
On Local Reasoning in Verification

Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E1 4, Saarbrücken, Germany
{ihlemann,sjacobs,sofronie}@mpi-inf.mpg.de

Abstract. We present a general framework which allows to identify
complex theories important in verification for which efficient reasoning
methods exist. The framework we present is based on a general notion
of locality. We show that locality considerations allow us to obtain pa-
rameterized decidability and complexity results for many (combinations
of) theories important in verification in general and in the verification
of parametric systems in particular. We give numerous examples; in par-
ticular we show that several theories of data structures studied in the
verification literature are local extensions of a base theory. The general
framework we use allows us to identify situations in which some of the
syntactical restrictions imposed in previous papers can be relaxed.

1 Introduction

Many problems in verification can be reduced to proving the satisfiability of
conjunctions of literals in a background theory (which can be a standard theory,
the extension of a theory with additional functions – free, monotone, or recur-
sively defined – or a combination of theories). It is very important to identify
situations where the search space can be controlled without losing completeness.
Solutions to this problem were proposed in proof theory, algebra and verification:
In [8,11], McAllester and Givan studied the proof-theoretical notion of “local in-
ference systems” – where for proving/disproving a goal only ground instances
of the inference rules are needed which contain ground terms which appear in
the goal to be proved. In universal algebra, Burris [3] established a link between
ptime decidability of the uniform word problem in quasi-varieties of algebras
and embeddability of partial into total models. A link to the notion of locality
was established by Ganzinger [5]. In the verification literature, locality proper-
ties were investigated in the context of reasoning in pointer data structures by
McPeak, Necula [12] and in the study of fragments of the theory of arrays by
Bradley, Manna and Sipma [1] and Ghilardi, Nicolini, Ranise and Zucchelli [7].
The applications in verification usually require reasoning in complex domains.
In [6,13] we study local extensions of theories and show that in such extensions
proof tasks can be reduced, hierarchically, to proof tasks in the base theory.

The main contributions of this paper can be described as follows:

(1) We introduce generalized notions of locality and stable locality and show
that theories important in verification (e.g. the theory of arrays in [1] and
the theory of pointer structures in [12]) satisfy such locality conditions.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 265–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

266 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

(2) We present a general framework which allows to identify local theories im-
portant in verification. This allows us to also handle fragments which do not
satisfy all syntactical restrictions imposed in previous papers. In particular,
the axiom sets which we consider may contain alternations of quantifiers.

(3) We use these results to give new examples of local theories of data types.
(4) We discuss the experiments we made with an implementation.

The paper is structured as follows. We start (Sect. 1.1 and 1.2) by discussing
the application domains we consider and illustrating our main idea. Section 2
contains basic definitions. In Sect. 3 local extensions are defined, results on
hierarchical reasoning, parameterized decidability and complexity results, and
possibilities of recognizing local extensions are summarized. Section 4 contains a
large number of examples, ranging from extensions with monotonicity, injectivity
and (guarded) boundedness properties to theories of data structures (pointers,
arrays). A general framework for recognizing locality in verification is presented
in Sect. 5. We describe our implementation and some experiments in Sect. 6.

1.1 Application Domains

The application domains we consider are mainly related to the verification of
parametric systems (parametric either w.r.t. the number of subsystems involved,
or w.r.t. some data used to describe the states and their updates).

We model systems using transition constraint systems T = (V, Σ, Init, Update)
which specify: the variables (V) and function symbols (Σ) whose values change
over time; a formula Init specifying the properties of initial states; a formula
Update with variables in V ∪V ′ and function symbols in Σ∪Σ′ (where V ′ and Σ′

are copies of V resp. Σ, denoting the variables resp. functions after the transition)
which specifies the relationship between the values of variables x and function
symbols f before a transition and their values (x′, f ′) after the transition. Such
descriptions can be obtained from system specifications (for an example cf. [4]).
With every specification, a background theory TS – describing the data types
used in the specification and their properties – is associated. The verification
problems we consider are invariant checking and bounded model checking.

Invariant checking. We can check whether a formula Ψ is an inductive in-
variant of a transition constraint system T=(V, Σ, Init, Update) in two steps: (1)
prove that TS , Init |= Ψ ; (2) prove that TS , Ψ, Update |= Ψ ′, where Ψ ′ results from
Ψ by replacing each x ∈ V by x′ and each f ∈ Σ by f ′. Failure to prove (2)
means that Ψ is not an invariant, or Ψ is not inductive w.r.t. T .1

Bounded model checking. We check whether, for a fixed k, unsafe states are
reachable in at most k steps. Formally, we check whether:

TS ∧ Init0 ∧
j∧

i=1

Updatei ∧ ¬Ψj |=⊥ for all 0 ≤ j ≤ k,

1 Proving that Ψ is an invariant of the system in general requires to find a stronger
formula Γ (i.e., TS |= Γ → Ψ) and prove that Γ is an inductive invariant.

On Local Reasoning in Verification 267

where Updatei is obtained from Update by replacing all variables x ∈ V by xi

and any f ∈ Σ by fi, and all x′ ∈ V ′, f ′ ∈ Σ′ by xi+1, fi+1; Init0 is Init with x0
replacing x ∈ V and f0 replacing f ∈ Σ; Ψi is obtained from Ψ similarly.

We are interested in checking whether a safety property (expressed by a suit-
able formula) is an invariant, or holds for paths of bounded length, for given
instances of the parameters, or under given constraints on parameters. We aim
at identifying situations in which decision procedures exist. We will show that
this is often the case, by investigating locality phenomena in verification. As a
by-product, this will allow us to consider problems more general than usual tasks
in verification, namely to derive constraints between parameters which guaran-
tee safety. These constraints may also be used to solve optimization problems
(maximize/minimize some of the parameters) such that safety is guaranteed.

