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Introduction

Let k be a field complete with respect to a non-trivial non-Archimedean
valuation. In [Ber1], V. Berkovich introduced and, in [Ber2], extended a
new notion of a k-analytic space. The spaces from [Ber1] (called good in
[Ber2]) are characterized among those from [Ber2] by the property that
each point has an affinoid neighborhood (see Remark 2.7 for a translation
of this property to the language of rigid geometry). The main result of
this paper gives a criterion for a point of a k-analytic space to have an
affinoid neighborhood. As applications of the main result, we establish the
following two facts which were proven earlier by W. Lütkebohmert in [L]
under the assumption that the valuation on k is discrete: (1) given a proper
morphism f : X −→ Y between formal schemes locally finitely presented over
the ring of integers k◦, the induced morphism fη : Xη −→ Yη between their
generic fibers is proper; (2) given a separated closed morphism X −→ Y to
an affinoid space Y , for every affinoid domain U ⊂ X there extists a bigger
affinoid domain V ⊂ X such that U ⊂ Int(V/Y ) and U is a Weierstrass
subdomain of V .

In §1, we introduce for an abstract field k a category birk, whose ob-
jects are triples (X,K, f), where X is a connected quasi-compact and quasi-
separated topological space, K is a field over k, and f is a local homeomor-
phism from X to the Riemann-Zariski space PK of K, i.e., the set of all
valuations on K trivial on k. (Morphisms in birk are defined in the evident
way.) An object of birk as above is called affine if X is an open subset of PK

of the form {ν ∈ PK

∣∣f1, . . . , fn ∈ Oν}. A morphism (X, K, f) −→ (Y,L, g)
in birk is called proper if the canonical map X −→ Y ×PL

PK is bijective.
Beginning with §2, the ground field k is complete with respect to a non-

trivial non-Archimedean valuation, and all the k-analytic spaces considered
are assumed to be strictly k-analytic, as defined in [Ber2]. (Because of this
we, as a rule, suppress the word “strictly”.) Let k̃ be the residue field of k.

In §2 we construct a reduction functor Xx 7→ X̃x from the category of
germs of k-analytic spaces at a point to the category birek. This functor
has also a natural interpretation in terms of R. Huber’s adic spaces [H] (see
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Remark 2.6). The main result of §2 states that the reduction functor induces
a bijection between analytic subdomains of a k-germ Xx (i.e., equivalence
classes of germs of analytic subdomains of X at the point x) and open
quasi-compact subsets of its reduction X̃x.

In §3, we prove our main result which states that a k-germ Xx is good (i.e.,
the point x has an affinoid neighborhood in X) if and only if its reduction X̃x

is an affine object of birek. In §4, we prove that a morphism of k-germs f : Xx

−→ Yy is closed if and only if the corresponding morphism in birek, f̃ : X̃x −→
Ỹy, is proper. As a corollary (resp. in §5), we prove the generalization of the
first (resp. second) of W. Lütkebohmert’s results mentioned at the beginning
of the introduction. Notice that the proof in [L] is based completely on
M. Raynaud’s approach to rigid geometry and uses non-trivial results from
algebraic geometry, whereas our proof uses more or less standard analytic
tools.

The author expresses his deep gratitude to Professor V. Berkovich for the
attention to this work and useful advice.

§1. The category birk

In this section we consider the category birk (mentioned in the introduc-
tion) and related to it categories V ark and Birk.

The categories V ark and Birk are defined as follows. Objects of V ark

are triples (X ,K, η), where X is an integral scheme of finite type over k, K
is a field over k, and η is a k-morphism Spec(K) −→ X whose image is the
generic point of X (i.e., η corresponds to an embedding of the field R(X ) of
rational functions of X in K). A morphism φ : (X ,K, η) −→ (Y, L, ε) is a
pair of morphisms f : X −→ Y and i : Spec(K) −→ Spec(L) over k such that
f ◦ η = ε ◦ i. A morphism (f, i) is said to be separated (resp. proper) if f is
separated (resp. proper). It is said to be birational if f is proper and i is an
isomorphism. The family of birational morphisms admits calculus of right
fractions (see [GaZi]). The corresponding category of fractions is denoted
by Birk.

Furthermore, for a field K over k, let PK denote the set of all valuations
on K trivial on k and, for ν ∈ PK let Oν be the valuation ring of ν. One
endows PK with the weakest topology with respect to which all sets of the
form {ν ∈ PK

∣∣f ∈ Oν} are open. Given subsets X ⊂ PK and A ⊂ K, we
set X{A} = {ν ∈ X

∣∣f ∈ Oν for all f ∈ A}. Subsets of PK of the form
PK{f1, . . . , fn} are said to be affine.

1.1. Lemma. Given k-subalgebras A ⊂ B ⊂ K and an element f ∈ K,
one has

(i) PK{A[f ]} = PK{A}{f};
(ii) PK{A} = PK{B} if and only if B is integral over A.
Proof. (i) is trivial, and (ii) follows from the following well known fact:

the integral closure of a subalgebra A in K coincides with the intersection
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of all valuation subrings of K that contain A (see [Bou], ch. VI, §1, Th. 3).

For an object X = (X ,K, η) of V ark, let V al(X ) denote the set of pairs
(ν, φ), where ν ∈ PK and φ is a morphism Spec(Oν) −→ X compatible with
η. We endow V al(X ) with the weakest topology with respect to which the
canonical maps α : V al(X ) −→ X and β : V al(X ) −→ PK are continuous,
where α takes (ν, φ) to the image of the closed point of Spec(Oν) under
φ, and β takes (ν, φ) to ν. (Notice that the map α is surjective.) By the
valuative criterion of separatedness, X is separated if and only if the map
β is injective. It follows that, for such X , β is an open embedding and,
therefore, for an arbitrary X , β is a local homeomorphism. Furthermore,
let I(X ) denote the category whose objects are birational morphisms of the
form (ϕ, Id) : X ′ = (X ′,K, η′) −→ X and whose morphisms are the evident
ones. Notice that I(X ) is a filtered category.

1.2. Lemma. Given a finite subset S ⊂ K, there exists an object

X ′ = (X ′,K, η′) −→ X of I(X ) such that S is contained in the image of
R(X ′) in K and each element f ∈ S possesses the property that, for every
point x′ ∈ X ′, either f or f−1 is contained in the image of OX ′,x′ .

Proof. We may assume that S = {f}. Consider the morphism µ :
Spec(K) −→ P1

k which is a composition of the morphism Spec(K) −→ A1,
defined by the homomorphism k[T ] −→ K that takes T to f , and the canon-
ical embedding A1 −→ P1. It defines a morphism

η′ : Spec(K)
(η,µ)−→ X ×k P1

k

Let X ′ be the closure of the image of η′ (considered as a reduced scheme).
The canonical projection X ′ −→ X defines an object X ′ of I(X ) such that
f coincides with the image of an element g ∈ R(X ′) in K, and there is a
morphism X ′ −→ P1

k that takes the coordinate function of P1
k to g. It follows

that for any point x′ ∈ X ′ either g or g−1 is contained in OX ′,x′ .
1.3. Corollary. There is a canonical homeomorphism V al(X )→̃ lim

←−
I(X )

X ′.

Proof. By the valuative criterion of properness, given a point (ν, φ) ∈
V al(X ), the morphism φ : Spec(Oν) −→ X can be lifted in a unique way
to a morphism φ′ : Spec(Oν) −→ X ′ for each object X ′ −→ X of I(X ). In
this way one gets continuous maps from V al(X ) to all of X ′ and, therefore,
to their projective limit. Suppose we are given a point of the projective
limit, i.e., a compatible system of points x′ ∈ X ′ for all X ′ = (X ′,K, η′) ∈
Ob(I(X )). The morphisms η′ define embeddings OX ′,x′ ↪→ K. From Lemma
1.2 it follows that the union O of all OX ′,x′ ’s in K is a valuation ring in K.
It defines a point (ν, φ) ∈ V al(X ), i.e., we constructed a map from the
projective limit to V al(X ) which is inverse to the map we started with, and
is continuous.
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From Corollary 1.3 it follows that the space V al(X ) is quasi-compact and,
in particular, the spaces PK and their affine subsets are quasi-compact.
Since the latter form a basis of topology on PK , and since the map β :
V al(X ) −→ PK induces an open embedding of each open subset V al(X ′) ⊂
V al(X ) in PK , where X ′ is an open affine subscheme of X and X ′ =
(X ′,K, η), it follows that the space V al(X ) is quasi-separated, i.e., the in-
tersection of any two open quasi-compact subsets is quasi-compact.

Let now birk be the category whose objects are triples X = (X, K, φ),
where X is a connected quasi-compact and quasi-separated topological space,
K is a field over k, and φ is a local homeomorphism X −→ PK . A morphism
X = (X,K, φ) −→ Y = (Y, L, ψ) is a pair (h, i), where h is a continuous map
X −→ Y and i is a k-morphism Spec(K) −→ Spec(L) such that ψ◦h = i#◦φ,
where i# : PK −→ PL is the induced map. An object X = (X, K, φ) of birk

is said to be affine if φ induces a homeomorphism of X with an affine subset
of PK . If X = (X, K, φ) ∈ Ob(birk), then for any open quasi-compact sub-
set X ′ ⊂ X the triple (X ′,K, φ

∣∣
X′) is an object of birk. If the latter object

is affine, X ′ is said to be an affine subset of X.
Notice that the correspondence X 7→ (V al(X ),K, β) gives rise to a func-

tor EF : V ark −→ birk. Notice also that from the valuative criterion of
separatedness (resp. properness) it follows that a morphism X = (X , K, η)
−→ Y = (Y, L, ε) in V ark is separated (resp. proper) if and only if the map
V al(X ) −→ V al(Y) ×PL

PK is injective (resp. bijective). In this case the
above map is an open immersion (resp. a homeomorphism). In particular,
a birational morphism in V ark gives rise to an isomorphism in birk, i.e., the
functor EF is a composition of the canonical functor F : V ark −→ Birk with
a functor E : Birk −→ birk.

