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the KL information I(b,  : P) is found to be 

I(b, : P )  = 2 b,  In $ = ($) + o (5).  
2=0 

Example 3.5: This example considers convergence of a sequence 
of negative binomial distributions to the logarithmic series distribu- 
tion (see Johnson and Kotz [5, p. 1701). We wish to examine the rate 
of convergence, as E approaches zero, of 

where 

and 

q ( k )  = - /[klnQ], IC = 1,2 , . - - ,  GIk 
with Q > 1 and P = Q - 1. It can be shown that 

where 

For moderate values of Q, say less than ten, the approximation 

€2 I ,  M -1nQ 
4 

works very well. 
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On Loss Functions Which Minimii to Conditional 
Expected Values and Posterior Probabilities 

John W. Miller, Member, IEEE, Rod Goodman, Member, IEEE, 
and Padhraic Smyth, Member, IEEE 

Abstmct-A loss function, or objective function, is a function nsed to 
compare parametem when fitting a model to data. The loss function gives 
a dmtance between the model output and the desired output. ’ h o  common 
examples are the squared-emr loss function and the cross entropy loss 
function. It is well known that ’ g the mean-sQuBIp error loss 
function is equivalent to nddmizhg the meam sqnare difference between 
the model output and the expeded value of the output given a psrtieuhr 
input. This property of “ h a t i o n  to the e- value is formpuzed 
as “P-admissibUitg.” The necessary and rmtBfient conditions for P- 
admissibility, leading to a parametric description of all P-admissible loss 
f u n c t i ~ ~  are fonnd. In pprticular, it is shown that two of the simplest 
members of tbis class of functions are the squared e m r  and the cross 
entropy loss functions. One application of tbis work is in the choice 
of a loss kct ion for h.aining neural networks to provide probability 
estimates. 

Index Tenns-Objective functions, loss functions, probability estima- 
tion. 

I. BACKGROUND 
A lossfinction, or objectivefunctwn, is a function used to compare 

parameters when fitting a mathematical model to data. For example, 
in linear regression, the problem is to find the line f(z) which best 
“fits” a collection of data points z,, y8 (i = 1, . . . , N). The line is a 
model M, which gives an estimate 6 = f(z) of the value y for each 
value z. The parameters to the model, are the two values required 
to describe a line. Normally in linear regression the squared-error 
(SE) loss function L(y, 5) = (y - 6)’ is used, meaning that the 
“best fit” is considered to be the e that minimizes the average loss: 
I/N ~ ( y ,  6). In the context of neural networks, the values 
e are the network’s weights and thresholds. The estimate 6 is the 
network’s output. We will call this method of finding the minimum 
average loss the “training algorithm,” and the {gi, yi} values the 
“training data.” Without loss of generality, y is assumed to be scalar. 
Table I summarizes our notation. Fig. 1 diagrams the relationship 
between the introduced symbols. 

IL PROBABILITY EESTIMATION 
Consider estimating the conditional mean, E[y I 4, the mean value 

of y taken over all training samples with a given value for g. For the 
case where y is a scaliir binary value, y E {0, 1): 
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TABLE I 
SUMMARY OF NOTATION 

Symbol Explanation Neural Network Example 
8 Parameters to a model The weights and thresholds 

gi ,  yi 

M ( 8 )  

f(g) 

Yi 

L(yi, O i )  

Training data: gi is input, yi is output, for sample i. The 
subscript is often omitted. 
Model, a set of mappings x -+ 6 parameterized by 8 

The mapping produced by the model with a given parameter 
set 8 
For some given gi the value j ( g i )  This value is assumed to 
be scalar in this correspondence 
The error between the desired and actual output 

Training Data 

The set of dl possible functions that a 
network architecture can implement 
A network with fixed weights and fixed 
thresholds 
The network output 

Squared Error (for example) 

’ 

Input Model output Desired Output 

Fig. 1. Diagram for training-setting 8 to minimize error. 