1.2 Illustration

We illustrate the problems as well as our solution on the following example.2

Consider a parametric number m of processes. The priorities associated with
the processes (non-negative real numbers) are stored in an array p. The states of
the processes – enabled (1) or disabled (0) are stored in an array a. At each step
only the process with maximal priority is enabled, its priority is set to x and
the priorities of the waiting processes are increased by y. This can be expressed
with the following set of axioms which we denote by Update(a, p, a′, p′)

∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ p′(i) = x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ a′(i) = 0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j))) −→ p′(i) = p(i)+y)

where x and y are considered to be parameters. We may need to check whether
if at the beginning the priority list is injective, i.e. formula (Inj)(p) holds:

Inj(p) ∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i �= j → p(i) �= p(j))

then it remains injective after the update, i.e. check the satisfiability of:

(Z∪R+∪{0, 1})∧Inj(p)∧Update(a, p, a′, p′)∧1≤c≤m∧1≤d≤m∧c �=d∧p′(c)=p′(d).

We may need to check satisfiability of the formula under certain assumptions
on the values of x and y (for instance if x = 0 and y = 1), or to determine
constraints on x and y for which the formula is (un)satisfiable.

Problem. The problem above is a satisfiability problem for a formula with (al-
ternations of) quantifiers in a combination of theories. SMT provers heuristically
compute ground instances of the problems, and return unsatisfiable if a contra-
diction is found, and unknown if no contradiction can be derived from these
instances. It is important to find a set of ground instances which are sufficient
for deriving a contradiction if one exists. [1] presents a fragment of the theory

2 All the examples in this paper will address invariant checking only. Bounded model
checking problems can be handled in a similar way.

268 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

of arrays for which this is possible. The formula above does not belong to this
fragment: Inj(p) contains the premise i �=j; Update(a, p, a′, p′) contains ∀∃ axioms.

Idea. Let T0 be the many-sorted combination of the theory of integers (for
indices), of real numbers (priorities), and {0, 1} (enabled/disabled). We consider:

(i) The extension T1 of T0 with the functions a : Z → {0, 1} (a free function)
and p : Z → R+ satisfying Inj(p);

(ii) The extension T2 of T1 with the functions a′ : Z → {0, 1}, p′ : Z → R+
satisfying the update axioms Update(a, p, a′, p′).

We show that both extensions have a locality property which allows us to use
determined instances of the axioms without loss of completeness; the satisfiability
problem w.r.t. T2 can be hierarchically reduced to a satisfiability problem w.r.t.
T1 and then to a satisfiability problem w.r.t. T0. The purpose of this paper is to
show that we can do this in a systematic way in a large number of situations.

2 Preliminaries

We assume known standard definitions from first-order logic. (Logical) theories
can be regarded as collections of formulae (i.e. can be described as the conse-
quences of a set of axioms), as collections of models (the set of all models of a
set of axioms, or concrete models such as Z or R), or both. If T is a theory and
φ, ψ are formulae, we say that T ∧ φ |= ψ (written also φ |=T ψ) if ψ is true in
all models of T which satisfy φ. If T ∧ φ |=⊥ (where ⊥ is false), there are no
models of T which satisfy φ, i.e. φ is unsatisfiable w.r.t. T . For the verification
tasks mentioned above, efficient reasoning in certain theories, which depend on
the specification of the systems under consideration, is extremely important.

Local theory extensions. We consider extensions T0 ∪ K of a theory T0 with
new sorts and new function symbols (called extension functions) satisfying a
set K of (universally quantified) clauses. An extension T0 ⊆ T0 ∪ K is local if
satisfiability of a set G of clauses w.r.t. T0 ∪ K only depends on T0 and those
instances K[G] of K in which the terms starting with extension functions are in
the set st(K, G) of ground terms which already occur in G or K [13]. A weaker
locality notion, namely stable locality, exists; it allows to restrict the search
to the instances K[G] of K in which the variables below extension functions are
instantiated with Σ0-terms generated from st(K, G). These generalize the notion
of local theories introduced by [8,11,9] resp. of locality and stable locality studied
in [5]. In such extensions hierarchical reasoning is possible (cf. also Sect. 3.1).

Partial and total models. Local and stably local theory extensions can be
recognized by proving embeddability of partial into total models [13,16]. Let
Π = (S, Σ, Pred) be an S-sorted signature where Σ is a set of function symbols
and Pred a set of predicate symbols. In a partial Π-structure the function symbols
may be partial (for definitions cf. [2]). If A is a partial structure and β : X → A is
a valuation we say that (A, β) |=w (¬)P (t1, . . ., tn) iff (a) β(ti) are all defined and
their values are in the relationship (¬)PA; or (b) at least one of β(ti) is undefined.

On Local Reasoning in Verification 269

This holds in particular for the equality relation. (A, β) weakly satisfies a clause
C (notation: (A, β) |=w C) if it satisfies at least one literal in C. A is a weak
partial model of a set of clauses K if (A, β) |=w C for every valuation β and every
clause C in K. (Evans) partial models are defined similarly, with the following
difference: (A, β) |= t ≈ s iff (a) β(t) and β(s) are both defined and equal; or (b)
β(s) is defined, t = f(t1, . . . , tn) and β(ti) is undefined for at least one of the
direct subterms of t; or (c) both β(s) and β(t) are undefined.

3 Locality

As seen in Section 1.2, the axioms occurring in applications may contain alter-
nations of quantifiers. To address this, we study the notion of extended (stable)
locality (cf. also [13]). Let T0 be a theory with signature Π0 = (S0, Σ0, Pred),
where S0 is a set of sorts, Σ0 a set of function symbols, and Pred a set of predicate
symbols. We consider extensions T1 of T0 with new sorts and function symbols
(i.e. with signature Π = (S0 ∪ S1, Σ0 ∪ Σ1, Pred)), satisfying a set K of axioms
of the form (Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary
first-order formula in the base signature Π0 with free variables x1, . . . , xn, and
C(x1, . . . , xn) is a clause in the signature Π . The free variables x1, . . . , xn of
such an axiom are considered to be universally quantified. We are interested in
disproving closed formulae Σ in the extension Πc of Π with new constants Σc.