1.4. Proposition. The functor E is an equivalence of categories.
Proof. Let X = (X ,K, η) be an object of V ark, and let X = (X,K, β)

be its image in birk. Given elements f1, . . . , fn ∈ K, let X{f1, . . . , fn}
denote the preimage of PK{f1, . . . , fn} in X. If f1, . . . , fn are contained
in the image of R(X ), let X{f1, . . . , fn} denote the open subset of X that
consists of the points x such that f1, . . . fn are contained in the image of
OX ,x, and let X{f1, . . . , fn} denote the corresponding object of V ark. In
this case, the canonical map V al(X{f1, . . . , fn}) −→ X = V al(X ) identifies
the first set with an open subset of X{f1, . . . , fn}. We remark that if the
elements f1, . . . , fn possess the property of Lemma 1.2 (i.e., for every i and
every point x ∈ X , either fi or f−1

i is contained in the image of OX ,x), then
V al(X{f1, . . . , fn})→̃X{f1, . . . , fn}.

Let X = (X ,K, η) and Y = (Y, L, ε) be objects in V ark, and let X =
(X, K, φ) and Y = (Y, L, ψ) be their images in birk. To show that the
functor E is faithful, it suffices to prove, that the functor EF is, i.e. that the
canonical map HomV ark

(X ,Y) −→ Hombirk
(X, Y ) is injective. The latter

follows from surjectivity of the maps X −→ X and Y −→ Y and the fact that
any dominant morphism between integral schemes is uniquely determined
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by the embedding of their fields of rational functions and the map of their
underlying spaces. Furthermore, let X −→ Y be a morphism in birk. Take
a covering of Y by open affine subschemes Yi = Spec(Ai), 1 ≤ i ≤ m. (We
identify Ai with its image in L.) Set Yi = V al(Y i), then {Yi}1≤i≤m is an
open covering of Y . Let {Xj}1≤j≤n be an open affine covering of X, whose
image in Y refines {Yi}, i.e. the image of any Xj belongs to some Yi(j). Then
Xj→̃PK{fj,1, . . . , fj,lj} for some elements fj,p ∈ K, for any 1 ≤ j ≤ n, let
Bj be the subalgebra of K generated by k and fj,1, . . . , fj,lj . By enlarging
the set of elements {fj,p} we can achieve, that all algebras Bj are integrally
closed. Apply Lemma 1.2 to the set {fj,p}1≤j≤n,1≤p≤lj ⊂ K, we get an object
X ′ = (X ′,K, η′) −→ X of I(X ). By the construction, X ′ contains open affine
subschemes X ′

j , such that V al(X ′
j)→̃Xj ({X ′

j}1≤j≤n is a covering of X ′). The
maps fj,1, . . . , fj,lj : X ′

j → A1
k induce the map X ′

j → Spec(Bj). By Lemma
1.1, for any j the integral closure of the algebra Bj (by our assumption it
coincides with Bj) contains the image of Ai(j) in K. So for each j there is
a well defined and unique morphism from X ′

j to Yi(j) compatible with the
embedding of L to K. It induces a morphism from X ′

j to Y, and the system
of morphisms X ′

j −→ Y is compatible on joint intersections. The latter gives
rise to a morphism of schemes X ′ −→ Y and to a morphism X ′ −→ Y in V ark

whose image in birk is the morphism X −→ Y we started from. It follows
that the functor E is fully faithful.

Let now X = (X, K, φ) be an object of birk. Take a finite affine covering
{Xi}i∈I of X and, for each pair i, j ∈ I, an affine covering {Xi,j,l} of Xi ∩
Xj . We apply Lemma 1.2 to Z = (Spec(k), K, η), where η is the canonical
morphism Spec(K) −→ Spec(k), and to the finite set of all of the elements of
K that define the affine sets Xi and Xi,j,l, and we get an object Y = (Y,K, ε)
−→ Z of I(Z) such that if Yi and Yi,j,l are the open subschemes of Y defined
by the same elements that define the affine sets Xi and Xi,j,l, respectively,
then V al(Y i)→̃Xi and V al(Y i,j,l)→̃Xi,j,l. Finally, we glue the schemes Yi

along the subschemes ∪lYi,j,l. We get a scheme X and the corresponding
object X of V ark whose image in birk is isomorphic to X. Thus, the functor
E is essentially surjective.

Let K be a field over k, and let X be an open subset of PK . A Laurent
covering of X is a covering of the form {X{fε1

1 , . . . , fεn
n }}(ε1,...,εn)∈{±1}n ,

where f1, . . . , fn are non-zero elements of K. If the set X is affine, then all
of the above subsets are also affine.

1.5. Lemma. Any finite covering of X by open sets of the form
X{f1, . . . , fn} has a Laurent refinement.

Proof (see [BGR], §8.2.2). Suppose first that our covering is rational, i.e.,
it is of the form Ui = {X{f1

fi
, . . . , fn

fi
}}1≤i≤n, where f1, . . . , fn are non-zero

elements of K. We claim that the Laurent covering of X defined by the
elements gij = fi

fj
with 1 ≤ i < j ≤ n refines the above covering. Indeed, let
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V be a subset from the Laurent covering. It is defined by a choice of εij = ±1
for 1 ≤ i < j ≤ n. If 1 ≤ i, j ≤ n and i 6= j, we write i ≺ j if either i < j and
εij = 1, or i > j and εji = −1. This defines an ordering on the set {1, . . . , n}
(the ordering is non-strict, i.e. one may have i1 ≺ i2 ≺ · · · ≺ im ≺ i1 and
thus i1 ∼ i2 ∼ · · · ∼ im). Let i be the maximal element with respect to this
ordering. Then fj

fi
∈ Oν for all ν ∈ V , i.e., V ⊂ X{f1

fi
, . . . , fn

fi
}.

Thus, it suffices to show that any finite covering X = ∪m
i=1Ui by sets

of the form, given in the lemma, has a rational refinement. Removing, if
necessary, zeros and adding ones, we may assume that Ui = X{fi1, . . . , fin},
where fij are non-zero elements of K and fin = 1. Let J be the set of all
sequences j = (j1, . . . , jm) such that 1 ≤ ji ≤ n for all 1 ≤ i ≤ m and
max

1≤i≤m
{ji} = n. We claim that the rational covering of X defined by the

elements gj = f1j1 . . . fmjm refines the covering we started from. Indeed,
given j ∈ J , let i be such that ji = n. To verify the claim, it suffices to show
that the set Vj = X{gj′

gj
}j′∈J is contained in Ui. We have to check that,

given ν ∈ Vj, one has fik ∈ Oν for all 1 ≤ k ≤ n. The point ν is contained
in some Ul (we may assume that l 6= i) and, in particular, fljl

∈ Oν . On the
other hand, if j′ is the element of J with j′l = n and j′k = jk for k 6= l, then
gj′
gj

= 1
fljl

∈ Oν , and we get fljl
∈ O∗ν . If we are now given 1 ≤ k ≤ n, let

j′ be the element of J with j′i = k, j′l = n and j′p = jp for p 6= i, l. One has
gj′
gj

= fik
fljl

∈ Oν and, therefore, fik ∈ Oν .

1.6. Remark. One can define a notion of affine morphism in birk by
the condition that preimage of any affine subspace is affine. However as
the following example shows, this property is not local with respect to the
base. Consider two fields K = k(x) and L = k(x, y). Set X1 = PK{x},
X2 = PK{x−1}, X = X1 ∪X2 and Y1 = PL{x, xy}, Y2 = PL{x−1, x−1y},
Y = Y1∪Y2. We have a natural morphism f : Y −→ X such that f−1(X1) =
Y1 and f−1(X2) = Y2. Clearly X, X1, X2, Y1 and Y2 are affine, but it is
easily seen, that Y is not. For example, Y has no non-constant functions,
but Y 6= PL.

§2. The reduction functor

Beginning with this section the ground field k is a non-Archimedean field
with a non-trivial valuation. All of the k-analytic spaces, morphisms be-
tween them and their analytic domains considered are assumed to be strictly
k-analytic (i.e., we work with the category of strictly k-analytic spaces st-
k-An in the sense of [Ber2]).

Recall ([Ber2], §3.4) that the category Germs of germs of a k-analytic
space at a point is the localization of the category of punctual k-analytic
spaces with respect to the system of morphisms ϕ : (X, x) −→ (Y, y) that
induce an isomorphism of X with an open neighborhood of y in Y . The germ
corresponding to a punctual k-analytic space (X, x) will be denoted by Xx.



ON LOCAL PROPERTIES OF NON-ARCHIMEDEAN ANALYTIC SPACES 7

A germ Xx is said to be good if the point x has an affinoid neighborhood in
X. A morphism of germs ϕ : Xx −→ Yy is said to be separated (resp. closed)
if it is induced by a separated (resp. closed) morphism X ′ −→ Y , where X ′
is an open neighborhood of x in X.

