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ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS

Absos Ali Shaikh†, Young Ho Kim∗, and Shyamal Kumar Hui

Abstract. The notion of quasi-Einstein manifolds arose during the study
of exact solutions of the Einstein field equations as well as during consid-

erations of quasi-umbilical hypersurfaces. For instance, the Robertson-
Walker spacetimes are quasi-Einstein manifolds. The object of the present
paper is to study Lorentzian quasi-Einstein manifolds. Some basic geo-

metric properties of such a manifold are obtained. The applications of
Lorentzian quasi-Einstein manifolds to the general relativity and cosmol-
ogy are investigated. Theories of gravitational collapse and models of Su-
pernova explosions [5] are based on a relativistic fluid model for the star.

In the theories of galaxy formation, relativistic fluid models have been
used in order to describe the evolution of perturbations of the baryon
and radiation components of the cosmic medium [32]. Theories of the
structure and stability of neutron stars assume that the medium can be

treated as a relativistic perfectly conducting magneto fluid. Theories of
relativistic stars (which would be models for supermassive stars) are also
based on relativistic fluid models. The problem of accretion onto a neu-
tron star or a black hole is usually set in the framework of relativistic fluid

models. Among others it is shown that a quasi-Einstein spacetime repre-
sents perfect fluid spacetime model in cosmology and consequently such
a spacetime determines the final phase in the evolution of the universe.
Finally the existence of such manifolds is ensured by several examples

constructed from various well known geometric structures.

1. Introduction

It is well known that a semi-Riemannian manifold (Mn, g), n ≥ 3, is Ein-
stein if its Ricci tensor S of type (0, 2) is of the form S = αg, where α is a
constant, which reduces to S = κ

ng, κ being the scalar curvature (constant)
of the manifold. Let (Mn, g), n ≥ 3, be a semi-Riemannian manifold. Let
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US = {x ∈ M : S ̸= κ
ng at x}. Then the manifold (Mn, g) is said to be quasi-

Einstein manifold ([7], [10], [11], [12], [13], [14], [17], [18], [19], [21], [22]) if on
US ⊂M , we have

(1.1) S − αg = βA⊗A,

where A is an 1-form on US and α, β are some functions on US . It is clear that
the 1-form A as well as the function β are non-zero at every point on US . From
the above definition it follows that every Einstein manifold is quasi-Einstein.
In particular, every Ricci-flat (e.g. Schwarzschild spacetime) manifold is quasi-
Einstein. The scalars α, β are known as the associated scalars of the manifold.
Also the 1-form A is called the associated 1-form of the manifold defined by
g(X, ρ) = A(X) for any vector field X; ρ being a unit vector field, called the
generator of the manifold. Such an n-dimensional quasi-Einstein manifold is
denoted by QEn.

Einstein manifolds form a natural subclass of the class of quasi-Einstein
manifolds. Another subclass of quasi-Einstein manifolds is Ricci simple mani-
folds, which are semi-Riemannian manifolds having the Ricci tensor of rank at
most 1 ([8]). In [15] Deszcz et al. proved that every three dimensional quasi-
Einstein manifold is pseudo symmetric and conversely. Also three dimensional
Cartan hypersurfaces are quasi-Einstein manifolds ([16]). In [10] Deszcz et al.
studied 3-dimensional quasi-Einstein totally real submanifolds in 6-dimensional
sphere. Again it may be mentioned that every quasi-umbilical hypersurface M
in a semi-Riemannian space of constant curvature Nn+1(c), n ≥ 4, is a quasi-
Einstein manifold ([13], p. 376).

An n-dimensional Lorentzian manifold M is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g, that is,M admits a smooth
symmetric tensor field g of type (0, 2) such that for each point p ∈ M , the
tensor gp : TpM × TpM → R is a non-degenerate inner product of signa-
ture (−,+, . . . ,+), where TpM denotes the tangent vector space of M at p
and R is the real number space. A non-zero vector v ∈ TpM is said to be
timelike (resp. non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp.
≤ 0,= 0, > 0) ([3], [31]).

The present paper deals with a study of Lorentzian quasi-Einstein manifolds.
A Lorentzian quasi-Einstein manifold (briefly, LQEn) is a quasi-Einstein mani-
fold with the generator ρ as the unit timelike vector field such that g(ρ, ρ) = −1.
Thus a LQEn is a Lorentzian manifold whose Ricci tensor satisfies (1.1) such
that the generator ρ is the unit timelike vector field. Hence, a QEn with a
Lorentzian metric is a LQEn.

Section 2 is concerned with some basic geometric properties of LQEn and
it is shown that in such a manifold, the generator ρ is generic. Then we obtain
a sufficient condition for a Lorentzian manifold to be of LQEn. In an Einstein
manifold the scalar curvature is always constant. But in a LQEn it is not true
in general. Then we obtain a sufficient condition for the scalar curvature of a
LQEn to be a constant. If the scalar curvature of a LQEn is constant, then



ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS 671

its associated scalars are not constants, in general. However, if the associated
scalars are constants, then it is a manifold of constant scalar curvature. It is
shown that in a Ricci symmetric LQEn, the associated scalars are constants
and the associated 1-form A is closed. Also it is proved that if the Ricci
tensor of a LQEn is of Codazzi type and the associated 1-form A is closed,
then the generator of the manifold and the vector field grad α − grad β are
co-directional.

Section 3 deals with the conformally flat LQEn. It is proved that a confor-
mally flat LQEn is a manifold of Lorentzian quasi-constant curvature. Every
manifold of Lorentzian quasi-constant curvature is a LQEn but the converse is
not true, in general. However a 3-dimensional Lorentzian quasi-Einstein man-
ifold is of Lorentzian quasi-constant curvature. The notion of quasi-constant
curvature, introduced by Chen and Yano ([4]), is an important geometric no-
tion as the manifold of quasi-constant curvature is a natural subclass of quasi-
Einstein manifolds. Also from the investigation of Karchar ([25]), it follows
that a conformally flat perfect fluid spacetime has the geometric structure of
quasi-constant curvature. It may be noted that the sectional curvature of a
conformally flat LQEn is non-vanishing.