In classification problems p(y = 1 I g) is sometimes called the a 
posteriori probability of y, the probability of y = 1 after the evidence 
z is known. In this correspondence, we deal with systems which 
estimate E[y I 4, and include systems for estimating a posteriori 
probabilities as a special case. The training data is assumed to consist 
of independent samples from some underlying probability distribution 
over g, y. There are two separate reasons why our estimate of 
E[y I 4 will be different from the “true” probabilities that exist in the 
underlying distribution. The first reason is due to the limitation of the 
dataset. If the dataset is infinite, by the law of large numbers we can 

, get an arbitrarily accurate estimate of the conditional probabilities 
E[y I 4 by counting the frequency of occurrence in the training 
dataset. Since the dataset is finite, we only have a sampled estimate of 
this true underlying probability. This sampling error in the estimation 
is not considered here. Instead the probabilities ‘referred to in the 
correspondence will be the relative frequencies found in the training 
set. The second reason for error in estimation is due to limitations 
of the model. A model may not have a parameter set such that 
the function f ( g )  = E[y I 4 can be perfectly represented. A 
suficientlypowerful model M ( @ )  is one which, for some is capable 
of producing $(& g) = E[y I 4. For a sufficiently powerful model, 
the average loss must be minimized at $ = E[y 1 4: 

mjnE[L(y, 6) 1 ZJ is achieved when $(e, g) = E[y I d. 
- 

We. will assume the values of the target y in the training sets 
are bounded such that 0 5 y 5 1. This choice of upper and 
lower bounds for y is consistent with model outputs which represent 
probabilities. The results can be extended to problems with other 
upper and lower bounds by appropriately scaling and shifting the y 
values. The unbounded case is not studied here, but it can be shown 
that if no restriction is placed on the distribution of y, then no loss 
function can be guaranteed to minimize to the expected value of y. 

It is useful to rewrite the “minimization at = E[y I 21’’ 

requirement in a way that explicitly shows the probability distribution 
used to calculate the expected value. Call this distribution p(y). Until 
Section VII, all distributions and expected values will be “given g.” 
To simplify the notation, the explicit reference to the input g will be 

dropped in Sections 11-VI. We can now replace the expected value 
with a definite integral, giving the formal definition: 

where v si p(y). y dy. If L(y, $) satisfies this property (cl), we 
call it “P-admissible,” to indicate that the loss function is admissible 
for use in probability estimation or expected value estimation. A suf- 
ficiently powerful model trained using a P-admissible loss function 
will provide an estimate $ = E[y I 4. In Sections If1 through VI, 
we study the set of loss functions which are P-admissible. In Section 
VII, the results are extended to models that may not be sufficiently 
powerful to approximate E[y I & t h i s  is the more realistic case. 

111. A SIMPLE EXAMPLE 
Consider a dataset describhg a set of patients. Let: 

z = symptom of a disease, 
y = presence of disease in patient (1 or 0). 

Our training data is a set of medical records for 100 patients, all 
with symptom z. 90 of these patients have disease y, 10 do not, so 
from this sample: 

90 
E[y I z] = p(y = 1 I z) = - 100 = 0.9. 

Now, if we k i n  a model on this sequence of zeros and ones, does 
the model output E[y I z] = 0.9? The answer is yes, if L(y, $) is 
P-admissible. 

w. TWO P-ADMISSIBLE LOSS FUNCTIONS 

The squared-error function is known to be P-admissible: 

L.e(Y, 5) = (P - YI2. 
Least-squared minimization has the property that the derivative with 
respect to $ is a linear function. This can be used to advantage 
in designing computationally efficient gradient based optimization 
schemes (training algorithms). 

