endowed with an inner product.) Similarly the restriction TH  i ( p)

of the tangent bundle T_—T(M) to  arl,(V ) may be assumed to be isomorphic to the
bundle r 1_1(V )XT, where we set We may assume that the isomorphism gives
an isometric isomorphism between each fiber of T 1,,1 1 ( 0 ) and T  with respect to the
given Riemannian metric g. Under these observations the restriction P i

(„1) of the
vector bundle 4: P - - ) .P  t o  V  may be considered to be isomorphic to the bundle
Vx S 2T*ON. By this isomorphism the set Q fl (4) -1 (V ) is mapped onto Vx  ( G 5 )
(see the equation (1.8)). Hence there exists an open set 0  in S 2 T *O N  having the
property stated in Theorem  3.1. By 0„ we denote the open set in P" ) that corre-
sponds to the open set V x 0 in V x ..52T * O N . For any a E P, we take such an open
set 0„ in P ) and set PP =  U „ „  O .  T h en  it is  c lea r  th a t 4 : P ) - ) .P  forms an
open fibered submanifold of the vector bundle 4: P ( ' ) —>P. We set Q ,=Q  n PP and

(**) For the definition of involutive differential equations, see [8] or [4].
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_ Q (i) ( 7 ,
)
_ N1) ,) Then we can easily verify that Q, forms a fibered submani-

fold of the vector bundle P " ) -->P. Hence Q, is a differential equation. In order
to show the involutiveness of Q„, we must show the following:

(a) The map 2.r: W - ) —)-Q, is surjective.
(b) The union q")= U 0 , Q # q (

p
1 ) is a vector bundle over Q .

(c) For each 13 E Q,, the symbol cip of Q, at p is involutive.

Proof  o f  (a). Let p= (P ; wo, (01, E Let us define co, E 0 3 T:®R z n  - 1  by
setting

<(-6 3(w z, x), wi(Y)> = < 04z, x), (02(w Y)>,

<ci),(w, z, x), n> = 0 for x, y, z, w E Tp , n EN Joe = rxp)).

Then we have r =(p; co„ w„ co„ co) E P(M, m) and 7r(T)=iS. Moreover since VR 0
we have r E QP)  (see the equations (1.9) and (1.10)). Hence the map 74: 0 ' ) —÷Q, is
surjective.

Proof of  (b) and (c). Let p=(p; w„ w„ w2) E Q .  W e  set a =  4 p ) .  We may
assume /3 e O . Then by the definitions of the vector spaces qp and qT, we have qp

=  6 1 ) -= (3.( '2 (Note that we are assuming T =7 ; and N = N e .) Since dim N =
dim T -1 = n — 1, we have dim e  =  dim e  =n(n — 1). This indicates that the union

U p E Q . 6 ' ) is a vector bundle over Q .  W e next show (c). Since p E 0,„ there
exists a vector e E T = T , such that e  e  for any e E qp; e*O. Then we can easily
see that any basis {e„ • • • , en } of T = Tp  such that e1 = e is regular for the symbol li p .
Hence cfp is involutive. Thus we have completed the proof of Theorem 5.1. Q.E.D.

Note that any space of constant curvature is a real analytic Riemanian manifold.
Then the varieties P , P , Q " ) and Q are also considered to be real analytic. We can
easily see that Theorem 5.1 still holds if we consider everything in the real analytic
category. Then Q, forms a real analytic differential equation. From the existence
theroem of local solutions of real analytic involutive differential equations (cf. [8], [4])
follows

Theorem 5 .2 .  A ny space of  negative constant curvature of dimension n can be
locally isometrically immersed into the euclidean space R2 n  I  .
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