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ON LOCALLY AND GLOBALLY CONFORMAL

KAHLER MANIFOLDS

BY

IZU VAISMAN

Abstract. Some relations between the locally conformai Kahler (l.c.K.) and the

globally conformai Kahler (g.c.K.) properties are established. Compact l.c.K.

manifolds which are not g.c.K. do not have Kahler metrics. l.c.K. manifolds which

are not g.c.K. are analytically irreducible. Various curvature restrictions on l.c.K.

manifolds imply the g.c.K. property. Total spaces of induced Hopf fibrations are

l.c.K. and not g.c.K. manifolds.

Conjecture. A compact l.c.K. manifold which is not g.c.K. has at least one odd

odd-dimensional Betti number.

1. Introduction. The purpose of this note is to discuss some relations between

locally conformai Kühler (l.c.K.) and globally conformai Kahler (g.c.K.) metrics.

Various results concerning this subject are already known [1] and [10]-[13]. Here

we shall establish the interesting fact that any l.c.K. metric on a compact Käher

manifold is a g.c.K. metric, and we shall discuss some new curvature criteria for an

l.c.K. metric to be g.c.K. Furthermore, we shall prove that a reducible l.c.K.

manifold must be Kahler, and we shall discuss some examples of l.c.K. manifolds

which are not g.c.K. I am glad to thank here S. I. Goldberg for the useful

discussions we had on these matters.

2. l.c.K. metrics on compact Kahler manifolds. Let us mention first that, in

discussing our subject, we shall use the notation and definitions of [10]-[14]. I.e. we

shall denote: by M an l.c.K. manifold (dimc M = n > 2); by g its metric; by { Ua}

an open covering of M endowed with C°°-functions oa: Ua—>R such that ga =

e~°"g are Kahler metrics; by J the complex structure; by V the Levi-Civita

connection of g; by V the Weyl connection of g, i.e., the Levi-Civita connection of

ga ; by io ( = doa) the Lee form of M, which is closed and satisfies dil = u /\Q,

where ß is the fundamental form of M; and by B the Lee field, i.e., the

contravariant vector field associated to w.

The result stated in the Introduction, and which we shall be proving here, is

Theorem 2.1. The compact l.c.K. manifold (M,J,g) is g.c.K. iff (M,J) bears

some Köhler metric y.

Proof. The stated condition is obviously a necessary one.

In order to prove that it is also sufficient, we shall start by the consideration of
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534 IZU VAISMAN

the anti-Lee form 0 = to ° J. (Note that it has an associated anti-Lee field A =

-JB.) If we put « = w' + w", where the components are of the complex type (1,0)

and (0, 1), respectively, we have 0 = V^T (u' — u") and d.0 = 2V^T d"u', which

implies that d0 is a real exact form of type (1, 1).

Hence, if the Kahler metric y exists, we have (e.g., [5, Lemma 2, p. 13])

d0 = 2V^T d'd"lnf (2.1)

for some C°° globally defined positive function/: M —> R, i.e., we have

d"u' = d'd"mf. (2.2)

Let us now take the metric h = fg on M. It is obviously l.c.K., and it is easy to

see that its Lee form is £> = w + d In /and, because of (2.2), its (1, 0)-component £>'

satisfies

d"S>' = 0. (2.3)

Now by using local complex coordinates zJ, zJ = zj, we have some expression

w' = XjdzJ, where, by (2.3), X- are complex analytic functions. In turn, and since ga

are Kahler metrics, this is equivalent to

%-K-0. (2.4)
If we shall be using the existing conformai relation between h and ga, we shall see

that (2.4) is equivalent to

DjXk = -XkXj + %/z^ApA       (A/ = X,.), (2.5)

where D denotes the Levi-Civita connection of h.

Furthermore, (2.5) implies

8h£>' = -((n- l)/2)|ù|2, (2.6)

where the index h indicates that the operations are performed with respect to the

metric h.

Now, by integrating (2.6) over M, we obtain w = 0, which means that h is a

Kahler metric, and the theorem is proven.

Corollary 2.2. A compact l.c.K. manifold which is not g.c.K. possesses no Kahler

metric.

Remarks. (1) As a matter of fact, the proof of Theorem 2.1 holds if the

hypothesis of the existence of the Kahler metric y is replaced by the weaker

hypothesis that the i/V'-cohomology class defined by d0 vanishes. Particularly, if

d0 = 0 (i.e., w' is a holomorphic 1-form) and M is compact, g is a Kahler metric.