Let Xx be a germ. One can define as follows an equivalence relation on
the set of analytic domains in X that contain the point x: X ′ is equivalent to
X ′′ if the intersection X ′∩X ′′ is a neighborhood of x in both X ′ and X ′′. An
equivalence class is said to be a subdomain of Xx. It will be denoted by X ′

x,
where X ′ is an analytic subdomain of X from the corresponding equivalence
class. One defines in the evident way on the set of subdomains of Xx the
inclusion relation and the operations of union and intersection. Notice that
any isomorphism of germs Xx→̃Yy gives rise to a bijection from the set
of subdomains of Xx to that of Yy, and this bijection commutes with the
inclusion relation and the union and intersection. Furthermore, assume that
Xx is a good germ. Then for a family of elements f = (f1, . . . , fn) ⊂ OX,x

we define a subdomain Xx{f} as the equivalence class of the subdomain
X ′{f} = {x ∈ X ′∣∣|fi(x)| ≤ 1, 1 ≤ i ≤ n} of X, where X ′ is an analytic
neighborhoods of x such that all fi come from analytic functions on X ′. If
Yx is a subdomain of Xx, we set Yx{f} = Yx ∩ Xx{f}. Our next purpose
is to define a functor Red: Germs −→ birek. For this we use results of M.
Raynaud ([Ray]) from his approach to rigid analytic geometry, which were
elaborated in [BL].

A formal Spf(k◦)-scheme is locally finitely presented if it has a locally finite
open covering by formal schemes of the form Spf(k◦{T1, . . . , Tn}/J). If in
addition it has no π-torsion (for π ∈ k◦◦ \ {0}), it is said to be admissible.
(The condition of a locally finite covering is added to the usual definition
from [BL] in order to define the generic fibre as an analytic space in the
sense of [Ber2].) Let Adm be the category of quasi-compact admissible
formal schemes over k◦. Such a formal scheme X has the special (or closed)
fiber Xs, which is a scheme of finite type over k̃, and the generic fiber Xη,
which is a compact (strictly) k-analytic space, see [Ber3]. (Recall that by
[Ber2], §1.6, the category of compact strictly k-analytic spaces is equivalent
to the category of quasi-compact quasi-separated rigid analytic spaces over
k, which are considered in [Ray] and [BL] as the generic fibers of quasi-
compact admissible formal schemes.) There is a surjective reduction map
Xη −→ Xs : x 7→ x̃. By [BL], Theorem 4.1, the correspondence X 7→ Xη

gives rise to an equivalence between the localization of the category Adm by
admissible formal blow-ups and the category of compact k-analytic spaces.

Let Admp denote the category of punctual quasi-compact admissible for-
mal schemes over k◦, i.e., the category of pairs (X , x), where X ∈ Ob(Adm)
and x ∈ Xη. From [BL], 4.1, it follows that the correspondence (X , x) 7→
(Xη, x) gives rise to an equivalence of categories Admp

S→̃Germs, where
Admp

S is the localization of Admp with respect to the system S of mor-
phisms ϕ : (Y, y) −→ (X , x) such that ϕη induces an isomorphism of Yη with
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a compact analytic domain in Xη which is a neighborhood of the point x in
Xη.

We now define a functor r : Admp −→ V arek as follows. Given (X , x) ∈
Ob(Admp), r(X , x) is the triple (Vex, H̃(x), ε), where Vex is the closure of the
point x̃ in Xs, and ε is the morphism Spec(H̃(x)) −→ Vex that corresponds
to the canonical embedding of fields k̃(x̃) −→ H̃(x) (see [Ber1], §2.4). Let
red: Admp −→ Birek be the composition of r with the functor V arek −→ Birek.

2.1. Lemma. The functor red takes morphisms from S to isomorphisms.
Proof. Let ϕ : (Y, y) −→ (X , x) be a morphism from S. Since Yη is a

neighborhood of x in Xη, we can find a compact analytic subdomain Z of
Xη such that Xη = Yη ∪ Z and x 6∈ Z. By [BL], 4.4, there are admissible
formal blow-ups X ′ −→ X , Y ′ −→ Y and an open immersion ϕ′ : Y ′ ↪→ X ′
such that the diagram

Y X-

Y ′ X ′-

? ?

is commutative and X ′ = Y ′ ∪ Z ′, where Z ′ is an open subscheme of X ′
and Z ′η→̃Z. Notice that r takes admissible formal blow-ups to birational
morphisms, hence we should prove only, that red takes ϕ′ to an isomorphism.
Since the reduction x̃ of x in X ′

s is not contained in the open subset Z ′s, it
follows that the closure V ′ex of x̃ in X ′

s is contained in Y ′s, and the statement
of the lemma follows.

By Lemma 2.1, the functor red goes through a functor Admp
S −→ Birek.

Its composition with a fixed functor Germs −→ Admp
S , inverse to the equiv-

alence Admp
S −→ Germs, and the functor Birek −→ birek gives rise to the re-

quired functor Red: Germs −→ birek. The image of a germ Xx under Red is a

triple (X̃x, H̃(x), ε). Our first aim is to describe X̃x in the case when X is a
k-affinoid space. Recall that for a k-affinoid algebra A one sets Ã = A◦/A◦◦,
where A◦ = {f ∈ A∣∣|f |sup ≤ 1} and A◦◦ = {f ∈ A∣∣|f |sup < 1}. Each point
x ∈ M(A) gives rise to a bounded character χx : A −→ H(x) which induces
a character χ̃x : Ã −→ H̃(x).

2.2. Lemma. If X = M(A) and x ∈ X, then X̃x→̃P]H(x)
{χ̃x(Ã)}.

Proof. By [BL], one can find an admissible affine formal model X =
Spf(A) of X. The canonical homomorphism A −→ A◦ gives rise to a charac-
ter ψ : A −→ H(x) which, in its turn, gives rise to a character ψ̃ : Ã = A/k◦◦A
−→ H̃(x). By the construction, X̃x→̃P]H(x)

{ψ̃(Ã)} and, therefore, it suf-

fices to show that χ̃x(Ã) is integral over ψ̃(Ã). We claim that in fact the
canonical homomorphism Ã −→ Ã is finite. Indeed, take an epimorphism
k◦{T} = k◦{T1, . . . , Tn} −→ A. It induces epimorphisms k̃[T ] −→ Ã and
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k{T} −→ A. By [BGR], 6.3.5/1, the homomorphism k̃[T ] −→ Ã is finite, and
the claim follows.

2.3. Proposition. Let Xx be a germ.
(i) Given an analytic subdomain Y ⊂ X that contains x, the canonical

map Ỹx −→ X̃x identifies Ỹx with an open quasi-compact subset of X̃x, and
this subset depends only on the equivalence class of Y .

(ii) Given subdomains Yx and Zx of Xx, one has ˜Yx ∩ Zx = Ỹx ∩ Z̃x and
˜Yx ∪ Zx = Ỹx ∪ Z̃x.
(iii) If Xx is good, then for any family of elements f = (f1, . . . , fn) ⊂ OX,x

with |fi(x)| ≤ 1 one has X̃x{f} = X̃x{f̃}, where f̃i is the image of fi in H̃(x).
Proof. We may assume that X = Xη for an admissible formal scheme X .

To verify (i), we apply again [BL], 4.4, and get an admissible formal blow-
up X ′ −→ X and an open formal subscheme Y ′ ⊂ X ′ with Y ′η→̃Y . Then (i)
follows from the construction of the reduction functor and Lemma 2.1. The
statement (ii) is verified in the same way.

(iii) We may assume that X = Spf(A) and n = 1. By Lemma 2.2, it

suffices to check that χ̃x(Ã{f}) is finite over χ̃x(Ã)[f̃ ]. As in the proof
of Lemma 2.2, we apply [BGR], 6.3.5/1, to the surjective bounded homo-
morphism A{T} −→ A{f} that takes T to f . It follows that the induced

homomorphism Ã[T ] −→ Ã{f} is finite. This implies the required fact.

2.4. Theorem. Given a germ Xx, the reduction functor establishes
a one-to-one correspondence between subdomains of Xx and open quasi-

compact subsets of X̃x.
Proof. In Steps 1-4 we assume that the germ Xx is good, and prove the

theorem in this case. The general case is deduced from the particular one
in Step 5.

Step 1. Any subdomain Yx of Xx has a finite covering by subdomains of
the form Xx{f1, . . . , fn} with fi ∈ OX,x and |fi(x)| = 1. We may assume
that X = M(A) is k-affinoid, and Y is a compact analytic domain in X.
The Gerritzen-Grauert theorem ([BGR], 7.3.5/3) implies that Y is a finite
union of rational domains and, therefore, we may assume that Y is a ratio-
nal domain, i.e., Y = X{g1

h , . . . , gn

h }, where g1, . . . , gn, h are elements of A
without common zeros in X. Since x ∈ Y , it follows that h(x) 6= 0. We
can therefore shrink X and assume that h ∈ A∗, i.e., Y = X{f1, . . . , fn}
for fi = gi

h ∈ A. If |fi(x)| < 1 for some i, then we can shrink X so that
|fi(x′)| < 1 for all x′ ∈ X, i.e., we may remove all fi’s with |fi(x)| < 1.

