
ON LOG CANONICAL RATIONAL SINGULARITIES

OSAMU FUJINO

Abstract. We prove that the class of log canonical rational sin-
gularities is closed under the basic operations of the minimal model
program. We also give some supplementary results on the minimal
model program for log canonical surfaces.
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1. Introduction

In this short note, we prove the following theorems, which are missing
in [F1]. This short note is a supplement to [F1], [F4], and [F2].

Theorem 1.1. Let (X, ∆) be a log canonical pair and let f : X → Y
be a projective surjective morphism such that f∗OX ≃ OY and that

−(KX +∆) is f -ample. Assume that X has only rational singularities.

Then Y has only rational singularities.

We can easily prove Theorem 1.1 by the relative Kodaira type van-
ishing theorem for log canonical pairs and Kovács’s characterization of
rational singularities. Of course, the vanishing theorem for log canon-
ical pairs is nontrivial in the classical minimal model program (see
[KM]). However, now we can freely use such a powerful vanishing the-
orem for log canonical pairs (see, for example, [F1] and [F3]). Note
that we do not assume that f is birational in Theorem 1.1.
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Theorem 1.2. We consider a commutative diagram

X
φ

//_______

f
  

@@
@@

@@
@@

X+

f+
}}{{

{{
{{

{{

Y

where (X, ∆) and (X+, ∆+) are log canonical, f and f+ are projective

birational morphisms, and Y is normal. Assume that

(i) f∗∆ = f+
∗ ∆+,

(ii) −(KX + ∆) is f -ample, and

(iii) KX+ + ∆+ is f+-ample.

We further assume that X has only rational singularities. Then X+

has only rational singularities.

Theorem 1.2 follows from the well-known negativity lemma (see, for
example, [KM, Lemma 3.38] and [F3, Lemma 2.3.27]) and the result on
nonrational centers of log canonical pairs due to Alexeev–Hacon (see
[AH]), which can be obtained in the framework of [F1].

Remark 1.3. In Theorem 1.2, the log canonicity of (X+, ∆+) follows
from the other conditions of Theorem 1.2 by the negativity lemma
(see, for example, [KM, Lemma 3.38] and [F3, Lemma 2.3.27]). It is
sufficient to assume that X+ is a normal variety and ∆+ is an effective
R-divisor on X+ such that KX+ + ∆+ is R-Cartier.

Note that the singularities of X are not always rational when (X, ∆)
is only log canonical. Moreover, X is not necessarily Cohen–Macaulay.
This is one of difficulties when we treat log canonical pairs. We hope
that Theorem 1.1 and Theorem 1.2 will be useful for the study of log
canonical pairs.

1.4 (MMP for log canonical pairs with only rational singularities). Let
us discuss the minimal model program for log canonical pairs with only
rational singularities.

Let (X, ∆) be a log canonical pair and let π : X → S be a projective
morphism onto a variety S. Then we know that we can always run the
minimal model program starting from π : (X, ∆) → S (for the details,
see, for example, [F1], [B], [HX], [F4], [F3], and so on). We further
assume that X has only rational singularities. Then, Theorem 1.1 and
Theorem 1.2 say that every variety appearing in the minimal model
program starting from π : (X, ∆) → S has only rational singularities.

From now on, we will see a contraction morphism more precisely.
Let

f : (X, ∆) → Y
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be a contraction morphism such that

(i) (X, ∆) is a Q-factorial log canonical pair,
(ii) −(KX + ∆) is f -ample, and
(iii) ρ(X/Y ) = 1.

Then we have the following three cases.

Case 1 (Divisorial contraction). f is divisorial, that is, f is a birational
contraction which contracts a divisor. In this case, the exceptional
locus Exc(f) of f is a prime divisor on X and (Y, ∆Y ) is a Q-factorial
log canonical pair with ∆Y = f∗∆. Moreover, if X has only rational
singularities, then Y has only rational singularities by Theorem 1.1.