(2) Theorem 2.1 and Corollary 2.2 do not hold in the noncompact case. This

follows from the existence of an l.c.K. metric on Tx X C"~x which is not g.c.K.

and which has been constructed in [10].

We would like to add the following comments. In view of Theorem 2.1, the two

problems of (1) characterizing the l.c.K. manifolds which are g.c.K., and (2)

characterizing the l.c.K. manifolds which bear a Kahler metric [13] are equivalent

in the compact case. Furthermore, the conjecture that a compact l.c.K. manifold,

which satisfies the Kählerian topological restrictions, possesses a Kahler metric
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[11], must be reformulated by conjecturing that, as a matter of fact, the given metric

must be g.c.K. Let us note that this result will be implied by the proof of

Conjecture. A compact l.c.K. manifold which is not g.c.K. has at least one odd

odd-dimensional Betti number.

This last conjecture has been proven by Kashiwada and Sato [2] in the case of

the l.c.K. manifolds with parallel Lee form. It is the first Betti number of the

manifold which must be odd in this case.

Moreover, we can see that the conjecture holds for l.c.K. manifolds of complex

dimension n = 2, i.e., we have

Proposition 2.3. A compact l.c.K., but not g.c.K., manifold M of complex

dimension 2 has an odd first Betti number.

Proof. Let us assume that the manifold M of the proposition has an even first

Betti number bx = 2q. Then, it is proven in Kodaira [4] that there are q linearly

independent closed holomorphic 1-forms <f>,, . . . , <¡>q such that the cohomology

classes of these forms and of their complex conjugates form a basis in 77 X(M, C).

Hence, we have for the Lee form of M

w = <*,<*>, + • • • +aq<pq + ßx$x + • • • + ßq$q + d<p

for some constants a, ß and some function (¡p. It follows that

w' = a,<¡>, + • • •  +aq4>q + d'rp,

and d0 = -2V^T d'd"q>. By Remark (1), this implies that M is g.c.K., which is not

the case.

Hence, under the hypotheses of Proposition 2.3, we must have bx(M) odd.

Q.E.D.
We see thereby that compact two-dimensional l.c.K. and not g.c.K. manifolds

can exist only in the classes VI and VII of Kodaira's classification of surfaces [4].

3. Curvature criteria for g.c.K. metrics. It has been proven in [12] and [1] that,

under some restrictions on the Riemann curvature tensor of g, a compact l.c.K.

manifold is, in fact, Kahler. For instance, I would like to note that the result of

Theorem 2.1 of [1] follows from

Proposition 3.1. Assume that M is a compact l.c.K. manifold such that, for any

two holomorphic 2-planes defined by the unit vectors X, Y, respectively, the holomor-

phic bisectional curvature is related to the sectional curvatures by the inequality

R(X, JX, Y, JY) > R(X, Y, X, Y) + R(X, JY, X, JY). (3.1)

( The convention sign for R is that of [3].) 77ze« M must be a Kahler manifold.

The proof follows from the fact that (3.1) implies the inequality assumed in [1],

and it consists of summing up (3.1) over all the pairs of an orthonormal basis

{F,,yF,}.
It is also noteworthy that the inequality assumed in Theorem 2.1 of [1] holds in

the case of an l.c.K. manifold of constant sectional curvature k < 0, which implies
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Proposition 3.2. A compact l.c.K. manifold of constant sectional curvature must

be a flat Kahler manifold.

This is a consequence of the above-mentioned argument if k < 0, and it follows

from the fact that the high-dimensional spheres do not have complex structures

(dimension six excluded?) if k > 0.

Now, the purpose of this section is to produce some curvature criteria for the

g.c.K. property by using the unitary connection of M [8] instead of the Levi-Civita

connection.

The unitary connection V(c) of a Hermitian manifold is defined by the conditions

[3, Chapter IX, Proposition 10.3]

V(c) 7 = 0,        V(c) g = 0,        T(c) (X, JY) = T(c) (JX, Y), (3.2)

where T(c) is the torsion of V(c).

In the case of an l.c.K. manifold, it is easy to verify, using formulas of [10], [12],

that one has

V(c)* Y = Vx Y + iw(X) Y - \0(X)JY, (3.3)

and that the curvature of this connection is

R(C)(X, Y)Z = R(X, Y)Z - \d0(X, Y)JZ. (3.4)

If local complex coordinates are considered this formula becomes

R\c)jki> = Rjkii - ö,'9*«*. (3-5)

and we see that this tensor has Kählerian symmetries iff <7"to' = 0. Hence, by

Remark (1) of §2, we may state

Proposition 3.3. A compact l.c.K. manifold is Kahler iff the curvature 7?(c) has the

symmetries of the curvature tensor of a Kahler manifold.