Step 2. Let f = (f1, . . . , fl) and g = (g1, . . . , gm) be two families of ele-

ments of OX,x with |fi(x)| = |gj(x)| = 1 and suppose, that X̃x{f̃} ⊂ X̃x{g̃},
then Xx{f} ⊂ Xx{g}. We can assume, that X = M(A) is k-affinoid and
fi, gj ∈ A. Let χx : A −→ H(x) be the character of x and set B = χ̃x(Ã) ⊂
H̃(x), then Lemma 2.2 and Proposition 2.3 (iii) imply, that X̃x→̃P]H(x)

{B},
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X̃x{f}→̃P]H(x)
{B[f̃ ]} and X̃x{g}→̃P]H(x)

{B[g̃]}. Since X̃x{f̃} = X̃x{f̃ , g̃},
Lemma 1.1 implies, that B[f̃ , g̃] is integral over B[f̃ ]. Each element g̃j

satisfies an equation of the form g̃n
j +

∑n−1
k=0 ãkg̃

k
j = 0, where ãk ∈ B[f̃ ].

The coefficients ãk may be lifted to elements ak ∈ (A{f})◦ and obviously
|(gn

j +
∑n−1

k=0 akg
k
j )(x)| < 1. The last inequality holds also in a neighbor-

hood V of x in X{f} and |ak| ≤ 1 in X{f}, therefore |gj | ≤ 1 in V , i.e.
Xx{f} ⊂ Xx{g}.

Step 3. Let Yx be a subdomain of Xx such that Ỹx→̃X̃x, then Yx = Xx.
By Step 1, Yx has a finite covering by subdomains of the form Xx{f1, . . . , fn}
(where |fp(x)| = 1), say Yx = ∪m

i=1Vi. Our assumption implies, that
{Ṽi}1≤i≤m is a covering of X̃x. By Lemma 1.5, this covering has a Lau-
rent refinement {Ũj}j∈{±1}l = {X̃x{g̃j1

1 , . . . , g̃jl
l }}j (i.e. for any j ∈ {±1}l,

Ũj ⊂ Ṽi(j)). Let gq ∈ OX,x be some liftings of g̃q, then {Uj}j∈{±1}l =
{Xx{gj1

1 , . . . , gjl
l }}j is a covering of Xx whose reduction coincides with {Ũj}j .

By the previous step, for any j ∈ {±1}l we have Uj ⊂ Vi(j), hence {Vi}i is
also a covering of Xx, i.e. Xx = Yx.

Step 4. The theorem holds if the germ Xx is good. It suffices to prove
the following two statements: (1) any open quasi-compact subset Ỹx of X̃x

is a reduction of some subdomain of Xx, and (2) if the reductions of two
subdomains Yx and Zx of Xx coincide, then the subdomains are equal. To
prove the first statement, find a representation Ỹx = ∪iX̃x{f̃i,1, . . . , f̃i,ni}
and let fi,j ∈ OX,x be some liftings, then ∪iXx{fi,1, . . . , fi,ni} is a lifting
of Ỹx. Suppose now, that Ỹx = Z̃x. Find representations Yx = ∪iY

i
x =

∪p
i=1Xx{fi,1, . . . , fi,mi} and Zx = ∪jZ

j
x = ∪q

j=1Xx{gj,1, . . . , gj,nj}, then Ỹx =

∪iỸ
i
x = ∪jZ̃

j
x. Therefore for any fixed i ∈ {1, . . . , p}, the sets ˜

Y i
x ∩ Zj

x

(1 ≤ j ≤ q) form a covering of Ỹ i
x . By the previous step, the sets Y i

x ∩ Zj
x

cover Y i
x (obviously, the germs Y i

x are good). It follows, that Yx ⊂ Zx, and
by the symmetry the converse inclusion is also satisfied.

Step 5. The general case. Let {Xi
x}i∈I be a good covering of Xx. Again, it

suffices to check the conditions (1) and (2) from the previous step. Let Ỹx be
an open quasi-compact subset of X̃x. By the previous step we can lift all sets
Ỹx ∩ X̃i

x to subdomains Y i
x , then the union of all Y i

x ’s is the required lifting
of Ỹx. Suppose now, that for subdomains Yx and Zx of Xx we have Ỹx = Z̃x.
Then for any i ∈ I we have ˜Yx ∩Xi

x = Ỹx ∩ X̃i
x = Z̃x ∩ X̃i

x = ˜Zx ∩Xi
x. By

the case of a good germ, the liftings Yx∩Xi
x and Zx∩Xi

x coincide, and since
Xi

x cover Xx, we obtain, that Yx = Zx.

2.5. Proposition. A morphism of germs f : Xx −→ Yy is separated if
and only if its image under Red is separated.

Proof. The direct implication follows from [BL], 4.7, so we shall prove
the converse one. We can assume, that X and Y are compact, let f : (X , x)
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−→ (Y, y) be a morphism of Admp inducing f . Let Vex (resp. Vey) be the
closure of x̃ (resp. ỹ) in Xs (resp. Ys), by our assumption the induced
morphism fs : Vex −→ Vey is separated. Since Vex is a closed subscheme of Xs,
its preimage X0 in X is open. Let Z ⊂ X0 be a compact neighborhood of x,
by [BL], 4.4., we can find an admissible formal blow up φ : X ′ −→ X together
with an open subscheme Z ′ ⊂ X ′ such that Z ′η→̃Z. Let U be the preimage
of Vex under φs, the morphism U −→ Vex is proper, hence the composition
morphism U −→ Vey is separated. But Z ′ is obviously an open subscheme of
U , hence the morphism Z ′ −→ Y is separated. Now [BL], 4.7, implies that
the morphism Z −→ Y is separated and the lemma follows.

2.6. Remark. The reduction functor Red may be defined also as follows.
One can attach to any analytic space X an adic space Xad of R. Huber (see
[Hu], 1.1.11), where instead of valuations of height one arbitrary valuations
are considered. Now to any point x ∈ X we attach the set of all its spe-
cializations (see [Hu], 1.1.9) with the induced topology, it coincides with the
closure x of x. Notice, that to any specialization y of x corresponds some
valuation ν(y) on the field H̃(x) and the triple (x, H̃(x), ν) defines an object
of birek.

In [BGR], 9.6.2., given a morphism of affinoid spaces X −→ Y , one defines
a notion of relatively compact affinoid subdomains of X (notation U bY X).
Given a separated analytic space Y and its affinoid subdomains X ′ ⊂ X,
we say that X ′ is relatively compact in X over Y and denote X ′ bY X,
if for any affinoid domain Z ⊂ Y the affinoid domains XZ = X ∩ Z and
X ′

Z = X ′ ∩ Z satisfy X ′
Z bZ XZ .

2.7. Remark. In [Ber2], §1.6, a fully faithful functor X 7→ X0 from the
category of Hausdorff analytic spaces to the category of (quasi-separated)
rigid analytic spaces was constructed. One can easily see that a separated
analytic space X is good if and only if the corresponding rigid space X0

possesses the following property: there exist admissible affinoid coverings
{U i

0}i∈I and {V i
0}i∈I such that U i

0 bX0 V i
0 for all i ∈ I.

§3. A characterization of good germs

3.1. Theorem. A germ Xx is good if and only if its reduction X̃x =
(X̃x, H̃(x), ε) is affine.

Proof. The direct implication follows from Lemma 2.2. To establish the
converse implication, we shall reduce it, first of all, to a problem of showing
that, under certain conditions, the analytic space obtained by gluing two
affinoid spaces along an affinoid subdomain is affinoid. Assume that X̃x is
an affine subset of P]H(x)

. By Proposition 2.5, we may assume that X is a
compact separated analytic space. Take a finite affinoid covering of X. It
gives rise to a finite affine covering of X̃x. By Lemma 1.5, the latter has a
Laurent refinement {Vα = X̃x{λα1

1 , . . . , λαn
n }}α∈{±1}n , where λ1, . . . , λn are
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non-zero elements of H̃(x). By Theorem 2.4, each Vα is the reduction Ỹ
(α)
x

of some affinoid subdomain Y (α) ⊂ X, and we can shrink X and assume
that X = ∪αY (α). Induction on n reduces the theorem to verification of the
following fact.

Given a separated analytic space X and a point x ∈ X, assume that X̃x

is affine and that X is a union of two affinoid subdomains Y and Z such
that x ∈ Y ∩ Z, Ỹx = X̃x{λ} and Z̃x = X̃x{λ−1} for a non-zero element

λ ∈ H̃(x). Then the point x has an affinoid neighborhood in X.
In the construction which follows we replace X by a subdomain of the

form Y ′ ∪ Z ′, where Y ′ and Z ′ are affinoid neighborhoods of the point x in
Y and Z, respectively. (Such a subdomain is a neighborhood of x in X.)
Let Y = M(B), Z = M(C) and Y ∩ Z = M(A).

Step 1. One can shrink X so that the following is true. There exist
surjective homomorphisms

k{T1, . . . , Tn, S1, r
−1S2} −→ B : Ti 7→ fi, S1 7→ f, S2 7→ f−1

k{T1, . . . , Tn, r−1S1, S2} −→ C : Ti 7→ gi, S1 7→ g, S2 7→ g−1

such that r > 1, r ∈
√
|k|, Y ∩Z = Y {f−1} = Z{g} and all of the numbers

||fi−gi|| and ||f −g|| are strictly less than 1, where ‖ ‖ denotes the quotient
norm on A induced from the canonical norm of k{T1, . . . , Tn, S1, S2} with
respect to the surjective homomorphism k{T1, . . . , Tn, S1, S2} −→ A : Ti 7→
fi, S1 7→ f , S2 7→ f−1. (The latter homomorphism is surjective because
Y ∩ Z = Y {f−1}.)

Shrinking X, we can find invertible elements f ∈ B and g ∈ C with
|f |Y ≤ 1, |g−1|Z ≤ 1 and λ = f̃(x) = g̃(x) (here |f |Y = max

y∈Y
|f(y)|). Since

|(f − g)(x)| < 1, we can shrink X so that |f − g|Y ∩Z < 1 and, in particular,
Y ∩ Z ⊂ Y {f−1} ∩ Z{g}.