Case 2 (Flipping contraction). f is flipping, that is, f is a birational
contraction which is small. In this case, we can take the flipping dia-
gram:

X
ϕ

//_______

f
  @

@@
@@

@@
@ X+

f+
}}{{

{{
{{

{{

Y

where f+ is a small projective birational morphism and

(i′) (X+, ∆+) is a Q-factorial log canonical pair with ∆+ = ϕ∗∆,
(ii′) KX+ + ∆+ is f+-ample, and
(iii′) ρ(X+/Y ) = 1.

By Theorem 1.2, we see that X+ has only rational singularities when
X has only rational singularities. For the existence of log canonical
flips, see [B, Corollary 1.2] and [HX, Corollary 1.8].

Case 3 (Fano contraction). f is a Fano contraction, that is, dimY <
dim X. Then Y is Q-factorial and has only log canonical singularities
by [F4]. Moreover, if X has only rational singularities, then Y has only
rational singularities by Theorem 1.1.

Anyway, the class of Q-factorial log canonical rational singularities
is closed under the minimal model program.

Let (X, ∆) be a projective log canonical pair such that KX + ∆ is
a semiample big Q-Cartier divisor. Unfortunately, the log canonical
model of (X, ∆) may have nonrational singularities even when X has
only rational singularities (see Example 5.1). This causes some unde-
sirable phenomena (see Example 5.3).

In this paper, we also give some supplementary results on the mini-
mal model program for (not necessarily Q-factorial) log canonical sur-
faces. We have:
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Theorem 1.5 (see Theorem 4.1). Let (X, ∆) be a log canonical surface

and let f : X → Y be a projective birational morphism onto a normal

surface Y . Assume that −(KX + ∆) is f -ample. Then the exceptional

locus Exc(f) of f passes through no nonrational singular points of X.

By Theorem 1.5, the minimal model program for log canonical sur-
faces discussed in [F2, Theorem 3.3] becomes independent of the clas-
sification of numerically lc surface singularities in [KM, Theorem 4.7]
(see Remark 4.4). When a considered surface is not Q-factorial, the
original proof of [F2, Theorem 3.3] uses the fact that a numerically lc
surface is a log canonical surface (see [F2, Proposition 3.5 (2)]). For
the proof of this fact, we need a rough classification of numerically
lc surface singularities in [KM, Theorem 4.7] (see the proof of [F2,
Proposition 3.5 (2)]).

Acknowledgments. The author was partially supported by Grant-
in-Aid for Young Scientists (A) 24684002 from JSPS.

We will work over C, the complex number field, throughout this
short note. We will freely use the basic notation of the minimal model
program as in [F1].

2. Preliminaries

Let us recall the notion of singularities of pairs. For the details, see
[F1], [F3], and so on.

2.1 (Singularities of pairs). A pair (X, ∆) consists of a normal variety
X and an effective R-divisor ∆ on X such that KX +∆ is R-Cartier. A
pair (X, ∆) is called kawamata log terminal (resp. log canonical) if for
any projective birational morphism f : Y → X from a normal variety
Y , a(E,X, ∆) > −1 (resp. ≥ −1) for every E, where

KY = f∗(KX + ∆) +
∑

E

a(E, X, ∆)E.

Let (X, ∆) be a log canonical pair and let W be a closed subset of
X. Then W is called a log canonical center of (X, ∆) if there are
a projective birational morphism f : Y → X from a normal variety
Y and a prime divisor E on Y such that a(E,X, ∆) = −1 and that
f(E) = W . Let (X, ∆) be a log canonical pair. If there exists a
projective birational morphism f : Y → X from a smooth variety Y
such that the f -exceptional locus Exc(f) and Exc(f) ∪ Suppf−1

∗ ∆ are
simple normal crossing divisors on Y and that a(E, X, ∆) > −1 for
every f -exceptional divisor E, then (X, ∆) is called a divisorial log
terminal pair.
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For surfaces, we can define a(E, X, ∆) without assuming that KX+∆
is R-Cartier. Then we can define numerically lc surfaces and numer-
ically dlt surfaces (see [KM, Notation 4.1]). Precisely speaking, we
have:

2.2 (Numerically lc and dlt due to Kollár–Mori (see [KM, Notation
4.1])). Let X be a normal surface and let ∆ be an R-divisor on X
whose coefficients are in [0, 1]. Let f : Y → X be a projective birational
morphism from a smooth variety Y with the exceptional divisor E =∑

i Ei. Then the system of linear equations

Ej · (
∑

i

aiEi) = Ej · (KY + f−1
∗ ∆)

for any j has a unique solution. We write this as

KY + f−1
∗ ∆ ≡

∑

i

a(Ei, X, ∆)Ei

with a(Ei, X, ∆) = ai. In this situation, we say that (X, ∆) is numer-
ically lc if a(Ei, X, ∆) ≥ −1 for every exceptional curve Ei and every
resolution of singularities f : Y → X. We say that (X, ∆) is numeri-
cally dlt if there exists a finite set Z ⊂ X such that X \ Z is smooth,
Supp∆|X\Z is a simple normal crossing divisor, and a(E,X, ∆) > −1
for every exceptional curve E which maps to Z.

Let us recall the basic operations and notation for R-divisors.

2.3 (R-divisors). Let D =
∑

aiDi be an R-divisor on a normal variety
X. Note that Di is a prime divisor for every i and that Di 6= Dj for
i 6= j. Of course, ai ∈ R for every i. We put ⌊D⌋ =

∑
⌊ai⌋Di and call

it the round-down of D. Note that, for every real number x, ⌊x⌋ is the
integer defined by x − 1 < ⌊x⌋ ≤ x. We also put ⌈D⌉ = −⌊−D⌋ and
call it the round-up of D. The fractional part {D} denotes D − ⌊D⌋.
We put

D=1 =
∑

ai=1

Di and D<1 =
∑

ai<1

aiDi.

Let B1 and B2 be two R-Cartier divisors on a normal variety X.
Then B1 is R-linearly equivalent to B2, denoted by B1 ∼R B2, if

B1 = B2 +
k∑

i=1

ri(fi)

such that fi ∈ C(X) and ri ∈ R for every i. We note that (fi) is
a principal Cartier divisor associated to fi. Let f : X → Y be a



6 OSAMU FUJINO

morphism to a variety Y . If there is an R-Cartier divisor B on Y such
that

B1 ∼R B2 + f∗B,

then B1 is said to be relatively R-linearly equivalent to B2. It is denoted
by B1 ∼R,f B2 or B1 ∼R,Y B2.

3. Proof of theorems

In this section, we prove Theorem 1.1 and Theorem 1.2. Let us prove
Theorem 1.1.

Proof of Theorem 1.1. By Kodaira type vanishing theorem for log canon-
ical pairs (see, for example, [F1, Theorem 8.1] and [F3, Theorem 5.6.4]),
we have Rif∗OX = 0 for every i > 0. Therefore, we have Rf∗OX ≃ OY .
Then, by Kovács’s characterization of rational singularities (see [K,
Theorem 1] and [F3, Theorem 3.12.5]), we obtain that Y has only
rational singularities. When f is birational, see also Lemma 3.1 be-
low. �

The following lemma is obvious by the definition of rational singu-
larities.

Lemma 3.1. Let f : X → Y be a proper birational morphism between

normal varieties. Assume that Rif∗OX = 0 for every i > 0. Then

X has only rational singularities if and only if Y has only rational

singularities.

Here, we give a proof of [AH, Theorem 1.2], which is a main ingre-
dient of Theorem 1.2, for the reader’s convenience.

Theorem 3.2 ([AH, Theorem 1.2]). Let (X, ∆) be a log canonical

pair and let f : Y → X be a resolution of singularities. Then every

associated prime of Rif∗OY is the generic point of some log canonical

center of (X, ∆) for every i > 0.

Note that Rif∗OY is independent of the resolution f : Y → X.