In Section 4 we investigate the applications of LQEn to the general relativity
and cosmology. A spacetime is a 4-dimensional connected Lorentzian manifold.
Hence a quasi-Einstein spacetime is a connected LQE4. In general relativity
the matter content of the spacetime is described by the energy momentum
tensor T which is to be determined from physical considerations dealing with
the distribution of matter and energy. Since the matter content of the universe
is assumed to behave like a perfect fluid in the standard cosmological models,
the physical motivation for studying Lorentzian manifolds is the assumption
that a gravitational field may be effectively modeled by some Lorentzian metric
defined on a suitable four dimensional manifoldM . The Einstein equations are
fundamental in the construction of cosmological models which imply that the
matter determines the geometry of the spacetime and conversely the motion of
matter is determined by the metric tensor of the space which is non-flat.

The “singularity theorems” deduced by Stephen Hawking and Roger Pen-
rose play the crucial role in general relativity. The theorems assert that any
“reasonable” model of the universe in which we live must be “singular”, that
is contain regions in which the laws of physics as we know them must break
down. According to Penrose the singularities arise from gravitational collapse
(black holes), whereas Hawking are concerned with the existence of cosmolog-
ical singularities (the big bang). Relativistic fluid models are of considerable
interest in several areas of astrophysics, plasma physics and nuclear physics.
In most models a key feature is the occurrence of an outward propagating rel-
ativistic shock. The effects of deviations from spherical symmetry due to an
initial angular momentum and magnetic field must also be assessed, which re-
quires the use of relativistic magneto fluid dynamical models. Several theories
of Jets and Superluminal variations in extra galactic radio sources and Quasars



672 A. A. SHAIKH, Y. H. KIM, AND S. K. HUI

are based on relativistic magneto-fluid models. In particular, in some models,
the observed variability is associated with the development of magneto-fluid
dynamical waves or instabilities. In the field of plasma physics there are ar-
eas where relativistic fluid models are of interest. Intense relativistic electron
beams, which have very interesting applications such as the free electron laser,
have also been modeled as relativistic fluids near thermal equilibrium. In situ-
ations far from thermal equilibrium, relativistic fluid models with generalized
state equations have been proposed in a non covariant framework. More sat-
isfactory fully covariant models have also been introduced ([1]). In the field
of nuclear physics, high energy-collisions among heavy nuclei have been mod-
eled by using relativistic fluid dynamics. When a non dissipative description
applies and relativistic effects are not negligible, nuclear matter is described
by the equations of relativistic fluid dynamics and all the detail of nuclear in-
teractions are incorporated in the state equation. Many models predict the
occurrence of a relativistic shock when to heavy nuclei collide. Also, some
models under current investigation predict that relativistic shocks (or detona-
tion and deflagration waves) might be related to phase transition from nuclear
matter to quark-gluon plasma.

It is shown that a perfect fluid spacetime obeying Einstein’s equation with
a cosmological constant is a connected LQE4 with the generator ρ as the flow
vector field of the fluid. Thus a quasi-Einstein spacetime can be viewed as
a model of the perfect fluid spacetime. Also it is proved that in a viscous
fluid quasi-Einstein spacetime none of the isotropic pressure and energy density
can be a constant and also the matter content of such a spacetime is a non-
thermalised fluid. It is shown that in a viscous fluid quasi-Einstein spacetime
with Codazzi type energy momentum tensor the flow vector field of the fluid is a
unit proper concircular vector field and hence such a spacetime is a concircular
structure spacetime ([38], [39]).

The physical motivation for studying various types of spacetime models in
cosmology is to obtain the information of different phases in the evolution of
the universe, which may be classified into three phases, namely, the initial
phase, the intermediate phase and the final phase. The initial phase is just
after the Big Bang when the effects of both viscosity and heat flux were quite
pronounced. The intermediate phase is that when the effect of viscosity was
no longer significant but the heat flux was still not negligible. The final phase,
which extends to the present state of the universe when both the effects of
viscosity and heat flux have become negligible and the matter content of the
universe may be assumed to be perfect fluid. The study of LQEn is impor-
tant because such spacetime represents the third phase in the evolution of the
universe. Consequently the investigations of quasi-Einstein manifolds helps us
to have a deeper understanding of the global character of the universe includ-
ing the topology, because the nature of the singularities can be defined from a
differential geometric stand point.

The last section deals with some examples of LQEn.
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2. Preliminaries

We define on a semi-Riemannian manifold (M, g) the endomorphisms X ∧A
Y , R(X,Y ) and C(X,Y ) by ([7], [11], [17], [18], [19], [21], [22])

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

C(X,Y ) = R(X,Y )− 1

n− 2
(X ∧g LY + LX ∧g Y − κ

n− 1
X ∧g Y ),

respectively, where A is a (0, 2)-tensor on M , X,Y, Z ∈ Ξ(M), Ξ(M) being
the Lie algebra of vector fields of M . The Ricci operator L is defined by
S(X,Y ) = g(X,LY ), where S is the Ricci tensor and κ the scalar curvature
of (M, g), respectively. We define the tensor G, the Riemannian-Christoffel
curvature tensor R and the Weyl conformal curvature tensor C of (M, g) by ([7],
[11], [17], [18], [19], [21], [22])

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

respectively. For (0, 2)-tensors A and B we define its Kulkarni-Nomizu product
A ∧B by ([11], [21])

(A ∧B)(X1, X2;X,Y ) = A(X1, Y )B(X2, X) +A(X2, X)B(X1, Y )

−A(X1, X)B(X2, Y )−A(X2, Y )B(X1, X).