Since the reductions of the germs of Y ∩Z, Y {f−1} and Z{g} at the point
x coincide, there are affinoid neighborhoods Y ′ = M(B′) and Z ′ = M(C′) of
x in Y and Z, respectively, such that Y ′∩Z = Y ′{f−1} and Y ∩Z ′ = Z ′{g}.
Furthermore, since Y ′∩Z ′ is an affinoid neighborhood of x in Y ∩Z, we can
find a Laurent neighborhood W of x in Y ∩Z which is contained in Y ′∩Z ′ and
is of the form (Y ∩ Z){ui, v

−1
j } with ui, vj ∈ A, |ui(x)| < 1 and |vj(x)| > 1.

Since W is also a Laurent neighborhood of x in Y ′ ∩ Z = Y ′{f−1} and
Y ∩Z ′ = Z ′{g}, and the latter are Weierstrass domains in Y ′ and Z ′, there
are elements u′i, v

′
j ∈ B′ and u′′i , v

′′
j ∈ C′ sufficiently closed to ui, vj over Y ′∩Z

and Y ∩Z ′ so that Y ′′ = Y ′{u′i, v′j} and Z ′′ = Z ′{u′′i , v′′j } are neighborhoods
of x in Y ′ and Z ′, respectively, and W = Y ′′ ∩ (Y ′ ∩Z) = Z ′′ ∩ (Y ∩Z ′). It
follows that W = Y ′′{f−1} = Z ′′{g} = Y ′′ ∩Z ′′. Thus, we can replace Y by
Y ′′ and Z by Z ′′ and assume that Y ∩ Z = Y {f−1} = Z{g}.

Since X̃x is affine, it coincides with P]H(x)
{α1, . . . , αm} for non-zero el-

ements αi ∈ H̃(x). We can shrink X so that αi = f̃i(x) for elements
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fi ∈ B◦. Let D = k{T1, . . . , Tm, S1, r
−1S2}, where r ∈

√
|k| is a number

with r > max |f−1|Y . Notice that D̃ = k̃[T1, . . . , Tm, S1, U ], where U is the
image of the element Sm

2
a , m is the minimal positive integer with rm ∈ |k|,

and a ∈ k is such that rm = |a|. Let φ : D −→ B be the continuous homomor-
phism that takes Ti to fi, S1 to f and S2 to f−1, and let ϕ be its composition
with the character χx : B −→ H(x). Since |ϕ(Sm

2
a )(x)| = |f(x)|m

|a| = 1
rm < 1,

one has ϕ̃(U) = 0 and, therefore, ϕ̃(D̃) = k̃[α1, . . . , αm, λ]. On the other
hand, one has Ỹx = P]H(x)

{α1, . . . , αm, λ}. From Lemmas 2.2 and 1.1 it

follows that the algebra χ̃x(B̃) is finite over ϕ̃(D̃). By [Ber1], 2.5.2(d), the
character χx is inner with respect to D. From loc. cit. it follows that φ can
be extended to a continuous epimorphism

k{T1, . . . , Tm, S1, r
−1S2, U1, . . . , Up} −→ B : Ui 7→ ui

with |ui(x)| < 1 for all 1 ≤ i ≤ p.
We provideA with the quotient norm ‖ ‖ induced from the canonical norm

on k{T1, . . . , Tm, S1, S2, U1, . . . , Uq}. Since Y ∩Z is a Weierstrass domain in
Z, we can find elements g1, . . . gm, g′ ∈ C with ||gi−fi|| < 1 and ||g′−f || < 1
(then αi = g̃i(x) and λ = g̃′(x)). Since |g′− g|Y ∩Z < 1, we can replace Z by
a Weierstrass domain which is a neighborhood of Y ∩Z so that |g′−g|Z < 1.
We therefore can replace g by g′ so that the equality Z{g} = Y ∩Z remains
to be true. In the same way as above one constructs for r > max |g|Z ,
r ∈

√
|k|, a continuous epimorphism

k{T1, . . . , Tm, r−1S1, S2, V1, . . . , Vq} −→ C : Ti 7→ gi, S1 7→ g, S2 7→ g−1, Vj 7→ vj

with |vj(x)| < 1 for all 1 ≤ j ≤ q.
Since Y ∩Z is a Weierstrass domain in both Y and Z, we can find elements

v′1, . . . , v
′
q ∈ B and u′1, . . . , u

′
p ∈ C with ‖ui − u′i‖ < 1 and ‖vj − v′j‖ <

1. The affinoid domains Y ′ = Y {v′1, . . . , v′q} and Z ′ = Z{u′1, . . . , u′p} are
neighborhoods of the point x in Y and Z, respectively, and Y ′{f−1} =
Y ∩ Z = Z ′{g}. Thus, we can replace Y by Y ′ and Z by Z ′, and find the
required epimorphisms with

(f1, . . . , fn) = (f1, . . . , fm, u1, . . . , up, v
′
1, . . . , v

′
q)

(g1, . . . , gn) = (g1, . . . , gm, u′1, . . . , u
′
p, v1, . . . , vq)

(Notice that the new epimorphism induces a norm on A, which is majorated
by the old one, and so all inequalities involving the norm of A are also true
for the new norm.)

Step 2. An analytic space X satisfying conditions of Step 1 is affinoid.
Since this step is of its own interest and will be used in §5, we formulate it

as a lemma in a slightly more general form. Let K be an affinoid algebra and
θ : k{T ′1, . . . , T ′m} −→ K an admissible epimorphism, we provide the algebra
K with the quotient norm (say || ||K) and the algebras K{r−1

1 T1, . . . , r
−1
n Tn}

with the following norm, ||∑ aiT
i|| = max(ri‖ai‖K).
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3.2. Lemma. Let X be an analytic space over M(K) which is a union
of two affinoid domains Y = M(B) and Z = M(C) such that the intersec-
tion Y ∩ Z = M(A) is affinoid. Assume that there exist positive numbers

r1, . . . , rn, p, q ∈
√
|k| with p ≤ 1 ≤ q and continuous K-epimorphisms

K{r−1
1 T1, . . . , r

−1
n Tn, q−1S, S−1} ψ−→ C : Ti 7→ gi, S 7→ g

K{r−1
1 T1, . . . , r

−1
n Tn, S, pS−1} φ−→ B : Ti 7→ fi, S 7→ f

(resp. K{r−1
1 T1, . . . , r

−1
n Tn, S} φ−→ B : Ti 7→ fi, S 7→ f) such that Y ∩ Z =

Y {f−1} = Z{g} and ||fi−gi|| < ri, ||f−g|| < 1, where the norm ‖ ‖ on A is
the quotient norm induced by the epimorphism K{r−1

1 T1, . . . , r
−1
n Tn, S, S−1}

−→ A : Ti 7→ fi, S 7→ f . Then
(i) the space X is affinoid, let X = M(D);
(ii) for any positive δ, there exists a continuous K-epimorphism

K{r−1
1 T1, . . . , r

−1
n Tn, q−1S, pS−1} −→ D : Ti 7→ hi, S 7→ h

(resp. K{r−1
1 , . . . , r−1

n Tn, q−1S} −→ D : Ti 7→ hi, S 7→ h) such that ||fi −
hi||B < ||fi − gi|| + δ, ||gi − hi||C < ||fi − gi|| + δ, ||f − h||B < ||f − g|| + δ
and ||g − h||C < ||f − g||+ δ, where the norms on B and C are the quotient
norms induced by φ and ψ, respectively.

In our case K = k. Note that the above norm on A coincides with
the quotient norm induced from k{r−1

1 T1, . . . , r
−1
n Tn, S1, S2} with respect

to the epimorphism k{r−1
1 T1, . . . , r

−1
n Tn, S1, S2} −→ A : Ti 7→ fi, S1 7→ f ,

S2 7→ f−1, and so Lemma 3.2 can be applied to the statement of Step 2.
Proof. We suppose that the source of φ is K{r−1

1 T1, . . . , r
−1
n Tn, S, pS−1},

the second case is treated in the same way.
Case 1: K = k and the homomorphisms φ and ψ are isomorphisms. (In

this case the proof is very close to [BGR], 9.7.1.) Notice that the canonical
homomorphisms B −→ A and C −→ A are injective. Each element of B (resp.
C; resp. A) has a unique representation in the form

∑
ν≥0

∑∞
j=−∞ λν,jT

νSj ,
where ν = (ν1, . . . νn), and the spectral norm of such an element is equal to
max{ max

ν≥0,j≥0
αjrν |λν,j |, max

ν≥0,j<0
βjrν |λν,j |}, where α = 1 and β = p−1 (resp.

α = q and β = 1; resp. α = β = 1). Let B+ and C− be the subspaces
of B and C consisting of elements of the form

∑
ν≥0,j>0 λν,jf

ν1
1 . . . fνn

n f j

and
∑

ν≥0,j≤0 λν,jg
ν1
1 . . . gνn

n gj , respectively. We claim that each element
a ∈ A can be represented in the form a = b + c with b ∈ B+, c ∈ C− and
||b||B, ||c||C ≤ ||a||. Indeed, let 0 < ε < 1 be a number with ||fi−gi|| < ε||fi||
and ||f−g|| < ε||f ||. Since the spectral norm onA is multiplicative, it follows
that ||fν1

1 . . . fνn
n f j − gν1

1 . . . gνn
n gj || < ε||fν1

1 . . . fνn
n f j || for all ν ≥ 0 and j.