As a matter of fact, a stronger result is available. In order to write it down, let us

introduce the unitary covariant curvature tensor

R(C)(X, Y, Z, W) = g(Ric)(Z, W) Y, X). (3.6)

Then, we have

Proposition 3.4. Let M be a connected l.c.K. manifold, which satisfies the

following symmetry property

R(C)(X, Y, Z, W) = R(c)(Z, W, X, Y). (3.7)

Then, either M is g.c.K. or d.0 = 0 and then, if M is compact, M is Kahler.

Proof. As a consequence of (3.4) and (3.7) we obtain

d0(X, Y)U(Z, W) = d0(Z, W)Ü(X, Y).

This implies dO = <pß and, by a differentiation, dq> + <pw = 0. Hence, if <¡p ̂ 0

everywhere, to is exact and M is g.c.K. On another side, if <p(x0) = 0 for some

x0 E M, then, by putting to = í/t/t in some neighbourhood of x0, we obtain from

dtp + rpto = 0 that q> = 0 on  the whole neighbourhood.  Since any other point
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x E M can be joined to x0 by a chain of consecutively intersecting neighbour-

hoods, where to is of the form <7t/t, we see that <p = 0, i.e., d0 = 0 and, with

Remark (1) of §2, we are done.

Corollary 3.5. A compact l.c.K. manifold with 7?(c) = 0 is Kahler

Now, let us consider the unitary sectional curvature

*aX-r)-V«r\rv-«x.Y)r <3'8)

In view of (3.4), and over each neighbourhood U , we have

2 (g(x, T))2- |*|2|y|2

where ^„(X, Y) is the sectional curvature of the Kahler metric ga. As a conse-

quence of this formula, it is easy to see that the unitary sectional curvature

depends, in fact, on the plane of {A", Y} and not on these vectors themselves.

Proposition 3.6. Let M be a connected l.c.K. manifold with pointwise constant

unitary sectional curvature. Then, either M is g.c.K. or M has a vanishing first Chern

class.

Proof. Let us introduce the following notation:

G(X, Y, Z, W) = g(X, Z)g(Y, W) - g(Y, Z)g(X, W),

R(SC)(X, Y, Z, W) =\{R(C)(X, Y, Z, W) + R(c)(Z, W, X, Y)},

-4<è(X, Y, Z, W) = dO(X, Y)ti(Z, W) + d0(Z, W)Ü(X, Y).

The hypothesis K^(X, T)-pointwise constant means

R(SC)(X, Y, X, Y) = <pG(X, Y, X, Y)

for some real function <p on M. 7?(JC) does not necessarily satisfy the Riemannian

Bianchi identity.

However, that part of the proof of Proposition 1.2. of [3, Chapter V] which is not

based on the Bianchi identity allows us to deduce

RSC(X, Y, Z, W) - RSC(X, W, Y, Z) = <p{G(X, Y, Z, W) - G(X, W, Y, Z))

(3.10)
or, by computing the tensor 7?(iC) by means of (3.4):

&(X, Y, Z, W) - @(X, W, Y, Z) + e"-{2Ra(X, Y, Z, W) + Ra(X, Z, W, Y)}

= <p{G(X, Y, Z, W) - G(X, W, Y, Z)}. (3.11)

Now, we shall explicitate (3.11) locally by putting X = o/dz', Y = 9/dz7, Z =

9/3z*, W = d/dzh. Since Ra is a Kählerian curvature, we obtain

5 9;H&a + 5 9Ä"*«i/ + 5 9»W/Äy +1 ^t&A + 2e°-Ra»t = -<p{ gih-gk] + gygkh- ).

By contracting here with ghk, this relation implies

i(«+■■2ydp,-iMf-tefi

where ^ = -(n + l)<p - ¿g^ô^v
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Finally, this relation means

\{n + 2)d0 + 8wC, = 2^B, (3.12)

where C, is a closed form defining the first Chern class of M [3, Vol. II, p. 312].

By a differentiation, (3.12) provides di¡/ + 4>co = 0, whence, as in the case of the

proof of Proposition 3.4, we must have either u exact or \p = 0, i.e., either M is

g.c.K. or C, is exact by (3.12).    Q.E.D.

Remarks. (1) If C, = 0 (i.e., the Kahler metrics ga are Ricci flat), formula (3.12)

proves in a similar manner that either M is g.c.K. or d.0 = 0 (and M is Kahler, if

compact).