We note that the Weyl tensor C can be presented in the following form

(2.1) C = R− 1

n− 2
g ∧ S +

κ

(n− 1)(n− 2)
G.

For a (0, 2)-tensor A we define the (0, 4)-tensor A by A = 1
2A ∧ A. Thus we

have

A(X1, X2, X3, X4) = A(X1, X4)A(X2, X3)−A(X1, X3)A(X2, X4).

For a (0, k)-tensor T, k ≥ 1 and a symmetric (0, 2)-tensor A we define the
(0, k)-tensor A · T and the (0, k + 2)-tensors R · T and Q(A, T ) by

(A · T )(X1, . . . , Xk)

= − T (AX1, X2, . . . , Xk)− · · · − T (X1, X2, . . . ,AXk),

(R · T )(X1, . . . , Xk;X,Y )

= (R(X,Y ) · T )(X1, . . . , Xk)

= − T (R(X,Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,R(X,Y )Xk),

Q(A, T )(X1, . . . , Xk;X,Y )

= ((X ∧A Y ) · T )(X1, . . . , Xk)

= − T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),
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where A is the endomorphism of Ξ(M) defined by g(AX,Y ) = A(X,Y ).
Putting in the above formulas T = R, T = S or T = C, A = g or A = S,
we obtain the tensors: R · R, R · S, R · C, C · S, Q(g,R), Q(g, S), Q(g, C),
Q(S,R), Q(S,C), S ·R and S · C.

In a Lorentzian manifold, a vector field P defined by g(X,P ) = A(X) for
any vector field X is said to be a proper concircular vector field if

(2.2) (∇XA)(Y ) = α{g(X,Y ) + ω(X)A(Y )},
where α is a non-zero scalar and ω is a closed 1-form ([33]).

3. Some basic properties of LQEn

In this section some properties of LQEn are obtained. We prove the follow-
ing:

Proposition 3.1. In a LQEn, n ≥ 3, the following results hold:
(i) β − α is the Ricci curvature in the direction of the generator ρ.
(ii) The Ricci tensor S has only two distinct eigenvalues (α − β) and α of

multiplicity 1 and (n− 1) respectively.
(iii) If the generator ρ is a parallel vector field, then the associated scalars α

and β are equal and Qρ is orthogonal to ρ.
(iv) If α ̸= β, then ρ is generic.

Proof. (i) and (ii) easily follow from (1.1).
(iii) If ρ is a parallel vector field, then ∇Xρ = 0, where ∇ denotes the oper-

ator of covariant differentiation with respect to the Lorentzian metric g. And
hence R(X,Y )ρ = 0, which implies that S(X, ρ) = 0 for all X. Consequently,
(iii) follows from (1.1).

(iv) It is known that ([31], p. 36) if W is a non-null vector on a Lorentzian
manifold M with S(W,W ) ̸= 0, then W is generic. Since α ̸= β, it follows
from (1.1) that S(ρ, ρ) ̸= 0 and hence (iv) is proved. □
Proposition 3.2 ([31], p. 35). If W is a timelike vector in a Lorentzian man-
ifold (Mn, g), n ≥ 2, then the following conditions are equivalent:

1. The timelike vector W is generic.
2. At least one plane containing W has non-zero sectional curvature.
3. R(·,W )W is not the trivial map.

In view of Proposition 3.1(iv) and Proposition 3.2, we can state the following:

Theorem 3.1. If a Lorentzian manifold (Mn, g), n ≥ 3, is a L(QE)n with
distinct associated scalars, then the following conditions are equivalent:

1. At least one plane containing ρ has non-zero sectional curvature.
2. R(·, ρ)ρ is not the trivial map.

Proposition 3.3 ([3], [31], [41]). For a connected orientable manifold Mn, the
following assertions are equivalent:

1. There is a nowhere vanishing vector field V on Mn.
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2. Either Mn is non-compact, or Mn is compact and has Euler number
χ(Mn) = 0.

Proposition 3.4 ([21], Lemma 3.1). Let B be a symmetric (0, 2)-tensor on a
semi-Riemannian manifold (M, g), n ≥ 3, and let UB be the set of all points of
M at which B is not proportional to g. If at x ∈ UB we have

B ∧B = 2αg ∧B + 2βG, α, β ∈ R,
then α2 = −β and rank(B − αg) = 1 at x.

Theorem 3.2. Let (Mn, g), n ≥ 3, be a connected orientable Lorentzian man-
ifold which is either non-compact or compact with vanishing Euler number.
If there is a unit timelike generic vector field ρ on M such that the relation
S = 2αg ∧ S + 2βG holds with α2 + β ̸= 0, then the manifold is a LQEn.

Proof. By virtue of Proposition 3.3, it follows that there is nowhere vanishing
vector field ρ on the connected orientable Lorentzian manifold M such that
g(ρ, ρ) = −1. Since ρ is generic, S(ρ, ρ) ̸= 0. Hence by virtue of Proposi-
tion 3.4, it follows that rank(S −αg) = 1 at each point of M in which S is not
proportional to g. This proves the result. □
Theorem 3.3. In a Ricci symmetric LQEn, n ≥ 3, the associated scalars are
constants and the associated 1-form is closed.

Proof. If a LQEn is Ricci symmetric, then it follows from (1.1) that
(3.1)
(Xα)g(Y,Z) + (Xβ)A(Y )A(Z) + β[(∇XA)(Y )A(Z) +A(Y )(∇XA)(Z)] = 0.

Plugging ρ in place of Y and Z in (3.1), we obtain

(3.2) (Xα) = (Xβ).

Again taking an orthonormal frame field at any point of the manifold and then
contracting (3.1) over Y and Z, we get

n (Xα)− (Xβ) = 0,

which yields by virtue of (3.2) that

(Xα) = (Xβ) = 0 for all X

and hence (3.1) implies that

(∇XA)(Y )A(Z) +A(Y )(∇XA)(Z) = 0.