Example 1. Consider the example in Sect. 1.2. In modeling this problem we
start from the disjoint combination T0 of integers, reals and Booleans with sig-
nature Π0 = (S0, Σ0, Pred), where S0 = {int, real, bool} and Σ0, Pred consist
of the (many-sorted) combination of the signatures of the corresponding theo-
ries. In a first step, T0 is extended to T1 = T0 ∪ Inj(p), with signature Π1 =
(S0, Σ0 ∪ {a, p}, Pred). Inj(p) is a clause. In a second step, T1 is extended to a
theory T2 = T1∪Update(a, p, a′, p′) with signature (S0, Σ0∪{a, p}∪{a′, p′}, Pred).
The axioms in Update(a, p, a′, p′) are of the form φ(i) ∨ C(i) and ¬φ(i) ∨ D(i),
where φ(i) = ∀j(1 ≤ j ≤ m ∧ j �= i → p(i) > p(j)). (Thus it can be seen that the
first two axioms in Update(a, p, a′, p′) contain a ∀∃ quantifier alternation.)

We can extend the notion of locality accordingly. We study extensions T0 ⊆ T0∪K
as above satisfying the locality and stable locality conditions (ELoc, ESLoc):

(ELoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ] ∪ Γ has
no weak partial model in which all terms in st(K, G) are defined.

Here K[Γ] consists of all instances of K in which the terms starting with extension
functions are in the set st(K, G) (defined in Sect. 2).

(ESLoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ] ∪ Γ has
no partial model in which all terms in st(K, G) are defined.

Here K[Γ] consists of all instances of K in which the variables below a Σ1-symbol
are instantiated with Σ0-terms generated from st(K, G).

270 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

The problem with (ESLoc) is that the number of instances in K[Γ] is finite only if
the number of Σ0-terms generated from st(K, G) can be guaranteed to be finite,
i.e. when Σ0 = ∅ (in which case the size of K[Γ] is polynomial in the size of
st(K, G)) or when only finitely many non-equivalent Σ0-terms (modulo T0) can
be generated from a finite set of generators (then the size of K[Γ] is polynomial
in the number of such non-equivalent terms). To overcome these problems, we
identify a family of conditions in between locality and stable locality.

Let Ψ be a function associating with a set K of axioms and a set of ground
terms T a set ΨK(T) of ground terms such that (i) all ground subterms in K
and T are in ΨK(T); (ii) for all sets of ground terms T, T ′ if T ⊆ T ′ then
ΨK(T) ⊆ ΨK(T ′); (iii) Ψ is a closure operation, i.e. for all sets of ground terms T ,
ΨK(ΨK(T)) ⊆ ΨK(T); (iv) Ψ is compatible with any map h between constants,
i.e. for any map h : C → C, ΨK(h(T)) = h(ΨK(T)), where h is the unique
extension of h to terms. Let K[ΨK(G)] be the set of instances of K in which the
extension terms are in ΨK(st(K, G)), which here will be denoted by ΨK(G). We
say that an extension T0 ⊆ T0 ∪ K is Ψ -local if it satisfies condition (ELocΨ):

(ELocΨ) for every formula Γ=Γ0∪G, where Γ0 is a Πc
0-sentence and G a

finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[ΨK(G)] ∪ Γ
has no weak partial model in which all terms in ΨK(G) are defined.

If K consists of clauses and only satisfiability of sets G of ground clauses is
considered we obtain a condition (LocΨ) extending the notion (Loc) of locality in
[13]. Ψ -stable locality (ESLocΨ) can be defined replacing K[ΨK(G)] by K[ΨK(G)].

3.1 Hierarchical Reasoning in Local Theory Extensions

Let T0 ⊆ T1=T0∪K be a theory extension satisfying condition (E(S)Loc) or
(E(S)LocΨ). To check the satisfiability w.r.t. T1 of a formula Γ = Γ0 ∪ G, where
Γ0 is a Πc

0-sentence and G is a set of ground Πc-clauses, we proceed as follows:

Step 1: By the locality assumption, T1∪Γ0∪G is satisfiable iff T0∪K∗[G]∪Γ0∪G
has a (weak) partial model with corresponding properties, where, depending on
the type of locality, K∗[G] is K[G], K[G], K[ΨK(G)] or K[ΨK(G)].

Step 2: Purification. We purify K∗[G]∪G by introducing, in a bottom-up manner,
new constants ct (from a set Σc of constants) for subterms t = f(g1, . . . , gn) with
f ∈ Σ1, gi ground Σ0 ∪ Σc-terms, together with their definitions ct ≈ t. The set
of formulae thus obtained has the form K0 ∪ G0 ∪ Γ0 ∪ D, where D consists of
definitions of the form f(g1, . . . , gn)≈c, where f ∈ Σ1, c is a constant, g1, . . . , gn

are ground Σ0 ∪ Σc-terms, and K0, G0, Γ0 are Πc
0-formulae.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing
satisfiability in T0 by replacing D with the following set of clauses:

N0 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

This yields a sound and complete hierarchical reduction to a satisfiability prob-
lem in the base theory T0 (for (E(S)LocΨ) the proof is similar to that in [13]):

On Local Reasoning in Verification 271

Theorem 1. Let K and Γ = Γ0 ∧ G be as specified above. Assume that T0 ⊆
T0 ∪ K satisfies condition (E(S)Loc) or (E(S)LocΨ). Let K0 ∪ G0 ∪ Γ0 ∪ D be
obtained from K ∗ [G]∪Γ0 ∪G by purification, as explained above. The following
are equivalent:

(1) T0∪K∗[G]∪Γ0∪G has a partial model with all terms in st(K, G) defined.
(2) T0∪K0∪G0∪Γ0∪D has a partial model with all extension terms in D defined.
(3) T0 ∪ K0 ∪ G0 ∪ Γ0 ∪ N0 has a (total) model.

Alternatively, if K consists only of clauses and all variables occur below an
extension function and if Γ is a set of ground clauses then K ∗ [G]∧Γ consists of
ground clauses, so locality also allows us to reduce reasoning in T1 to reasoning
in an extension of T0 with free function symbols; an SMT procedure can be used.
If Γ0 contains quantifiers or K ∗ [G] contains free variables it is problematic to
use SMT provers without loss of completeness.