(2) Various other results can be proven in a similar manner, e.g., if M is a

connected l.c.K. manifold whose local Kahler metrics ga have vanishing holomor-

phic sectional curvature and whose unitary holomorphic sectional curvature is

pointwise constant then either M is g.c.K. or d.0 = 0, etc. The stated result follows

from the following consequence of (3.4):

K(C)(X, JX) = e~°-Ka(X, JX) + dO(X, JX)/2\X\2. (3.13)

Let us note that, together with formulas in [12], (3.13) implies

K(C)(X, JX) = K(X, JX) + |to|2/4 - (u2(X) + 02(X))/4\X\2.       (3.14)

4. I.C.K. manifolds are analytically irreducible. The present section is devoted to

the proof of the fact that, if an l.c.K. metric is locally analytically reducible then it

is necessarily a Kahler metric.

The proof is a matter of a computation, and we prefer to do it in the following

way.

By the local analytical reducibility of g we understand the existence of such local

complex coordinates (z ", z ") such that g has locally the form

gab(zc)dz"dzb + guv(z»)dz"dz°,

where a, b, c = I, . . . , h; u, v, w = h + 1,...,«; 1 < h < n — 1. In other words,

M must have a pair of complementary orthogonal distributions D, D' which are

analytic [9], integrable, and define foliations with respect to which g is a bundle-

like metric [6].

This pair D, D' can be defined by a pair of projectors (P, Q) such that [9]

P2 = P,    Q2= Q,    PQ= QP = 0,   P+ Q = Id,

g(PX, QY) = 0,   PJ = JP,   QJ = JQ. (4.1)

Namely, P and Q are the orthogonal projections of the tangent space of M onto D

and D ', respectively, and D — im P, D' = im Q.

The integrability of D, D ' means

Q[ PX, PY] = 0,       P[ QX, QY] = 0. (4.2)

In what concerns the analyticity we can use

Proposition 4.1. A complex distribution D on a complex analytic manifold M is an

analytic distribution iff, for any vector field X on M and any vector field Y of D, the

vector field [JX, Y] - J[X, Y] lies in D.
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This has been proven in [9] for a Kahler manifold M, but, since analyticity has a

local character, it is true in the general case as well.

For D and D ' considered previously, this means

Q{[JX, PY] - J[X, PY]} = 0,       P{[JX, QY] - J[X, QY]} = 0. (4.3)

Finally, the conditions of g being bundle-like are [9]

(LPxg)(QY, QZ) = 0,       (LQXg)(PY, PZ) = 0, (4.4)

where L denotes the Lie derivative.

All is ready now for the proof of

Proposition 4.2. An l.c.K. manifold which is analytically reducible is a Kahler

manifold.

Proof. By explicitating with the usual formula of the exterior differential, and in

view of the conditions (4.1)-(4.4), we derive after a computation

dtt(QX, QY, PZ) = 0,       dQ,(PX, PY, QZ) = 0.

Now, because of the l.c.K. condition <7B = to A B, these relations imply

u(PZ)Q(QX, QY) = 0,       u(QZ)ü(PX, PY) = 0,

and this in turn implies to = 0.    Q.E.D.

Remarks. (1) As already mentioned this means that a non-Kähler l.c.K. mani-

fold must be irreducible.

(2) The analytical character of the reducibility is essential in Proposition 4.2,

since e.g., the Hopf manifolds are non-Kähler and l.c.K. and, yet, C °°-reducible

[14].

5. Some examples of l.c.K. manifolds. The known list of examples of l.c.K.

manifolds which are not g.c.K. is not very large. It contains the Hopf manifolds

[10], [14] and, more generally, it contains the flat principal 5'-bundles over

Sasakian manifolds [14]. All these belong to the class of the l.c.K. manifolds with

parallel Lee form [14] which, in the compact case, must have an odd first Betti

number [2]. Finally, an l.c.K. and non-g.c.K. metric on Tx X C~l has been

constructed in [10].

In this section, we should like to discuss some concrete examples related to the

above-mentioned ones.

Let us start by considering the Hopf fibrations

p. S2*-*-* CP"-\        tr:H"^CPn-x, (5.1)

where 77" is the n-dimensional Hopf manifold (n > 1). We are referring to [3, Vol.

II] for the description of (5.1), and recall only the essential facts.