Setting Z = ρ in the last relation, we have

(∇XA)(Y ) = 0 for all X,Y,

which implies that the 1-form A is closed. This proves the theorem. □
Theorem 3.4. If the Ricci tensor of a LQEn, n ≥ 3, with distinct associated
scalars is of Codazzi type and the associated 1-form A is closed, then the gen-
erator of the manifold and the vector field (grad α−grad β) are co-directional.
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Proof. From (1.1), it follows that

(∇Y S)(X,Z) = (Y α)g(X,Z) + (Y β)A(X)A(Z)(3.3)

+β[(∇YA)(X)A(Z) +A(X)(∇YA)(Z)].

In view of (3.3) we have

(∇XS)(Y, Z)− (∇Y S)(X,Z) = (Xα)g(Y, Z)− (Y α)g(X,Z)(3.4)

+ (Xβ)A(Y )A(Z)− (Y β)A(X)A(Z)

+ β[{(∇XA)(Y )− (∇YA)(X)}A(Z)
+A(Y )(∇XA)(Z)−A(X)(∇YA)(Z)].

If the Ricci tensor is of Codazzi type [20], that is, if

(3.5) (∇XS)(Y,Z) = (∇Y S)(X,Z) for all X,Y, Z,

then (3.4) yields

(3.6)

(Xα)g(Y,Z)− (Y α)g(X,Z) + (Xβ)A(Y )A(Z)

− (Y β)A(X)A(Z) + β[{(∇XA)(Y )− (∇YA)(X)}A(Z)
+A(Y )(∇XA)(Z)−A(X)(∇YA)(Z)] = 0.

We suppose that the 1-form A is closed. Then dA(X,Y ) = 0 and hence

(3.7) (∇XA)(Y ) = (∇YA)(X) for all X,Y.

Using (3.7), it follows from (3.6) that

(Xα)g(Y, Z)− (Y α)g(X,Z) + (Xβ)A(Y )A(Z)(3.8)

−(Y β)A(X)A(Z) + β[A(Y )(∇XA)(Z)−A(X)(∇YA)(Z)] = 0.

Putting Z = ρ in (3.8) we get

(3.9) D(X)A(Y ) = A(X)D(Y ),

which implies that ρ and µ are co-directional, where

D(X) = g(X,µ) = g(X, grad α− grad β) for all X.

This proves the theorem. □

4. Conformally flat LQEn

As a generalization of the manifold of constant curvature, the notion of the
manifold of quasi-constant curvature arose during the study of conformally flat
hypersurfaces by Chen and Yano [4].

Definition 4.1. A Lorentzian manifold (Mn, g), n > 3, is said to be of quasi-
constant curvature [4] if it is conformally flat and its curvature tensor R of type
(0, 4) is of the form:

(4.1) R = aG+ bg ∧B,
where a, b are scalars of which b ̸= 0, and B = A ⊗ A, A being a non-zero
1-form. Such an n-dimensional manifold is denoted by the symbol LQCn.
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Theorem 4.1. Every conformally flat LQEn, n > 3, is a LQCn.

Proof. Since the manifold under consideration is conformally flat, (2.1) implies
that

(4.2) R =
1

n− 2
g ∧ S − κ

(n− 1)(n− 2)
G,

which yields by virtue of (1.1) that (4.1) holds, where a = (n−2)α+β
(n−1)(n−2) and

b = β
n−2 . This proves the theorem. □

Corollary 4.1. Every LQE3 is a LQC3.

From (4.1), it follows that

S = γg + δA⊗A,

where γ = (n− 1)a− b and δ = (n− 2)b. This leads to the following:

Theorem 4.2. Every LQCn, n > 3, is a LQEn.

Lemma 4.1. In a conformally flat LQEn, n > 3, the curvature tensor R has
the following properties:

(i) R = aG,
(ii) R(X, ρ)Y = −ag(X,Y )ρ and
(iii) R(X, ρ)ρ = −aX

for all vector fields X,Y ∈ ρ⊥, the (n− 1)-dimensional distribution orthogonal

to the generator ρ, where a = (n−2)α+β
(n−1)(n−2) .

Proof. If ρ⊥ is the (n−1)-dimensional distribution orthogonal to the generator
ρ, then g(X, ρ) = 0 if and only if X ∈ ρ⊥. Hence the lemma follows from (4.2).

□
Theorem 4.3. In a conformally flat LQEn, n > 3, the sectional curvature of
all planes determined by the vectors X, Y ∈ ρ⊥ and the sectional curvature
of all planes determined by the vectors X and ρ, where X ∈ ρ⊥ are equal and
each of them is a.

Proof. If K1 is the sectional curvature of the plane determined by X, Y ∈ ρ⊥,
then by virtue of Lemma 4.1(i) we obtain K1 = a.

Also if K2 is the sectional curvature of the plane determined by X and ρ,
where X ∈ ρ⊥, then by virtue of Lemma 4.1(iii), we obtain K2 = a. This
proves the theorem. □

We note that K1 and K2 are constants if and only if (n−2)α+β is constant.
Hence we can state the following:

Corollary 4.2. In a conformally flat LQEn, n > 3, the sectional curvature
K1 of all planes determined by X and Y as well as the sectional curvature K2

of all planes determined by X and ρ are constants if and only if (n− 2)α + β
= constant.
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5. General relativistic viscous fluid LQE4 spacetime

A viscous fluid spacetime is a connected Lorentzian manifold (M4, g) with
signature (−,+,+,+). General relativity flows from Einstein’s equation given
by

(5.1) S + (λ− κ

2
)g = KT,

where κ is the scalar curvature, k is the gravitational constant, λ is the cosmo-
logical constant and T is the energy-momentum tensor of type (0, 2).