3.2 Decidability, Parameterized Complexity

Assume that K consists of axioms of the form C = (ΦC(x) ∨ C(x)), where
ΦC(x) is in a fragment (class of formulae) F of T0 and C(x) is a Π-clause, and
Γ = Γ0 ∧ G, where Γ0 is a formula in F without free variables, and G is a set of
ground Πc-clauses, both containing constants in Σc.

Theorem 2. Assume that the theory extension T0 ⊆ T1 satisfies (E(S)Loc), or
(E(S)LocΨ). Satisfiability of goals Γ0 ∪G as above w.r.t. T1 is decidable provided
K ∗ [G] is finite and K0 ∪ G0 ∪ Γ0 ∪ N0 belongs to a decidable fragment of T0.

Locality allows us to obtain parameterized decidability and complexity results:

Case 1: If for each C = ΦC(x)∨C(x) ∈ K all free variables occur below some
extension symbol, then K∗[G] contains only formulae of the form ΦC(g)∨C(g),
where g consists of ground Σ0-terms, so K0∪G0∪Γ0∪N0 ∈ Fg, the class obtained
by instantiating all free variables of formulae in F with ground Σ0-terms.
Decidability and complexity: If checking satisfiability for the class Fg w.r.t. T0
is decidable, then checking satisfiability of goals of the form above w.r.t. T1 is
decidable. Assume that the complexity of a decision procedure for the fragment
Fg of T0 is g(n) for an input of size n. Let m be the size of K0∪G0∪Γ0∪N0. Then
the complexity of proving satisfiability of Γ0 ∪ G w.r.t. T1 is of order g(m).

(i) For local extensions, K∗[G] = K[G]; the size m of K0∪G0∪Γ0∪N0 is of order
|G|k for some 2 ≤ k ∈ Z for a fixed K (at least quadratic because of N0).

(ii) For stably local extensions, the size of K ∗ [G] = K[G] is polynomial in the
size s of the model of T0 freely generated by |st(K, G)| generators.

Similarly for Ψ -(stably) local extensions (with st(K, G) replaced by ΨK(G)).

Case 2: If not all free variables in K occur below an extension symbol, then the
instances in K∗[G] contain free variables, so K0∪G0∪Γ0∪N0 is in the universal
closure ∀F of F . The decidability and complexity remarks above here apply
relative to the complexity of checking satisfiability of formulae in the fragment
∀F of T0 with constants in Σc (regarded as existentially quantified variables).

272 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

3.3 Recognizing Generalized Locality

Theory extensions T0 ⊆ T1 satisfying (E(S)Loc), (E(S)LocΨ) can be recognized
by showing that certain partial models of T1 can be completed to total models.
We consider the following completability conditions:
(Compw) Every weak partial model A of T1 with totally defined Σ0-functions

and extension functions with a finite definition domain weakly
embeds into a total model B of T1 s.t. A|Π0 and B|Π0 are isomorphic.

(CompΨ
w) Every weak partial model A of T1 with totally defined Σ0-functions

and such that {f(a1, . . . , an) | ai ∈ A, f ∈ Σ1, fA(a1, . . . , an) defined}
is finite and closed under ΨK weakly embeds into a total model B of
T1 s.t. A|Π0 and B|Π0 are elementarily equivalent.

Conditions (Comp), (CompΨ) can be defined by replacing “weak partial model”
with “Evans partial model”. Assume Ψ satisfies conditions (i)–(iv) in Sect.3:

Theorem 3. (1) If all terms of K starting with a Σ1-function are flat and linear
and the extension T0 ⊆ T1 satisfies (Compw) (resp. (CompΨ

w)) then it satisfies
(ELoc) [13] (resp. (ELocΨ)).

(2) If T0 is a universal theory and the extension T0 ⊆ T1 satisfies (Comp) (resp.
(CompΨ)) then it satisfies (ESLoc) [13] (resp. (ESLocΨ)).

Theorem 3 allows us to identify many examples of local extensions (see Sect. 4). A
combination of extensions of a theory T0 which satisfy condition Comp (Compw)
also satisfies condition Comp (Compw) and hence also condition ESLoc (ELoc).

Theorem 4 ([15]). Let T0 be a first order theory with signature Π0 = (Σ0, Pred)
and (for i ∈ {1, 2}) Ti = T0 ∪Ki be an extension of T0 with signature Πi = (Σ0 ∪
Σi, Pred). Assume that both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition
(Compw), and that Σ1∩Σ2 = ∅. Then the extension T0 ⊆ T =T0∪K1∪K2 satisfies
condition (Compw). If, additionally, in Ki all terms starting with a function
symbol in Σi are flat and linear, for i = 1, 2, then the extension is local.

4 Examples

4.1 Extensions with Free, (Strictly) Monotone, Injective Functions

Any extension T0 ∪ Free(Σ) of a theory T0 with a set Σ of free function symbols
satisfies condition (Compw). We also consider monotonicity/antitonicity condi-
tions3 for an n-ary function f w.r.t. a subset I of its arguments:

Monσ(f)
∧

i∈I

xi ≤σi

i yi ∧
∧

i�∈I

xi = yi → f(x1, .., xn) ≤ f(y1, .., yn),

where for i ∈ I, σi∈{−, +}, and for i �∈ I, σi=0, and ≤+=≤ and ≤−=≥.

3 If I = {1, . . . , n} we speak of monotonicity in all arguments; we denote MonI(f) by
Mon(f). If I = ∅, Mon∅(f) is equivalent to the congruence axiom for f .

On Local Reasoning in Verification 273

We showed [13,16] that the extensions of any (possibly many-sorted) theory
whose models are posets with functions satisfying the axioms Monσ(f) satisfy
condition (Compw) if the codomains of the functions have a bounded semilattice
reduct or are totally ordered. In particular, any extension of the theory of reals,
rationals or integers with functions satisfying Monσ(f) into an numeric domain
(reals, rationals, integers or a subset thereof) is local, since (Compw) holds.