A loss function commonly used in neural network training algo- 
rithms is the cross entropy function [1]-[4]: 

The cross entropy loss function is used for maximum likelihood 
estimation of model parameters when the training data consists of 
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classification labels [l]. L,, is also P-admissible [2]. This is shown 
by finding the value of y such that E[Lce(y, y) I 4 is minimized. 
Equation (cl) requires that the minimization solution be 0 = E[y]. 
We can easily derive this by solving the minima problem: 

This partial derivative equals zero when y = E[y]. Since the 
second partial derivative is positive at y = E[y], this extremum is 
the minim&. Thus, (cl) is satisfied and the cross entropy function 
is P-admissible. 

V. NECESSARY AND SUFFICIENT CONDITIONS FOR P-ADMISSIBILITY 
Define h(y)  = L(0, y) to be the value of the loss function 

when the target output y is zero. In Appendix A, it is shown that 
P-admissibility is equivalent to the restrictions (rl) and (r2): 

The prime indicates the derivative, h’(6) = d/dyh($). The value 
C(y) is a constant with respect to 9. It has no effect on minimization 
and may be set to zero when defining a loss function. The restrictions 
(rl) and (r2) may be used to generate loss functions that minimize to 
the conditional expectation. Note that a P-admissible loss function 
may be described entirely by h(y)  = L(0, i) ,  the value of the loss 
function when the target y = 0. For example, the squared-error 
loss function has error h($) = 5’ when the desired output is zero. 
Substitute this into (rl) with C(y) = yz to find L(y, y) = (y - i)’ 
as expected. 

VI. A S Y M ~ ~ Y  RESTRICTION 
So far, we have used P-admissibility to restrict the class of loss 

functions under study. A second restriction on a loss function is the 
condition of logical symmetry: 

L(0, y) = L(1, 1 - p). (c2) 

This condition is natural when the labels y = 1 and y = 0 are 
arbitrary. In the simple medical records example, we used y = 1 
to indicate the presence of a disease. If instead we had used y = 0 
to indicate the disease, would the results have been the same? The 
answer is true generally only if the loss function obeys the symmetry 
condition (c2). 

Symmetry can be use to greatly simplify (rl). Define 

Then, (rl) may be written 

Thus, L(1, 1 - y)  = h(1- y) - k ( 1 -  $) + C(l), and by definition 
L(0, y) = h(y). From (c2), find k($) = h($)  - h(1 - 5) - C(1). 
Finally, substitute back into (r3) to get the simple form: 

L(Y, 6) = h(P) + Y [ W  - Y) - W)1+ Cl(Y1- 

We show in Appendix B that symmetry further restricts the fonil 
of a P-admissible loss function. Specifically h(@) must satisfy (r4): 

Hampshire and Pearlmutter [5] independently arrived at (r4) for the 
case where the targets are binary (0, 1). In this correspondence, we 
show that this result applies to objective function analysis for more 
general distributions p(y). 

It follows from equation (r4) that at least one of the following 
cases must be true: 

, h’(y) has a zero at y = 0 or 
h‘(jj) has a pole at jj = 1. 

Simple functions satisfying this restriction are: 

h;(y) = k 
1 hi($) = ~ 1 - 9 ’  

By substitution into (rl), it is seen that h l  defines the objective 
function: 

Li(y, 6) = 0.5y2 - $?y. 

An objective function can be multiplied by a constant with respect 
to 6 or added to a constant w.r.t. $ without changing the minimiition, 
thus Ll(y, $) is equivalent to L,, = (6 - y)’. Similarly hz may be 
substituted into (rl) to generate the cross entropy objective function. 
Hence, by applying the result of Appendix B, we see that the well 
known loss functions L,, and L,, are two of the most simple 
functions of a class that satisfy P-admissibility and the symmetry 
condition. 

W. INSUFFICIENTLY POWERFUL MODELS 
In Section 11, we developed P-admissibility by considering that 

a sufficiently powerful model should produce conditional expected 
values. In practice, the model may not be able to produce these 
ideal outputs for every different input g. What if the model is not 
sufficiently powerful? 