We now consider a perfect fluid spacetime. Then the energy-momentum
tensor is of the form ([31]):

(5.2) T = pg + (σ + p)A⊗A,

where σ, p are respectively the energy density, isotropic pressure and ρ is the
unit timelike flow vector field of the fluid such that A(·) = g(·, ρ).
Then by virtue of (5.2), (5.1) can be written as

(5.3) S = αg + βA⊗A,

where α = (κ2 + Kp − λ) and β = K(σ + p). This shows that the spacetime
under consideration is a LQE4 with α = κ

2 +Kp−λ, β = K(σ+p) as associated
scalars, A as the associated 1-form with generator ρ.

Conversely, we consider a LQE4. Then in view of (1.1), (5.1) takes the

form (5.2), where p =
α+λ−κ

2

K and σ =
β−α−λ+κ

2

K . Consequently, a LQE4 is a
perfect fluid spacetime. Hence we can state the following:

Theorem 5.1. Let M be a 4-dimensional connected Lorentzian manifold obey-
ing Einstein’s equation with a cosmological constant. Then M is a perfect fluid
spacetime if and only if it is a LQE4.

A connected LQE4 is said to be a quasi-Einstein spacetime. Let us consider
a quasi-Einstein spacetime obeying Einstein’s equation with a cosmological
constant. Then we have

S = (
κ

2
+Kp− λ)g +K(σ + p)A⊗A,

which, in view of (1.1), yields

(5.4) σ =
2α+ β − 2λ

2K
, p =

2λ+ β − 2α

2K
.

From (5.4), it follows that σ and p are constants if and only if α and β are
constants.

Hence we can state the following:

Theorem 5.2. If a viscous fluid quasi-Einstein spacetime with non-constant
associated scalars obeys Einstein’s equation with a cosmological constant, then
none of the energy density and isotropic pressure of the fluid can be a constant.
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We suppose that, in a quasi-Einstein spacetime, the isotropic pressure p is
positive. Then since σ > 0, it follows from (5.4) that

(5.5) α− β

2
< λ < α+

β

2
.

This leads to the following:

Theorem 5.3. If a viscous fluid quasi-Einstein spacetime with positive isotro-
pic pressure obeys Einstein’s equation with a cosmological constant λ, then λ
satisfies the relation (5.5).

We now discuss whether a viscous fluid quasi-Einstein spacetime with gener-
ator ρ as the unit timelike flow vector field can admit heat flux or not. There-
fore, if possible, let the energy-momentum tensor T be of the following form [30]:

(5.6) T = pg + (σ + p)A⊗A+A⊗B +B ⊗A+D,

where B(·) = g(·, µ); µ being the heat flux vector field. Then we have g(ρ, µ) =
0, i.e., B(ρ) = 0. Hence by virtue of (5.6), (5.1) reduces to

S + (λ− κ

2
−Kp)g = K[(σ + p)A⊗A+A⊗B +B ⊗A],

which yields by virtue of (1.1) that

(α− β − κ

2
+Kσ + λ)A = −KB.

Since B(ρ) = 0, the above relation implies that

α− β − κ

2
+Kσ + λ = 0

and hence B = 0. Thus we have the following:

Theorem 5.4. A viscous fluid quasi-Einstein spacetime can not admit heat
flux.

We now prove the following:

Theorem 5.5. If the energy-momentum tensor of a viscous fluid quasi-Einstein
spacetime is covariantly constant, then the spacetime is Ricci symmetric and
its associated scalars α and β are constants.

Proof. By the assumption of the theorem, we have ∇T = 0, and hence (5.1)
yields

(5.7) (∇ZS)(X,Y )− dκ(Z)

2
g(X,Y ) = 0.

Taking contraction over X and Y we get

(5.8) dκ(Z) = 0 for all Z,
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which shows that the scalar curvature is constant.
From (5.7) and (5.8), it follows that ∇S = 0 and hence the spacetime is Ricci
symmetric. Consequently, from (1.1) it follows that
(5.9)
dα(Z)g(X,Y )+ dβ(Z)A(X)A(Y )+β[(∇ZA)(X)A(Y )+A(X)(∇ZA)(Y )] = 0.

Taking contraction over X and Y we get

(5.10) 4dα(Z)− dβ(Z) = 0.

Again setting X = Y = ρ in (5.9) we obtain

(5.11) dα(Z) = dβ(Z).

From (5.10) and (5.11) it follows that α and β are constants. This proves the
theorem. □

Theorem 5.6. If the energy-momentum tensor of a viscous fluid quasi-Einstein
spacetime is of Codazzi type, then the following properties hold:

(i) The Ricci tensor of the spacetime is of Codazzi type and it is of constant
scalar curvature.

(ii) The integral curves of the flow vector field are geodesics.
(iii) The flow vector field of the fluid is irrotational.
(iv) The acceleration vector of the fluid must vanish but the expansion scalar

will never vanish.
(v) The associated 1-form of the spacetime is closed and the flow vector field

of the fluid is a unit proper concircular vector field.
(vi) If the flow vector field satisfies ∇Xρ = fϕX for all X, f being a smooth

function on M and ϕ being an (1, 1) tensor field, then the spacetime is a con-
circular structure spacetime.

Proof. (i) If the energy-momentum tensor of a viscous fluid quasi-Einstein
spacetime is of Codazzi type tensor [20], then we have

(5.12) (∇XT )(Y, Z) = (∇ZT )(Y,X).

From (5.1) we get

(5.13) (∇ZS)(X,Y )− 1

2
dκ(Z)g(X,Y ) = K(∇ZT )(X,Y ),

which yields by virtue of (5.12) that

(5.14) (∇XS)(Y,Z)− (∇ZS)(X,Y )− 1

2
[dκ(X)g(Y, Z)− dκ(Z)g(X,Y )] = 0.