Example 2. The sortedness property Sorted(a) of the array a can be expressed
as a monotonicity axiom: ∀i, j(1 ≤ i ≤ j ≤ m → a(i) ≤ a(j)). An extension of
the theory of integers with a function a of arity i → e satisfying Sorted(a) (where
e is a new or old sort and the theory of sort e is totally ordered) is local.

Consider now the following conditions:
SMon(f) ∀i, j(i < j → f(i) < f(j)) and Inj(f) ∀i, j(i �= j → f(i) �= f(j))

Theorem 5. Assume that in all models of T0 the support of sort i has an un-
derlying strict total order relation <. Let T1 = T0 ∪ SMon(f), where f is a new
function of arity i → e (e may be a new or an old sort), in all models of T1 the
support of sort e has an underlying strict total order <, and there exist injective
order-preserving maps from any interval of the support of sort i to any interval
of the support e. Then the extension T0 ⊆ T1 satisfies (Compw), hence it is local.

Example 3. Let T0 be the (many-sorted) combination of T i
0 (the theory of linear

integer arithmetic, sort i) and T num
0 (the theory of real numbers, sort num). The

extension T1 of T0 with a function f of arity i→num satisfying SMon(f) is local.

Theorem 6. A theory extension T0 ⊆ T1 = T0∪Inj(f) with a function f of arity
i → e satisfying Inj(f) is local provided that in all models of T1 the cardinality of
the support of sort i is lower or equal to the cardinality of the support of sort e.

4.2 Extensions with Definitions and Boundedness Conditions

Let T0 be a theory containing a binary predicate ≤ which is reflexive, and f �∈ Σ0.

Guarded boundedness. Let m ∈ N. For 1 ≤ i ≤ m let ti(x1, . . . , xn) and
si(x1, . . . , xn) be terms in the signature Π0 with variables among x1, . . . , xn,
and let φi(x1, . . . , xn), i ∈ {1, . . . , m} be Π0-formulae with free variables among
x1, . . . , xn, such that (i) for every i �= j, φi ∧ φj |=T0⊥, and (ii) for every i,
T0 |= ∀x(φi(x) → si(x) ≤ ti(x)). Let GBound(f) =

∧m
i=1 GBoundφi(f), where:

GBoundφi(f) ∀x(φi(x) → si(x) ≤ f(x) ≤ ti(x)).
The extension T0 ⊆ T0 ∪ GBound(f) is local.

Boundedness for (strictly) monotone and injective functions. Any ex-
tension of a theory for which ≤ is a partial order (or at least reflexive) with func-
tions satisfying Monσ(f) and boundedness Boundt(f) conditions is local [14,16].

Boundt(f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))
where t(x1, . . . , xn) is a Π0-term with variables among x1, . . . , xn whose associ-
ated function has the same monotonicity as f in any model. Similar results hold
for strictly monotone/injective functions (under the conditions in Thm. 5, 6).

274 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

4.3 Pointer Data Structures à la McPeak and Necula

In [12], McPeak and Necula investigate reasoning in pointer data structures. The
language used has sorts p (pointer) and s (scalar). Sets Σp and Σs of pointer resp.
scalar fields are modeled by functions of sort p → p and p → s, respectively. A
constant null of sort p exists. The only predicate of sort p is equality; predicates
of sort s can have any arity. The axioms considered in [12] are of the form

∀p E ∨ C (1)

where E contains disjunctions of pointer equalities and C contains scalar con-
straints (sets of both positive and negative literals). It is assumed that for all
terms f1(f2(. . . fn(p))) occurring in the body of an axiom, the axiom also con-
tains the disjunction p = null∨fn(p) = null∨· · ·∨f2(. . . fn(p)) = null.4 Examples
of axioms (for doubly linked data structures with priorities) considered there are:

∀p p �= null ∧ next(p) �= null → prev(next(p)) = p (2)
∀p p �= null ∧ prev(p) �= null → next(prev(p)) = p (3)
∀p p �= null ∧ next(p) �= null → priority(p) ≥ priority(next(p)) (4)

(the first two axioms state that prev is a left inverse for next, the third axiom is a
monotonicity condition on the function priority). Let ΨK(T) = st(K)∪T ∪{f(t) |
t ∈ st(K) ∪ T, f ∈ Σs} for any set of ground terms T .

Theorem 7. Let T0 be a Π0-theory, where S0 = {s}, and T1 = T0∪K be the
extension of T0 with signature Π = ({p, s}, Σ, Pred) – where Σ=Σp∪Σs∪Σ0,
and K is a set of axioms ∀p(E ∨ C) of type (1). Then every partial model A of K
with total Σ0 functions such that the definition domain of A is closed under ΨK
(i.e. if f∈Σs and the p-term t is defined in A then f(t) is defined in A) weakly
embeds into a total model of K. Hence T0 ⊆ T1 is a Ψ -stably local extension.

Ψ -stable locality is not harmful in this case, since all universally quantified vari-
ables in the axioms in K are of sort p, and the number of instances of these
variables with subterms in ΨK(G) which need to be considered is polynomial in
the size of st(K, G) (no operations with output sort s generate such terms).

4.4 The Theory of Arrays à la Bradley, Manna and Sipma

In [1] the array property fragment is studied, a fragment of the theory of arrays
with Presburger arithmetic as index theory and parametric element theories.
Consider the extension of the combination T0 of the index and element theories
with functions read, write and axioms:

read(write(a, i, e), i) = e j �= i → read(write(a, i, e), j) = read(a, j).

The array property fragment is defined as follows5:

4 This has the rôle of excluding null pointer errors.
5 The considerations below are for arrays of dimension 1, the general case is similar.