Proof. Without loss of generality, we may assume that X is quasi-
projective by shrinking X. We take a dlt blow-up g : (Z, ∆Z) → (X, ∆)
(see, for example, [F3, Theorem 4.4.21] and [F1, Section 10]). This
means that g is a projective birational morphism such that KZ +∆Z =
g∗(KX + ∆) and that (Z, ∆Z) is a divisorial log terminal pair. It is
well known that Z has only rational singularities. We take a projective
birational morphism h : Y → Z such that KY + ∆Y = h∗(KZ + ∆Z),
Y is smooth, and Supp∆Y is a simple normal crossing divisor on Y .
We may assume that h is an isomorphism over the generic point of any
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log canonical center of (Z, ∆Z) by Szabó’s resolution lemma (see, for
example, [F3, Remark 2.3.18 and Lemma 2.3.19]). Then we have

KY + {∆Y } + ∆=1
Y + ⌊∆<1

Y ⌋ = KY + ∆Y ∼R,f 0,

where f = g ◦ h : Y → X. We put E = ⌈−∆<1
Y ⌉. Then E is effective,

h-exceptional, and E ∼R,f KY + {∆Y } + ∆=1
Y . Therefore, we obtain

Rh∗OY (E) ≃ OZ since Rih∗OY (E) = 0 for every i > 0 by the vanishing
theorem of Reid–Fukuda type (see, for example, [F1, Lemma 6.2] and
[F3, Theorem 3.2.11]) and h∗OY (E) ≃ OZ . Note that Rh∗OY ≃ OZ

since Z has only rational singularities. Thus, we obtain

Rf∗OY (E) ≃ Rg∗Rh∗OY (E) ≃ Rg∗OZ ≃ Rg∗Rh∗OY ≃ Rf∗OY .

By [F1, Theorem 6.3 (i)] (see also [F3, Theorem 3.16.3 (i)]), we have
that every associated prime of Rif∗OY (E) ≃ Rif∗OY is the generic
point of some log canonical center of (X, ∆) for every i > 0. �

Let us prove Theorem 1.2.

Proof of Theorem 1.2. Let g : Z → X+ be a resolution of singularities.
Let Exc(f+) be the exceptional locus of f+ : X+ → Y . By Theo-
rem 1.1, we know that Y has only rational singularities. Therefore,
X+ \ Exc(f+) has only rational singularities. Thus, SuppRig∗OZ ⊂
Exc(f+) for every i > 0. By the negativity lemma (see, for example,
[KM, Lemma 3.38] and [F3, Lemma 2.3.27]), there are no log canoni-
cal centers of (X+, ∆+) contained in Exc(f+). By Theorem 3.2, every
associated prime of Rig∗OZ is the generic point of some log canonical
center of (X+, ∆+) for every i > 0. Thus, we have Rig∗OZ = 0 for
every i > 0. This means that X+ has only rational singularities. �

4. On log surfaces

In this section, we give some results on the minimal model program
for log canonical surfaces (see [F2], [FT], and [T]). This section is a
supplement to [F2].

The following theorem is the main result of this section.

Theorem 4.1. Let (X, ∆) be a log canonical surface and let f : X → Y
be a projective birational morphism onto a normal surface Y . Assume

that −(KX + ∆) is f -ample. Then the exceptional locus Exc(f) of f
passes through no nonrational singular points of X. In particular, every

f -exceptional curve is a Q-Cartier divisor. Moreover, if the relative

Picard number ρ(X/Y ) = 1, then Exc(f) is an irreducible curve and

KY + ∆Y , where ∆Y = f∗∆, is R-Cartier.
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Proof. By shrinking Y , we may assume that f(Exc(f)) = P and that
(Y, ∆Y ), where ∆Y = f∗∆, is numerically dlt by the negativity lemma
(see, for example, [KM, Lemma 3.41] and [F3, Lemma 2.3.25]). There-
fore, Y has only rational singularities (see [KM, Theorem 4.12]). By
the Kodaira type vanishing theorem as in the proof of Theorem 1.1
(see also [FT, Theorem 6.2]), we obtain Rif∗OX = 0 for every i > 0.
Thus, X has only rational singularities in a neighborhood of Exc(f)
by Lemma 3.1. This means that X is Q-factorial around Exc(f) (see,
for example, [L, Proposition (17.1)] and [T, Proposition 20.2]). There-
fore, every f -exceptional curve is a Q-Cartier divisor. From now on,
we assume that ρ(X/Y ) = 1. We take an irreducible f -exceptional
curve E. Then E2 < 0 and E · C < 0 for every f -exceptional curve C.
This means that E = Exc(f). We can take a real number a such that
(KX + ∆ + aE) · E = 0. Then, by the contraction theorem (see [F2,
Theorem 3.2] and [T, Theorem 17.1]), we can check that KY + ∆Y is
R-Cartier and KX + ∆ + aE = f ∗(KY + ∆Y ). �

As an easy consequence of Theorem 4.1, we have:

Corollary 4.2. In the minimal model program for log canonical sur-

faces, the number of nonrational log canonical singularities never de-

creases.