Contracting over Y and Z we get dκ(X) = 0 for all X and hence (5.14) takes
the form

(5.15) (∇XS)(Y,Z) = (∇ZS)(X,Y ).

Hence the Ricci tensor is of Codazzi type.
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(ii) In view of (1.1), (5.15) takes the form

dα(X)g(Y, Z) + dβ(X)A(Y )A(Z)(5.16)

+β[(∇XA)(Y )A(Z) +A(Y )(∇XA)(Z)]

= dα(Z)g(X,Y ) + dβ(Z)A(X)A(Y )

+β[(∇ZA)(X)A(Y ) +A(X)(∇ZA)(Y )].

Let {ei | i = 1, 2, 3, 4} be an orthonormal frame field at any point of the quasi-
Einstein spacetime. Setting Y = Z = ei in (5.16) and then taking summation
for 1 ≤ i ≤ 4, we obtain
(5.17)

3dα(X)− dβ(X) = dβ(ρ)A(X) + β

{
(∇ρA)(X) +A(X)

4∑
i=1

εi(∇eiA)(ei)

}
,

where εi = g(ei, ei). Again setting Y = Z = ρ in (5.16) we get

(5.18) dβ(X)− dα(X) = dα(ρ)A(X)− dβ(ρ)A(X)− β(∇ρA)(X).

Adding (5.17) and (5.18) we have

(5.19) 2dα(X) = dα(ρ)A(X) + βA(X)

4∑
i=1

εi(∇eiA)(ei).

Setting X = ρ in (5.19) we get

(5.20) −3dα(ρ) = β
4∑
i=1

εi(∇eiA)(ei).

By virtue of (5.23) and (5.24) we obtain

(5.21) dα(X) + dα(ρ)A(X) = 0.

Since in a quasi-Einstein spacetime the scalar curvature κ is given by κ = 4α−β,
so by virtue of (5.19) we get dα(X) = 1

4dβ(X), and hence (5.21) yields

(5.22) dβ(X) + dβ(ρ)A(X) = 0.

In view of (5.20), (5.21) and (5.22), we obtain from (5.17) that

(5.23) (∇ρA)(X) = 0

for all X, which implies that ∇ρρ = 0 and hence the integral curves of ρ are
geodesics.

(iii) Substituting Z by ρ in (5.16) and then using (5.22) and (5.23) we obtain

(5.24) β(∇XA)(Y ) = dα(X)A(Y )− dα(ρ)g(X,Y ).

From (5.21) and (5.24), it follows that

(5.25) (∇XA)(Y ) = f{g(X,Y ) +A(X)A(Y )},
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where f is a non-vanishing scalar given by

(5.26) f = −dα(ρ)
β

= −dβ(ρ)
4β

.

The relation (5.25) implies that 1-form A is closed. Again from (5.25), it follows
that

g(∇Xρ, Y )− g(X,∇Y ρ) = 0.

This means that the flow vector field ρ is irrotational.
(iv) We have divρ =

∑4
i=1 εig(∇eiρ, ei), where εi = g(ei, ei), {ei}, i =

1, 2, 3, 4 is an orthonormal frame field, ‘div’ denotes the divergence. From
(5.25) we have

g(∇Xρ, Y ) = f{g(X,Y ) +A(X)A(Y )},

which yields divρ = 3f ̸= 0 as f ̸= 0. Since divρ represents the expansion
scalar and ∇ρρ represents the acceleration vector, (iv) is proved.

(v) From (5.26) we have

(5.27) ∇Xf =
1

4β2
dβ(ρ)dβ(X)− 1

4β
d2β(ρ,X).

From (5.22), it follows that

(5.28) d2β(X,Y ) = −d2β(ρ, Y )A(X)− dβ(ρ)(∇YA)(X).

Since in a Lorentzian manifold M for any scalar function h ∈ C∞(M), the
relation d2h(X,Y ) = d2h(Y,X) holds for all X,Y , from (5.28) it follows by
virtue of (5.25) that

d2β(ρ,X)A(Y )− d2β(ρ, Y )A(X) = 0,

which yields

d2β(ρ,X) = ψA(X),

where ψ = −d2β(ρ, ρ) is a non-vanishing scalar. Hence, (5.27) reduces to

(5.29) ∇Xf = λA(X),

where λ = −{(dβ(ρ)2β )2+ ψ
4β } is a non-zero scalar. From (5.25), (5.26) and (5.29),

it follows that the vector field ρ is a unit proper concircular vector field.
(vi) A 4-dimensional connected Lorentzian manifold admitting a unit time-

like proper concircular vector field ξ and satisfying ∇Xξ = γϕX, ϕ being an
(1, 1) tensor field and γ a non-zero scalar, is a concircular structure spacetime
introduced and studied by Shaikh and Baishya ([38], [39]). Hence a quasi-
Einstein spacetime with Codazzi type energy momentum tensor is a concircular
structure spacetime. □
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6. Some examples of LQEn

This section deals with several non-trivial examples of LQEn.

Example 6.1. In 1989 K. Matsumoto [26] introduced the notion of LP-
Sasakian manifolds. Then I. Mihai and R. Rosca [28] introduced the same
notion independently and later studied by many authors ([27], [29], [40]).

An n-dimensional smooth manifold M is said to be an LP-Sasakian mani-
fold ([6], [28]) if it admits an (1, 1) tensor field ϕ, a vector field ξ, an 1-form η
and a Lorentzian metric g, which satisfy

η(ξ) = −1, g(X, ξ) = η(X), ϕ2 = I + η ⊗ ξ, ∇Xξ = ϕX,

(∇Xϕ)(Y ) = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ,

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g.

In an n-dimensional LP-Sasakian manifold Mn(ϕ, ξ, η, g), if we put

Ω(X,Y ) = g(ϕX, Y ),

then the tensor field Ω is a symmetric (0, 2) tensor field, satisfying the relation
(∇Xη)(Y ) = Ω(X,Y ) and Ω(X, ξ) = 0 for all X, Y .