On Local Reasoning in Verification 275

An index guard is a positive Boolean combination of atoms of the form t ≤ u or
t = u where t and u are either a variable of index sort or a ground term (of index
sort) constructed from (Skolem) constants and integer numbers using addition
and multiplication with integers. A formula of the form (∀i)(ϕI(i) → ϕV (i)) is an
array property if ϕI is an index guard and if any universally quantified variable of
index sort i only occurs in a direct array read read(a, x) in ϕV . Array reads may
not be nested. The array property fragment consists of all existentially-closed
Boolean combinations of array property formulae and quantifier-free formulae.
The decision procedure proposed in [1] decides satisfiability of formulae in nega-
tion normal form in the array property fragment in the following steps.

1. Replace all existentially quantified array variables with Skolem constants;
replace all terms of the form read(a, i) with a(i); eliminate all terms of the
form write(a, i, e) by replacing the formula φ(write(a, i, e)) with the conjunc-
tion of the formula φ(b) (obtained by introducing a fresh array name b for
write(a, i, e)) with (b(i) = e) ∧ ∀j(j ≤ i − 1 ∨ i + 1 ≤ j → b(j) = a(j)).6

2. Existentially quantified index variables are replaced with Skolem constants.
3. Universal quantification over index variables is replaced by conjunction of

suitably chosen instances of the variables.

For determining the set of ground instances to be used in Step 3, the authors
prove that certain partial “minimal” models can be completed to total ones.

Theorem 8 (cf. also [1]). Let K be the clause part and G the ground part
(after the transformation steps (1)–(3)), and I be the set of index terms defined
in [1]. Let ΨK(G) = {f(i1, . . . , in) | f array name , i1, . . . , in ∈ I}. Every partial
model of T0 ∪ K[ΨK(G)] ∪ G in which all terms in ΨK(G) are defined can be
transformed into a (total) model of T0 ∪ K ∪ G. This criterion entails (ELocΨ).

5 A General Framework for Obtaining Locality Results

In Section 4 we identified a large number of theory extensions which can be
proved to be local and arise in a natural way in invariant checking and bounded
model checking. We distinguish several aspects:

– Programs usually handle complex data structures; it may be necessary to
reason about various data types such as lists, arrays, records, etc. We pre-
sented classes of such theories for which locality properties hold. Theorem 4
identifies cases in which locality is preserved when combining theories.

– The transition constraint systems we consider define updates of the values
of variables and functions which are guarded by formulae which describe a
partition of the state space, and therefore define local theory extensions.

– In invariant checking and bounded model checking, the paths to be verified
(consisting of successive updates) can be used to identify chains of exten-
sions to be considered in the deduction process. These extensions are often
(combinations) of various extensions with guarded boundedness conditions.

6 Note that, by the definition of array property formulae, if a term write(a, i, e) occurs
in the array property fragment then i is an existentially quantified index variable.

276 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

Thus, results in Sect. 4.2 and 3.3 allow us to extend the classes of theories from
verification for which instantiation-based complete decision procedures exist.

Extensions of the fragment of Necula and McPeak. We are interested in
pointer structures which can be changed during execution of a program (a cell of
a list can be removed, or a new subtree added into a tree structure). The general
remarks above also apply for such situations.

Theorem 9. Assume that the update axioms Update(Σ, Σ′) describe how the
values of the Σ-functions change, depending on a finite set {φi | i ∈ I} of
mutually exclusive conditions, expressed as formulae over the base signature and
the Σ-functions (axioms of type (5) below represent precise ways of defining the
updated functions, whereas axioms of type (6) represent boundedness properties
on the updated scalar fields, assuming the scalar domains are partially ordered):

∀x(φi(x) → f ′
i(x)=si(x)) i ∈ I, where φi(x) ∧ φj(x) |=T0 ⊥ for i �=j (5)

∀x(φi(x) → ti(x)≤f ′
i(x)≤si(x)) i ∈ I, where φi(x) ∧ φj(x) |=T0 ⊥ for i �=j (6)

where si, ti are terms over the signature Σ such that T0 |= ∀x(φi(x)→ti(x)≤si(x))
for all i ∈ I. They define local theory extensions. This holds for any extensions
of disjoint combinations of various pointer structures with such update axioms.

Example 4. Consider the following algorithm for inserting an element c with
priority field c.prio = x into a doubly-linked list sorted w.r.t. the priority fields.

c.prio = x, c.next = null
for all p �= c do
if p.prio ≤ x then if p.prev = null then c.next′ = p, endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null
p.next �= null ∧ p.next > x then p.next′ = p.next
p.next �= null ∧ p.next ≤ x then p.next′ = c, c.next′ = p.next

The update rules Update(next, next′) can be read from the program above:

∀p(p �=null ∧ p �=c ∧ prio(p)≤x ∧ (prev(p) = null) → next′(c)=p ∧ next′(p)=next(p))
∀p(p �=null ∧ p �=c ∧ prio(p)≤x ∧ (prev(p) �= null) → next′(p)=next(p))
∀p(p �=null ∧ p �=c ∧ prio(p)>x ∧ next(p)=null → next′(p)=c ∧ next′(c)=null)
∀p(p �=null ∧ p �=c ∧ prio(p)>x ∧ next(p) �=null ∧ prio(next(p))>x → next′(p)=next(p))
∀p(p �=null∧p �=c∧prio(p)>x∧next(p) �=null∧prio(next(p))≤x → next′(p)=c∧next′(c)=next(p))

We prove that if the list is sorted, it remains so after insertion, i.e. the formula:

d �= null ∧ next′(d) �= null ∧ ¬prio(d) ≥ prio(next′(d))

is unsatisfiable in the extension T1 = T0 ∪ Update(next, next′) of the theory T0 of
doubly linked lists with a monotone field prio. T0 is axiomatized by the axioms
K = {(2), (3), (4)} in Sect. 4. The update rules are guarded boundedness axioms,
so the extension T0 ⊆ T1 is local. Hence, the satisfiability task above w.r.t. T1
can be reduced to a satisfiability task w.r.t. T0 as follows:

On Local Reasoning in Verification 277

Update0 d �=null ∧ d �=c ∧ prio(d)≤x ∧ prev(d)=null → c1=d
d �=null ∧ d �=c ∧ prio(d)≤x ∧ prev(d)=null → d1=next(d)
d �=null ∧ d �=c ∧ prio(d)≤x ∧ prev(d) �=null → d1=next(d)
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d)=null → d1=c ∧ c1=null
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d) �=null ∧ prio(next(d))<x → d1=next(d)
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d) �=null ∧ prio(next(d))≤x → d1=c
d �=null ∧ d �=c ∧ prio(d)>x ∧ next(d) �=null ∧ prio(next(d))≤x → c1=next(d)

G0 d �= null ∧ next′(d) �= null ∧ ¬prio(d) ≥ priority(next′(d))
N0 d=c → d1=c1 (corresponds to Def : next′(d)=d1 ∧ next′(c)=c1)

To check the satisfiability of G′ = Update0∧G0∧N0 w.r.t. T0 we use the Ψ -stable
locality of the theory defined by the axioms K = {(2), (3), (4)} of doubly linked
lists with decreasing priorities in Sect. 4 or the instantiation method in [12].