Remark 4.3. Theorem 4.1 and Corollary 4.2 hold true over any al-
gebraically closed field k. This is because the vanishing theorems for
birational morphisms from log surfaces hold true even when the char-
acteristic of k is positive (see, for example, [FT, Theorem 6.2]).

We give an important remark on [F2].

Remark 4.4. In [F2], we used the fact that a numerically lc surface is a
log canonical surface (see [F2, Proposition 3.5 (2)]) for the proof of the
minimal model program for (not necessarily Q-factorial) log canonical
surfaces (see [F2, Theorem 3.3]). Note that the proof of [F2, Proposi-
tion 3.5 (2)] more or less depends on the classification of numerically lc
surface singularities in [KM, Theorem 4.7]. By using Theorem 4.1, we
can check that KXi

+ ∆i is R-Cartier in the poof of [F2, Theorem 3.3]
without using [F2, Proposition 3.5 (2)]. This means that the minimal
model program for log canonical surfaces in [F2, Theorem 3.3] is in-
dependent of the classification of (numerically) lc surface singularities
(see [KM, Theorem 4.7]).

5. Examples

In this section, let us see that nonrational singularities sometimes
may cause undesirable phenomena.
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Note that the log canonical model of a log canonical surface may
have nonrational singularities.

Example 5.1. Let C ⊂ P2 be an elliptic curve and let V ⊂ P3 be a
cone over C ⊂ P2. Let p : X → V be the blow-up at the vertex P of
V . We take a general very ample smooth Cartier divisor ∆V on V such
that KV + ∆V is very ample. We put KX + ∆ = p∗(KV + ∆V ). Then
X is smooth, (X, ∆) is log canonical, and KX + ∆ is big. Note that
p = Φ|KX+∆| : X → V . We also note that (V, ∆V ) is log canonical and
that the singularity P ∈ V is not rational.

A finite étale morphism between kawamata log terminal pairs of log
general type induces a natural finite étale cover of their log canonical
models in any dimension.

Theorem 5.2. Let X be a normal projective variety and let ∆ be an

effective Q-divisor on X such that (X, ∆) is kawamata log terminal. Let

f : Y → X be a finite étale morphism such that KY +∆Y = f ∗(KX+∆).
Assume that KX + ∆ is big. Then we have a commutative diagram

Y

f

��

q
//___ Yc

fc

��

X p
//___ Xc

where p and q are birational maps, (Xc, ∆c) (resp. (Yc, ∆Yc
)) is the log

canonical model of (X, ∆) (resp. (Y, ∆Y )), fc is a finite étale morphism,

and KYc
+ ∆Yc

= f ∗
c (KXc

+ ∆c).

Proof. The proof of [F5, Theorem 4.5] works with some suitable mod-
ifications. Note that Xc and Yc have only rational singularities since
(Xc, ∆c) and (Yc, ∆Yc

) are both kawamata log terminal pairs. We leave
the details as an exercise for the reader. �

Unfortunately, Theorem 5.2 does not hold for log canonical pairs.
This is because log canonical models of log canonical pairs sometimes
have nonrational singularities.

Example 5.3. Let p : X → V be as in Example 5.1 and let E be
the p-exceptional divisor on X. Note that there is a natural P1-bundle
structure π : X → C and E is a section of π. We take a nontrivial
finite étale cover D → C. We put Y = X ×C D and F = E ×C D. We
put KY + ∆Y = f ∗(KX + ∆). Let W be the log canonical model of
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(Y, ∆Y ). Then we have the following commutative diagram

Y
q

//

f

��

W

h

��

X p
// V

such that f is étale, h is finite, but h is not étale. Note that q contracts
F to an isolated normal singular point Q of W such that h−1(P ) = Q
since f−1(E) = F . We also note that the singularities of V and W are
not rational.
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