(i) An LP-Sasakian manifold (Mn, g) is said to be locally ϕ-symmetric in
the strong sense or strongly locally ϕ-symmetric [36] if it satisfies

ϕ2 ((∇WR)(X,Y )Z) = 0

for any vector fields X,Y, Z,W tangent to M .
Especially, if the vector fields X,Y, Z,W are orthogonal to ξ, then it is said

to be weakly locally ϕ-symmetric [36], which is the notion of local ϕ-symmetry
in the sense of Takahashi [42].

In [36] (Theorem 4.4) it is shown that a strongly locally ϕ-symmetric LP-
Sasakian manifold (Mn, g)(n > 3) with ξ as the harmonic vector field is an
η-Einstein manifold, and its Ricci tensor is of the form

S = −(n− 1)g − 2(n− 1)η ⊗ η.

It can be easily shown that such an LP-Sasakian manifold is non-conformally
flat. Hence a strongly locally ϕ-symmetric LP-Sasakian manifold with the
timelike vector field ξ as the harmonic vector field is a LQEn which is not
conformally flat.

(ii) Again, generalizing the notion of strong local ϕ-symmetry, recently,
Shaikh et al. [35] introduced and studied the notion of strongly locally ϕ-
recurrent LP-Sasakian manifold.

An LP-Sasakian manifold (Mn, g) is said to be strongly locally ϕ-recurrent
[35] if and only if there exists a non-zero 1-form A such that

ϕ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z

for any vector fields X,Y, Z,W tangent to M .
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Especially, if X,Y, Z,W are horizontal vector fields, then it is called weakly
locally ϕ-recurrent LP-Sasakian manifold [35].

It is shown that [35] (Theorem 4.3) in a strongly locally ϕ-recurrent LP-
Sasakian manifold, the timelike vector field ξ is harmonic and hence such a
manifold is always an η-Einstein manifold [35] (Theorem 4.5), which can be
easily shown that not conformally flat. Hence a strongly locally ϕ-recurrent
LP-Sasakian manifold is a non-conformally flat LQEn.

(iii) Again Shaikh and Baishya [37] studied Ricci generalized pseudo sym-
metric [9] LP-Sasakian manifolds and proved that [37] (Theorem 3.1) such
a non-Einstein LP-Sasakian manifold is an η-Einstein manifold which is not
conformally flat. Therefore a non-Einstein Ricci generalized pseudosymmetric
LP-Sasakian manifold is a non-conformally flat LQEn.

Example 6.2. In 1996, T. Ikawa and M. Erdogan [24] studied the Sasakian
manifold with Lorentzian metric. For example, an odd dimensional de Sitter
space and Göedel universe have Sasakian structure with Lorentzian metric [24].

A (2n + 1)-dimensional differentiable manifold M2n+1 (n ≥ 1) of class C∞

equipped with an (1, 1) tensor field ϕ, a global vector field ξ and an 1-form η,
which satisfy

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0, η(ξ) = 1

for any vector field X, is called an almost contact manifold with an almost
contact structure (ϕ, ξ, η). The almost contact structure is said to be normal if

N + dη ⊗ ξ = 0,

where N denotes the Nijenhuis tensor formed with ϕ [24]. Since M2n+1 has
a globally defined vector field ξ without zeros, it is able to have a Lorentzian
metric g such that g(ξ, ξ) = −1. In fact, if h is an arbitrary Riemannian metric
on M2n+1, then g = h − 2η ⊗ η is a desired Lorentzian metric. If M2n+1 has
the normal almost contact structure (ϕ, ξ, η) and the Lorentzian metric g with

g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ), (∇Xη)(Y ) = g(ϕX, Y ),

where ∇ is the covariant derivative with respect to g, then M2n+1(ϕ, ξ, η, g) is
called a Sasakian manifold with the Lorentzian metric [24]. In [24] Ikawa and
Erdogan also defined the notion of a D-connection on M2n+1(ϕ, ξ, η, g) as a
linear connection given by

DXY = ∇XY +A(X)Y,

where ∇ is the Lorentzian connection and A is a tensor field of type (1, 2)
defined by

A(X)Y = g(ϕX, Y )ξ + kη(X)ϕY + η(Y )ϕX,

k being an arbitrary fixed non-zero real number. Then, the authors of [24]
obtained the various properties of such a D-connection. Also, it is shown
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that [24] the Ricci tensor SD of D-connection and the Ricci tensor S of the
Lorentzian connection satisfies

SD(X,Y ) = S(X,Y )− 2kg(X,Y )− 2(n+ k)η(X)η(Y ).

Hence, if the Ricci tensor SD of the D-connection vanishes, then the Ricci
tensor S of the Lorentzian connection takes the form

S = αg + βη ⊗ η,

where α = 2k and β = 2(n+k) are non-vanishing constants. Hence, if the Ricci
tensor of the D-connection on a Sasakian manifold with a Lorentzian metric
vanishes, then it is a LQEn, which is non-conformally flat.

Example 6.3 ([2], [23]). A 3-dimensional Lorentzian contact metric manifold
with Qϕ = ϕQ is a LQE3 which is non-conformally flat.

Example 6.4. As a generalization of LP-Sasakian manifold, recently Shaikh
[34] introduced the notion of Lorentzian concircular structure manifold and
proved its existence and also obtained several applications to the general rela-
tivity and cosmology.