Extending the array property fragment. Let T0 be the array property
fragment in [1] (set of arrays Σ0). There are several ways of extending T0:

Theorem 10. Let T1=T0∪K be an extension of T0 with new arrays in a set Σ1.

(1) If K consists of guarded boundedness axioms, or guarded definitions (cf.
Sect.4.2) for the Σ1-function symbols, then the extension T0 ⊆ T1 is local. 7

(2) If K consists of injectivity or (strict) monotonicity (and possibly boundedness
axioms) for the function symbols in Σ1 then the extension T0 ⊆ T1 is local if
the assumptions about the element theory specified in Sect. 4.1 hold.

(3) Any combination of extensions of T0 as those mentioned in (1),(2) with
disjoint sets of new array constants leads to a local extension of T0.

If the guards φi of the axioms in K are clauses then the result of the hierarchical
reasoning method in Thm. 1 is a formula in T0, hence satisfiability of ground
clauses w.r.t. T0 ∪ K is decidable. Similarly for chains of extensions. The same
holds for testing satisfiability of goals Γ0 ∪G where Γ0 and (K[G])0 belong to the
array property fragment. For general guards and chains of extensions decidability
depends on the form of the formulae obtained by hierarchical reduction(s).

Example 5. The example presented in Section 1.2 illustrates the extension of
the fragment in [1] we consider. The task is to check the unsatisfiability of the
formula G = (1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c �= d ∧ p′(c) = p′(d)) in the
extension of the many sorted combination T0 of Z, R+, {0, 1} with the axioms
∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i �= j → p(i) �= p(j)) ∧ Update(a, p, a′, p′).
The extension can be expressed as a chain: T0 ⊆ T1 = T0 ∪ Inj(p) ⊆ T2 =
T1 ∪ Update(a, p, a′, p′). By the locality of the second extension (with guarded
boundedness axioms) we obtain the following reduction of the task of proving
T2 ∧ G |=⊥ to a satisfiability problem w.r.t. T1. We take into account only
the instances of Update(a, p, a′, p′) which contain ground terms occurring in G.
This means that the axioms containing a′ do not need to be considered. After
purification and skolemization of the existentially quantified variables we obtain:
7 An example are definitions of new arrays by writing x at a (constant) index c,

axiomatized by {∀i(i �= c → a′(i) = a(i)), ∀i(i = c → a′(i) = x)}.

278 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

Update0 1 ≤ c ≤ m ∧ (1 ≤ kc ≤ m ∧ kc �=c → p(c)>p(kc)) → c1=x
1 ≤ d ≤ m ∧ (1 ≤ kd ≤ m ∧ kd �=d → p(d)>p(kd)) → d1=x
∀j(1 ≤ j ≤ m ∧ j �=c → p(c)>p(j)) ∨ (1 ≤ c ≤ m → c1=p(c)+y)
∀j(1 ≤ j ≤ m ∧ j �=d → p(d)>p(j)) ∨ (1 ≤ d ≤ m → d1=p(d)+y)

G0 1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c �= d ∧ c1 = d1

N0 c = d → c1 = d1 (corresponds to Def : p′(c) = c1 ∧ p′(d) = d1)

We reduced the problem to checking satisfiability of G1 = Update0 ∧ G0 ∧ N0
(which contains universal quantifiers) w.r.t. T1. Let G1 = Gg ∧ G∀, where Gg

is the ground part of G and G∀ the part of G containing universally quantified
variables. We now have to check whether T0 ∧ Inj(p) ∧ G∀ ∧ Gg |= ⊥. Note
that extensions of injectivity axioms and boundedness are local, and thus T0 ⊆
T0 ∧ Inj ∧ G∀ is a local extension. This makes the following reduction possible:

Inj0 1≤i�=j≤m → p(i) �=p(j) where i, j are instan-
G∀0 (1≤j≤m ∧ j �=c → c2>p(j)) ∨ (1≤c≤m → c1=c2+y) tiated with c, d, kc, kd

(1≤j≤m ∧ j �=d → d2>p(j)) ∨ (1 ≤ d ≤ m → d1=d2+y) + purification
Gg 1≤c≤m ∧ (1≤kc≤m ∧ kc �=c → c2>c3) → c1=x c=d → c1=d1

1≤d≤m ∧ (1≤kd≤m ∧ kd �=d → d2>d3) → d1=x

1≤c≤m ∧ 1≤d≤m ∧ c�=d ∧ c1=d1

N ′
0 c=d → c2=d2, c=kc → c2=c3, c=kd → c2=d3, d=kc → d2=c3, d=kd → d2=d3,

kc=kd → c3=d3 (corr. to Def1 : p(c)=c2 ∧ p(d)=d2 ∧ p(kc)=c3 ∧ p(kd)=d3)

We can use a prover for a combination of integers and reals to determine whether
the conjunction of formulae above is satisfiable or symbolic computation pack-
ages performing quantifier elimination over the combined theory to derive con-
straints between x and y which guarantee injectivity after update.