Thus, if {tk} (k = I, . . . , n) denote cartesian coordinates in the complex space

C, then S2n~x is defined by 2*_, tktk = 1. CP"~X is the set of the equivalence

classes of C" — {0} with respect to proportionality. Its points will be denoted by

using homogeneous coordinates \wx: • ■ ■ :w"]. H" = (C — {0})/Ax, where AA is

the group generated by z m> Xz, z E C - {0}, X E C, |\| =^0, 1. We denote a

corresponding point in77''by{z1,...,z"}.pisa principal circle bundle and w is
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a principal Tx-bundle, where

Tx = C/D,        D = {2ma + (In X)b/a, b E Z}.

If tja = {[wl: ■ ■ ■ :w"]/wa ^ 0) (a = 1, . . . , n), then bothp and m have local

trivializations over each Ua and these are given, respectively, by

(tx,...,tn)r-*([tx:- ■ ■ :t"],ta/\ta\),

tIw"^' T|wtt|w"
([w1: • • • :w"],T)r->

[ wa^w7kwk wa-\Jl,nx w*Sv*
(5.2)

(t = e" E Sx), for the fibrationp, and

{z\ ...,z")^([zx:- •• :z"],lnz"),

([^■••:w-3,f)«{^«'....,^.'}. (5-3)

(f E Tx) for the fibration w.

On every C/a, we shall also use the nonhomogeneous coordinates wka) = wk/wa

(k = 1, . . . , n).

Now, for use in the subsequent discussion, we shall consider the classical contact

structure on 52""1, which is defined by

9 = - 2 (tkdtk - tkdtk),

* = i

and the l.c.K. metric of 77" given by [10]

ds2= (l/ ¿   z*z*)¿  dzW.

The Lee form of this metric is

w = ( - 1/ 2  **** ) 2 (^ + p¿z>).
\ /t = l /y=l

(5.4)

(5.5)

(5.6)

If we go over to the local coordinates provided by (5.2) and (5.3), and use

nonhomogeneous coordinates, these elements become

0 = -dt -
1       ^k^jyt*)dwk(a)  -   W(a)d™(a))

1 + 2„-¿0 w*a)wAo)
(5.7)

ds2 = dSdS +dÇ
27^a W(a)iiV{o) —:-— «S

1 + 2fc=t„ w*„,vv?„,       1+2^. wf„,w*-A^a   "'(a)"» 'A^=a   ,v(a)*v(a)

2,  ^(a)t/^(a)

1+2, ,,*   ,-^A

to = -dt - dS -
Zj^W^dwia)   +   W{a¿w{a))

1   +2 -a  W(a)Wl)

(5-8)

(5.9)
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Let us also recall [3] that w is differentiably isomorphic to the product of the

fibrationp and the trivial fibration of Sx over a one-point space.

Now, if i: M —» CP"~X is an analytical immersion, an induced fibration

o: N —» M, o = z ~ 'CO exists, and N will be called the induced Hopf manifold over

M.

Proposition 5.1. (i) Every induced Hopf manifold has an induced l.c.K. metric

which is not g.c.K. (ii) Every induced Hopf manifold is the product of Sx with a

regular Sasakian manifold.

Proof. Let us use the prior notation and take the corresponding pullback

diagram

N

al

M

Clearly, y is an immersion, and N has the l.c.K. metric j*(ds2) with Lee form y'*to,

where ds2 and to are defined by (5.5), (5.6), respectively. It follows from (5.9) that

j*u> is not exact, and this proves (i).

In order to prove (ii), we take the fibration v = i~x(p): L^M and the

corresponding immersion h: L -h> S2n~x. Then h*0, with 0 of (5.4), (5.5), defines a

regular Sasakian structure on L. Since m is the product of p with Sx -» {point}, we

see that N œ Lx Sx.    Q.E.D.

Corollary 5.2. (i) If M is a compact Hodge manifold, a Tx-principal fibration

a: N —» M exists, with a compact l.c.K., not g.c.K., total space N. (ii) The corre-

sponding Betti numbers are related by

bh(N) = bh(M) + bh_x(M) - bh_2(M) - bh_3(M), (5.10)

(h = 0, . . . , n - 1) and by the corresponding Poincaré duals.

(See Theorem 36.2 of [7] for (ii).)

We put down the relations (5.10) in order to point out that the relation

b2(N) ¥= 0 is possible. Indeed, if M is an algebraic Tx, we get, by (5.10), b2(N) = 2.

This is interesting because of the fact that, by Corollary 2.2, an induced Hopf

manifold N never has a Kahler metric.

Furthermore, we should like to make the remark that the induced Hopf mani-

folds must have a parallel Lee form. Indeed, since N m L X Sx is induced by

H » S2"'1 X Sx, this assertion follows from Theorem (4.1) of [14].
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