Let now a =
∑

ν≥0

∑∞
j=−∞ λν,jf

ν1
1 . . . fνn

n f j be an element of A. Setting
b′ =

∑
ν≥0,j>0 λν,jf

ν1
1 . . . fνn

n f j ∈ B+ and c′ =
∑

ν≥0,j≤0 λν,jg
ν1
1 . . . gνn

n gj ∈
C−, we get ||a−b′−c′|| < ε||a||. Applying the same procedure to the element
a′ = a− b′ − c′ and iterating it, we get the claim.
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By the above claim, one has fi − gi = bi + ci and f − g = b + c, where
bi, b ∈ B+, ci, c ∈ C−, ||bi||B, ||ci||C ≤ ||fi − gi|| and ||b||B, ||c||C ≤ ||f − g||.
Then the elements hi = fi−bi and h = f−b are contained in D := B∩C, and
satisfy the condition (ii) of the lemma. It follows (see [BGR], 9.7.1/1 and
9.7.1/2) that the continuous homomorphisms k{r−1

1 T1, . . . , r
−1
n Tn, S, pS−1}

−→ B and k{r−1
1 T1, . . . , r

−1
n Tn, q−1S, S} −→ C that take Ti to hi and S to h

are isomorphisms, and therefore k{r−1
1 T1, . . . , r

−1
n Tn, q−1S, pS−1}→̃D. This

gives rise to an isomorphism of analytic spaces X→̃M(D).
Case 2: K = k. We set A′ = k{r−1

1 T1, . . . , r
−1
n Tn, S, S−1} and con-

sider the surjective homomorphism A′ −→ A : Ti 7→ fi, S 7→ f . We
can find preimages Gi and G in A′ of the elements gi and g such that
||Ti−Gi||A′ < min(||fi−gi||+δ, ri) and ||S−G||A′ < min(||f−g||+δ, 1). No-
tice that the homomorphism k{r−1

1 T1, . . . , r
−1
n Tn, S, S−1} −→ A′ : Ti 7→ Gi,

S 7→ G is an isomorphism. Let B′ = k{r−1
1 T1, . . . , r

−1
n Tn, S, pS−1} and

C′ = k{r−1
1 G1, . . . , r

−1
n Gn, q−1G,G−1} be subalgebras of A′, set Y ′ = M(B′)

and Z ′ = M(C′). By the construction there are canonical isomorphism
Y ′{S−1}→̃Z ′{G}→̃M(A′) and, by the previous case, the space X ′ obtained
by gluing Y ′ and Z ′ along M(A′) is affinoid. The homomorphisms B′
−→ A and C′ −→ A factors through B and C, respectively, and give rise
to closed immersions Y −→ Y ′ and Z −→ Z ′. The latter give rise to the same
closed immersion Y ∩ Z −→ Y ′ ∩ Z ′ and, therefore, to a closed immersion
X −→ X ′. It follows that the space X is also affinoid. Let X = M(D) and
X ′ = M(D′). By the first step, D′→̃k{r−1

1 H1, . . . , r
−1
n Hn, q−1H, pH−1} and

||Hi−Gi||C′ < ||fi−gi||+δ, ||Hi−Ti||B′ < ||fi−gi||+δ, ||H−G||C′ < ||f−g||+δ
and ||H −S||B′ < ||f − g||+ δ. So the epimorphism D′ −→ D and the images
of Hi and H in D satisfy the claim of the lemma.

Case 3: K is arbitrary. Note, that θ and φ induce an epimorphism

φ′ : k{r−1
1 T1, . . . , r

−1
n Tn, T ′1, . . . , T

′
m, S, pS−1} −→ B : Ti 7→ fi, T

′
j 7→ θ(T ′j), S 7→ f

and the norm induced by φ′ coincides with the norm induced by φ. Define
ψ′ analogously. Note, that φ′ and ψ′ satisfy the conditions of the lemma.
By the previous step, X is affinoid and we can find an epimorphism

k{r−1
1 T1, . . . , r

−1
n Tn, T ′1, . . . , T

′
m, q−1S, pS−1} −→ D : Ti 7→ hi, T

′
j 7→ h′j , S 7→ h

(where hi satisfy the required inequalities). Moreover, since φ′(T ′j) = ψ′(T ′j) =
θ(T ′j), we can choose the above epimorphism such that h′j = θ(T ′j) (see the
construction from step 1). But then we obtain a K-epimorphism

K{r−1
1 T1, . . . , r

−1
n Tn, q−1S, pS−1} −→ D : Ti 7→ hi, S 7→ h

which satisfies all claims of the lemma.

§4. A characterization of closed morphisms

Recall that the notion of a closed morphism was introduced in [Ber1], §2.5
and §3.1, for good analytic spaces, and it was extended in [Ber2], §1.5, for
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arbitrary analytic spaces as follows. A morphism Y −→ X is closed if, for any
morphism X ′ −→ X from a good space X ′ defined over a non-Archimedean
field K ⊃ k, the space Y ′ = Y ×X X ′ is a good K-analytic space and the
induced morphism Y ′ −→ X ′ is closed. The notion of a closed morphism we
work with here is the above one restricted to the category of strictly analytic
spaces. (It is a priori broader than that from [Ber2], 1.5.3, but it is very
likely that both notions are equivalent.) Recall that a morphism of germs
Yy −→ Xx is said to be closed if it is induced by a closed morphism Y ′ −→ X,
where Y ′ is an open neighborhood of y in Y . In what follows, the reduction
of a germ Xx will be denoted by X̃x (instead of (X̃x, H̃(x), ε)).

4.1. Theorem. A morphism of germs ϕy : Yy −→ Xx is closed if and only

if the induced morphism between their reductions ϕ̃y : Ỹy −→ X̃x is proper.

Given an extension of non-Archimedean fields K/k, let EK/k denote the
natural functor birek −→ bir eK .

4.2. Lemma. Let X be a k-analytic space, K a non-Archimedean field

over k, y ∈ Y = X⊗̂K a point and x its image in X. Then Ỹy→̃EK/k(X̃x).
Proof. It suffices to check the case of an affinoid space X. Let Spf(A)

be an affine admissible formal model of X and Ã = A/k◦◦A, then X̃x may
be obtained from Spec(Ã) by the construction of the reduction functor red
from §2. Notice also, that Spf(A⊗̂K◦) is a formal model of X⊗̂K and that

the natural homomorphism φ : Ã ⊗ K̃ −→ Ã⊗̂K◦ induces a morphism Ỹy

−→ EK/k(X̃x). Finally, notice that φ is finite (it is even surjective) and,
therefore, the latter morphism is an isomorphism.

4.3. Lemma. Given a cartesian diagram of morphisms of k-analytic
spaces X and Y and K-analytic spaces X ′ and Y ′ (where K ⊃ k)

Y X-

Y ′ X ′-

? ?

and a point y′ ∈ Y ′ whose images in X ′, Y and X are x′, y and x, respec-

tively, assume that the morphism Ỹy −→ X̃x is proper. Then the morphism

Ỹ ′
y′ −→ X̃ ′

x′ is also proper.
Proof. The diagram appearing in the statement may be factored as

follows

Y X⊗̂K-

Y ′ X ′⊗̂K-

? ?
X-

X ′-

?

(left and right squares are cartesian). Thus we should prove the lemma in
the two particular cases: (1) all spaces X, Y , X ′ and Y ′ are defined over
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the same field, (2) the diagram is the natural diagram

X⊗̂K X-

X ′⊗̂K X ′-

? ?

The second case follows from the previous lemma, so it is enough to consider
only the case when all spaces are k-analytic. We can assume, that the spaces
X, Y and X ′ are compact and that the morphisms Y −→ X and X ′ −→ X
are the generic fibers of morphisms of formal schemes Y −→ X and X ′ −→ X ,
respectively. Set Y ′ = Y ×X X ′, notice, that Y ′η→̃Y ′ and Y ′s→̃Ys ×Xs X ′

s.
Let x̃ be the image of x under the map Xη −→ Xs and let Vex be its Zariski
closure, define Vey , Vex′ and Vey′ analogously. The morphism Y −→ X induces
a morphism f : Vey −→ Vex and its image in birek is the morphism Ỹy −→ X̃x.
Thus f is proper and, therefore, its base change f ′ : U = Vey×Vex Vex′ −→ Vex′ is
also proper. Note, that U is a closed subscheme of Y ′s and, therefore, Vey′ is
a closed subscheme of U . Hence the natural morphism Vey′ −→ Vex′ is proper.
But the latter morphism induces the morphism Ỹ ′

y′ −→ X̃ ′
x′ and the lemma

follows.

Proof of Theorem 4.1. Assume first that the two germs are good.
In this case the morphism of germs is induced by a morphism of affinoid
spaces ϕ : Y = M(B) −→ X = M(A). From Lemma 2.2 it follows that
the morphism ϕ̃y is proper if and only if the morphism of affine schemes
Spec(χ̃y(B̃)) −→ Spec(χ̃x(Ã)) is proper, where χx : A −→ H(x) and χy : B
−→ H(y) are the characters corresponding to the points x and y, respectively.
It follows that ϕ̃y is proper if and only if χ̃y(B̃) is integral over χ̃x(Ã) and,
by [Ber1], 2.5.2(d), the latter is equivalent to the fact that ϕ is closed at the
point y.