6 Experiments

We have implemented the approach for hierarchical reasoning in local theory
extensions described in [13], cf. also Sect. 3.1. The tool we devised allows us to
reduce satisfiability problems in an extended theory to a base theory for which
we can then use existing solvers. It takes as input the axioms of the theory
extension, the ground goal and the list of extension function symbols. Chains
of extensions are handled by having a list of axiom sets, and correspondingly a
list of lists of extension function symbols. We follow the steps in Sect. 3.1: the
input is analyzed for ground subterms with extension symbols at the root. After
instantiating the axioms w.r.t. these terms, the instances are purified (so the
extension symbols are removed). The resulting formula is either given to a prover
for a base theory, or taken as goal for another reduction (if we have a chain of
extensions). Currently, we can produce base theory output for Yices, Mathsat,
CVC and Redlog, but other solvers can be integrated easily. We ran tests on
various examples, including different versions of a train controller example [10,4],
an array version of the insertion algorithm, and reasoning in theories of lists.
Test results and comparisons can be found in [17] (which contains preliminary
versions of some of the results in this paper, in an extended form). Runtimes

On Local Reasoning in Verification 279

range from 0.047s to 0.183s for various versions of the train controller example
resp. to 0.4s for array examples (including an example from [1]). While Yices
can also be used successfully directly for unsatisfiable formulae, this does not
hold if we change the input problem to a formula which is satisfiable w.r.t.
the extended theory. In this case, Yices returns “unknown” after a 300 second
timeout. After the reduction with our tool, Yices (applied to the problem for
the base theory) returns “satisfiable” in fractions of a second, and even a model
for this problem that can easily be lifted to a model in the extended theory
for the initial set of clauses8. Even more information can be obtained using the
quantifier elimination facilities offered e.g. by Redlog for determining constraints
between the parameters of the problems which guarantee safety.

We are working towards extending the tool support to stable locality, as well
as for extensions with clauses containing proper first-order formulae.

7 Conclusions

We presented a general framework – based on a general notion of locality –
which allows to identify complex theories important in verification for which
efficient (hierarchical and modular) reasoning methods exist. We showed that
locality considerations allow us to obtain parameterized decidability and com-
plexity results for many (combinations of) theories important in verification (of
parametric systems). We showed that many theories of data structures studied
in the verification literature are local extensions of a base theory. The list of
theories we considered is not exhaustive. (Due to space limitations we did not
discuss the theory of arrays studied in [7], whose main ingredient is the exis-
tence of undefined values in arrays and properties (e.g. injectivity) are guarded
by definedness conditions. The main result in [7] can be seen as a locality re-
sult as the arguments used are based on the possibility of completing partial
to total models.) The general framework we use allows us to identify situations
in which some of the syntactical restrictions imposed in previous papers can be
relaxed.

The deduction tasks we considered here are typical for invariant checking and
bounded model checking. The next step would be to integrate these methods
into verification tools based on abstraction/refinement. Our work on hierarchical
interpolation in local extensions [14] can be extended to many of the theories of
data structures described in this paper. This is the topic of a future paper.

Acknowledgments. We thank Aaron Bradley for helpful comments made on
a preliminary version of this paper. This work was partly supported by the
German Research Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS). See www.avacs.org for more information.

8 The lifting is straightforward, given the output of our tool, but is not automated at
the moment.

280 C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans

References

1. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

2. Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras: Intro-
duction to Theory and Application of Partial Algebras, Part I. In: Mathematical
Research, vol. 31, Akademie-Verlag, Berlin (1986)

3. Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quar-
terly 41, 173–182 (1995)

4. Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifica-
tions with complex data types and timing parameters. In: Davies, J., Gibbons, J.
(eds.) IFM 2007. LNCS, vol. 4591, pp. 233–252. Springer, Heidelberg (2007)

5. Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In: Proc. 16th IEEE Symposium on Logic
in Computer Science (LICS 2001), pp. 81–92. IEEE Computer Society Press, Los
Alamitos (2001)

6. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems
for partial functions with Evans equality. Information and Computation 204(10),
1453–1492 (2006)

7. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Deciding extensions of the theory
of arrays by integrating decision procedures and instantiation strategies. In: Fisher,
M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 177–189. Springer, Heidelberg (2006)

8. Givan, R., McAllester, D.: New results on local inference relations. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR 1992), pp. 403–412. Morgan Kaufmann, San Francisco (1992)

9. Givan, R., McAllester, D.A.: Polynomial-time computation via local inference re-
lations. ACM Transactions on Computational Logic 3(4), 521–541 (2002)

10. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the
verification of complex systems. Electronic Notes in Theoretical Computer Sci-
ence 174(8), 39–54 (2007)

11. McAllester, D.: Automatic recognition of tractability in inference relations. Journal
of the Association for Computing Machinery 40(2), 284–303 (1993)

12. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490.
Springer, Heidelberg (2005)

13. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005)

14. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer,
Heidelberg (2006)

15. Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories:
The case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007.
LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007)

On Local Reasoning in Verification 281

16. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local ex-
tensions of ordered structures. In: Proc. of ISMVL-2007, IEEE Computer Society
Press, Los Alamitos (2007), http://dx.doi.org/10.1109/ISMVL.2007.10

17. Sofronie-Stokkermans, V., Ihlemann, C., Jacobs, S.: Local theory extensions, hier-
archical reasoning and applications to verification. In: Dagstuhl Seminar Proceed-
ings 07401,, http://drops.dagstuhl.de/opus/volltexte/2007/1250

http://dx.doi.org/10.1109/ISMVL.2007.10
http://drops.dagstuhl.de/opus/volltexte/2007/1250

	On Local Reasoning in Verification
	Introduction
	Application Domains
	Illustration

	Preliminaries
	Locality
	Hierarchical Reasoning in Local Theory Extensions
	Decidability, Parameterized Complexity
	Recognizing Generalized Locality

	Examples
	Extensions with Free, (Strictly) Monotone, Injective Functions
	Extensions with Definitions and Boundedness Conditions
	Pointer Data Structures à la McPeak and Necula
	The Theory of Arrays à la Bradley, Manna and Sipma

	A General Framework for Obtaining Locality Results
	Experiments
	Conclusions