Let Mn be a Lorentzian manifold admitting a unit timelike concircular vec-
tor field ξ, called the characteristic vector field of the manifold. Then we have
g(ξ, ξ) = −1. Since ξ is a unit concircular vector field, there exists a non-zero
1-form η such that for g(X, ξ) = η(X), the equation of the following form holds

(6.1) (∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}(α ̸= 0)

for all vector fields X,Y where ∇ denotes the operator of covariant differentia-
tion with respect to the Lorentzian metric g, and α is a non-zero scalar function
satisfies

∇Xα = (Xα) = ρη(X),

ρ being a certain scalar function. If we put

(6.2) ϕX =
1

α
∇Xξ,

then from (6.1) we have

ϕX = X + η(X)ξ,

from which it follows that ϕ is a symmetric (1, 1) tensor. Thus the Lorentzian
manifold Mn together with the unit timelike concircular vector field ξ, its
associated 1-form η and (1, 1) tensor field ϕ is said to be a Lorentzian concircular
structure manifold (briefly (LCS)n-manifold) [34].

Especially, if we take α = 1, then we can obtain the LP-Sasakian structure
of Matsumoto [26].

In a (LCS)n manifold, the following relations hold [34]:

(6.3) R(X,Y )ξ = (ρ− α2){η(Y )X − η(X)Y },

(6.4) S(X, ξ) = (n− 1)(ρ− α2)η(X) for any X,Y.



686 A. A. SHAIKH, Y. H. KIM, AND S. K. HUI

We now consider a (LCS)n(n > 3) satisfying the condition

(6.5) Q(S,R) = 0,

where Q(S,R) is defined by ([9], [23])

Q(S,R) = (S(X,Y ) ·R)(U, V )W = ((X ∧S Y ) ·R)(U, V )W(6.6)

= (X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

−R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W.

Here the endomorphism (X ∧S Y ) is defined by

(6.7) (X ∧S Y )Z = S(Y,Z)X − S(X,Z)Y.

In view of (6.5) and (6.7), it follows from (6.6) that

(n− 1)(ρ− α2){η(R(U, V )W )X − η(U)R(X,V )W(6.8)

−η(V )R(U,X)W − η(W )R(U, V )X} − S(X,R(U, V )W )ξ

+S(X,U)R(ξ, V )W + S(X,V )R(U, ξ)W + S(X,W )R(U, V )ξ = 0.

Taking the inner product on both sides of (6.8) by ξ, we get

(n− 1)(ρ− α2){η(R(U, V )W )η(X)− η(U)η(R(X,V )W )(6.9)

−η(V )η(R(U,X)W )− η(W )η(R(U, V )X)}+ S(X,R(U, V )W )

+S(X,U)η(R(ξ, V )W ) + S(X,V )η(R(U, ξ)W ) = 0.

Putting W = ξ in (6.9), we obtain

(6.10) S(X,R(U, V )ξ) = (n− 1)(ρ− α2)η(R(U, V )X).

Again replacing U = ξ in (6.10) and using (6.3) and (6.4), we get

S(X,V ) = −(n− 1)(ρ− α2)g(X,V )− 2(n− 1)(ρ− α2)η(X)η(V ).

It can be easily shown that such an (LCS)n manifold is not conformally flat.
Hence a (LCS)n(n > 3) manifold with Q(S,R) = 0 is a LQEn which is non-
conformally flat.

Example 6.5. We define a Lorentzian metric g on a 5-dimensional real number
space R5 = {(xα, yα, z) : α = 1, 2} by the formula

ds2 = gijdx
idxj =

1

4

{
1 + (y1)2

}
(dx1)2 +

1

2
dx1dx2(6.11)

−1

2
y1dx1dz +

1

4

{
1 + (y2)2

}
(dx2)2

−1

2
y2dx2dz − 1

4
(dy1)2

+
1

4
(dy2)2 +

1

4
(dz)2,



ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS 687

where i, j = 1, 2, 3, 4, 5 and xα
∗ ≡ x2+α = yα, xσ = z, σ = 5. Then the only

non-vanishing components of the Christoffel symbols and the curvature tensor
are

Γµαβ∗ =
1

2
δµβy

α,Γµ
∗

αβ = −1

2
(δαµy

β + δµβy
α),Γµ

∗

ασ =
1

2
δαµ,

Γσαβ∗ =
1

2
(yαyβ − δαβ),Γ

σ
σβ∗ = −1

2
yβ ,Γµα∗σ = −1

2
δαµ,

Rµγβα =
1

16
(δαβy

βyγ + δβγy
αyµ − δαγy

βyµ − δβµy
αyγ),

Rµ∗γ∗βα =
1

16
(δαγδβµ − δαµδβγ), Rµγσα = δαγy

σ − δασy
γ ,

Rµγ∗β∗α =
1

16
(δβγy

αyµ − 2δαβδγσ − δαγδβσ),

Rµσσα =
1

16
δαµ, Rσγ∗σα∗ = − 1

16
δαγ , Rµ∗σβ∗α =

1

16
δβµy

α,

and the components which can be obtained from these by the symmetry prop-
erties. Using the above relations, we can find the non-vanishing components of
Ricci tensor as follows:

(6.12)

{
Sµα = −1

2 (δαµ − 2yαyµ), Sµ∗α∗ = 1
2δαµ,

Sσσ = 1, Sγσ = −yγ .

Also it can be easily found that the scalar curvature of the manifold is non-zero.
Therefore R5 with the considered metric is a Lorentzian manifold (M5, g) of
non-vanishing scalar curvature. We shall now show that this M5 is a LQE5,
i.e., it satisfies (1.1).
If we consider

A =

√
3

2b

(
2∑

α=1

yαdxα − dz

)
,

where b is a scalar, then we have

(6.13) Ai =

(√
3

2b
yα, 0, 0,−

√
3

2b

)
.

From (6.11)-(6.13), it follows that

Sij = 2gij − bAiAj .

Therefore, (R5, g) is a LQE5. Hence we can state the following:

Theorem 6.1. Let (M5, g) be a Lorentzian manifold endowed with the metric
given in (6.11). Then (M5, g) is a non-conformally flat LQE5.
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