Consider now the general case. The direct implication is easily reduced
to the case of good germs. Assume that the morphism ϕ̃y is proper. We
may assume that ϕy is induced by a morphism of compact spaces ϕ : Y
−→ X. Let (Y, y) −→ (X , x) be a morphism of punctual admissible formal
schemes that gives rise to ϕ, and let Uex and Vey be the closures of x̃ and ỹ
in Xs and Ys, respectively. By our assumption the morphism Vey −→ Uex is
proper. Since Vey is closed in Ys, its preimage Z under the reduction map
Y = Yη −→ Ys is an open subset of Y . Notice that for each point y′ ∈ Z the
morphism ϕ̃ey′ : Ỹy′ −→ X̃x′ is proper. We claim that the induced morphism
ψ : Z −→ X is closed.

Let X ′ −→ X be a morphism from a good K-analytic space X ′, where K
is a non-Archimedean field over k. We have to show that the K-analytic
space Z ′ = Z ×X X ′ is also good and that the induced morphism ψ′ : Z ′
−→ X ′ is closed. Let y′ be a point in Z ′, and let x′, y and x be its images in
X ′, Z and X, respectively. (The points y and x here are not necessarily the
original y and x.) The morphism Z̃y = Ỹy −→ X̃x is proper and therefore, by



18 M. TEMKIN

Lemma 4.3, the morphism Z̃ ′y′ −→ X̃ ′
x′ is also proper. Since X̃ ′

x′ is affine, it
follows that Z̃ ′y′ is affine and, by Theorem 3.1, the germ Z ′y′ is good. Thus,
the required claim follows from the case of good germs.

The notion of a proper morphism we work with here is that from [Ber2],
1.5.3, restricted to the category of strictly analytic spaces, i.e., a morphism
of analytic spaces is proper if it is proper as a map of topological spaces and
is closed in the above sense. A morphism ϕ : Y −→ X of admissible formal
schemes over k◦ is said to be proper if the induced morphism of schemes
ϕs : Ys −→ Xs is proper, and it is said to be locally proper if the induced
morphism from the Zariski closure of any point of Ys to Xs is proper. (Recall
that the definition of an admissible formal scheme from §2 is slightly more
restrictive than that from [BL].)

4.4. Corollary. A morphism ϕ : Y −→ X of admissible formal schemes
over k◦ is proper (resp. locally proper) if and only if the induced morphism
of analytic spaces ϕη : Yη −→ Xη is proper (resp. closed).

Proof. Theorem 4.1 implies immediately, that ϕη is closed if and only if
ϕ is locally proper. We should prove only, that ϕs : Ys −→ Xs is of finite type
if and only if ϕη : |Yη| −→ |Xη| is a proper map of topological spaces. Since
the question is local on the base, we can assume, that X is affine. Now, if ϕs

is of finite type, then Y is a finite union of open affine subschemes and Yη is
a finite union of affinoid subspaces. In particular Y is compact and ϕη is a
proper map of topological spaces. Conversely, suppose ϕη is a proper map.
Let y ∈ Ys be a generic point and Vy its Zariski closure, then the preimage
of Vy in Yη is an open subspace. Since by our assumption Yη is compact, it
has a finite covering by such subspaces. Thus Ys consists of a finite number
of components and so ϕs is of finite type.

Recall the definition (due to Kiehl) of proper morphisms in rigid geometry
(see [BGR], 9.6.2/2). A separated morphism ϕ : Y0 −→ X0 of rigid spaces is
proper if there exists an affinoid covering {Xi

0}i∈I of X0 and finite affinoid
coverings {Y i,j

0 }j∈Ji and {Zi,j
0 }j∈Ji of the spaces ϕ−1(Xi

0) such that Zi,j
0 bXi

0

Y i,j
0 .

4.5. Corollary. A morphism of Hausdorff analytic spaces ϕ : Y −→ X
is proper if and only if the corresponding morphism of rigid analytic spaces
ϕ0 : Y0 −→ X0 is proper in the sense of Kiehl.

Proof. In the case of good spaces both notions are easily seen to be
equivalent. By the definition, a morphism ϕ0 is proper if for some affinoid
covering {Xi

0} of X0 the induced morphisms ϕ−1(Xi
0) −→ Xi

0 are proper.
Theorem 4.1 implies, that the same criterion holds for the notion of analytic
properness (though apriori the definition is much more restrictive), hence
the corollary is valid for arbitrary spaces.
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If one defines the relative interior Int(Y/X) of a morphism ϕ : Y −→ X as
in [Ber2], 1.5.4, but with the above notion of a closed morphism, one gets
the following corollary.

4.6. Corollary. Given two morphisms Z
ψ−→ Y

ϕ−→ X, assume that ϕ is
locally separated. Then Int(Z/X) = Int(Z/Y ) ∩ ψ−1(Int(Y/X)).

Proof. The corollary follows from theorem 4.1 and the following simple
fact. Let f : Z −→ Y and g : Y −→ X be dominant morphisms of irreducible
schemes, and suppose, that g is separated, then g ◦ f is proper if and only
if both f and g are proper.

Recall that the above fact was shown in [Ber2], 1.5.5(ii), under the addi-
tional assumption that the morphism ϕ is good. Notice that Theorem 4.1
implies that the properties of a morphism to be closed or proper are local
with respect to the G-topology. But the latter is not true for the property
of a morphism to be a good one (see [Ber2], 1.5.3) as can be shown using
Remark 1.6.

§5. Extension of affinoid domains

5.1. Theorem. Let X −→ R be a separated closed morphism to an
affinoid space R. Then for every affinoid domain U ⊂ X there exists a bigger
affinoid domain V ⊂ X such that U ⊂ Int(V/R) and U is a Weierstrass
subdomain of V .

Proof. Let R = M(K), we fix an epimorphism k{T ′1, . . . , T ′m} −→ K and
provide K with the quotient norm (thus we obtain also natural norms on
the algebras K{r−1

1 T1, . . . , r
−1
n Tn}).

Let us say that V is a relative W -extension of U in X if it satisfies the
properties stated in the theorem. Our first step is to use the reasoning from
[BGR], §8.2.2, to reduce the theorem to the following statement.

If for an affinoid domain U ⊂ X there exists an analytic function h on
U such that the affinoid subdomains U{h} and U{h−1} have relative W -
extensions in X, then U itself has a relative W -extension in X.

Indeed, assume that the above statement is true. Then to apply [BGR],
Lemmas 8.2.2/2-4, we have to verify the following two facts: (a) if U has
a relative W -extension in X, then the same is true for every rational sub-
domain of U ; and (b) any affinoid domain U ⊂ X has a finite covering by
affinoid subdomains which have relative W -extensions in X.

We start with the proof of (a). Let U ′ be a relative W -extension of U , say
U = U ′{f1, . . . , fn}, and let V = U{P1

Q , . . . , Pm
Q } be a rational subdomain

of U (Pi and Q have no common zero on U). By the definition of inner
homomorphism (see [Ber1], 2.5.1), for ε > 0 the domain Uε = U ′{(1 +
ε)−1f1, . . . , (1+ε)−1fn} is a relative W -extension of U . Since O(U ′) is dense
in O(U), we can assume, that Pi and Q are defined on U ′. Note, also, that
for some ε > 0, the functions Pi and Q have no common zero on the domain
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Uε. Now, for any δ > 0, the domain Uε{(1 + δ)−1 P1
Q , . . . , (1 + δ)−1 Pm

Q } is a
relative W -extension of V .

Next we prove (b). It suffices to show, that for any point x ∈ U , some
neighborhood V in U has a relative W -extension in X. The reduction Ũx is
affine, let Ũx→̃P]H(x)

{f̃1, . . . , f̃n}. Lift f̃i to elements fi of OX,x (X is good).
By theorem 2.4, Ux = Xx{f1, . . . , fn}, i.e. for sufficiently small neighbor-
hood Y of x in X the functions fi are defined on Y , and Y {f1, . . . , fn} is a
neighborhood of x in U . Since the map X −→ R is closed at x and R is good,
the space X is good at x. Thus the space Y above can be chosen affinoid,
say Y = M(A). Note that x ∈ Int(Y/R), hence the homomorphism χx : A
−→ H(x) is inner with respect to K. It means, that there exists an epimor-
phism K{T1, . . . , Tl} −→ A : Ti 7→ gi such that |χx(gi)| < 1. Notice that for
ε > 0, Y is a relative W -extension of Yε = Y {(1 − ε)−1g1, . . . , (1 − ε)−1gl}
(the homomorphism A −→ A{(1−ε)−1g} is inner with respect to K) and for
some ε > 0, Yε is a neighborhood of x in X. For such ε, Y is a relative W -
extension of Yε{f1, . . . , fn} and the last domain is a required neighborhood
of x in U .

We return to the statement mentioned at the beginning of the proof. Let
U = M(D). We set Y0 = U{h} and Z0 = U{h−1}. Then Y0 = M(B0),
Z0 = M(C0) and Y0 ∩ Z0 = M(A0), where B0 = D{h}, C0 = D{h−1} and
A0 = D{h, h−1}. Furthermore, let Y = M(B) and Z = M(C) be relative
W -extensions of Y0 and Z0, respectively. We will show that there exist
affinoid domains Y0 ⊂ Y ′ ⊂ Y and Z0 ⊂ Z ′ ⊂ Z such that Y ′ ∪ Z ′ is a
relative W -extension of U .