Let g(g) = E[y I d. We reintroduce the explicit reference to g 
in the notation. From Section 11, we know g(g) is the output of a 
sufficiently powerful model after training with a P-admissible loss 
function. Let y be the output of an “imperfect” model, one which 
may not be sufficiently powerful. In Appendix C, it is shown that if 
L(y, 6) is P-admissible then, 

e E [ L ( y ,  g)] is equivalent to minE[L(g(g), 5 ) )  (r5) 

Here, the expected value is taken over the joint distribution of g, y in 
the training data. In words, (r5) says that the model which is found 
by minimizing the expected loss, produces outputs which come as 
close as possible to the output of an “ideal” model. Furthermore, this 
“closeness” is defined by the loss ‘function. For instance if the loss 
function is squared error, then a real model trained to minimize the 
expected squared error between y and 6 will produce an output for 
which the expected square error between $ = f(g) and E[y 1 4 
is minimized. This was shown for the squared-error loss function 
by White [6]. Result (r5) generalizes this result to all  possible loss 
functions that produce estimates of the conditional expectation. 

- E 
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0 h‘($) > 0, for 0 < p < 1, 6 2 )  

First, it will be shown that ((rl). (r2)) 3 (cl). Consistent with the 

0 
0 

f, and where we assme h’($) = d/djj  h(5) exists for 

notation used in (cl), we will use an overbar to indicate the expected 
value of a function taken with respect to p(y): 

E (0, 1). 
/ 

81 
0 

f.. 

Fig. 2. Comparison of two models fitted to six points. 

Fig. 2 shows an example graphically. Here we have 6 points of 
training data with three unique z. The conditional expected values of 
y for these three inputs are shown by 91, g2, g3. The figure shows a 
curve fsp from a sufficiently powerful model. A sufficiently powerful 
model in this case is any set of curves (parameterized by e> that 
include a curve which passes through 91, 92, g3. For example, second 
order polynomials are sufficiently powerful for this case since there 
are three points. If we set the by minimizing the expected value 
of a P-admissible loss function, then the function fsp(z) will pass 
through these points. This is the result of Section 11. Now suppose we 
fit these points with a line. A line is “insufficiently powerful” for this 
problem, because it does not have the 3 degrees of freedom necessary 
to pass through 91, gz, g3. Result (r5) says that the line will come 
as close as possible to the three points. The measure of “closeness” 
is the same loss function which we used with the 6 training points. 
In other words, we would have found the same line if the training 
points had been gl, g2, g3, rather than the 6 points. This would be 
false if we had selected using a non-P-admissible loss functions. 
For instance, if the loss function were L(y, y) (y - y)4 then fsp 

would not pass through the points 91, gZ, g3, and the line would not 
be a quartic error approximation of the outputs of the fdp function. 

VIII. CONCLUSION 
We have generalized and extended previously known results on 

the topic of obtaining conditional estimates from a trained model. 
In particular, we derived necessary and sufficient conditions for 
an objective function to minimize to the expected value of the 
desired output y given ari input g. The objective function L(y, 9) 
was found to be uniquely specified by the function L(0, $). This 
function L(0, g) was found to satisfy further restrictions when a 
condition of logical symmetry is required. These restrictions and the 
relation between L(y, c )  and L(0, 9) define the class of all objective 
functions that minimize to the conditional expectation. This includes 
objective functions that minimize to a probability. WO of the simplest 
functions in this class were found to be the well-known squared error 
and cross entropy objective functions. When the model is incapable of 
mapping all  inputs g to the ideal output g(c) = E[y 1 A, it was found 
that after training to minimize E[L(y, i)], the model minimizes 
the expected error in its approximation of g(2) as measured by 
L(S(EC_), 9). 