Step 1. Let us fix a continuous K-epimorphism K{T1, . . . , Tn} −→ D :
Ti 7→ hi. It induces continuous K-epimorphisms K{T1, . . . , Tn, S} −→ B0,
K{T1, . . . , Tn, S, S−1} −→ A0 and K{T1, . . . , Tn, r−1S, S−1} −→ C0 : S 7→ h,
where r ∈

√
|k| and r ≥ |h|Z0 := max

x∈Z0

{|h(x)|}. We provide A0 with the

quotient norm with respect to the above epimorphism. Since Y0 ⊂ Y and
Z0 ⊂ Z are Weierstrass domains, the images of B in B0 and of C in C0

are dense. By [BGR], 7.3.4/3, we can find elements fi, f ∈ B and gi, g ∈ C
whose images in B0 and C0 are sufficiently close to hi, h, respectively, so that
the following is true: (a) the continuous K-homomorphisms K{T1, . . . , Tn, S}
−→ B0 : Ti 7→ fi, S 7→ f and K{T1, . . . , Tn, r−1S, S−1} −→ C0 : Ti 7→ gi, S 7→ g
are surjective, (b) the norm on A0 coincides with the quotient norm induced
by the K-epimorphism K{T1, . . . , Tn, S, S−1} −→ A0 : Ti 7→ fi, S 7→ f , and
(c) all of the numbers ||fi − gi||A0 and ||f − g||A0 are strictly less than 1.

Step 2. One can replace Y and Z by smaller neighborhoods of Y0 and Z0 so
that Y0 = Y {f1, . . . , fn, f} and Z0 = Z{g1, . . . , gn, r−1g, g−1}. Indeed, one
evidently has Y0 ⊂ Y {f1, . . . , fn, f} and Z0 ⊂ Z{g1, . . . , gn, r−1g, g−1}. The
canonical homomorphisms B{f1, . . . , fn, f} −→ B0 and C{f1, . . . , fn, r−1g, g−1}
−→ C0 are surjective, hence the complements of Y0 in Y {f1, . . . , fn, f} and
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of Z0 in Z{g1, . . . , gn, r−1g, g−1} are affinoid domains and, therefore, we can
shrink Y and Z so that the desired fact is true.

Step 3. For a pair of non-negative numbers ε = (ε1, εr) with 1 + ε1, r +
εr ∈

√
|k|, we set Yε = Y {(1 + ε1)−1f1, . . . , (1 + ε1)−1fn, f} and Zε =

Z{(1 + ε1)−1g1, . . . , (1 + ε1)−1gn, (r + εr)−1g, g−1}. One has Yε = M(Bε)
and Zε = M(Cε), where Bε = B{(1 + ε1)−1f1, . . . , (1 + ε1)−1fn, f} and
Cε = C{(1 + ε1)−1f1, . . . , (1 + ε1)−1fn, (r + εr)−1g, g−1}. We claim that,
for every sufficiently small positive ε, one has Yε ∩ Zε = Yε{f−1} = Zε{g}.
Indeed, since ||fi−gi|| < 1 and ||f −g|| < 1, it follows that |(fi−gi)(x)| < 1
and |(f−g)(x)| < 1 for all points x from an open neighborhood V of Y0∩Z0

in Y ∩Z. But Yε{f−1} ⊂ V and Zε{g} ⊂ V for all sufficiently small ε, and it
immediately implies that Yε{f−1} = Zε{g} for such ε. Since the underlying
topological space of X is Hausdorff, Yε ∩ Zε is a disjoint union of the latter
set and a compact set outside V . Decreasing again ε, we can achieve the
inclusion Yε ∩ Zε ⊂ V which gives the required fact.

Step 4. For every sufficiently small ε the continuous K-homomorphisms

K{(1 + ε1)−1T1, . . . , (1 + ε1)−1Tn, S} −→ Bε : Ti 7→ fi, S 7→ f

K{(1 + ε1)−1T1, . . . , (1 + ε1)−1Tn, (r + εr)−1S, S−1} −→ Cε : Ti 7→ gi, S 7→ g

are surjective and all of the numbers ||fi − gi||Aε and ||f − g||Aε are strictly
less than 1, where the norm on Aε = Bε{f−1} is induced by the first of the
above epimorphisms. The statement follows from the next lemma where the
following situation is considered. Let X = M(A) be an affinoid space over
R = M(K), f1, . . . , fn elements of A, r1, . . . , rn ∈

√
|k| positive numbers.

For a set of non-negative numbers ε = (ε1, . . . , εn) with ri + εi ∈
√
|k|, let

Xε = X{(r1 + ε1)−1f1, . . . , (rn + εn)−1fn}. One has Xε = M(Aε), where
Aε = A{(r1 + ε1)−1f1, . . . , (rn + εn)−1fn}.

5.2. Lemma. Assume that X0 ⊂ Int(X/R) and that the continuous
K-homomorphism K{r−1

1 T1, . . . , r
−1
n Tn} −→ A0 : Ti 7→ fi is surjective. Let

g ∈ A be an element with ||g||A0 < 1, then there exists δ > 0 such that for
every ε with εi ≤ δ the following is true:

(i) the continuous K-homomorphism K{(r1 + ε1)−1f1, . . . , (rn + εn)−1fn}
−→ Aε : Ti 7→ fi is surjective;

(ii) ||g||Aε < 1, where the norm on Aε is induced by the epimorphism
from (i).

Proof. Consider the K-homomorphism φ# : K[T1, . . . , Tn] −→ A taking
Ti to fi, it induces a morphism φ : X −→ An

R. For non-negative numbers
ε1, . . . , εn, let Vε denotes the polydisc (over R) in An

R given by inequalities
|Ti| ≤ ri + εi and let φε : Xε = φ−1(Vε) −→ Vε be the restriction of φ. By
assumption, φ0 is a closed immersion and we should prove, that φε remains
a closed immersion for sufficiently small positive ε. By [Ber1], 2.5.9, the
homomorphism A −→ A0 is inner with respect to K, hence there exists a
K-epimorphism K{T1, . . . , Tp} −→ A : Tl 7→ al, such that ρA0(al) < 1 (see
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[Ber1], 2.5.1). Let a′1, . . . , a
′
p′ be generators of K (i.e. the homomorphism

k{T1, . . . , Tp′} −→ K : Tj 7→ a′j is surjective), note that al, a
′
j are generators

of A over k. Finally, we choose elements s1, . . . , sp ∈ K[T1, . . . , Tn] such
that ρA0(φ

#(sl) − al) < 1 and set s′j = a′j ∈ K ⊂ K[T1, . . . , Tn] (obviously
ρA0(φ

#(s′j)− a′j) < 1). As shown at the proof of [BGR], 7.3.4/10, for suffi-
ciently small ε, φε factors through a closed immersion ψε : Xε −→ Vε{sl, s

′
j}.

By our choice, Vε{sl, s
′
j} = Vε{sl}. Since ρA0(al) < 1, for some positive

ε, α, we have ρAε(al) < 1 − α. Then the image of Xε under ψε belongs to
Vε{(1 − α)−1s1, . . . , (1 − α)−1sp}. Therefore for small ε the map φε : Xε

−→ Vε is also a closed immersion.
For a non-negative ε, set Bε = K{(r1 + ε1)−1T1, . . . , (rn + εn)−1Tn}. Let

φ#
ε : Bε −→ Aε be the continuous K-homomorphism taking Ti to fi, Iε its

kernel ideal and || ||Bε the natural norm of Bε. Choose a positive ε for which
φ#

ε is an epimorphism, then φε : M(Aε) −→ M(Bε) is a closed immersion
and φ0 : M(A0) −→ M(B0) is its restriction. Therefore I0 = Iε · B0, in
particular Iε is dense in I0. Let G ∈ Bε be a preimage of g, then G (as an
element of B0) is a preimage of g under φ#

0 . Since ||g||A0 < 1, there exists
an element a ∈ I0 such that ||G + a||B0 < 1. Since Iε is dense in I0, we can
choose a in Iε. Then G + a is a preimage of gε under φ#

ε . Clearly for some
positive δ ≤ ε we have ||G + a||Bδ

< 1 and then ||gδ||Aδ
< 1.

Step 5. If ε is small enough so that the properties stated in Steps 3 and
4 are true, then the analytic domain Uε = Yε ∪ Zε is affinoid. Furthermore,
if Uε = M(Dε), then there is a continuous K-epimorphism

K{(1 + ε1)−1T1, . . . , (1 + ε1)−1Tn, (r + εr)−1S} −→ Dε : Ti 7→ hi, S 7→ h′

such that all of the numbers |fi − hi|Yε , |f − h′|Yε , |gi − hi|Zε and |g − h′|Zε

are strictly less than 1. The statement follows from lemma 3.2.

Step 6. The affinoid domain Uε is a relative W -extension of U . Since
|(fi − hi)(x)| < 1 (resp. |(gi − hi)(x)| < 1 and |(g − h′)(x)| < 1) for all
points x ∈ Yε (resp. Zε), it follows that Y0 = Yε{h1, . . . , hn} (resp. Z0 =
Zε{h1, . . . , hn, r−1h′}) and, therefore, Uε{h1, . . . , hn, r−1h′} = Y0 ∪ Z0 = U .
In particular, U is a Weierstrass domain in Uε. Finally, since the continuous
K-homomorphism K{(1 + ε1)−1T1, . . . , (1 + ε1)−1Tn, (r + εr)−1S} −→ Dε :
Ti 7→ hi, S 7→ h′ is surjective, |hi|U ≤ 1 and |h′|U ≤ r, it follows that
U ⊂ Int(Uε/R).

5.3. Conjecture. Given a good separated analytic space X, for every
affinoid domain U ⊂ X there exists a bigger affinoid domain V ⊂ X such
that U bX V and U is a Weierstrass subdomain of V .
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