Substitute in (rl), 

Take the derivative with respect to $: 

Here, we took the derivative under the integral. This equality holds 
if h‘(6) exists, as we have assumed for $ E (0, 1). A local minimum 
can occur for z E (0,  I), if and only if: 

From (A.1): 

Given (r2) it is clear that a/ayz($) = 0 for g E (0, l), if and 
only if jj =. g. Taking derivatives again shows that this extremum 
represents a minimum: 

Thus it has been shown ((rl) (r2)) 3 (cl). 

certainly requires: 
It remains to be proven that (cl)+ ((rl) - (r2)). Condition (cl) 

64.3) 
l a  1 P(Y)@Y, 6)dY = 0 at 6 = v- 

Without loss of generality, as a change of notation, let 

(A41 
a 

--L(Y, $1 = G(Y, 8) * (0 - Y). a6 
Substituting this into (A.3): 
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~ ( 1 -  P ) ( Y ~  - yi)(G(yi, V) - G(y2, a)) = 0. Let 

Therefore, G(y1, %) = G(y2, v), where p can be chosen to set 
3 arbitrarily in (yl, ~ 2 ) .  Thus, G(w, 9) = G(y2, 0)) for any 
y1 < P < y2. Therefore, G(y, P) is independent of y, so we may 
write 

qjj) = JY dg. 

men, (rl) may be written 

Evaluating at y = 0 and using the definition of h($)  shows 

Substituting this G(5) back into (A.4) and then integrating both sides 
of the equation gives the desired result (rl). The result (cl)+(r2) 
follows easily from the requirement that the unique extremum found 
by (rl), be a minimum rather than a maximum. Since (cl) =% 

((rl) (r2)) and ((rl) (r2)) + (cl), it has been shown (cl) e 
((rl) ( a ) .  0 

X. APPENDIxB 
&STRICTIONS ON h($) 

Proof: ((cl) . (c2)) + (r4), where (cl) and (c2) are as given 
in Appendix A, and (r4) is 

a a 
p ~ L ( 1 ,  Y) + (1 - p):L(O, Y) = 0 at Y = p. 

using (c2): 

a a 
ay a y  

-p:L(O, 1 - 6) + (1 - p):L(O, 9) = 0 at 6 = p,  
Now, use (A.7) 

l-p - h’(1- P )  W ( Y ,  611 = E[h(B)l+ E[Cb)l - E[s(d * w1, 
P h’(P) = E [ W  + g ( d  - g k )  * k(Y)l + E[C(Y) - g(d1- 

use ( ~ . 9 )  once more: Since p is arbitrary E (0, I), (r4) is proven. 

XI. APPENDIXC 
~ M J Z A T I O N  TO A PROWILWY WITH ksumcmm~ POWRNL MODELS 

E[L(Y, $11 = E[L(s(%), $1 + E[C(Y) - g(z)l. (A.10) 

Since E[C(y) - g(g)] is a constant with respect to it follows from 
Proof (cl)*(r5). The condition for P-admissibility, (cl), is (A.l~): 

previously defined and (r5) is defined 
e E [ L ( y ,  fi)] is equivalent to minE[L(g(g), y)]. 0 

T E [ L ( y ,  i)] is equivalent to minE[L(g(g)), $1, (r5) - - - - 
where g(g) = s p(y I g) y dy and j j  = f(c, e>. Here the expected 
value symbol E refers to the expected value taken over a probability 
distribution on g, y. So for any function F(g ,  y) the expected value 
E[F(g ,  y)] is shorthand for the equivalent integral forms 

E[F(:, Y)1 = J J P(E, y)F(:, Y) dy dat, (A.7) 
E U  

= S,P@)[jyP(Y I c)F(iE, Y)dY 1 &. (A.8) 

We assume these integrals actually exist and that the distribution 
functions p(g, y), p(g), and p(y I g) all exist where they are 
evaluated within the integral. If p(g, y) is the probability of choosing 
a training pair &, y) from a random sample from a finite training set 
then the integral corresponds to an equivalent finite sum. As shown 
in Appendix A, (cl)=%(rl). 
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